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Feathers are dead integumentary structures that are prone to damage and thus show
gradual degradation over the course of a year. This loss of quality might have negative
fitness consequences. Feather-degrading bacteria are some of the most prevalent feather-
degrading organisms, yet the relationship between feather-degrading bacteria load and
flight feather quality has rarely been assessed. We studied this relationship in free-living
House Sparrows during breeding and non-breeding annual lifecycle stages. We also con-
sidered the size of the uropygial gland, given the antimicrobial function of its secretions,
and the effect of body condition. The number of feather holes was positively associated
with feather-degrading bacteria load and was negatively related to uropygial gland size
and body condition during the breeding season in both sexes. In the non-breeding season
we found the same relationships, but only in females. The degree of feather wear was
unrelated to any of the variables measured during the breeding season, whereas it was
negatively associated with uropygial gland size and positively with feather-degrading bac-
teria load in the non-breeding season, but only in females. Our results suggest that
feather-degrading bacteria may induce the formation of feather holes, but play only a
minor role in the abrasion of flight feathers.

Keywords: feather hole, feather wear, feather structure, keratinolytic microorganisms, preen oil.

Feathers are epidermal appendages that character-
ize theropod dinosaurs, including birds. Because
they are dead structures, they are incapable of
regeneration and therefore their structure abrades
gradually with persistent use, particularly in the
case of flight feathers (the remiges and rectrices;
V�ag�asi et al. 2011, Flinks & Salewski 2012).
Feather abrasion and feather holes are the most
commonly encountered signs of structural damage.
Of these, feather abrasion (or wear) is the gradual
shortening of the flight feather tips (Meril€a &
Hemborg 2000, V�ag�asi et al. 2011), whereas
feather holes are small defects (diameter 0.5–
1 mm) of the vane (Vas et al. 2008, V�ag�asi 2014).

Feather structural damage could decrease flight
feather quality and/or create asymmetry in the
wing and tail. Consequently, such damage might
impose fitness costs via reduced flight performance
(e.g. manoeuvrability, take-off speed or wing-beat
frequency; Swaddle et al. 1996, 1999, Swaddle &
Witter 1998, Barbosa et al. 2003).

Feather structure can be impaired by both abi-
otic and biotic environmental factors. Feather abra-
sion is recognized as a direct consequence of
mechanical friction (Burtt 1986, Francis & Wood
1989, Jenni & Winkler 1994). In addition, Mor-
eno-Rueda (2011) proposed that the degree of
abrasion might also be exacerbated by ectopara-
sites (e.g. chewing lice, feather-degrading bacteria).
Feather holes are usually considered to be the
feeding traces of chewing lice (Møller 1991) but a
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recent review suggests this conclusion to be
contentious, as damage could be caused by other
parasites (e.g. feather-degrading bacteria) and/or
mechanical agents (V�ag�asi 2014, see also V�ag�asi
et al. 2011). These assumptions, however, have
never been explored.

Feather-degrading bacteria (FDB) are a wide-
spread group of microorganisms that live on the
plumage of birds (Burtt & Ichida 1999, Gunderson
2008). They possess keratinolytic enzymes that
hydrolyse the keratin matrix (Ramnani et al.
2005), leading to complete degradation of feathers
in vitro (Ichida et al. 2001, Ramnani et al. 2005,
Ruiz-Rodr�ıguez et al. 2009). However, this inter-
action might be more intricate than depicted by
in vitro studies, as some peculiarities of FDB break
down in vivo (Czirj�ak et al. 2013), and the in vivo
association between FDB and plumage condition is
still largely unexplored (Gunderson 2008, excep-
tions are Jacob et al. 2014a, Leclaire et al. 2015).

Birds are equipped with multiple defence
mechanisms that have evolved to protect them
against biotic impacts on their feathers, such as
feather structure and coloration, body maintenance
behaviours and moult (reviewed by Gunderson
2008, but see also Bonser 1995, Burtt & Ichida
1999, Saranathan & Burtt 2007, Giraudeau et al.
2010a, Burtt et al. 2011). One prominent adapta-
tion is the oily secretion of the uropygial gland
(UG) (Jacob & Ziswiler 1982). The UG is an epi-
dermal holocrine gland of birds that produces
preen oil, which is spread onto the plumage during
preening. Various functions are attributed to the
preen oil, such as improving the resistance of flight
feathers to mechanical friction (Moreno-Rueda
2011) and acting as an antimicrobial barrier to ker-
atinolytic microorganisms (Jacob et al. 1997,
Shawkey et al. 2003, Soler et al. 2008, Møller
et al. 2009, Mart�ın-Vivaldi et al. 2010). It has also
been shown that UG size is inversely related to
the number of feather holes (Moreno-Rueda 2010,
2014), suggesting that the volume of preen oils
available might influence the formation of holes.
Although most studies attribute an important role
to preen oil in improving feather quality, the rela-
tionship of feather damage, FDB and UG size has
remained little studied.

We studied free-ranging House Sparrows Passer
domesticus to assess the relationships between FDB
load and flight feather quality by also taking into
account the potential mediating effects of UG size
and body condition. Birds were sampled in two dif-

ferent stages of their annual cycle, breeding and
non-breeding, which differ markedly in terms of
feather damage (V�ag�asi et al. 2011), FDB preva-
lence (Burtt & Ichida 1999) and UG volume (Pap
et al. 2010). We assessed whether: (1) feather qual-
ity is related to FDB abundance, UG size and body
condition, (2) UG size and body condition are asso-
ciated with FDB load and (3) these relationships
differ between seasons and sexes. Based on the
expectation that keratinolytic parasites could
induce the formation of feather holes by disrupting
a feather’s structural integrity (V�ag�asi 2014), we
predicted a positive relationship between feather
damage (i.e. degree of feather wear and feather
hole load) and FDB abundance. We expected a
negative relationship between the feather damage
and UG size, in line with former studies (Moreno-
Rueda 2010, 2011, 2014) 3. Finally, we predicted a
positive relationship between FDB abundance and
UG size, as some recent studies indicated that UG
size increases with experimentally elevated micro-
bial pressure (Jacob et al. 2014b, Leclaire et al.
2015, but see Møller et al. 2009).

METHODS

General procedures 4

We caught respectively 48 (26 males and 22
females) and 74 (39 males and 35 females) House
Sparrows with mist-nets (Ecotone, Poland 5) during
the breeding (May 2012) and non-breeding sea-
sons (November 2012) at a farm near B�alcaciu
Village, central Transylvania, Romania (46°11028″
N, 24°3041″E). All birds captured in May were
adults (i.e. at least 1 year old); however, individu-
als caught in November were either adults or first-
year individuals. While males can be aged based
on the ‘mask of seniority’ (Nakagawa & Burke
2008), first-year and adult females cannot be dis-
tinguished based on plumage characters after the
complete post-juvenile moult. To overcome pseu-
doreplication, we did not sample the individuals
recaptured in November.

Birds were ringed and standard biometric data
were recorded: tarsus length (� 0.01 mm with
digital callipers), body mass (� 0.1 g with a Pesola
spring balance) and UG size. The volume of the
UG (mm3) is the product of maximum width,
length and height (� 0.01 mm with digital cal-
lipers; see Pap et al. 2010). To increase the preci-
sion of our data, UG size was measured twice and
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then averaged for each individual. Measurement
precision was very high as shown by the large
repeatability of UG volume both during the breed-
ing (r = 0.964, 95% confidence interval
(CI) = 0.943–0.984, P < 0.001) and non-breeding
seasons (r = 0.961, 95% CI = 0.944–0.979,
P < 0.001). Gland volume correlates with the
amount of secretion produced in House Sparrows
(Pap et al. 2010), therefore volume is a good
proxy of the secretory capacity of the UG (Møller
et al. 2009).

Feather quality

Flight feather quality was characterized by two
measures of feather damage: the degree of feather
wear and the number of feather holes. Feather
wear was scored separately for each of the 18
remiges of the left wing (the outermost primary is
vestigial in sparrows) following Prater et al. (1977)
as follows: 0 = unworn (i.e. immaculate feather
tip), 1 = slightly, 2 = moderately, and 3 = very
abraded (i.e. a considerably shorter feather, even
with breakage at the tip). The scores of individual
feathers were summed for an overall wing wear
index. Feather holes were counted separately on
the remiges of the left wing and on tail feathers,
then individual counts were summed to obtain a
total hole load (see also V�ag�asi et al. 2011). Both
parameters were quantified by the same person
(CIV).

Abundance of feather-degrading

bacteria

Immediately after capture, we collected approxi-
mately five belly feathers following the method
described by Czirj�ak et al. (2013). We collected
feather samples only from the belly, as it has been
shown previously that bacterial abundances from
different body regions of the same individual are
positively correlated (Pearson’s product-moment
correlation of belly feathers vs. primary and sec-
ondary remiges: t = 3.424, df = 128, P < 0.001,
r = 0.289, 95% CI of r = 0.123–0.439, A. F€ul€op,
G. �A. Czirj�ak, P. L. Pap & C. I. V�ag�asi unpubl.
data from the same population; see also Gunder-
son et al. 2009). We took every measure to
exclude the exogenous contamination of feathers.
Briefly, before handling the birds, we washed our
hands with ethanol (70%) and waited for this to
evaporate completely to avoid the unintentional

killing of any bacteria on the feathers. Then we
collected the feather samples using forceps that
had been sterilized with ethanol (70%) and heat
(flamed for at least 10 s). Feather samples were
stored in sterile cryotubes and kept at 4 °C in a
dark cool box until arriving at the laboratory
(within 10 h), where samples were stored at
� 20 °C until microbiological analyses took place.
Further details are described elsewhere (Czirj�ak
et al. 2013).

The abundance of FDB (interchangeably used
with FDB load) was measured under sterile condi-
tions in the laboratory using the microbiological
techniques described by Czirj�ak et al. (2010).
A detailed description of the methodology can be
found in Appendix S1. FDB load was expressed as
the number of colony-forming units per mg of
feather (CFU/mg feather). These values were also
used in the subsequent statistical analyses. All lab-
oratory procedures and counts were performed
blind with respect to the identity of individual
birds and conducted by the same person (A.F.).

Statistical analyses

Statistical analyses were carried out using the R sta-
tistical environment, version 3.1.1 (R Core Team
2014). Body condition was expressed as scaled
mass index (SMI; Peig & Green 2009), which is a
size-corrected body condition index calculated by
the function SMI = body mass 9 (19.14/tarsus
length)1.65, where 19.14 is the mean tarsus length
of the sample, and 1.65 is the slope of a model II
standard major axis regression of log mass on log
tarsus length calculated from the sampled individ-
uals (R package ‘lmodel2’; Legendre 2014). Prior
to analyses, FDB load was log10-transformed to
improve its distribution, and SMI, UG size and
FDB load were scaled such that the mean = 0 and
sd = 1 using the ‘scale’ function in R, which sub-
tracts the sample mean from each individual’s
value and divides this by the sample sd.

To assess seasonal and sex differences in the
measured traits we used generalized linear models
(GLMs) with quasi-Poisson error distribution for
the feather quality markers (feather holes and
wear) and linear models (LM) with Gaussian dis-
tribution for SMI, UG size and FDB load. Traits
were entered in separate models as dependent
variables, with season, sex and their interaction as
independent terms. Relationships between feather
quality traits (feather holes and wear), entered as
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dependent variables in the models, and sex, FDB
load, UG size and SMI were assessed using GLMs
with quasi-Poisson error distribution separately for
the two seasons (breeding/non-breeding). The
interactions between sex and other continuous
predictors were also tested in all models. FDB load
was analysed separately for the two seasons using
LMs with Gaussian distributions. FDB load was
entered as a dependent variable, whereas sex, UG
size, SMI and the interaction of sex with UG size
and SMI were included as independent terms.

In all cases, we first built saturated models that
were simplified to minimum adequate models
(MAMs) using a backward stepwise elimination
procedure dropping non-significant (P > 0.05) pre-
dictors and/or interactions with the largest P-value
during each step. Exceptions were those non-sig-
nificant main effects that were part of a significant
interaction. Requirements of MAMs related to lin-
earity, outliers and residual distribution were
checked by plot diagnosis, and the potential multi-
collinearity issue between predictors was assessed
by computing the variance inflation factor (VIF; R

package ‘car’; Fox & Weisberg 2011). Because all
VIF < 4.61, we concluded that there was no mul-
ticollinearity that might alter our conclusions.
Only the MAMs are presented in the main text
(results of the full models are given in Tables S1–
S4).

The reference levels for the factors season and
sex are breeding season and males, respectively.
Thus, negative values for season indicate that the
averages are smaller during the non-breeding sea-
son, and negative values associated with sex indi-
cate that sex-specific averages tend towards
females. Model estimates (b) � se are reported
throughout, and results are considered significant if
P ≤ 0.05.

RESULTS

Each House Sparrow was infested with FDB (i.e.
prevalence was 100% in both seasons) and the
median, mean and sd for FDB load were 16.33,
25.71 and 22.93 during breeding (range: 4.40–
123.75) and 17.81, 43.90 and 66.46, during non-
breeding (range: 2.41–383.42), respectively.

Seasonal and sex differences

The extent of feather wear and the number of
feather holes was significantly greater during the

breeding season compared with the non-breeding
season (wear: b = � 2.765 � 0.171, t = 16.130,
P < 0.001; holes: b = � 1.050 � 0.184, t = 5.691,
P < 0.001). The number of feather holes was sig-
nificantly greater in males than in females
(b = � 0.478 � 0.184, t = 2.590, P = 0.010),
whereas feather wear was similar between the
sexes.

Body condition (i.e. SMI) was similar between
seasons and sexes. The size of the UG differed
between seasons sex-dependently (UG 9 sex
interaction: b = � 0.780 � 0.254, t = 3.069, P =

0.002); sexes were similar in UG volume during the
non-breeding season (b = � 0.012 � 0.129,
t = 0.097, P = 0.923), but females had larger UG
than males during the breeding period
(b = 0.767 � 0.244, t = 3.137, P = 0.002). Varia-
tion in FDB loads was not explained by either
season or sex.

Feather quality during breeding

The number of feather holes was negatively
related to body condition (i.e. SMI) and UG size,
and was positively associated with FDB load
(Fig. 1a,c, Table 1). The extent of feather wear
was not explained by any of the predictors
(Table 1).

Feather quality during non-breeding

The number of feather holes differed significantly
between the sexes, males having more holes than
females. The number of feather holes was also
related to UG size and FDB load in a sex-depen-
dent way, as shown by the significant two-
way interactions (Table 1). In males, the number
of feather holes was unrelated to SMI
(b = � 0.168 � 0.194, t = 0.866, P = 0.392), UG
(b = � 0.077 � 0.185, t = 0.418, P = 0.678) or
FDB (b = � 0.080 � 0.200, t = 0.398, P = 0.693;
Fig. 1b), whereas in females it was significantly
negatively related to SMI (b = � 0.399 � 0.185,
t = 2.153, P = 0.039) and UG size
(b = � 0.633 � 0.196, t = 3.226, P = 0.002), and
positively to FDB load (b = 0.485 � 0.188,
t = 2.430, P = 0.021; Fig. 1d).

The degree of feather wear was significantly
negatively related to UG size, and was sex-depen-
dently related to FDB load, as indicated by the sig-
nificant sex 9 FDB interaction (Table 1). The
degree of feather wear was not related to SMI
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(b = � 0.042 � 0.272, t = 0.155, P = 0.877), UG
size (b = � 0.235 � 0.263, t = 0.892, P = 0.378)
or FDB load (b = � 0.140 � 0.287, t = 0.490,
P = 0.627) in males, but it was significantly nega-
tively related to UG size (b = � 0.827 � 0.275,
t = 2.999, P = 0.005), and positively to FDB abun-
dance (b = 0.884 � 0.271, t = 3.261, P = 0.002)
in females.

Feather-degrading bacteria load

Feather-degrading bacteria load was sex-depen-
dently related to UG size during the breeding
season, as shown by the significant sex 9 UG inter-
action (b = 0.519 � 0.243, t = 2.128, P = 0.039);
FDB load was not related to UG size in males
(b = 0.004 � 0.209, t = 0.024, P = 0.981), but
was significantly positively related in females
(b = 0.641 � 0.215, t = 2.982, P = 0.007). Dur-

ing the non-breeding season, FDB load was signifi-
cantly positively associated with UG size
(b = 0.615 � 0.228, t = 2.689, P = 0.008) in both
sexes (sex 9 UG interaction: b = 0.442 � 0.480,
t = 0.922, P = 0.360).

DISCUSSION

Feather holes

Our findings show that the number of feather
holes has a negatively relationship to UG size and
a positive relationship to FDB abundance in the
breeding season. Even though the entire plumage
is moulted at the end of breeding, these relation-
ships were also observed for the freshly grown
feathers in females in the non-breeding season.
Earlier studies have referred to feather holes
mostly as feeding traces of feather lice, and thus

Figure 1. Relationships between the abundance of feather-degrading bacteria and the number of feather holes in House Sparrows

Passer domesticus for the different sexes and seasons ((a) breeding males; (b) non-breeding males; (c) breeding females; (d) non-

breeding females).
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several studies used the number of holes as a sub-
stitute for lice load (V�ag�asi 2014). Additionally, it
has been assumed that UG secretions contain
insecticides, which hamper the proliferation of lice
(Moyer et al. 2003, Møller et al. 2010). Therefore,
the negative relationship between the number of
feather holes and UG size has been explained
based on the basis that preen oil is a defence
mechanism against chewing lice (Moreno-Rueda
2010). However, these explanations are not
straightforward or well-substantiated in the litera-
ture (V�ag�asi 2014).

We report for the first time that FDB load is
positively related to feather hole incidence in
agreement with an alternative hypothesis for the
origin of feather holes (V�ag�asi et al. 2011, V�ag�asi
2014). This is also indicated by the negative rela-
tionship between feather hole load and UG size
given the protective role of UG secretions against
FDB (see below). Because feather lice infestation

was not quantified in our study, we cannot
exclude the lice origin of the feather holes. How-
ever, the lice origin of feather holes seems to be
unlikely in this species for the following reasons.
Vas et al. (2008) reported that feather holes of
small passerines are probably caused by Brueelia
spp. lice, but in a previous study we found that
House Sparrows from the same population were
not infested by Brueelia spp. lice (Pap et al.
2013a). Furthermore, it has been suggested that
Ischnoceran lice such as Brueelia spp. are probably
incapable of chewing the large barbules and/or
barbs of flight feathers (compared with body
feathers) due to physical constraints imposed by
mandible size (V�ag�asi 2014). The suggestion that
FDB are the major causative agents of feather
holes, however, requires experimental demonstra-
tion and its generality in birds could be studied by
means of phylogenetic comparison.

We found a positive association between FDB
loads and UG volume in females during breeding
and in both sexes in the non-breeding season. This
indicates that the preen oil might have an impor-
tant function in the regulation of plumage-dwell-
ing microbial communities (Shawkey et al. 2003,
Soler et al. 2008, Mart�ın-Vivaldi et al. 2010, but
see Czirj�ak et al. 2013, Giraudeau et al. 2013).
Our findings differ from those of Møller et al.
(2009), who recovered a negative relationship
between UG size and FDB abundance in breeding
Barn Swallows Hirundo rustica. This might stem
from the fundamental differences in life-history
(e.g. terrestrial vs. aerial foraging) and ecological
(e.g. sedentary vs. long-term migrant) attributes of
the two species, which might lead to species-speci-
ficity in the amount of preen oil produced (Jacob
& Ziswiler 1982, Vincze et al. 2013). However,
our results are in line with two experimental stud-
ies performed on Great Tits Parus major and Feral
Pigeons Columba livia (Jacob et al. 2014b, Leclaire
et al. 2015). Both studies found that birds exposed
to higher bacterial infection possessed larger UG.
Taken together, the UG may partly have evolved,
or been seconded, as a defence mechanism against
FDB.

The number of feather holes was negatively
related to body condition in both sexes during
breeding, and only in females during the non-
breeding season. Our results indicate that feather
hole emergence can reflect body condition, and
that feather quality depends on the individual’s
general state of health, both of which can be

Table 1. Minimum adequate models (MAMs) of generalized

linear models of flight feather quality traits of House Sparrows

Passer domesticus during the breeding and non-breeding sea-

sons. For the main effect of the fixed factor ‘Sex’, males are

included in the intercept, therefore the reported estimates

show the extent to which females differ from males. The sign

of estimates indicates the direction of associations.

Response/predictor Estimate � se t P

Breeding

Feather holes

(Intercept) 1.380 � 0.133 10.370 < 0.001

SMI � 0.243 � 0.112 2.159 0.036

UG � 0.365 � 0.115 3.175 0.002

FDB 0.512 � 0.148 3.453 0.001

Feather wear

(Intercept) 3.015 � 0.043 68.900 < 0.001

Non-breeding

Feather holes

(Intercept) 0.201 � 0.238 0.843 0.402

Sex (female) � 1.416 � 0.510 2.772 0.007

UG � 0.182 � 0.291 0.627 0.533

FDB � 0.057 � 0.150 0.381 0.704

Sex 9 UG � 1.195 � 0.523 2.281 0.025

Sex 9 FDB 0.525 � 0.262 2.004 0.049

Feather wear

(Intercept) � 0.573 � 0.361 1.586 0.117

Sex (female) 0.097 � 0.347 0.281 0.779

UG � 0.989 � 0.329 3.001 0.003

FDB � 0.071 � 0.253 0.281 0.779

Sex 9 FDB 0.733 � 0.318 2.301 0.024

FDB, intensity of infestation by feather-degrading bacteria;

SMI, scaled mass index; UG, uropygial gland volume. Signifi-

cant P-values are highlighted in bold.
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influenced by parasites (Saag et al. 2011, Jovani
et al. 2014). However, we found no relationship
between body condition and FDB load. This sug-
gests that body condition is a determinant of flight
feather quality in House Sparrows, which may act
independently from FDB or through other para-
sites (Pap et al. 2013b).

Feather wear

We found that feather wear was not related to any
of the model predictors during the breeding sea-
son, when its extent is considerably higher than
during the non-breeding season (i.e. after the com-
plete annual moult). Feather wear, however, was
negatively related to UG size and positively to
FDB abundance in females during the non-breed-
ing season. Our results from the breeding season
are in line with previous studies indicating that
feather abrasion is the consequence of mechanical
friction (Burtt 1986, Francis & Wood 1989, Jenni
& Winkler 1994), rather than the harmful effect
of FDB, as we found no relationship between bac-
terial load and the intensity of feather wear. How-
ever, the lack of relationship between UG and
wear is in contrast with a previous study on the
same species, in which a negative relationship was
reported (Moreno-Rueda 2011). Discrepancies
between the two studies might be attributed to
the different timing of the studies, pre-breeding by
Moreno-Rueda (2011) and breeding in this study.
Note that the size of the UG is significantly smal-
ler in both sexes during the pre-breeding period
than during breeding, and there is no sex-differ-
ence in UG size during pre-breeding, but during
breeding females possess significantly larger glands
than males (this study, Pap et al. 2010, Moreno-
Rueda 2011). Such seasonal and sex-dependent
variations in UG size might influence its relation-
ship with feather abrasion.

The relationships between feather wear and UG
size and between feather wear and FDB load,
which were apparent in females during the non-
breeding season, indicate a rather slight protective
role of preen oil against feather wear and tear. The
beneficial effect of preen oil on plumage function-
ality was demonstrated by the stronger or faster
physical feather deterioration in birds that had
experimentally blocked or naturally smaller glands
(Elder 1954, Jacob & Ziswiler 1982, Moyer et al.
2003, Giraudeau et al. 2010b, Moreno-Rueda
2011). Still, we found a minor indication that the

wear of flight feathers can be mitigated by the
preen secretion.

CONCLUSION

We demonstrate that damage to flight feathers,
expressed as abundance of feather holes and extent
of feather wear, is associated with diverse intrinsic
factors such as body condition, UG size and FDB
load, and that these relationships vary seasonally
and/or sex-dependently. Our findings indicate that
UG might play an important role in the regulation
of plumage bacterial abundance, and hence medi-
ate the potentially negative impact of FDB on
flight feather quality. Experimental studies are
needed to prove causation.

L}orinc B�arbos, Annam�aria Fenesi, Attila Marton
and Zs�ofia Mezey are thanked for helping us catch
birds. Alina Sesarman, Endre Jakab, Laura P�atraș,
Cornelia Ochiș and Bianca Ianc provided logistical
help during laboratory work. Csaba Paizs lent us
the ultrasonic cleaner. All the laboratory work was
carried out at the Molecular Biology Centre, Insti-
tute of Interdisciplinary Experimental Research,
Babeș-Bolyai University, with the support of Octa-
vian Popescu and Annette Damert. Javier P�erez-
Tris, Gregorio Moreno-Rueda, Rauri Bowie and an
anonymous reviewer provided constructive criti-
cism. Gareth Dyke kindly helped to polish our
English. A.F. was financially supported by an
excellence student scholarship of the Babeș-Bolyai
University (30068/20/19.01.2012), G.�A.C. by
funds from Leibniz Institute for Zoo and Wildlife
Research, P.L.P. and C.I.V. by a research grant
(PN II. RU TE 291/2010) from the Romanian
Ministry of Education. During writing A.F. was
financed by an OTKA grant (K112527), P.L.P. by
a J�anos Bolyai Research Scholarship of the Hun-
garian Academy of Sciences and C.I.V. by the
Postdoctoral Fellowship Programme of the Hun-
garian Academy of Sciences. Transport between
the Hungarian and Romanian teams was financed
by a bilateral T�eT grant (RO-HU 679/2013).

REFERENCES

Barbosa, A., Merino, S., Cuervo, J.J., De Lope, F. & Møller,

A.P. 2003. Feather damage of long tails in Barn Swallows

Hirundo rustica. Ardea 91: 85–90.

Bonser, R.H.C. 1995. Melanin and the abrasion resistance of

feathers. Condor 97: 590–591.

Burtt, E.H. Jr 1986. An analysis of physical, physiological,

and optical aspects of avian coloration with emphasis on

© 2015 British Ornithologists’ Union

Bacteria and feather quality 7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52



Wood-Warblers. Ornithological Monographs No. 38.

Washington, DC: University of California Press.

Burtt, E.H., Jr & Ichida, J. 1999. Occurrence of feather-

degrading bacilli in the plumage of birds. Auk 116: 364–372.

Burtt, E.H., Jr, Schroeder, M.R., Smith, L.A., Sroka, J.E. &

McGraw, K.J. 2011. Colourful parrot feathers resist bacterial

degradation. Biol. Lett. 7: 214–216.

Czirj�ak, G.�A., Møller, A.P., Mousseau, T.A. & Heeb, P.

2010. Microorganisms associated with feathers of Barn

Swallows in radioactively contaminated areas around

Chernobyl. Microb. Ecol. 60: 373–380.

Czirj�ak, G.�A., Pap, P.L., V�ag�asi, C.I., Giraudeau, M.,

Mures�an, C., Mirleau, P. & Heeb, P. 2013. Preen gland

removal increases plumage bacterial load but not that of

feather-degrading bacteria. Naturwissenschaften 100: 145–

151.

Elder, W. 1954. The oil gland of birds. Wilson Bull. 66: 6–31.

Flinks, H. & Salewski, V. 2012. Quantifying the effect of

feather abrasion on wing and tail lengths measurements.

J. Ornithol. 153: 1053–1065.

Fox, J. & Weisberg, S. 2011. An R Companion to Applied

Regression, Second Edition. Thousand Oaks, CA: Sage.

Available at: http://socserv.socsci.mcmaster.ca/jfox/Books/

Companion (accessed XXXXX).6
Francis, C.M. & Wood, D.S. 1989. Effects of age and wear

on wing length of Wood-Warblers. J. Field Ornithol. 60: 495–

503.

Giraudeau, M., Czirj�ak, G.�A., Duval, C., Bretagnolle, V.,

Gutierrez, C. & Heeb, P. 2010a. No detected effect of

moult on feather bacterial loads in mallards Anas

platyrhynchos. J. Avian Biol. 41: 678–680.

Giraudeau, M., Duval, C., Guillon, N., Bretagnolle, V.,

Gutierrez, C. & Heeb, P. 2010b. Effects of access to preen

gland secretions on mallard plumage. Naturwissenschaften

97: 577–581.

Giraudeau, M., Czirj�ak, G.�A., Duval, C., Bretagnolle, V.,

Gutierrez, C., Guillon, N. & Heeb, P. 2013. Effect of preen

oil on plumage bacteria: an experimental test with the

Mallard. Behav. Processes 92: 1–5.

Gunderson, A.R. 2008. Feather-degrading bacteria: a new

frontier in avian and host–parasite research? Auk 125: 972–

979.

Gunderson, A.R., Forsyth, M.H. & Swaddle, J.P. 2009.

Evidence that plumage bacteria influence feather coloration

and body condition of eastern bluebirds Sialia sialis.

J. Avian Biol. 40: 440–447.

Ichida, J.M., Krizova, L., LeFevre, C.A., Keener, H.M.,

Elwell, D.L. & Burtt, E.H., Jr 2001. Bacterial inoculum

enhances keratin degradation and biofilm formation in

poultry compost. J. Microbiol. Methods 47: 199–208.

Jacob, J. & Ziswiler, V. 1982. The uropygial gland. In:

Farner, D.S., King, J.R. & Parkes, K.C. (eds) Avian Biology,

Vol. 6: 199–324. New York, NY: Academic Press.

Jacob, J., Eigener, U. & Hoppe, U. 1997. The structure of

preen gland waxes from pelecaniform birds containing 3,7-

dimethyloctan-1-ol: an active ingredient against

dermatophytes. Z. Naturforschung 52: 114–123.

Jacob, S., Colmas, L., Parthuisot, N. & Heeb, P. 2014a. Do

feather-degrading bacteria actually degrade feather colour?

No significant effects of plumage microbiome modifications

on feather colouration in wild great tits. Naturwissenschaften

101: 929–938.

Jacob, S., Immer, A., Leclaire, S., Parthuisot, N., Ducamp,

C., Espinasse, G. & Heeb, P. 2014b. Uropygial gland size

and composition varies according to experimentally modified

microbiome in Great Tits. BMC Evol. Biol. 14: 134.

Jenni, L. & Winkler, R. 1994. Moult and Ageing of European

Passerines. New York, NY: Academic Press.

Jovani, R., Montalvo, T. & Savat�e, S. 2014. Fault bars and

bacterial infection. J. Ornithol. 155: 819–823.

Leclaire, S., Pierret, P., Chatelain, M. & Gasparini, J. 2015.

Feather bacterial load affects plumage condition, iridescent

color, and investment in preening in pigeons. Behav. Ecol.

25: 1192–1198.

Legendre, P. 2014. lmodel2: Model II Regression. R package

version 1.7–2. Available at: http://CRAN.R-project.org/

package = lmodel2 (accessed 2 March 2015).

Mart�ın-Vivaldi, M., Pe~na, A., Peralta-S�anchez, J.M.,

S�anchez, L., Ananou, S., Ruiz-Rodr�ıguez, M. & Soler, J.J.

2010. Antimicrobial chemicals in hoopoe preen secretions

are produced by symbiotic bacteria. Proc. R. Soc. B 277:

123–130.

Meril€a, J. & Hemborg, C. 2000. Fitness and feather wear in

the Collared Flycatcher Ficedula albicollis. J. Avian Biol. 31:

504–510.

Møller, A.P. 1991. Parasites, sexual ornaments, and mate

choice in the Barn Swallow. In Loye, J.E. & Zuk, M. (eds)

Bird–parasite Interactions: Ecology, Evolution, and

Behaviour: 328–343. Oxford: Oxford University Press.

Møller, A.P., Czirj�ak, G.�A. & Heeb, P. 2009. Feather micro-

organisms and uropygial antimicrobial defences in a colonial

passerine bird. Funct. Ecol. 23: 1097–1102.

Møller, A.P., Erritzøe, J. & R�ozsa, L. 2010. Ectoparasites,

uropygial glands and hatching success in birds. Oecologia

163: 303–311.

Moreno-Rueda, G. 2010. Uropygial gland size correlates

with feather holes, body condition and wingbar size in the

House Sparrow Passer domesticus. J. Avian Biol. 41: 229–

236.

Moreno-Rueda, G. 2011. House Sparrows Passer domesticus

with larger uropygial glands show reduced feather wear. The

Ibis 153: 195–198.

Moreno-Rueda, G. 2014. Uropygial gland size, feather holes

and moult performance in the House Sparrow Passer

domesticus. The Ibis 156: 457–460.

Moyer, B.R., Rock, A.N. & Clayton, D.H. 2003. Experimental

test of the importance of preen oil in rock doves (Columba

livia). Auk 120: 490–496.

Nakagawa, S. & Burke, T. 2008. The mask of seniority?

A neglected age indicator in House Sparrows Passer

domesticus. J. Avian Biol. 39: 222–225.

Pap, P.L., V�ag�asi, C.I., Osv�ath, G., Mures�an, C. & Barta, Z.

2010. Seasonality in the uropygial gland size and feather

mite abundance in House Sparrows Passer domesticus:

natural covariation and an experiment. J. Avian Biol. 41:

653–661.

Pap, P.L., Adam, C., V�ag�asi, C.I., Benk}o, Z. & Vincze, O.

2013a. Sex ratio and sexual dimorphism of three lice

species with contrasting prevalence parasitizing the house

sparrow. J. Parasitol. 99: 24–30.

Pap, P.L., V�ag�asi, C.I., B�arbos, L. & Marton, A. 2013b.

Chronic coccidian infestation compromises flight feather

quality in House Sparrows Passer domesticus. Biol. J. Linn.

Soc. 108: 414–428.

© 2015 British Ornithologists’ Union

8 A. F€ul€op et al.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
http://CRAN.R-project.org/package
http://CRAN.R-project.org/package


Peig, J. & Green, A.J. 2009. New perspectives for estimating

body condition from mass/length data: the scaled mass

index as an alternative method. Oikos 118: 1883–1891.

Prater, A.J., Marchant, J.H. & Vuorinen, J. 1977. Guide to

the Identification and Aging of Holarctic Waders (BTO Guide

17). Tring: BTO.

R Core Team. 2014. R: A Language and Environment for

Statistical Computing. Version 3.1.1. Vienna: R Foundation

for Statistical Computing. Available at: http://www.R-

project.org/ (accessed 10 July 2014).

Ramnani, P., Singh, R. & Gupta, R. 2005. Keratinolytic

potential of Bacillus licheniformis RG1: structural and

biochemical mechanism of feather degradation. Can. J.

Microbiol. 51: 191–196.

Ruiz-Rodr�ıguez, M., Valdivia, E., Soler, J.J., Mart�ın-

Vivaldi, M., Mart�ın-Platero, A.M. & Mart�ınez-Bueno, M.

2009. Symbiotic bacteria living in the Hoopoe’s uropygial

gland prevent feather degradation. J. Exp. Biol. 212: 3621–

3626.

Saag, P., Tilgar, V., M€and, R., Kilgas, P. & M€agi, M. 2011.

Plumage bacterial assemblages in a breeding wild

passerine: relationships with ecological factors and body

condition. Microb. Ecol. 61: 740–749.

Saranathan, V. & Burtt, E.H., Jr 2007. Sunlight on feathers

inhibits feather-degrading bacteria. Wilson J. Ornithol. 119:

239–245.

Shawkey, M.D., Pillai, S.R. & Hill, G.E. 2003. Chemical

warfare? Effects of uropygial oil on feather-degrading

bacteria. J. Avian Biol. 34: 345–349.

Soler, J.J., Mart�ın-Vivaldi, M., Ruiz-Rodr�ıguez, M., Valdivia,

E., Mart�ın-Platero, A.M., Mart�ınez-Bueno, M., Peralta-

S�anchez, J.M. & M�endez, M. 2008. Symbiotic association

between Hoopoes and antibiotic-producing bacteria that live

in their uropygial gland. Funct. Ecol. 22: 864–871.

Swaddle, J. & Witter, M. 1998. Cluttered habitats reduce

wing asymmetry and increase flight performance in

European starlings. Behav. Ecol. Sociobiol. 42: 281–287.

Swaddle, J.P., Witter, M.S., Cuthill, I.C., Budden, A. &

McCowen, P. 1996. Plumage condition affects flight

performance in Common Starlings: implications for

developmental homeostasis, abrasion and moult. J. Avian

Biol. 27: 103–111.

Swaddle, J.P., Williams, E.V. & Rayner, J.M.V. 1999. The

effect of simulated flight feather moult on escape take-off

performance in starlings. J. Avian Biol. 30: 351–358.

V�ag�asi, C.I. 2014. The origin of feather holes: a word of

caution. J. Avian Biol. 45: 431–436.

V�ag�asi, C.I., Pap, P.L., T€ok€olyi, J., Sz�ekely, E. & Barta, Z.

2011. Correlates of variation in flight feather quality in the

great tit Parus major. Ardea 99: 53–60.

V�ag�asi, C.I., Pap, P.L., Vincze, O., Benk}o, Z., Marton, A. &

Barta, Z. 2012. Haste makes waste but condition matters:

molt rate-feather quality trade-off in a sedentary songbird.

PLoS ONE 7: e40651. 7
Vas, Z., Cs€org}o, T., Møller, A.P. & R�ozsa, L. 2008. The

feather holes on the Barn Swallow Hirundo rustica and other

small passerines are probably caused by Brueelia spp. lice.

J. Parasitol. 94: 1438–1440.

Vincze, O., V�ag�asi, C.I., Kov�acs, I., Galv�an, I. & Pap, P.L.

2013. Sources of variation in uropygial gland size in

European birds. Biol. J. Linn. Soc. 110: 543–563.

Received 18 June 2015;
revision accepted 16 December 2015.
Associate Editor: Javier Perez-Tris.

SUPPORTING INFORMATION

Additional Supporting Information may be found
in the online version of this article:

Appendix S1. Detailed methodology of the
microbiological techniques used to quantify
feather-degrading bacterial abundances.

Table S1. The full GLMs demonstrating sea-
sonal (breeding and non-breeding) and sex differ-
ences for feather quality traits of House Sparrows
Passer domesticus.

Table S2. The full LMs demonstrating seasonal
(breeding and non-breeding) and sex differences
for scaled mass index, uropygial gland volume and
intensity of infestation by feather-degrading bacte-
ria in House Sparrows Passer domesticus.

Table S3. The full GLMs of feather quality
traits of House Sparrows Passer domesticus during
the breeding and non-breeding seasons.

Table S4. The full LMs on the determinants of
feather-degrading bacterial load of House Sparrows
Passer domesticus during the breeding and non-
breeding seasons.

© 2015 British Ornithologists’ Union

Bacteria and feather quality 9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

http://www.R-project.org/
http://www.R-project.org/


Author Query Form

Journal: IBI
Article: 12342

Dear Author,
During the copy-editing of your paper, the following queries arose. Please respond to these by marking up
your proofs with the necessary changes/additions. Please write your answers on the query sheet if there is
insufficient space on the page proofs. Please write clearly and follow the conventions shown on the
attached corrections sheet. If returning the proof by fax do not write too close to the paper's edge. Please
remember that illegible mark-ups may delay publication.
Many thanks for your assistance.

Query reference Query Remarks

1 AUTHOR: Please confirm that given names (red) and surnames/family
names (green) have been identified correctly.

2 AUTHOR: Please check that authors and their affiliations are correct.

3 AUTHOR: Moreno Rueda (2010, 2011, 2014) has been changed to
Moreno-Rueda (2010, 2011, 2014) so that this citation matches the
Reference List. Please confirm that this is correct.

4 AUTHOR: Please check the hierarchy of heading levels.

5 AUTHOR: Please give address information for this manufacturer
‘Ecotone’: town.

6 AUTHOR: Please provide the accessed date for reference Fox and
Weisberg (2011).

7 AUTHOR: V�ag�asi et al. (2012) has not been cited in the text. Please
indicate where it should be cited; or delete from the Reference List.


