Accepted Manuscript

Determination of essential and toxic elements in Hungarian honeys

Nikolett Czipa, Dávid Andrási, Béla Kovács

PII:	S0308-8146(14)01920-7
DOI:	http://dx.doi.org/10.1016/j.foodchem.2014.12.018
Reference:	FOCH 16867
To appear in:	Food Chemistry
Received Date:	21 March 2013
Revised Date:	5 December 2014
Accepted Date:	7 December 2014

Please cite this article as: Czipa, N., Andrási, D., Kovács, B., Determination of essential and toxic elements in Hungarian honeys, *Food Chemistry* (2014), doi: http://dx.doi.org/10.1016/j.foodchem.2014.12.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Determination of essential and toxic elements in Hungarian honeys
2	
3	Nikolett Czipa*, Dávid Andrási, Béla Kovács
4	Institute of Food Science
5	Faculty of Agricultural and Food Sciences and Environmental Management
6	University of Debrecen, H-4032 Böszörményi Street 138. Debrecen, Hungary
7	Abstract
9	
10	The aim of this present study was determination of essential and toxic element concentrations
11	in 34 mono- and multi-floral honey samples from four geographical regions of Hungary, and
12	examination of the connection between the floral origin and the element content. Ten
13	elements (Al, Ca, Cu, Fe, K, Mg, Mn, P, S and Zn) were identified by ICP-OES and six (As,
14	Cd, Cr, Mo, Pb, Se) were analysed by ICP-MS. Potassium, calcium, and phosphorus were the
15	most abundant elements with mean concentrations of 372, 47.9 and 44.3 mg kg ⁻¹ ,
16	respectively. The essential element content was very low in the analysed samples and
17	generally below literature values. The concentrations of toxic elements were sufficiently low
18	as to pose no risk to human health. The concentrations of aluminium, arsenic, cadmium and
19	lead were low, with mean concentrations of 1028, 15.6, 0.746 and 45.5 μ g kg ⁻¹ , respectively.
20	Three honey groups (acacia, rape and sunflower) were distinguished by linear discriminant
21	analysis from their element content.
22	
23	Keywords: honey, essential element, toxic element, ICP-OES, ICP-MS

- 24
- 25

*Corresponding author. Tel: +36 30 3662383 Fax: +36 52 417572 E-mail address: nikolettczipa@gmail.com

26 **1. Introduction**

27

28 Honey is a natural substance produced by Apis mellifera from flower nectar or honeydew. Honeys have an important role in human nourishment and medicine due to their excellent 29 dietary, antibacterial, antifungal and antiviral effects. The antibacterial activity is related to 30 31 the sugar and moisture content, pH, hydrogen-peroxide content and phytochemical factors of 32 honey (Etaraf-Oskouei & Najafi, 2013). Honey helps protect against gastrointestinal infection 33 (Alnaqdy et al., 2005). Diarrhea control may be assisted with diluted honey (5% v/v) because 34 it promotes uptake of potassium and water uptake (Bansal et al., 2005). Honey contains a 35 natural mixture of glucose and fructose and, thus, is a good source of carbohydrate for athletes 36 (Bansal et al., 2005).

The major use of honey in healing is the treatment of wounds, suppression of inflammation, clearance of infections and minimization of scarring (Bogdanov et al., 2008; Basualdo et al., 2007). Al-Waili (2001) demonstrated that topical application of crude honey could be effective in treating seborrheic dermatitis and hair loss.

The quantity of honey produced in Europe during 2010 has been estimated to be in excess of 41 42 203,571 tonnes (FAO). Hungary is one of the biggest honey producers in the EU with an annual production of 16,500 tonnes. Honey is a very complex food containing many essential 43 44 nutrients, in particular amino acids, vitamins, organic acids, enzymes and minerals. The 45 composition and properties of honeys depend on the botanical origin of the nectar or 46 honeydew, the harvesting treatment and storage. Honey has a low mineral content (0.1-0.2%)47 in nectar honeys and about 1.0% in honeydew honeys), which varies depending on the soil 48 conditions and extraction techniques (Hernandez et al., 2005). Dark honey types contain 49 higher levels of minerals (Lachman et al., 2007). Honey is useful for collecting information about the environment within the bees' "collecting area", which is about 7 km² (Almeida-50

Silva et al., 2011; Crane, 1984). The major elements in honey are potassium, calcium, 51 52 magnesium and sodium, whilst the minor elements are cadmium, chromium, cobalt, copper, 53 iron, lead, manganese and nickel (Andrade et al., 2014). Accumulation of metals may derive from external sources such as industrial pollution, incorrect treatment and agrochemicals 54 55 (Bratu & Beorgescu, 2005). 56 Chromium, manganese, selenium, sulphur, boron, potassium, calcium and fluorine are particularly important in human nutrition. Codex Alimentarius Hungaricus contains 57 58 Recommended Dietary Allowance (RDA) values for adults, and maximum intakes for toxic elements (e.g. arsenic, lead, cadmium) were determined from WHO Technical Reports (TRS 59 60 959 (As), TRS 960 (Pb), TRS 960 (Cd)). 61 The aims of this study were to: (i) identify and quantify the toxic and essential elements in 34 62 63 Hungarian mono-floral and multi-floral honeys; and (ii) determine the floral origin (acacia, 64 rape or sunflower) based on the element content of samples. 65 2. Materials and methods 66 67 2.1. Samples 68

Thirty-four mono- and multi-floral honey samples were examined in this study (Table 1). The botanical origins of the mono-floral honeys were: acacia (*Robinia pseudoacacia*), rape (*Brassica sp.*), sunflower (*Helianthus annuus*), linden (*Tilia sp.*), hawthorn (*Crataegus sp.*), silk grass (*Aslepias sp.*), facelia (*Phacelia tanacetifolia*) and vetch (*Vicia sp.*). The samples were collected from beekeepers in eight counties of Hungary (Békés, Csongrád, Fejér, Hajdú-Bihar, Jász-Nagykun-Szolnok, Somogy, Tolna, Veszprém) (Table 1.). All honey samples (500

- g) were collected and stored in new, sterile glass jars at room temperature in the dark untilanalysis.
- 77

78 2.2. Reagents and solutions

All chemicals were of analytical grade or better. Nitric acid (69% v/v) and hydrogen-peroxide
(30% v/v) were from VWR International Ltd. (Radnor, USA). Ultrapure water produced by a
Milli-Q water purification system (Millipore SAS, Molsheim, France) was used to prepare of
solutions and dilutions. The element standard solutions were prepared from mono-elemental
standard solution (1000 mg/l; Scharlab S.L., Barcelona, Spain).

84

85 2.3. Determination of element content

The digestion of samples was carried out according to the method of Kovács et al. (1996), 86 87 which had been validated using animal and plant materials in the Institute of Food Science accredited laboratory (ISO/IEC 17025:2005). Three grams of honey were added to 10 ml 88 nitric acid (69% v/v) and the samples allowed to stand overnight. Samples were pre-digested 89 at 60°C for 30 min. After cooling, the 3 ml hydrogen-peroxide (30% v/v) was added and the 90 91 samples heated at 120°C for 90 min. After digestion, ultrapure water was added to make a final volume of 50 ml. Samples were homogenized and filtered using qualitative filter papers 92 93 (Sartorius Stedim Biotech S.A., Gottingen, Germany). Depending on the anticipated 94 concentration, determination of elements was carried out using ICP-OES (Inductively 95 Coupled Plasma Optical Emission Spectrometry) (Thermo Scientific iCAP 6300, Cambridge, 96 UK) or ICP-MS (Inductively Coupled Plasma Mass Spectrometry) (Thermo Scientific XSeries 2, Bremen, Germany). In view of the interference of ³¹P and the ³²S in ICP-MS, these 97 98 elements and those at higher concentrations (e.g. aluminium, calcium, copper, iron, potassium, magnesium, manganese and zinc) were determined by ICP-OES. Six elements 99

100 (arsenic, cadmium, chromium, molybdenum, lead and selenium) were analysed by ICP-MS

- 101 with a hexapole collision/reaction cell (CCT). Yttrium, rhodium and indium were used as
- 102 internal standards (100 μ g L⁻¹). The conditions for analysis and wavelengths used are reported

in Table 2.

- 104
- 105 Detection limits (LOD) were determined for reagent blank samples (n=10) using the software
- 106 for ICP-OES (iTEVA) at a confidence level of 99%. Detection limits of ICP-OES were: 0.004
- 107 mg kg⁻¹ (Al), 0.048 mg kg⁻¹ (Ca), 0.002 mg kg⁻¹ (Cu), 0.005 mg kg⁻¹ (Fe), 0.524 mg kg⁻¹ (K),
- 108 0.104 mg kg⁻¹ (Mg), 0.001 mg kg⁻¹ (Mn), 0.489 mg kg⁻¹ (P), 0.108 mg kg⁻¹ (S) and 0.005 mg
- 109 kg⁻¹ (Zn), respectively.
- 110 In the case of ICP-MD, the LOD was determined using the following equation: LoD = 3 *
- 111 SD_{reagent blank} (n=10) / Sensitivity. Detection limits for ICP-MS were: $0.038 \ \mu g \ kg^{-1}$ (Cr), 0.019

112 $\mu g kg^{-1}$ (As), 0.021 $\mu g kg^{-1}$ (Se), 0.019 $\mu g kg^{-1}$ (Mo), 0.003 $\mu g kg^{-1}$ (Cd) and 0.048 $\mu g kg^{-1}$

- 113 (Pb), respectively.
- In the course of measuring three reference plant samples, the percentage recovery (%) was
 determined to be between 86.5 and 104 % for Al-Zn and between 90.1 and 109 for Cr-Pb.
- 116

117 2.4. Statistical analysis

- All analytical analyses were carried out in triplicate. Data are described using general terms
 (mean, standard deviation, minimum and maximum values) and LDA (Linear Discriminant
 Analysis). SPSS for Windows (version 13; SPSS Inc. Chicago, Illinois, USA) was used for all
 calculations.
- 122
- 123
- 124

125 **3. Results and discussion**

126

127 3.1. Essential elements

The elemental contents of Hungarian honey samples (34) are shown in Table 3. The RDAs for essential elements were determined using Codex Alimentarius Hungaricus. According to this regulation (1-190/496) the contribution is important if 100 g contains at least 15% of the RDA.

132

Potassium was the most abundant element present in all analysed minerals. The concentration 133 of this element ranged from 62.4 ± 1.2 to 1158 ± 51 mg kg⁻¹ in the vetch (V) and the forest (FO) 134 honey. The average content was 372 mg kg⁻¹. Acacia honey samples showed the lowest 135 values (181 \pm 22 mg kg⁻¹) followed by rape (332 \pm 144 mg kg⁻¹) and sunflower (439 \pm 65 mg kg⁻¹) 136 ¹) honeys. The potassium content showed a wide variation across the range 154-755 mg kg⁻¹ 137 for flower honeys. The reason for this difference was the different mixing of mono-floral 138 nectar or honeys. The concentration of this element in our acacia samples agrees with the 139 measurements of acacia honeys from Serbia (Jevtić et al., 2012). The potassium content in our 140 forest honey was lower when compared with other studies (Vanhanen et al., 2011 and Habib 141 et al., 2013). According to the Codex Alimentarius Hungaricus the RDA for potassium is 142 2000 mg day⁻¹ for adults. 143

144

145 Calcium was the second most abundant element in our samples with an average content of 146 47.9 mg kg⁻¹. The lowest calcium concentration $(3.65\pm0.10 \text{ mg kg}^{-1})$ was found in an acacia 147 honey (A8 sample); and a sunflower honey (S5 sample) showed the highest value $(181\pm13 \text{ mg kg}^{-1})$. The concentration of this element was particularly high in sunflower honeys. The 149 mean contents of calcium reported by Jevtić et al. (2012) and Alves et al. (2013) were 40.3

150	and 20.1 mg kg ⁻¹ , respectively. The calcium content in our samples was similar to that
151	reported by Habib et al. (2013). The RDA for calcium is 800 mg day ^{-1} for adults.
152	
153	Phosphorus concentration ranged from 19.7 \pm 0.2 mg kg ⁻¹ (SG sample) to 93.5 \pm 2.3 mg kg ⁻¹
154	(FO sample) with an average value of 44.3 mg kg ⁻¹ . The highest concentration of this element
155	in our samples was lower than the values found by Habib et al. (2013), Vanhanen et al. (2011)
156	and Batista et al. (2012). The RDA for phosphorus is 700 mg day ^{-1} for adults.
157	
158	The range and the mean value of the magnesium concentration of samples were 1.91-35.1
159	(FA and F8 samples) and 16.3 mg kg ⁻¹ . No magnesium was found in sample F9. The LOD
160	was 0.104 mg kg ⁻¹ . The measured values were lower than 10 mg kg ⁻¹ in seven samples (A5,
161	A6, A7, F4, F7, F9, FA samples). The observed concentrations were lower than those found
162	in New Zealand (Vanhanen et al., 2011) and Brazilian honeys (Batista et al., 2012), but higher
163	than in Serbian honeys (Jevtić et al., 2012). The RDA for magnesium is 375 mg day ⁻¹ for
164	adults.
165	
166	The average content of sulphur was 20.6 mg kg ⁻¹ . The lowest and highest concentrations were
167	measured in A8 sample (6.93±0.08) and in FO sample (76.1 mg kg ⁻¹). In New Zealand honey
168	samples similar results were determined (Vanhanen et al., 2011).
169	6
170	The iron content ranged from 0.108 (V sample) to 2.86 mg kg ⁻¹ (R2 samples) with an average
171	content of 0.760 mg kg ⁻¹ . Iron was not detected in four samples (A5, A7, S3, F9). The LOD
172	was 0.005 mg kg ⁻¹ . The iron concentrations in our samples were lower than those reported in

173 honey samples from United Arab Emirates (Habib et al., 2013), Turkey (Yücel & Sultanoğlu,

174 2013) and Brazil (Batista et al., 2012). In other studies (Jevtić et al., 2012 and Vanhanenet al.,

2011), the concentrations obtained for iron were similar to our results. The RDA for iron is 14
mg day⁻¹ for adults. The PMTDI (Provisional Maximum Tolerable Daily Intake) is 0.8 mg kg⁻¹
¹ bw (body weight) (FAO, 1983).

178

Copper was not detected in two samples (F9, FA). The LOD was 0.002 mg kg⁻¹. The lowest 179 and highest contents measured were 0.018±0.001 mg kg⁻¹ (A6 sample) and 0.783±0.073 mg 180 kg⁻¹ (FO sample) respectively. The mean content in all honeys samples was 0.189 mg kg⁻¹. 181 These results were similar to the Brazilian and New Zealand honeys analysed by Batista et al. 182 (2012) and Vanhanen et al. (2011). Copper content was much higher in Turkish honeys 183 (Yücel & Sultanoğlu, 2013). This is an essential element for humans (RDA=1.0 mg day⁻¹ for 184 adults), however, it may cause Wilson's disease when in excess. The PMTDI is 0.5 mg kg^{-1} 185 bw (FAO, 1982). None of the Hungarian samples contained toxic quantities of copper. 186

187

Manganese content ranged from 0.026 (V sample) to 4.23 mg kg⁻¹ (FO samples) with an average value of 1.03 mg kg⁻¹. The manganese concentrations in our samples were similar to most literature values (Yücel & Sultanoğlu, 2013 and Vanhanen et al., 2011), but some higher values have been reported, e.g. in Brazilian honeys (Batista et al., 2012). The RDA for manganese is 2 mg day⁻¹ for adults.

193

The lowest and highest zinc content was measured in A5 and R2 samples (0.185 \pm 0.028 and 7.20 \pm 0.08 mg kg⁻¹). The mean content was 2.32 mg kg⁻¹, which is similar to that reported by Jevtić et al. (2012), Habib et al. (2013) and Batista et al. (2012). The RDA for zinc is 10 mg day⁻¹ for adults. The PMTDI is 0.3-1.0 mg kg⁻¹ bw. Zinc is an essential element for man but the high levels of dietary zinc can cause anaemia and decreased copper and iron absorption. (WHO, 1982).

200

The molybdenum content ranged from 2.15±0.05 (A5 sample) to 66.2±6.5 µg kg⁻¹ (R4 sample) with an average value of 27.8 µg kg⁻¹. The concentration of this element was higher
in New Zealand honey samples (Vanhanen et al., 2011). The RDA is 50 µg day⁻¹ for adults.
The mean content of chromium and selenium was similar, with values of 13.3 and 13.2 µg kg⁻¹

¹, respectively. The lowest content was measured in the S4 sample ($4.80\pm0.45 \ \mu g \ kg^{-1}$) for chromium and in the A5 sample ($2.66\pm0.33 \ \mu g \ kg^{-1}$) for selenium. The linden honey showed the highest chromium concentration ($36.7\pm3.8 \ \mu g \ kg^{-1}$) and the A1 sample showed the highest selenium content ($36.4\pm0.8 \ \mu g \ kg^{-1}$). Results for chromium in New Zealand honeys (Vanhanen et al., 2011) were higher than ours. The RDA for chromium is 40 $\mu g \ day^{-1}$ for adults.

212

Considering the element content of other studies (Table 4), the Hungarian honeys showed low
element content, except calcium. Vanhanen et al. (2011) measured similar results in New
Zealand honeys for sulphur, copper, iron and manganese. Zinc concentration was very similar
in our and other honeys from Brazil, Serbia and United Arab Emirates (Batista et al., 2012;
Jevtić et al., 2012 and Habib et al., 2013).

218

The calculated daily mineral intake for 20 grams of honeys is very low. As a percentage of RDA, the contributions from our highest measured concentrations were as follows: 1.16% for potassium, 0.45% for calcium, 0.27% for phosphorus, 0.19% for magnesium, 0.41% for iron, 1.57% for copper, 4.23% for manganese, 1.44% for zinc, 1.84% for chromium, 2.65% for molybdenum and 1.32% for selenium.

225 3.2. Toxic elements

Aluminium, arsenic, cadmium and lead are present in the environment, but the anthropogenic sources are very important, e.g. industrial or urban discharges, mining and agricultural output (Zhang & Wong, 2007). Honey is a very good environmental indicator because it reflects the toxic element content of water, soil and air. One aim of this study was to determine the toxic trace element content in honey samples from different regions of Hungary. The measured toxic element content in our samples is shown in Table 5.

232

Arsenic concentration ranged from 3.19 ± 0.29 to $30.4\pm0.3 \ \mu g \ kg^{-1}$, the mean content in all 233 honey samples was $15.9\pm7.84 \ \mu g \ kg^{-1}$. The highest and the lowest values were measured in 234 235 Hajdú-Bihar County (A5, R4 samples). The concentration of this trace element was higher in the Northeast Croatian honeys (Bilandžić et al., 2011). The PTWI (Provisional Tolerable 236 Weekly Intake) for inorganic arsenic has been withdrawn (WHO, 2011b). According to the 237 thirty-third meeting of JECFA the PTWI for arsenic was 15 µg kg⁻¹ bw (WHO, 1988). Most 238 inorganic arsenic is found in cereals, rice, meats and milk products; the arsenic content of 239 240 examined honey samples was negligible. In Hungary, the main source of arsenic is drinking 241 water, and is an established problem in Alföld. The most significant problem is in Békés 242 County but the measured arsenic content of honey samples from this county did not verify 243 this problem.

244

Cadmium levels ranged from 0.032 to $3.31 \ \mu g \ kg^{-1}$, the lowest and the highest content of this trace element were found in Jász-Nagykun-Szolnok County (V, F8). In ten samples no cadmium was detected (A4, A5, R5 samples from Hajdú-Bihar; A7, R6, F7, FA samples from Békés; F2 sample from Fejér; F9 sample from Veszprém and H sample from Somogy County). The LOD was 0.003 $\mu g \ kg^{-1}$. The levels of cadmium reported by Andrade et al. (2014) and Vanhanen et al. (2011) were higher than in our samples. The PTMI for cadmium

is 25 μ g kg⁻¹ bw (WHO, 2013). The main sources of cadmium are kidney, mushrooms, oil seeds, cereals and fish, but cadmium can also get into the food from low quality ceramic tableware and plastics.

254

The highest lead concentration was measured in Hajdú-Bihar (R5 sample) and Békés 255 Counties (F7 sample), with average values of 122 and 133 μ g kg⁻¹. The lowest lead 256 concentration (11.2±8.1 µg kg⁻¹) was measured in a rape honey from Békés County (R6 257 sample). The mean content in all honey samples was 45.4 µg kg⁻¹. In comparison to the 258 literature data, the measured lead concentration was lower (Yücel & Sultanoğlu, 2013; 259 Andrade et al., 2014; Bilandžić et al., 2011). The PTWI for lead was 25 µg kg⁻¹ bw (WHO, 260 1999), but there is no new PTWI, because it is "not possible to establish a new PTWI that would 261 be considered health protective" (WHO, 2011a). 262

263

The measured aluminium concentration ranged between 0.103-4.39 mg kg⁻¹. This element was not detected in the A6 sample. The lowest values (0.103 mg kg⁻¹) were measured in two acacia honey samples (A5 and A7) from Hajdú-Bihar and Békés Counties. The highest aluminium content was found in vetch honey from Jász-Nagykun-Szolnok County. The aluminium results measured in this work were lower, when compared with the results obtained by other authors, such as Yücel & Sultanoğlu (2013) and Vanhanen et al. (2011). The PTWI value of aluminium is 1 mg kg⁻¹ bw (WHO, 2006).

271

The tolerable daily intake (TDI) for a 60 kg weight adult is 8.57 mg for aluminium and 50 μg for cadmium. Aluminium and cadmium were 1.02% and 0.13% of the TDI in 20 grams vetch (V) and 20 grams flower (F8) honeys, which contained the highest aluminium and cadmium concentrations. The PTWI values for arsenic and lead have been withdrawn, however,

276	considering the previously used PTWI value, the measured concentrations were below 1.0%
277	of TDI for arsenic. The highest calculated value was 5.32% of TDI in 20 grams flower honey
278	(F8) from Békés County.

279

Compared to other studies (Table 6) the concentration of aluminium was found to be lower in
our samples. The cadmium content was higher in samples from different countries, except the
honeys from Brazil. Lead content was much higher in the Turkish and Croatian honeys (Yücel
& Sultanoğlu, 2013; Bilandžic et al., 2011).

284

285 3.3 Linear discriminant analysis (LDA)

The LDA was used for the categorization of our samples. The grouping variables were the 286 287 types of honey (acacia, rape and sunflower) and the independent variables were the elements 288 (calcium, copper, iron, potassium, magnesium, manganese, phosphorus, sulphur and zinc). 289 Two discriminant functions were determined. Figure 1 shows the scatter plot of honey samples defined by the discriminant functions. The first discriminant function involved the 290 following elements: phosphorus, calcium, copper, manganese, and the second contained the 291 292 other elements. Based on the eigenvalue the first discriminant function was more important to 293 the classification of the cases of independent variables than the second one. The first 294 discriminant function explained 92% of the variance of independent variables; this value was 295 83% for the second one. Both discriminant functions were significant. The first group (acacia 296 honeys) had high values in the first dimension (1.399), but showed low values in the second 297 dimension (-2.182). The second group (rape honeys) showed high values in both dimensions 298 (2.415 and 2.518). The third group (sunflower honeys) had very low values in the first 299 dimension (-5.136), but showed relative high values in the second one (0.470). The sunflower 300 honeys formed a clearly defined group at the left side of the plot. However the acacia and rape

301	honeys did not show big difference in the first dimension; these two honey types showed a
302	significant difference in the second one. Validation was carried out using a cross-validation
303	method. The program, based on the independent variables, correctly classified 89.5% of the
304	cross-validated grouped cases.
305	The LDA was successfully applied to the separation of these three honey types. Knowing the
306	element content the LDA can be a useful method for the determination of the botanical origin
307	of mono-floral honeys.
308	
309	4. Conclusion
310	
311	In this study 16 elements were measured in 34 honey samples from eight counties of Hungary
312	in four geographical areas (North Alföld, South Alföld, Middle Transdanubium, South
313	Transdanubium), which corresponded to two big regions (Alföld and Transdanubium). The
314	concentration of essential elements decreased in the following order:
315	K>Ca>P>S>Mg>Zn>Mn>Fe>Cu. The aluminium, copper, iron, potassium, magnesium,
316	manganese, phosphorus, sulphur and selenium showed higher concentrations in samples from
317	Transdanubium. Concentrations of the other elements varied across the four geographical
318	areas. The highest concentration of arsenic and chromium was measured in the honey of the
319	South Transdanubium, the highest lead content in Middle Transdanubium and the highest
320	cadmium and molybdenum content in North Alföld. The toxic element concentration in our
321	samples decreased in the following order: Al>Pb>As>Cd. The concentration of these
322	elements was very low in our samples; thus the consumption of these honeys does not present
323	a problem for human health. The essential element content of honey was very low and,
324	therefore, the average daily consumption of honey (about 20 grams) contains only 1% of the

326	
327	Acknowledgement
328	The research work was supported by the TÁMOP 4.2.1./B-09/1/KONV-2010-0007 and
329	TÁMOP-4.2.2/B-10/1-2010-0024 projects. The project was co-financed by the European
330	Union and the European Social Fund.
331	
332	We would like to thank Professor Clive Phillips (University of Queensland, Australia) for the
333	critical reading of the manuscript.
334	
335	References
336	Almeida-Silva, M., Canha, N., Galinha, C., Dung, H.M., Freitas, M.C. & Sitoe, T. (2011).
337	Trace elements in wild and orchard honeys. Applied Radiation and Isotopes, 69, 1592-1595.
338	
339	Alnaqdy, A., Al-Jabri, A., Al Marhrooqi Z., Nzeako, B., Nsanze, H. (2005). Inhibition effect
340	of honey on the adherence of Salmonella to intestinal epithelial cells in vitro. International
341	Journal of Food Microbiology, 103(3), 347-351.
342	0
343	Alves, A., Ramos, A., Gonçalves, M.M., Bernardo, M. & Mendes, B. (2013). Antioxidant
344	activity, quality parameters and mineral content of Portuguese monofloral honeys. Journal of
345	Food Composition of Analysis, 30, 130-138.
346	
347	Al-Waili, NS. (2001). Therapeutic and prophylactic effects of crude honey on chronic
348	seborrheic dermatitis and dandruff. European Journal of Medical research, 6(7), 306-308.

- 350 Andrade, C.K., Anjos, V.E., Felsner, M.L., Torres, Y.R. & Quináia, S.P. (2014). Direct
- determination of Cd, Pb, and Cr in honey by slurry sampling electrothermal atomic absorption
- 352 spectrometry. *Food Chemistry*, *146*, 166-173.

353

- Bansal, V., Medhi, B., Pandhi, P. (2005). Honey A remedy rediscovered and its therapeutic
- utility. Kathmandu University Medical Journal, 3, 305-309.
- 356
- 357 Bastos, D.H.M. & Sampaio, G.R. (2013). Antioxidant Capacity of Honey: Potential Health
- 358 Benefit. In Watson, R. R. & Preedy, V.R. (Eds.), *Bioactive Food as Dietary Interventions for*
- 359 *Diabetes* (pp. 609-619). Oxford: E-Publishing Inc.
- 360
- Basualdo, C., Sgroy, V., Finola, S.M., Marioli, M.J. (2007). Comparison of the antibacterial
 activity of honey from different provenance against bacteria usually isolated from skin
 wounds. *Veterinary Microbiology*, *124*(3-4), 375-381.
- 364
- Batista, B.L., da Silva, L.R.S., Rocha, B.A., Rodrigues, J.L., Barretta-Silva, A.A., Bonates,
 T.O., Gomes, V.S.D., Barbosa, R.M. & Barbosa, F. (2012). Multi-element determination in
 Brazilian honey samples by inductively coupled plasma mass spectrometry and estimation of
 geographical origin with data mining techniques. *Food research International, 49*, 209-215.
- Bilandžić, N., Đokić, M., Sedak, M., Kolanović, B.S., Varenina, I., Končurat, A. & Rudan, N.
 (2011). Determination of trace elements in Croatian floral honey originating from different
 regions. *Food Chemistry*, *128*, 1160-1164.

374	Bogdanov, S., Jurendic, T., Sieber, R. & Gallmann, P. (2008). Honey for Nutrition and
375	Health: a Review. American Journal of the College of Nutrition, 27, 677-689.
376	
377	Bratu, I. & Beorgescu, C. (2005). Chemical contamination of bee honey – identifying sensor
378	of the environment pollution. Journal of Central European Agriculture, 6, 95-98.
379	
380	Codex Alimentartius Hungaricus (2009). A Magyar Élelmiszerkönyv 1-190/496 számú
381	előírása az élelmiszerek tápérték jelöléséről. "B part".
382	
383	Crane, E. (1984). Bees, honey and pollen as indicators of metals in the environment. Bee
384	World, 65(1), 47-49.
385	
386	Eteraf-Oskouei, T. & Najafi, M. (2013). Traditional and Modern Uses of Natural Honey in
387	Human Diseases: A Review. Iranian Journal of Basic Medical Sciences, 16(6), 731-742.
388	
389	Habib, H.M., Al Meqbali, F.T., Kamal, H., Souka, U.D. & Ibrahim, W.H., Physicochemical
390	and biochemical properties of honeys from arid region. Food Chemistry (2013), doi:
391	http://dx.doi.org/10.1016/j.foodchem.2013.12.048
392	G
393	Hernández, O.M., Fraga, J.M.G., Jiménez, A.I., Jiménez, F. & Arias, J.J. (2005).
394	Characterization of honey from the Canary Islands: determination of the mineral content by
395	atomic absorption spectrophotometry. Food Chemistry, 93, 449-458.

397	Jevtić, G., Anđelković, B., Marković, J., Anđelković, S. & Nedić, N. (2012). Quality of false
398	acacia honey from Rasina district in Serbia. European Hygienic Engineering & Design
399	Group, 1, 278-283.
400	
401	Kovács, B., Győri, Z., Prokisch, J., Loch, J. & Dániel, P. (1996). A study of plant sample
402	preparation and inductively coupled plasma emission spectrometry parameters.
403	Communication in soil science and plant analysis, 27(5-8), 1177-1198.
404	
405	Lachman, J., Kolihová, D., Miholová, D., Košata, J., Titěra, D. & Kult, K. (2007). Analysis of
406	minority honey components: possible use for the evaluation of honey quality. Food
407	Chemistry, 101(3), 973-979.
408	
409	Vanhanen, L.P., Emmeretz, A. & Savage, G.P. (2011). Mineral analysis of mono-floral New
410	Zealand honey. Food Chemistry, 128, 236-240.
411	
412	WHO (2013). Summary report of the seventy-seventh meeting of JEFCA. Rome.
413	
414	WHO (2011)a. Evaluation of certain food additives and contaminants. Seventy-third report of
415	the Joint FAO/WHO Expert Committee on Food Additives. Technical Report Series 960.
416	Geneva.
417	
418	WHO (2011)b. Evaluation of certain contaminants in food. Seventy-second report of the Joint
419	FAO/WHO Expert Committee on Food Additives. Technical Report Series 959. Geneva.
420	

421	WHO (2006). Evaluation of certain food additives and contaminants. Thirty-third report of
422	the Joint FAO/WHO Expert Committee on Food Additives. Technical Report Series 940.
423	Geneva.
424	
425	WHO (1999). Evaluation of certain food additives and contaminants. Fourty-first report of the
426	Joint FAO/WHO Expert Committee on Food Additives. Technical Report Series 896.
427	Geneva.
428	
429	WHO (1988). Evaluation of certain food additives and contaminants. Thirty-third report of
430	the Joint FAO/WHO Expert Committee on Food Additives. Technical Report Series 683.
431	Geneva.
432	
433	WHO (1983). Evaluation of certain food additives and contaminants. Twenty-seventh report
434	of the Joint FAO/WHO Expert Committee on Food Additives. Technical Report Series 683.
435	Geneva.
436	
437	WHO (1982). Evaluation of certain food additives and contaminants. Twenty-sixth report of
438	the Joint FAO/WHO Expert Committee on Food Additives. Technical Report Series 683.
439	Geneva.
440	6
441	Yücel, Y. & Sultanoğlu, P. (2013). Characterization of Hatay honeys according to their multi-
442	element analysis using ICP_OES combined with chemometrics. Food Chemistry, 140, 213-
443	237
444	

445 Zhang, I. & Wong, M.H. (2007). Environmental mercury contamination in China: sources and

Acceleration

446 impacts. Environment International, 33, 108-121

Figure captions

<u>Tables</u>

465

Table 1

Sample No.	Botanical origin	County	Geographical areas
A1	Acacia	Somogy	South Transdanubium
A2	Acacia	Jász-Nagykun-Szolnok	North Alföld
A3	Acacia	Fejér	Middle Transdanubium
A4	Acacia	Hajdú-Bihar	North Alföld
A5	Acacia	Hajdú-Bihar	North Alföld
A6	Acacia	Csongrád	South Alföld
A7	Acacia	Békés	South Alföld
A8	Acacia	Jász-Nagykun-Szolnok	North Alföld
R1	Rape	Somogy	South Transdanubium
R2	Rape	Fejér	Middle Transdanubium
R3	Rape	Jász-Nagykun-Szolnok	North Alföld
R4	Rape	Hajdú-Bihar	North Alföld
R5	Rape	Hajdú-Bihar	North Alföld
R6	Rape	Békés	South Alföld
S 1	Sunflower	Somogy	South Transdanubium
S2	Sunflower	Csongrád	South Alföld
\$3	Sunflower	Fejér	Middle Transdanubium
S4	Sunflower	Hajdú-Bihar	North Alföld
S5	Sunflower	Békés	South Alföld
F1	Multifloral	Somogy	South Transdanubium
F2	Multifloral	Fejér	Middle Transdanubium
F3	Multifloral	Hajdú-Bihar	North Alföld
F4	Multifloral	Hajdú-Bihar	North Alföld
F5	Multifloral	Tolna	South Transdanubium
F6	Multifloral	Csongrád	South Alföld
F7	Multifloral	Békés	South Alföld
F8	Multifloral	Jász-Nagykun-Szolnok	North Alföld
F9	Multifloral	Veszprém	Middle Transdanubium
L	Linden	Somogy	South Transdanubium
н	Hawthorn	Somogy	South Transdanubium
SG	Silk grass	Tolna	South Transdanubium
FA	Facelia	Békés	South Alföld
FO	Forest	Veszprém	Middle Transdanubium
V	Vetch	Jász-Nagykun-Szolnok	North Alföld

474 Table 2475 Operating parameters of ICP-OES and ICP-MS

Parameters (ICP-OES)		Parameters (ICP-MS)	
Operating power	1350 W	Rf power	1400 W
Plasma gas flow rate	121 min ⁻¹	Plasma gas flow rate	14.0 l min ⁻¹
Auxiliary gas flow rate	1.0l/min^{-1}	Auxiliary gas flow rate	1.01 min^{-1}
Nebulizer gas flow rate	0.75 l/min ⁻¹	Nebulizer gas flow rate	0.91 min ⁻¹
Rinsing time	35 sec	Spray chamber temperature	
Rinsing pump speed	75 rpm		2 °C
Stabilization time	3.0 sec	Sample uptake rate	0.5 ml min ⁻¹
Transfer pump speed	50 rpm	CCT gas	7% H ₂ in He
Integration time	-	Dwell time	1000 ms
- Low WL range	10 sec	Sweeps	11
- High WL range	10 sec	Main runs	3
Elements	Wavelengths	Elements	Measured isotope
	(<i>nm</i>)		(amu)
Aluminium	361.153	Arsenic	75
Calcium	413.764	Cadmium	111
Copper	224.700	Chromium	52
Iron	259.940	Molybdenum	95
Potassium	766.490	Lead	208
Magnesium	285.213	Selenium	80
Manganese	191.510		
Phosphorus	213.617	Yttrium	89
Sulphur	181.975	Rhodium	103
Zinc	202.548	Indium	115

476

477 Table 3

478 Essential element contents in our honey samples

Sample	Statistics	Cr (µg kg ⁻¹)	Mo (µg kg ⁻¹)	Se (µg kg ⁻¹)	Ca (mg kg ⁻¹)	Cu (mg kg ⁻¹)	Fe (mg kg ⁻¹)
Acacia (n=8)	Mean±SD Range	14.5 6.44-33.9	33.8 2.15-65.1	15.7 2.66-36.4	23.6 3.65-43.2	0.130 0.018-0.317	0.429 <0.005-0.997
Rape (n=6)	Mean±SD Range	11.7 7.44-15.1	31.8 6.73-66.2	12.5 3.68-27.3	51.2 23.7-79.8	0.164 0.033-0.370	1.35 0.096-2.86
Sunflower (n=5)	Mean±SD Range	10.1 4.80-14.7	29.2 4.86-52.0	14.3 7.55-19.1	111 58.2-181	0.270 0.098-0.507	0.648 <0.005-1.48
Flower (n=9)	Mean±SD Range	13.7 9.11-21.2	18.6 3.30-58.5	10.5 3.10-21.2	46.0 13.1-118	0.160 <0.002-0.333	0.778 <0.005-2.69
Linden (n=1)	Mean±SD	36.7±3.8	31.8±1.2	21.9±1.7	45.7±1.4	0.320±0.073	0.612±0.289
Hawthorn (n=1)	Mean±SD	17.6±1.4	30.1±2.3	13.3±0.8	21.4±2.0	0.072±0.014	0.227±0.030
Silk grass (n=1)	Mean±SD	8.80±1.29	15.6±1.6	8.19±1.04	37.5±2.1	0.268±0.034	0.534±0.377
Facelia (n=1)	Mean±SD	5.95±0.45	25.9±1.7	14.6±1.2	4.24±0.51	< 0.002	0.225±0.007
Forest (n=1)	Mean±SD	9.64±0.86	38.3±2.7	15.1±1.1	51.3±2.0	0.783±0.073	2.36±0.19
Vetch (n=1)	Mean±SD	13.5±1.2	27.9±0.3	8.65±0.68	4.41±0.56	0.182±0.005	0.108±0.006
All samples	Mean±SD	13.3±6.9	27.8±17.8	13.2±7.38	47.9±40.0	0.189±0.168	0.760 ± 0.758
(n=34)	Range	4.80-36.7	2.15-66.2	2.66-36.4	3.65-181	<0.002-0.783	<0.005-2.86
Sample	Statistics	K (mg kg ⁻¹)	Mg (mg kg ⁻¹)	Mn (mg kg ⁻¹)	P (mg kg ⁻¹)	S (mg kg ⁻¹)	Zn (mg kg ⁻¹)
Acacia (n=8)	Mean Range	181 130-197	12.8 3.41-23.2	0.837 0.029-1.69	26.9 22.0-35.1	8.90 6.93-12.0	1.58 0.185-3.92
Rape (n=6)	Mean Range	332 178-587	17.7 10.1-34.1	0.614 0.136-1.68	42.2 31.4-68.2	23.2 16.4-43.0	3.66 0.527-7.20
Sunflower (n=5)	Mean Range	439 376-539	22.4 11.3-32.3	1.10 0.179-2.28	66.1 48.2-89.2	23.7 17.3-33.5	3.35 0.760-6.66
Flower (n=9)	Mean Range	371 154-755	14.7 <0.104-35.1	1.16 0.101-1.72	53.0 23.9-89.1	23.6 9.02-51.5	2.02 0.573-3.69
Linden (n=1)	Mean±SD	955±4	28.6±1.5	1.36±0.06	26.0±0.2	23.5±1.9	2.15±0.06
Hawthorn (n=1)	Mean±SD	1112±123	14.5±1.9	1.35±0.05	32.9±0.7	30.7±1.6	0.959±0.098
Silk grass(n=1)	Mean±SD	237±4	11.5±0.1	1.63±0.12	19.7±0.2	11.5±1.0	3.87±0.18
Facelia (n=1)	Mean±SD	143±2	1.91±0.06	0.031±0.001	31.6±2.1	8.58±0.01	0.535 ± 0.054
Forest (n=1)	Mean±SD	1158±51	31.7±0.1	4.23±0.05	93.5±2.3	76.1±2.1	1.18±0.00
Vetch (n=1)	Mean±SD	62.4±1.2	12.9±12.9	0.026±0.001	27.8±0.1	9.07±0.10	0.632±0.082
All samples	Mean±SD	372±270	16.3±9.67	1.03±0.89	44.3±22.9	20.6±14.5	2.32±1.84
(n=34)	Range	62.4-1158	<0.104-35.1	0.026-4.23	19.7-93.5	6.93-76.1	0.185-7.2

479 SD = standard deviation

Elements	Present study (n=34)	Brazil (Batista et al., 2012)	Turkey (Yücel & Sultanoğlu, 2013)	Portugal (Alves et al., 2013)	Serbia (Jevtić et al., 2012)	New Zealand (Vanhanen et al., 2011)	United Arab Emirates (Habib et al., 2013)
Cr (µg kg ⁻¹)	4.80-36.7	-	100-540	-	-	120-550	-
Mo (µg kg ⁻¹)	2.15-66.2	-	-	-	-	100	-
Se ($\mu g k g^{-1}$)	2.66-36.4	-	-	-	-	-	-
Ca (mg kg ⁻¹)	3.65-181	-	-	0.43-72.3	29-54.6	7.21-94.3	7.87-184
Cu (mg kg ⁻¹)	<0.002-0.783	0.01-0.7	0.58-9.52	-	-	0.09-0.70	0.26-1.91
Fe (mg kg ⁻¹)	<0.005-2.86	0.5-14.1	7.40-92.38	<0.70-7.06	0.58-4.21	0.67-3.39	1.15-111
K (mg kg ⁻¹)	62.4-1158	-	-	30.9-1441	62.8-212	34.8-3640	86.0-2690
Mg (mg kg ⁻¹)	<0.104-35.1	12.4-360	-	3.05-82.2	1.23-11.2	7.52-86.3	2.28-93.0
Mn (mg kg ⁻¹)	0.026-4.23	0.08-18.8	0.13-5.61	-	0.00-0.62	0.18-4.75	<0.01-10.3
P (mg kg ⁻¹)	19.7-93.5	8-486	-	-	-	29.5-255	8.99-264
$S (mg kg^{-1})$	6.93-76.1	-	-	-	-	13.4-93.9	6.97-334
Zn (mg kg ⁻¹)	0.185-7.20	0.01-7.1	1.02-30.67	-	1.41-6.51	0.20-2.46	0.30-6.73
Table 5 Toxic	5 element content	s in our hone	y samples		Ç	2	

Table 4								
Comparison between	essential element	contents in	Hungarian	honev ar	nd honev	from o	other	countrie

Table 5

TOXIC CICILICITI CONCENTS IN OUT HONEY SAMPLE	Toxic	element	contents	in	our	honey	sami	ples
---	-------	---------	----------	----	-----	-------	------	------

		• •			
Sample	Statistics	Al (mg kg ⁻¹)	As (µg kg ⁻¹)	Cd (µg kg ⁻¹)	Pb (µg kg ⁻¹)
Acacia (n=8)	Mean±SD	0.504	17.8	0.584	30.4
neuclu (n=0)	Range	< 0.004-1.42	3.19-26.5	<0.003-2.20	16.8-40.7
D	Mean±SD	1.12	18.8	0.736	30.4
Rape (n=0)	Range	0.137-3.36	8.95-30.4	<0.003-2.92	16.8-40.7
S	Mean±SD	0.810	19.2	1.15	49.3
Sunnower (n=5)	Range	0.128-1.54	6.15-27.8	0.90-1.62	26.7-66.1
Flower (n-9)	Mean±SD	0.827	11.7	0.688	51.8
110wci (ii=9)	Range	0.264-2.28	4.66-21.2	<0.003-3.31	23.4-133
Linden (n=1)	Mean±SD	1.20±0.05	22.8±0.1	1.25±0.16	61.4±5.2
Hawthorn (n=1)	Mean±SD	1.49±0.02	10.9±0.3	< 0.003	37.8±0.2
Silk grass (n=1)	Mean±SD	0.940±0.054	11.7±0.8	0.31±0.04	37.3±2.4
Facelia (n=1)	Mean±SD	2.60±0.22	7.86±0.57	< 0.003	20.9±3.0
Forest (n=1)	Mean±SD	2.07±0.08	19.0±1.0	2.77±0.29	74.8±0.2
Vetch (n=1)	Mean±SD	4.39±0.14	11.0±0.7	0.032±0.001	33.9±0.9
All samples n=34	Mean±SD	1.03±0.98	15.9±7.4	0.746±0.889	45.4±27.0
An samples II=34	Range	< 0.004-4.39	3.19-30.4	< 0.003-3.31	11.2-133

SD = standard deviation

Table 6

Comparison of toxic element contents in honeys from Hungary and from other countries

				7 0			
			Brazil	Brazil	Turkey	Croatia	New Zealand
		Present study	(Batista et al.,	(Andrade et al.,	(Yücel &	(Bilandžić et al.,	(Vanhanen et al.,
	Elements		2012)	2014)	Sultanoğlu, 2013)	2011)	2011)
	Al (mg kg ⁻¹)	<0.004-4.39	0.23-7.40	-	2.54-11.6	-	0.21-21.3
	As (µg kg ⁻¹)	3.19-30.4	-	-	-	4.00-105	40.0-170
	Cd (µg kg ⁻¹)	< 0.003-3.31	<0.02-1.1	<2.0-8.0	-	1.00-24.0	10.0-450
	Pb (µg kg ⁻¹)	11.2-133	1.2-31.4	141-228	60-2,020	10.0-841	10.0-40.0

HIGHTLIGHTS

(Determination of essential and toxic elements in Hungarian honeys)

- 1. We measure the element content of Hungarian honeys.
- 2. We compare the element content of Hungarian honeys with international honeys.
- 3. We measure the toxic and essential element content in our honey samples.
- 4. We determine the effect of the geographical origin.

5. We separated the honey types based on their element content.