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The unfolded protein response is activated in Lewy body dementias
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Abstract 

Aim 

The unfolded protein response (UPR) is a pro-survival defense mechanism induced during periods 

of endoplasmic reticulum stress, and it has recently emerged as an attractive therapeutic target 

across a number of neurodegenerative conditions, but has not yet been studied in synuclein 

disorders.  

Methods 

The level of a key mediator of the UPR pathway, glucose regulated protein 78 (GRP78), also 

known as binding immunoglobulin protein (BiP), was measured in post-mortem brain tissue of 

patients with dementia with Lewy bodies (DLB) and Parkinson’s disease dementia (PDD) in 

comparison to Alzheimer’s disease (AD) and age matched controls using western blot. The UPR 

activation was further confirmed by immunohistochemical detection of GRP78/BiP and 

phosphorylated protein kinase RNA-like ER kinase (p-PERK). 

Results 

GRP78/BiP was increased to a greater extent in DLB and PDD patients compared to AD and 

control subjects in cingulate gyrus and parietal cortex. However, there were no changes in the 

prefrontal and temporal cortices. There was a significant positive correlation between GRP78/BiP 

level and -synuclein pathology in the cingulate gyrus, while AD-type pathology showed an 

inverse correlation relationship in the parietal cortex.  

Conclusion 

Overall, these results give emphasis to the role of UPR in Lewy body dementias, and suggest that 

Lewy body degeneration, in combination with AD-type pathologies, is associated with increased 

UPR activation to a greater extent than AD alone, possibly as a consequence of the increasing load 

of ER proteins. This work also highlights a novel opportunity to explore the UPR as a therapeutic 

target in synuclein diseases. 
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List of Abbreviations 

 

Abbreviation Full name 

AD Alzheimer’s disease 

ATF6 Activating transcription factor 6 

A Amyloid- 

BA Brodmann area 

BiP Binding immunoglobulin protein 

CERAD Consortium to Establish a Registry for Alzheimer’s Disease 

DLB Dementia with Lewy bodies 

ER Endoplasmic reticulum 

GRP78 Glucose regulated protein 78 

IRE1 Inositol-requiring enzyme 1 

MMSE Mini-Mental State Examination 

NIA-AA National Institute on Aging - Alzheimer’s Association 

p-PERK Phosphorylated protein kinase RNA-like ER kinase 

PDD Parkinson’s disease dementia 

PERK Protein kinase RNA-like ER kinase 

UPR Unfolded protein response 
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Introduction 

Dementia with Lewy-bodies (DLB) is a common, but clinically under-recognised 

neurodegenerative disease. The clinical presentation is complex with more impact on quality of life 

and carer-burden and higher health-related costs compared to Alzheimer’s disease (AD), and also 

with a shorter survival [1, 2]. There is a need for better mechanistic understanding of DLB to drive 

development of improved disease modifying treatments. 

Accumulation of disease-specific misfolded proteins in the brain and subsequent neuronal loss 

is a key mechanism across a number of neurodegenerative diseases. Although a great deal of effort 

has been made to unravel how each individual ‘toxic’ protein exerts its deleterious effects in 

specific disorders, mechanistic understanding of how these proteins cause neuronal loss has been 

limited and thus the development of disease modifying treatments for neurodegenerative diseases 

has remained as a challenge.  

Endoplasmic reticulum (ER) stress is another common theme in these diseases. The ER 

controls many of the cellular processes, and disturbance in ER function, usually caused by 

accumulation of unfolded proteins and calcium homeostasis within the ER, leads to ER stress. 

Although the sub-cellular loci of protein misfolding can vary between diseases, the interdependence 

of protein folding throughout the cell implies that ER dysfunction/stress could be the final common 

pathway for numerous neurodegenerative diseases [3]. It is well known that upon ER stress, cells 

activate a series of complementary adaptive mechanisms to deal with protein-folding alterations, 

which together are known as the unfolded protein response (UPR). The UPR increases overall 

protein-folding capacity, in addition to enhancing the efficiency of quality control and protein 

degradation mechanisms to reduce the unfolded protein load [4]. Most cell types are relatively 

resistant to the accumulation of misfolded protein through continuous dilution of the ER by cell 

replication, but this procedure is unavailable to post-mitotic neurons, therefore neurons depend 

totally on the UPR for survival of such insult [5].  

The UPR orchestrates adaptation to protein folding stress by modulating at least three parallel A
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signalling pathways, initiated by the activation of the stress sensors: protein kinase RNA-like ER 

kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6). In 

resting cells, PERK, IRE1, and ATF6 are associated with an ER chaperone, GRP78/BiP, which 

keeps them inactive. However, under conditions of ER stress, in order to deal with the increasing 

load of ER proteins, GRP78/BiP dissociates from these three proteins leading to their activation. 

UPR acts as a protective mechanism against the accumulation of toxic misfolded proteins which 

combines the early inhibition of protein synthesis with a later up-regulation of genes that promote 

protein folding or disposal to equilibrate disturbed ER homeostasis. Both of these translational and 

transcriptional elements of the UPR protect neurons from being overwhelmed by misfolded ER 

proteins. [3, 5]. However, under chronic or irreversible stress conditions, the UPR shifts its 

signalling toward cell death mechanisms by activating complex pro-apoptotic programmes [6]. 

Elucidating the role of UPR in the regulation of protein homeostasis begun almost three 

decades ago when Kozutsumi and colleagues showed that the presence of misfolded proteins in the 

ER signals the induction of GRP78 and GRP94 in simian cells [7]. A few years later, the first 

indication that the ER stress mechanism was involved in neurodegenerative diseases came from 

Hamos and colleagues, in which the level of GRP78/BiP was increased in the cytologically normal 

hippocampal neurons of the AD patients [8]. Since then, the number of studies investigating the role 

of UPR in various neurodegenerative diseases including PD and AD has grown exponentially [9-

13]. Furthermore, manipulation of the UPR via genetic methods in animal models has also 

demonstrated that UPR activation can directly contribute to neurodegeneration [14]. Interestingly, it 

was shown that dysregulation of protein synthesis may play an essential role in neurodegenerative 

diseases by directly affecting the expression of synaptic proteins, leading to synaptic dysfunction 

and neuronal loss [15]. Recently, Moreno et al. took these findings a step further and showed that 

inhibiting a key mediator of the UPR pathway by a specific PERK inhibitor prevented UPR-

mediated translational repression and abrogated development of clinical signs of prion disease in 

mice, with neuroprotection throughout the mouse brain [16]. Furthermore, Ma and colleagues A
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reported that conditional deletion of PERK in an APP/PS1 transgenic mouse model of AD recued 

synaptic protein expression and ameliorated synaptic dysfunction [17]. Together, these studies 

reveal that failure to restore protein homeostasis and prolonged UPR activation may be neurotoxic 

rather than neuroprotective, and point to a new way of treating neurodegenerative diseases. 

Until now, several studies have shown promising results for UPR as a potential therapeutic 

target for AD and PD, but there are gaps in the knowledge regarding the involvement of UPR in 

cases of dementia where both AD and PD pathology are evident, such as PD with dementia (PDD) 

and DLB. The pathological hallmarks of PDD and DLB are accumulation of Lewy bodies and 

Lewy neurites, principally composed of -synuclein [18-21]. Although these are defining 

abnormalities for PDD and DLB, approximately 40% of cases have additional amyloid- (A) and 

neurofibrillary tangle pathology [22, 23], with more pronounced cognitive dysfunction than in 

patients with ‘pure’ AD [24, 25]. Therefore, the aim of the present study is to investigate whether 

the UPR pathway is activated to a greater extent with co-occurrence of tau and -synuclein 

pathology, in PDD and DLB, in comparison to AD and control subjects, and whether the UPR 

activity is associated with clinical and/or pathological measures. 

 

Materials and methods 

Post-mortem human brain tissue 

Post-mortem brain tissue was obtained from several sources; University Hospital Stavanger 

(Norway), the MRC London Neurodegenerative Diseases Brain Bank, the Thomas Willis Brain 

Collection and the Newcastle Brain Tissue Resource. The UK brain banks are part of the Brains for 

Dementia Research Network. All participants gave informed consent for their tissue to be used in 

research and the study had ethics approval from the UK National Research Ethics Service 

(08/H1010/4 and KI IRB) and from the Ethics Review Board of Sweden (etikprövningsnämnderna, 

2013/914-31/4) . The demographic details of the patients and control subjects are shown in Table 1. 

Biochemical and histopathological analysis was undertaken on prefrontal cortex (Brodmann area A
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(BA) 9; n = 99), temporal cortex (BA21; n = 93), anterior cingulate gyrus (BA24; n = 89) and 

parietal cortex (BA40; n = 118). Only prefrontal cortex tissue sections were available for 

immunohistochemical analysis and temporal cortex tissues from AD patients were not available due 

to technical reasons. 

Neuropathological assessment and diagnosis was performed according to standardised 

neuropathological scoring/grading systems, including Braak staging, Consortium to Establish a 

Registry for Alzheimer’s Disease (CERAD) scores, Newcastle/McKeith Criteria for Lewy body 

disease, National Institute on Aging - Alzheimer’s Association (NIA-AA) guidelines for Aβ 

deposition, neurofibrillary tangle, and Lewy body and neurite pathologies [26-30]. For each region, 

semi-quantitative assessments for each of the three pathologies were conducted, ranging from 0 

(none), 1 (sparse), 2 (moderate) to 3 (severe) as previously described [31]. Controls were 

neurologically normal, with only mild age associated neuropathological changes (e.g., 

neurofibrillary tangle Braak stage ≤II) and no history of neurological or psychiatric disease. 

Cognitive impairment data consisted of the last Mini-Mental State Examination (MMSE) scores a 

maximum of two years prior to death. Most patients were longitudinally followed (usually over 8-

10 years) and annual rate of decline on MMSE was calculated. Final diagnoses for patients are 

clinico-pathological consensus diagnoses incorporating the one-year rule to differentiate DLB and 

PDD [27]. Hoehn & Yahr scores were also taken from the subset of PDD patients. 

 

Immunohistochemistry 

Immunolabelling of sections was undertaken as previously reported [32, 33]. Briefly, 7 m sections 

from cingulate gyrus, prefrontal and parietal cortices were dewaxed and rehydrated through xylene 

and descending concentrations of alcohol into water. For GRP78/BiP and phosphorylated tau, 

antigen retrieval was carried out by microwaving for 10 minutes in citrate buffer pH6.0. For PERK, 

pPERK, and -synuclein, antigen retrieval was carried out by autoclaving for 10 minutes in EDTA 

buffer pH8.0; this was followed by immersion for 15 minutes in 98% formic acid for -synuclein 
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(only). For immunohistochemistry, endogenous peroxidases were blocked by 0.3% hydrogen 

peroxide in PBS (30 minutes). Primary antibodies were added (PERK 1:1500 Abcam ab115617; 

pPERK 1: 200 Santa Cruz sc32577; BiP 1:1000 Abcam ab21685;phosphorylated tau AT8 1:200 

Thermo Scientific MN1020; -synuclein, NCL-  N       Novacastra Laboratories) and tissue 

sections incubated overnight at    C.  Subsequent labelling for light microscopy involved 

appropriate biotinylated secondary antibodies (all at 1:500 Vector Labs, Peterborough, UK), ABC 

Elite and DAB kits (Vector Labs). Counter staining was with Mayer’s haematoxylin ( igma). When 

sections were double labelled, the second chromogen was Novared (Vector Labs).  

 

Western Blotting 

Western blot was performed as previously described [32, 33]. Briefly, 500mg of frozen tissue was 

taken from each brain region. Meninges, white matter, blood vessels and clots were dissected from 

the frozen tissue to leave approximately 200mg of grey matter which was homogenised in ice cold 

buffer (pH 7.4) containing 50mM tris-HCL, 5mM EGTA,   mM EDTA, ‘complete protease 

inhibitor cocktail tablets’ (Roche), and 2μg/ml pepstatin A dissolved in ethanol:DMSO 2:1 (Sigma). 

Buffer was used at a ratio of 2ml to every 100mg of tissue and homogenisation performed using an 

IKA Ultra-Turrax mechanical probe (IKA Werke, Germany) until the liquid appeared homogenous. 

Protein concentration of each sample was measured by using BCA Protein Assay Kit (Thermo 

Scientific). 

Twenty micrograms of each sample was loaded on 7.5% SDS-polyacrylamide gel for protein 

separation then transferred to nitrocellulose membrane (Immobilon-P, Millipore). After blocking 

non-specific binding, the membranes were incubated with anti-GRP78/BiP (rabbit polyclonal, 

1:1000, Abcam) primary antibody followed by an anti-rabbit HRP conjugated secondary antibody 

(GE healthcare, 1:5000). Bands were visualised using chemiluminescent substrate (Millipore) and a 

LAS-3000 luminescent image reader (Fujifilm). Western blot data were evaluated and quantified 

using Multi Gauge Image Analyzer (version 3.0). In order to control for any inconsistency in A
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loading samples, ‘house-keeping’ proteins were used as internal controls to check whether the 

differences in the amount of protein of interest could be due to an initial difference in the amount of 

sample loaded. The most commonly used protein to serve this purpose is -actin, as actin is a 

cytoskeletal filament that forms the internal scaffolding of a cell, and therefore its expression is 

ubiquitous in neuronal and non-neuronal tissue [34]. Each membrane was therefore probed for actin 

(1:10000 dilution, Sigma-Aldrich) to normalise the level of immunolabelling of the GRP78/BiP 

protein to actin, so that any potential variations in protein loading could be eliminated. 

 

Statistical analysis 

Statistical analyses were performed using SPSS. Shapiro-Wilk and Levene’s tests were used to 

ensure that the parametric assumptions of normality and homogeneity of variance respectively, 

were not violated. Where assumptions were found to be violated, a natural log (Ln) data 

transformation was applied and the data were retested for normality and equal variance [35]. One-

way ANOVA followed by Scheffe post-hoc test was performed where data could be normalised, 

otherwise Kruskal-Wallis non-parametric analysis was performed. Spearman correlation analyses 

were used to determine the association between the level of GRP78/BiP protein and clinical and 

pathological measures. 

 

Results 

There were no significant associations between age and GRP78/BiP protein levels in any of the four 

regions (r between -0.15 and 0.18, P > 0.2 for all regions). However, there was a significant 

difference in the average age of death between diagnostic groups (One-way ANOVA, F(3,126) = 

6.044, P = 0.001), in which AD patients had significantly higher average age of death compared to 

control subjects (P = 0.003) or patients with DLB (P = 0.016) or PDD (P = 0.002). There were no 

significant differences in gender, pH, MMSE, or annual rate of MMSE decline between diagnostic 

groups (Table 1).  A
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Protein levels of GRP78/BiP are increased in cingulate gyrus and parietal cortex of PDD and DLB 

patients 

In the cingulate gyrus, there was a significant increase in the level of GRP78/BiP in PDD and DLB 

patients compared to AD and control subjects (P < 0.001, Figure 1A, E). A similar pattern was 

observed in the parietal cortex, in which the GRP78/BiP level in the PDD and DLB patients were 

significantly higher compared to AD patients (P = 0.002 for PDD; P = 0.001 for DLB, Figure 1B). 

Interestingly, there was a significant decrease in the GRP78/BiP level in AD patients compared to 

control subjects in parietal cortex (P < 0.001, Figure 1B). There were no significant changes in the 

level of GRP78/BiP between different disease groups in either prefrontal (Figure 1C), or temporal 

cortices (Figure 1D).  

 

Localisation of GRP78/BiP, PERK, p-PERK, and -synuclein in neurons in the prefrontal cortex 

The prefrontal cortex was selected for immunohistochemical analysis as this region is proposed to 

have a role in executive function and cognition, a deterioration of which is a cardinal symptom of 

DLB and PDD. The GRP78/BiP localised in the cytoplasm of neurons (Figure 2). Although there 

was a slight increase in the labeling intensity of GRP78/BiP in AD, PDD, and DLB patient samples 

compared to normal control, this intensity was similar across the different disease groups (Figure 2). 

Since there were changes in the GRP78/BiP levels in the cingulate gyrus and parietal cortex region, 

GRP78/BiP labelling was also done in these areas (Supplementary material, Figure S1). The 

number of GRP78/BiP-positive cells in AD, PDD, and DLB patients appeared to be slightly greater 

than control subjects, but again was similar across the different disease groups in both brain regions. 

In both PDD and DLB patient samples, GRP78/BiP was co-localised with -synuclein only in some 

of the neurons (arrows, Figures 3A–D). In AD patient samples, GRP78/BiP-positive neurons were 

seldom co-localised with phosphorylated Tau (green arrow, Figure 3E), and majority of the 

GRP78/BiP-positive neurons had no phosphorylated Tau (blue arrow, Figure 3E, F). Furthermore, A
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phosphorylated Tau-positive neurofibrillary tangles did not show GRP78/BiP immunoreactivity 

(arrowhead, Figure 3F). Similarly, in DLB patient samples, there were no apparent neurons 

expressing both the GRP78/BiP and phosphorylated Tau (arrow, Figure 3G, H), and neurofibrillary 

tangles had no GRP78/BiP expression either (arrowhead, Figure 3G, H). Granular staining was 

observed for p-PERK in AD, PDD, and DLB patient samples (Figures 4B–D), in which the 

intensity appeared to be a little higher in the PDD and DLB patients compared to AD patients 

(Figure 4B). The staining intensity of p-PERK was higher in all cases compared to controls (Figure 

4A). PERK and p-PERK staining on sequential sections showed that a greater number of neurons 

were positive for PERK (arrows, Figure 4E) than p-PERK (arrows, Figure 4F). 

 

Association between GRP78/BiP level and clinical and pathological measures 

The average regional pathological scores for each disease group are presented in Table 2, and the 

association between GRP78/BiP level and pathological measures are shown in Table 3. There was a 

significant positive correlation between GRP78/BiP level and -synuclein in the cingulate gyrus (R 

= 0.629, P < 0.001), and inverse correlation with plaques and tangles in the parietal cortex (R = -

0.364 and -0.301 respectively, P < 0.001 for both) (Table 3). However, there were no significant 

associations between the GRP78/BiP level and both Braak stages and Newcastle/McKeith criteria 

for Lewy body disease, MMSE scores before death or annual rate of MMSE decline in all patients 

in each disease group (data not shown). Hoehn & Yahr scores of a subset of PDD patients (n = 22) 

also showed no correlation with GRP78/BiP level (data not shown). 

 

Discussion 

The present study is the first study to report UPR activation in PDD and DLB. The novel finding of 

the current study is that the level of GRP78/BiP was greatly increased in the PDD and DLB patients 

compared to people with AD in cingulate gyrus (Figure 1A) and parietal cortex (Figure 1B), 

suggesting that the UPR pathway may be activated to a greater extent in cases with cortical Lewy A
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body pathology or where both Lewy body and plaque pathologies are present. In the cingulate gyrus, 

GRP78/BiP level in PDD and DLB patients were also significantly higher compared to controls 

(Figure 1A). However, the level of GRP78/BiP did not change in the prefrontal or temporal cortices 

of all disease groups (Figures 1C, D), which may imply that the UPR is activated at a different level 

in different areas of the brain depending on the severity of the pathology in that particular region at 

the time of death. 

In the cellular and animal models of PD, an increase in the proteins that are involved in the 

UPR pathway such as GRP78/BiP and PERK has been shown, suggesting UPR activation and the 

involvement of ER stress in the pathophysiology of the disease [12, 36, 37]. Similar results were 

observed in human post-mortem tissue from PD patients [9, 38]. However, there have been 

discrepancies in the level of GRP78/BiP in AD patients. In some of the studies, it was reported that 

the expression level of GRP78/BiP is increased [8, 10, 39], whereas in other studies either a 

decrease or no changes at all between control subjects and AD patients were reported [40, 41]. 

These differences may be explained by the use of different antibodies (a generic anti-KDEL 

antibody versus GRP78/BiP specific antibody) or stages of the disease, or different regions studied. 

Consistent with aforementioned studies, the present study has also shown varying results in 

different brain areas, in which the level of GRP78/BiP in AD patients did not change in cingulate 

gyrus or in prefrontal cortex, but was significantly decreased in the parietal cortex (Figure 1). A 

decrease in the GRP78/BiP level in AD patients in the parietal cortex may not be due to their 

significantly higher age compared to other disease groups, but could be the result of pathological 

differences between AD and Lewy body diseases such as DLB and PDD. It has been shown that 

prominent atrophy and degenerative changes occur in the parietal cortex region in AD [42-44]. 

Therefore, it can be hypothesised that the decrease in the GRP78/BiP in parietal cortex in AD 

patients may be due to the absence of and/or limited number of “healthy” cells present in this region 

to activate the UPR pathway. This attenuated UPR signalling may in turn exacerbate atrophy and A
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neurodegeneration by increasing vulnerability to ER stress in which a cell is forced to take the 

apoptotic route without having any chance to repair itself. 

GRP78/BiP immunohistochemical results from the current study were also consistent with 

previous studies [8, 10], in which GRP78/BiP was localised in the neuronal cytoplasm, and the 

labeling intensity was slightly higher in the AD, PDD, and DLB patients compared to control 

subjects (Figure 2). Furthermore, in AD patients, only a very few GRP78/BiP-positive neurons 

expressed phosphorylated Tau (Figure 3E), and neurofibrillary tangles did not show GRP78/BiP 

immunoreactivity (Figure 3F). As described previously [10, 39], p-PERK immunoreactivity was 

observed as granules in the cytoplasm of neurons in the prefrontal cortex (Figure 4B–D). More 

neurons were positive for PERK than p-PERK (Figure 4E, F), which may suggest that the majority 

of neurons are primed for UPR activation, but only some of them actually become activated.  

Although the present study investigated the regions with known pathological involvement 

for AD, PDD, and DLB, small sample size and analysis of only four cortical regions may have been 

limitations to finding greater changes in the GRP78/BiP level. Furthermore, there may be larger 

group differences in GRP78/BiP level with other quantitative approach looking at protein 

distribution and expression at cellular level as opposed to analysing proteins in tissue homogenates 

by western blotting. Finally, the correlation analysis between the age and GRP78/BiP level was 

carried out to determine whether the age was a confounding factor. This analysis was conducted 

regardless of the diagnostic groups. Although there was no association between the GRP78/BiP 

level and age (data not shown), the fact that the age may have influenced the comparison between 

AD and other groups cannot be totally excluded as AD patients were significantly older in age at 

the time of death (Table 1). The DLB and PDD patients were well age-matched to the control group.  

While the UPR is normally a neuroprotective response, it seems that chronic activation, and 

the conversion of cytoprotective to cytotoxic signaling may be the contributing factors to disease. 

Greater increase in GRP78/BiP level in PDD and DLB compared to AD observed in the current 

study suggests that UPR may be activated at a greater degree because both -synuclein and A A
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pathology are present in PDD and DLB. In other words, in patients with PDD or DLB, there may be 

a greater build-up of misfolded ‘toxic’ protein in the ER compared to ‘pure’ AD patients due to co-

occurrence of synuclein and Apathologies. Therefore, as a consequence, the UPR may become 

activated at a higher degree to cope with a greater level of disturbance in proteostasis. On the other 

hand, it was interesting that only synuclein pathology was positively correlated with GRP78/BiP 

level in the cingulate gyrus (Table 3), which coincides well with the increase in GRP78/BiP level in 

the same region only in PDD and DLB patient groups, but not in AD compared to control (Figure 

 A). The α-synuclein influence on the level of GRP78/BiP in the cingulate gyrus may be related to 

the fact that this is the region with highest α-synuclein pathology (Table 2). There may be an effect 

in other areas also, but this may not be evident in the samples due to less severe pathology. This 

suggests that the Lewy body pathology in itself may be sufficient to chronically activate the UPR 

system. A decrease in GRP78/BiP level only in AD patients in the parietal cortex (Figure 1B) and 

inverse correlation between AD-type pathology (plaques and tangles) and GRP78/BiP level in the 

same region (Table 3) further indicate that the AD-type pathology alone may not activate the UPR 

system as much. Therefore, this co-occurrence of synuclein pathology with AD-type pathology may 

be a trigger to change cytoprotective properties of the UPR system to cytotoxic. There has been 

ongoing debate as to whether it is -synuclein pathology or AD-type pathology that drives 

cognitive decline in DLB, and emerging evidence suggests that there may be a synergism between 

-synuclein, amyloid and tau pathologies [45]. The data from the present study are also in line with 

this, and suggest that activated UPR and subsequent protein misfolding is a common mechanism 

leading to these changes, and may particularly be important amongst individuals with cortical Lewy 

bodies or a combination of pathologies.  

However, since the current study only measured the changes in the GRP78/BiP level, there 

are still some unresolved questions before any firm conclusions can be made. For example, does 

higher GRP78/BiP level suggest chronic UPR activation or does it simply suggest transient higher 

UPR activation? If the disease-specific toxic proteins are prevented from building up in the ER A
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lumen, will UPR still be activated? Is UPR activation a response to neurodegeneration or does it 

contribute to disease initiation? To answer these questions further studies are inevitable. However, 

the results from the present study serve as a stepping stone for future studies as this study has 

clearly shown that the UPR is involved in Lewy body dementias for the first time. In addition, now 

that the UPR is emerging as a promising therapeutic target for neurodegenerative diseases [15, 16, 

46], further studies, possibly using cellular or animal models of Lewy body dementia, are required 

to investigate whether the detrimental effect of neurodegeneration can be saved by manipulating the 

UPR pathway. Based on previous studies, using compounds to inhibit UPR appears to be a viable 

therapy [16, 37, 47]. Another important implication to take from the present study is that since UPR 

is activated at a different level in patients with both -synuclein and tau pathology (PDD and DLB 

patients) compared to patients with single pathology (AD patients), it is possible that there may be 

specific mechanisms acting in people with both pathologies. This may become an important fact to 

bear in mind when selecting samples for further investigations, evolving diagnostic criteria, and 

stratifying populations for clinical trials. 

On the whole, the results from the current study highlight the role of UPR in Lewy body 

dementias, and suggest that Lewy body disease and the combination of Lewy body and AD-type 

plaque pathologies are associated with increased UPR activation to a greater extent than it is in pure 

AD, possibly as a consequence of the increasing load of ER proteins. This work highlights a novel 

opportunity to explore the UPR as a therapeutic target in synuclein diseases. 

 

Acknowledgements 

The authors thank all the donors and brain banks for the tissue used in this study, in particular Dr. 

Claire Troakes at the MRC London Neurodegenerative Diseases Brain Bank. Much appreciation 

goes to Dr. Alan Thomas (National Institute of Health Research Biomedical Research Centre for 

Mental Health, King’s College London) and Dr. John O’Brien (Department of Psychiatry, 

University of Cambridge) for their collaboration in collecting the pathological and clinical data used A
cc

ep
te

d 
A

rti
cl

e



16 
This article is protected by copyright. All rights reserved. 

in this study. This research was supported by The David and Astrid Hagelén Foundation. Tissue for 

this study was provided by several brain banks. The Newcastle Brain Tissue Resource which is 

funded in part by a grant from the UK Medical Research Council (G0400074), by NIHR Newcastle 

Biomedical Research Centre and Unit awarded to the Newcastle upon Tyne NHS Foundation Trust 

and Newcastle University, and by a grant from the Alzheimer’s  ociety and Alzheimer’s Research 

Trust as part of the Brains for Dementia Research Project. The London Neurodegenerative Diseases 

Brain Bank at King’s College London, which receives funding from the UK MRC and Brains for 

Dementia Research. We would also like to thank the Thomas Willis Brain Collection. C.B. would 

like to thank the National Institute for Health Research (NIHR) Mental Health Biomedical Research 

Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust and [Institute of 

Psychiatry] King’s College London. This article also presents independent research 

supported/funded by the National Institute for Health Research (NIHR). TH received salary support 

from Grant No. KTIA_13_NAP-A-II/7, Hungary. The views expressed are those of the authors and 

not necessarily those of the NHS, the NIHR or the Department of Health. 

 

Author contributions 

J.-H.B., P.F., and D.A. conceived and designed the experiments. J.-H.B., D.W., and D.H. carried 

out the experiments. All authors were involved in analysing the data. J.-H.B. and D.A. prepared the 

manuscript. All authors have read and approved the final version of the manuscript. 

 

Conflict of interest 

The authors declare that they have no conflict of interest. 

 

References 

1. Oesterhus R, Soennesyn H, Rongve A, Ballard C, Aarsland D, Vossius C. Long-term 

mortality in a cohort of home-dwelling elderly with mild Alzheimer's disease and Lewy body 

dementia. Dement Geriatr Cogn Disord. 2014;38(3-4):161-9. A
cc

ep
te

d 
A

rti
cl

e



17 
This article is protected by copyright. All rights reserved. 

2. Rongve A, Vossius C, Nore S, Testad I, Aarsland D. Time until nursing home admission in 

people with mild dementia: comparison of dementia with Lewy bodies and Alzheimer's dementia. 

Int J Geriatr Psychiatry. 2014;29(4):392-8. 

3. Hetz C, Mollereau B. Disturbance of endoplasmic reticulum proteostasis in 

neurodegenerative diseases. Nat Rev Neurosci. 2014;15(4):233-49. 

4. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic 

regulation. Science. 2011;334(6059):1081-6. 

5. Jager R, Bertrand MJ, Gorman AM, Vandenabeele P, Samali A. The unfolded protein 

response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biol Cell. 

2012;104(5):259-70. 

6. Urra H, Dufey E, Lisbona F, Rojas-Rivera D, Hetz C. When ER stress reaches a dead end. 

Biochim Biophys Acta. 2013;1833(12):3507-17. 

7. Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J. The presence of 

malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. 

Nature. 1988;332(6163):462-4. 

8. Hamos JE, Oblas B, Pulaski-Salo D, Welch WJ, Bole DG, Drachman DA. Expression of 

heat shock proteins in Alzheimer's disease. Neurology. 1991;41(3):345-50. 

9. Hoozemans JJ, van Haastert ES, Eikelenboom P, de Vos RA, Rozemuller JM, Scheper W. 

Activation of the unfolded protein response in Parkinson's disease. Biochem Biophys Res Commun. 

2007;354(3):707-11. 

10. Hoozemans JJ, Veerhuis R, Van Haastert ES, Rozemuller JM, Baas F, Eikelenboom P, 

Scheper W. The unfolded protein response is activated in Alzheimer's disease. Acta Neuropathol. 

2005;110(2):165-72. 

11. Roussel BD, Kruppa AJ, Miranda E, Crowther DC, Lomas DA, Marciniak SJ. Endoplasmic 

reticulum dysfunction in neurological disease. Lancet Neurol. 2013;12(1):105-18. 

12. Ryu EJ, Harding HP, Angelastro JM, Vitolo OV, Ron D, Greene LA. Endoplasmic 

reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. J 

Neurosci. 2002;22(24):10690-8. 

13. Abisambra JF, Jinwal UK, Blair LJ, O'Leary JC, 3rd, Li Q, Brady S, Wang L, Guidi CE, 

Zhang B, Nordhues BA, Cockman M, Suntharalingham A, Li P, Jin Y, Atkins CA, Dickey CA. Tau 

accumulation activates the unfolded protein response by impairing endoplasmic reticulum-

associated degradation. J Neurosci. 2013;33(22):9498-507. 

14. Cornejo VH, Pihan P, Vidal RL, Hetz C. Role of the unfolded protein response in organ 

physiology: lessons from mouse models. IUBMB Life. 2013;65(12):962-75. 

15. Moreno JA, Radford H, Peretti D, Steinert JR, Verity N, Martin MG, Halliday M, Morgan 

J, Dinsdale D, Ortori CA, Barrett DA, Tsaytler P, Bertolotti A, Willis AE, Bushell M, Mallucci GR. 

Sustained translational repression by eIF2alpha-P mediates prion neurodegeneration. Nature. 

2012;485(7399):507-11. 

16. Moreno JA, Halliday M, Molloy C, Radford H, Verity N, Axten JM, Ortori CA, Willis AE, 

Fischer PM, Barrett DA, Mallucci GR. Oral treatment targeting the unfolded protein response 

prevents neurodegeneration and clinical disease in prion-infected mice. Sci Transl Med. 

2013;5(206):206ra138. 

17. Ma T, Trinh MA, Wexler AJ, Bourbon C, Gatti E, Pierre P, Cavener DR, Klann E. 

Suppression of eIF2alpha kinases alleviates Alzheimer's disease-related plasticity and memory 

deficits. Nat Neurosci. 2013;16(9):1299-305. 

18. Forno LS. Neuropathology of Parkinson's disease. J Neuropathol Exp Neurol. 

1996;55(3):259-72. 

19. Pollanen MS, Dickson DW, Bergeron C. Pathology and biology of the Lewy body. J 

Neuropathol Exp Neurol. 1993;52(3):183-91. 

20. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-

synuclein in Lewy bodies. Nature. 1997;388(6645):839-40. A
cc

ep
te

d 
A

rti
cl

e



18 
This article is protected by copyright. All rights reserved. 

21. Ballard C, Ziabreva I, Perry R, Larsen JP, O'Brien J, McKeith I, Perry E, Aarsland D. 

Differences in neuropathologic characteristics across the Lewy body dementia spectrum. 

Neurology. 2006;67(11):1931-4. 

22. Galpern WR, Lang AE. Interface between tauopathies and synucleinopathies: a tale of two 

proteins. Ann Neurol. 2006;59(3):449-58. 

23. Vekrellis K, Xilouri M, Emmanouilidou E, Rideout HJ, Stefanis L. Pathological roles of 

alpha-synuclein in neurological disorders. Lancet Neurol. 2011;10(11):1015-25. 

24. Olichney JM, Galasko D, Salmon DP, Hofstetter CR, Hansen LA, Katzman R, Thal LJ. 

Cognitive decline is faster in Lewy body variant than in Alzheimer's disease. Neurology. 

1998;51(2):351-7. 

25. Aarsland D, Litvan I, Salmon D, Galasko D, Wentzel-Larsen T, Larsen JP. Performance on 

the dementia rating scale in Parkinson's disease with dementia and dementia with Lewy bodies: 

comparison with progressive supranuclear palsy and Alzheimer's disease. J Neurol Neurosurg 

Psychiatry. 2003;74(9):1215-20. 

26. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer 

disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. 

Acta Neuropathol. 2006;112(4):389-404. 

27. McKeith IG, Dickson DW, Lowe J, Emre M, O'Brien JT, Feldman H, Cummings J, Duda 

JE, Lippa C, Perry EK, Aarsland D, Arai H, Ballard CG, Boeve B, Burn DJ, Costa D, Del Ser T, 

Dubois B, Galasko D, Gauthier S, Goetz CG, Gomez-Tortosa E, Halliday G, Hansen LA, Hardy J, 

Iwatsubo T, Kalaria RN, Kaufer D, Kenny RA, Korczyn A, Kosaka K, Lee VM, Lees A, Litvan I, 

Londos E, Lopez OL, Minoshima S, Mizuno Y, Molina JA, Mukaetova-Ladinska EB, Pasquier F, 

Perry RH, Schulz JB, Trojanowski JQ, Yamada M, Consortium on DLB. Diagnosis and 

management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 

2005;65(12):1863-72. 

28. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes 

JP, van Belle G, Berg L. The Consortium to Establish a Registry for Alzheimer's Disease 

(CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. 

Neurology. 1991;41(4):479-86. 

29. Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW, Duyckaerts C, 

Frosch MP, Masliah E, Mirra SS, Nelson PT, Schneider JA, Thal DR, Trojanowski JQ, Vinters HV, 

Hyman BT, National Institute on A, Alzheimer's A. National Institute on Aging-Alzheimer's 

Association guidelines for the neuropathologic assessment of Alzheimer's disease: a practical 

approach. Acta Neuropathol. 2012;123(1):1-11. 

30. Thal DR, Rub U, Orantes M, Braak H. Phases of A beta-deposition in the human brain and 

its relevance for the development of AD. Neurology. 2002;58(12):1791-800. 

31. Howlett DR, Whitfield D, Johnson M, Attems J, O'Brien JT, Aarsland D, Lai MK, Lee JH, 

Chen C, Ballard C, Hortobagyi T, Francis PT. Regional Multiple Pathology Scores Are Associated 

with Cognitive Decline in Lewy Body Dementias. Brain Pathol. 2014. 

32. Whitfield DR, Vallortigara J, Alghamdi A, Howlett D, Hortobagyi T, Johnson M, Attems J, 

Newhouse S, Ballard C, Thomas AJ, O'Brien JT, Aarsland D, Francis PT. Assessment of ZnT3 and 

PSD95 protein levels in Lewy body dementias and Alzheimer's disease: association with cognitive 

impairment. Neurobiol Aging. 2014;35(12):2836-44. 

33. Whitfield DR, Vallortigara J, Alghamdi A, Hortobagyi T, Ballard C, Thomas AJ, O'Brien 

JT, Aarsland D, Francis PT. Depression and Synaptic Zinc Regulation in Alzheimer Disease, 

Dementia with Lewy Bodies, and Parkinson Disease Dementia. Am J Geriatr Psychiatry. 2014. 

34. Lecuit T, Lenne PF. Cell surface mechanics and the control of cell shape, tissue patterns 

and morphogenesis. Nat Rev Mol Cell Biol. 2007;8(8):633-44. 

35. Rice J. Mathematical statistics and data analysis. Belmont, California: Duxbury Press; 

2007. A
cc

ep
te

d 
A

rti
cl

e



19 
This article is protected by copyright. All rights reserved. 

36. Bellucci A, Navarria L, Zaltieri M, Falarti E, Bodei S, Sigala S, Battistin L, Spillantini M, 

Missale C, Spano P. Induction of the unfolded protein response by alpha-synuclein in experimental 

models of Parkinson's disease. J Neurochem. 2011;116(4):588-605. 

37. Colla E, Coune P, Liu Y, Pletnikova O, Troncoso JC, Iwatsubo T, Schneider BL, Lee MK. 

Endoplasmic reticulum stress is important for the manifestations of alpha-synucleinopathy in vivo. J 

Neurosci. 2012;32(10):3306-20. 

38. Selvaraj S, Sun Y, Watt JA, Wang S, Lei S, Birnbaumer L, Singh BB. Neurotoxin-induced 

ER stress in mouse dopaminergic neurons involves downregulation of TRPC1 and inhibition of 

AKT/mTOR signaling. J Clin Invest. 2012;122(4):1354-67. 

39. Hoozemans JJ, van Haastert ES, Nijholt DA, Rozemuller AJ, Eikelenboom P, Scheper W. 

The unfolded protein response is activated in pretangle neurons in Alzheimer's disease 

hippocampus. Am J Pathol. 2009;174(4):1241-51. 

40. Katayama T, Imaizumi K, Sato N, Miyoshi K, Kudo T, Hitomi J, Morihara T, Yoneda T, 

Gomi F, Mori Y, Nakano Y, Takeda J, Tsuda T, Itoyama Y, Murayama O, Takashima A, St 

George-Hyslop P, Takeda M, Tohyama M. Presenilin-1 mutations downregulate the signalling 

pathway of the unfolded-protein response. Nat Cell Biol. 1999;1(8):479-85. 

41. Sato N, Urano F, Yoon Leem J, Kim SH, Li M, Donoviel D, Bernstein A, Lee AS, Ron D, 

Veselits ML, Sisodia SS, Thinakaran G. Upregulation of BiP and CHOP by the unfolded-protein 

response is independent of presenilin expression. Nat Cell Biol. 2000;2(12):863-70. 

42. Guadagna S, Esiri MM, Williams RJ, Francis PT. Tau phosphorylation in human brain: 

relationship to behavioral disturbance in dementia. Neurobiol Aging. 2012;33(12):2798-806. 

43. Jacobs HI, Van Boxtel MP, Uylings HB, Gronenschild EH, Verhey FR, Jolles J. Atrophy of 

the parietal lobe in preclinical dementia. Brain Cogn. 2011;75(2):154-63. 

44. Kirvell SL, Esiri M, Francis PT. Down-regulation of vesicular glutamate transporters 

precedes cell loss and pathology in Alzheimer's disease. J Neurochem. 2006;98(3):939-50. 

45. Compta Y, Parkkinen L, Kempster P, Selikhova M, Lashley T, Holton JL, Lees AJ, Revesz 

T. The significance of alpha-synuclein, amyloid-beta and tau pathologies in Parkinson's disease 

progression and related dementia. Neurodegener Dis. 2014;13(2-3):154-6. 

46. Halliday M, Mallucci GR. Targeting the unfolded protein response in neurodegeneration: A 

new approach to therapy. Neuropharmacology. 2014;76 Pt A:169-74. 

47. Saxena S, Cabuy E, Caroni P. A role for motoneuron subtype-selective ER stress in disease 

manifestations of FALS mice. Nat Neurosci. 2009;12(5):627-36. 

 

A
cc

ep
te

d 
A

rti
cl

e



20 
This article is protected by copyright. All rights reserved. 

Figure legends 

Figure 1. GRP78/BiP protein expression levels in various regions of the brain from healthy control, 

AD, PDD, and DLB subjects. (A) In cingulate gyrus (BA 24) region, there was a significant 

increase in the level of GRP78/BiP protein in PDD and DLB patients compared to AD and control 

subjects. (B) In parietal cortex (BA 40) region, there was a significant decrease in the level of 

GRP78/BiP protein in AD patients compared to control subjects, while its level was significantly 

higher in the PDD and DLB patients compared to AD patients. (C, D) There were no significant 

changes in the GRP78/BiP protein level in prefrontal cortex (BA 9) (C) or temporal cortex (BA 21) 

(D) regions. (E) A representative western blot image showing GRP78/BiP protein expression in 

cingulate gyrus region in control, AD, PDD, and DLB subjects. * P = 0.002, ** P = 0.001, *** P < 

0.001.  

 

Figure 2. Immunohistochemical detection of GRP78/BiP in prefrontal cortex region (BA 9) of 

control (A), AD (B), PDD (C), and DLB (D) subjects. GRP78/BiP protein expression was found in 

the cytoplasm of neurons (arrows). Although there was a slight increase in the labelling intensity in 

AD, PDD, and DLB patient samples compared to healthy control, this intensity was more or less 

similar amongst different disease groups. Scale bars represent 25 m. 

 

Figure 3. Double immunohistochemical labeling of GRP78/BiP with either -synuclein or 

phosphorylated Tau in prefrontal cortex region (BA 9) of various neurodegenerative diseases. (A–

D) In both PDD and DLB patient samples, only a few neurons expressed both GRP78/BiP and a-

synuclein (arrows). Majority of neurons only expressed GRP78/BiP in the cytoplasm (arrowheads). 

(E–H) In AD (E, F) and DLB (G, H) patient samples, GRP78/BiP was rarely co-localised with 

phosphorylated Tau (green arrow), while most of neurons only expressed GRP78/BiP in the 

cytoplasm (blue arrow). Neurofibrillary tangles did not show any immunoreactivity against 

GRP78/BiP (arrowheads). A
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Figure 4. Immunohistochemical expression of p-PERK in prefrontal cortex (BA 9) region of control 

(A), AD (B), DLB (C), and PDD (D) subjects. (A–D) Granular staining pattern was observed in the 

cytoplasm of a neuron in all cases. The labeling intensity appeared to be greater in the AD, PDD, 

and DLB patient samples compared to control. (E, F) As can be seen from the adjacent sections 

from DLB patient samples, a greater number of neurons express PERK (E) than p-PERK (F). 
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Tables 

Table 1. Demographic characteristics of subjects used in this study in each diagnostic group.  

Diagnosis 
Gender (M/F) 

(%) 
Age at death pH 

MMSE before 

death 

MMSE decline 

per year 

Control (n = 25) 60/40 79.8 + 1.5 6.47 + 0.06 N/A N/A 

AD (n = 16) 31/69 88.0 + 2.0 6.30 + 0.08 10.5 (0-19) 3.8 + 1.0 

PDD (n = 34) 53/47 79.9 + 1.0 6.44 + 0.06 13 (0-27) 2.0 + 0.3 

DLB (n = 55) 58/42 81.7 + 0.9 6.37 + 0.06 14 (0-30) 3.0 + 0.4 

 

“MM E before death” is the score at the last interview before death. “MM E decline” is the decline per year averaged 

over the period of clinical observation and was usually 8–10 years. No MMSE data were available for control group. 

MMSE is presented with a median score with range in brackets. Other measures are presented as mean + SEM. 

 

Table 2. Average regional pathological scores for each disease group 

Brain region Diagnosis N -Synuclein Plaques Tangles 

Prefrontal cortex 

(BA 9) 

Control 14–16 -- 0.35 + 0.14 0.17 + 0.08 

AD 11 0.13 + 0.09 2.81 + 0.14 2.56 + 0.13 

PDD 26–28 0.79 + 0.14 1.39 + 0.20 0.53 + 0.10 

DLB 41–44 1.62 + 0.15 1.68 + 0.15 0.93 + 0.11 

Temporal cortex 

(BA21) 

Control 16–25 -- 0.57 + 0.18 0.30 + 0.15 

PDD 30-33 0.94 + 0.15 0.74 + 0.10 0.44 + 0.11 

DLB 34–35 1.75 + 0.15 1.73 + 0.14 1.31 + 0.13 

Cingulate gyrus 

(BA 24) 

Control 20 -- 0.29 + 0.17 0.10 + 0.07 

AD 15–16 0.31 + 0.18 1.47 + 0.27 1.44 + 0.32 

PDD 10 1.85 + 0.18 0.97 + 0.17 0.53 + 0.11 

DLB 36–40 2.28 + 0.13 1.28 + 0.15 1.23 + 0.14 

Parietal cortex 

(BA 40) 

Control 18–23 -- 0.39 + 0.16 0.04 + 0.04 

AD 15 0.13 + 0.09 2.63 + 0.18 2.81 + 0.10 

PDD 29–33 0.59 + 0.13 1.23 + 0.19 0.48 + 0.10 

DLB 46–47 1.39 + 0.13 1.47 + 0.15 0.98 + 0.12 

 

Pathology scores ranged from 0 (none), 1 (sparse), 2 (moderate) to 3 (severe). Pathology scores for -Synuclein in the 

control group were not available for all brain regions. Values are presented as mean + SEM. 
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Table 3. Correlations between GRP78/BiP level and pathology scores in different brain regions. 

Brain region N -Synuclein Plaques Tangles 

Prefrontal cortex 

(BA 9) 
92–95 -0.009 0.094 -0.017 

Temporal cortex 

(BA21) 
80–91 -0.091 0.031 -0.107 

Cingulate gyrus 

(BA 24) 
81–85 0.629 0.163 0.154 

Parietal cortex 

(BA 40) 
108–115 0.010 -0.364 -0.301 

 

Values are Rs and those in red indicate statistically significant correlations (P < 0.001) between that variable and 

GRP78/BiP level. 
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