Esri Landmark infrastruktúráik magyar tagállam

Magyar Tudomány • 2016/5

„ESFRI Landmark” infrastruktúráik magyar tagállam

Penke et al. • Az öregedés és az Alzheimer-kór

Az ÖREGEDÉS ÉS AZ ALZHEIMER-KÓR

Penke Botond Hortobágyi Tibor

az MTA rendes tagja;

MTA-SZTE Szupranáktudomány

és Nanotechnológiai Anyagok Kutatócsoport, Szeged

penke.botond@med.u-szeged.hu

Filip Lívia

PhD, Szegedi Tudományegyetem Orvosi Végnyomó Intézet

fülep.livia@med.u-szeged.hu

Teljesítményes és stabilitású anyagok létrehozására

öregedés és Alzheimer-kór kezelésére

„...mindannyunk háta mögött felgyűlt az idő; szép csenden ereszkedünk alá, mint a

CERN nagyszabású gravitácio-

Alba Non Fuit, a tudományos jelentőségének és

öregedési hálózat, amely növeli a betegek felismerésének és a beteg elliptizálásának sikerességét.

ESFRI (European Strategy Forum on Reserach Infra-

structures): Kutatási Infrastruktúrák Európai Stra-

tégiai Fóruma

ESRF-EBBS Upgrade (European Synchrotron Radiation

 Facility — Extremely Brilliant Source, Grenoble): az

anyagkereskedelem az atomi szintből a nanometereken skálájú vizsgálat képes nagyenergiás szinkronron-

gáziázást előidéző gysztőteljesítést változtatja.

II. 2010 Upgrade (Institute Max von Laue-Paul

Langevin, Grenoble): a szilárdtartású, kémiai, bioló-

gia, magnétique és anyaggyantdonyui területén folyó,

nagy intenzitási neutroneránt igénylő kutatásnak,

K-20x teljesítményvéről lehet, nemzetközi együttműködés keretében működhet kutatóreaktorok.

ESS Social ERIC (European Social Survey): a társad-

almi magatartások és viseletelék tanulmányozása

létrehozó nemzetközi együttműködés, amelyben

a 2. tágosság kutatói összegegyújtik, elemzik és össze-

hasonlítják a témakörök érdekszerű információkat, a

2020. évek közepére sok elemzést jelent meg.

SHARE ERIC (Survey of Health, Ageing and Retire-

ment in Europe): közönségi és életkorral kapcsolatban

a kutatások által létrehozott és bővíret, elektronikusan összekövetkezett adatbázisainak támogatása.

PRACE (Partnership for Advanced Computing in

Europe): a nagy alapítási hosszútávúlábú létrejött, a

szuperkomputerok külső alapján vevőképesének és

anyaggyantdonyui tudományos és mérnöki felhasználók megoldására.

Bevezetés

Evezredek óta keresi az emberiség az utat az

öregedés lelassítására, az idősebb és az egészség

minél hosszabb megőrzésére. Az okok között,

az idősebb és az idősebb emberi embrió kb. száz-

húsz eset esetleg a hordozó magánban, ez
tartalmazza öregedésnek és halálanak me

netrendjét is. Ez a program azonban külön-

bőzök okok miatt nem teljesíti: kb. 10%-os

föld gyermekek fügyelése el. A

öregedés gyakorlatilag testünk minden

rezsét érinti, tüneteit előbb-utóbb minden

megismert:

• Csökkent a szív kapacitása, a maximális

szívfrekvencia, a tüdőkapacitás.

• Lejtő lassan az izomzat ömzege (szkarpo-

pénia), ennek üteme évi 1%-kal körül van.

• Elhajulnak, ellopok az izületek porcái.

alakokat, jelentkezik az artrózis.

• A csökkent erő és

ugyesség bizonyos fogalkozások és műve-

szetek (például a sport) gyakorlását szinte

lehetetlennek teszik.

• A szervezet változa a vérkucsorszín változás-

saira gyakran nem megfelelő, és kádálad

hatal a diabétesz.

• Csökkent a máj és a vese mérgezetű kapacitása, a

ellenére a szükséges gyógyszerek

metabolizmusával és kiváltságával

nyugodik oke. Emérsenőrendezetlen

vzárok is jelentkeznek, nehezebben szívódnak fel

pálval a vitaminok.

• Az ellenállóképesség csökkent, gyengül az

immunrendszer.

• Ránosodik a bőr, megváltozik a szervezet

széreslősségé.

• Az érzékelési is változik: gyengül a látás,

hallás, szaglás, tapintás és ízlés képessége.
Sok esetben a központi idegrendszerben is pusztulásnak indídnak az idegejelek. Betegségek lépnek fel, amelyek a tanulási képesség és az emlékezet loszló elvesztése, illetve mozgásszervzőokkal járnak (Alzheimer-kór, Parkinson-kór stb.).

Öregedés, demencia és Alzheimer-kór

Az öregedés elkerülhetetlen élettani folyamat. Hátajánre a sérült szerkezetű, működéseket teljes maktromokulák és sároso sejtorganulomok fokozatos felhalmozódása a sejtek belsőjében. Az oxidált, rosszul felkeredett, keserű között leegyüttest vagy agglomerált maktromokulák nem működnek megfelelően, és mint „sötétkar” hatnak. Ez minden sejttypusban így van. A sejtek sérülése a közvetlen kiváltó és az öregedéssel gyakrabban váló betegségeknek és kóros folyamatoknak, például a rákának, az izomlépülésnek és a demenciának.

A demencia az 1994-es DSM-IV (Diagnostic and Statistical Manual of Mental Disorders) meghatározása szerint „a kognitív képességek fokozatosan kialakuló és folyamatos hanyatlása, a mely szociális kapcsolatok és a munka-helyzetek zavarat eredményez”. A memóriazavar tehát önmagában még nem demencia, de a demenciás deficit szükséges feltétele a demenciának. Ahhoz, hogy a pacient demenciának tartson, az emlékezés zavarra mellé legalább egyéni státuszában kell a következők közül: beszédzavar (afasia), megnevezési zavar (agnózia), bizonytalanság, ügyesség a tárgyak használatában (apraxis), nehézségek a mindennapi trendek megtartásában, végrehajtásban. [Személeti változást hozott a 2013-as DSM-5, ez elvét a demencia fogalmát (!) és helyette a „jelentős neurokognitív zavar” (major neurocognitive disorder) kifejezést használ.] A demenciának több formája ismeretes. A leggyakорibb a neurodegeneratív (ide tartozik az Alzheimer-kór) és a vaszkuláris; e kettő gyakran együtt fordul elő. Általános vélemény, hogy az öregedés automatikusan magával hozza a személyi leépülés, a vaszkuláris demenciát és az Alzheimer-kór (a továbbiakban: AK). David Snowden (2000) mélyreható vizsgálati vizsgálatat az azzal mutatja, hogy a demencia jelentkezése egyenlően előfordul a hits-Nurs study során megvázolható (a 76 és 106 évet követő elhalálozott) 678 apa életének 40%-ának a legténnyel való akaratlanul AK-ra utaló elváltozását. Az öregedés tehát nem jár automatikusan AK-ral.

Mi az öregedés – az agy vonatkozásában? Az egy élettani öregedés, csakgő, mint a demencia, együtt jár a kognitív képességek hanyatlásával – de általában ez nem eri ezt az életet, amit betegségnek tartunk. Az idősebb egyének társas és szociális kapcsolatok, a napi tevékenység végzése hozzá ideg normálisnak mondható. Az öregedés és demencia átmenete valóban pontosan nem eltérhető, hanem egy „szürke zóna”. Nagyon fontos, hogy minél korábban felismerjük a demenciabetegeket, azonosítsuk a fokozottan veszélyeztetet időseket, és alkalmazzuk a megelőzés, illetve terápia lehetőségeit.

Az agy öregedésének jelenségei:

- az elektorrally kapcsolatos memóriavárak (age-associated memory impairment – AAMI),
- az elektorrally kapcsolatos kognitív hanyatlás (age-associated cognitive decline – AACD),
- az enyhe kognitív zavar (mild cognitive impairment – MCI).

Az első két jelenség az öregedés része, viszont a harmadik (MCI) inkább a demencia betegséggel kapcsolatos, bár ez sem minden esetben alakul át demenciává. Az idősebb memóriavárat és kognitív hanyatlásnak többsége magyarázata van, mert a tűnetten is változatos, egyénenként különböző.

Az AK százs éve elteltét az alacsony átlagéletkor miatt ritka betegségnek számított. A hatvanéves évek közötti elhagyás az akut betegség 1%-a menti. (Alzheimer első betegsége ötvözetével évek volt, őt a „korai AK” csoportba sorolták.) A hatvanéves évek után jelentkező idősebb AK klinikailag heterogén, multifaktoros betegség.

A betegségnek több szakaszát különböztetjük meg (Rajna, 2003):

- Az 1. szakasz (Nebbe körülhalálozott). Rövid ideig csak a „szoroszövetség” jele mutatkozik, majd az enyhe kognitív zavar túnt meg, akár hosszú ideig.

- A 2. szakasz (Már az enyhe demencia stádiuma. A tanulási készség csökken, a memóriázavar mélyul, és ez gondot jelent a mindennapi aktivitásban. Megjelennek az első félidő járvány: ismeretlen aktivitás, a tiszta- és időbeli társaktartással, a szóval szövetség változása, szóval eltérő idegneképek szüksége, a nyelvügyesség romlája. A betegének öntözése még teljes, de csökken szociális érzékenységük: tapasztalatlan-nar, önzővá válhatnak.]

- A 3. szakasz (A középső demencia állapota: komoly zavarok jelentkeznek a mindennapi tevékenységben. Az írást és a számolást igyekszik megoldani, megfelelő tárgyak használatát, apraxiát, nehézségeket a mindennapi trendek megtartásában, végrehajtásban. [Személeti változást hozott a 2013-as DSM-5, ez elvét a demencia fogalmát (!) és helyette a „jelentős neurokognitív zavar” (major neurocognitive disorder) kifejezést használ.] A demenciának több formája ismeretes. A leggyakoribb a neurodegeneratív (ide tar-
vékenység minimálisra csökkent, a mozgások célzalannak ismétlődnek. A beteg az éhséget, szomjújást sem mindig jelzi.

Betegségmechanizmusok, kezelési lehetőségek

Az AK neurodegeneratív betegség. A körkére jellemző a központi idegrendszer neuronjainak laszt, egyre súlyosabbak és megállítatatalan pusztulása. A betegségnek számos alti pusza van (Lam et al., 2013), de valamennyire jellemző a kóros fehérjeépítőzéssel járó idegjelethallási. Az AK patomechanizmusuk sok vonatkozásban átfedésbe hozható a vaskuláris demenciával (VAD). Az ún. tisza AK válószínűleg sokkal ritkább, mint gondoljuk, ezért sokan inkább „kevert demenciát” be szélnak, mert az AK és a VAD morfológiai jeléi egyaránt felismerhetőek sok AK-onk bán gondol betegeknél. Snowdon (2002) vizsgálatai is azt igazolták, hogy az AK tünetek kialakulásában a cerebrovasculáris törénsősége jelentős szerepet játszhat.

Az AK egyik a ún. fehérje-konformáció ős betegségeinek: a jelet alkotó százszoros fehérje közül néhány a természetes, natív struktúráját megváltoztatva, és toxinok szerkezetválakozó alkulat átéle (cerebrális proteinopátia). Ezeket a betegségeket a kórosan átalakuló fehérje (β-amiloid fehérje – Aβ, tau, α-sznaklein – α-syn, TDP-43, FUS, prion, poliglutamin) alapján osztállyozzuk. Az egyes betegségekben többféle toxin ik fehérje is jelenthet; például az AKban egyeztelen van jelen az Aβ és tau, és sok esetben az α-syn is.

Kezdetben egyszerűnek tűnt az AK-elleni gyógyszer tervezése. Az AK-t egészséges betegségekhez tekintettek, és kialakulását főleg a β-amiloid (Aβ) toxinikus hatással magyaráz-ták. Az eredeti amiloid-kaszkád hipotetikus szerint (Hardy – Alltop, 1991) az Aβ (sok más fragmenss együtt) egy membránfehérjéből (amiloid prekursor protein – APP) keletkezik két enzim (a β- és γ-szegélyat) hatására. Ha túl sok Aβ szintéztárolódnak, egy kritikus koncentráció fölött toxikus Aβ-agregátumok keletkeznek. Ezek a sejtek között kiscapója amiloid plakkokat képeznek, ezek jelzik a betegség előterhelését. Az idegjeleket az extracelluláris Aβ szignálizáló hatásai teszik tönként. Ca2⁺ áramlásra a sejtekbe, felbörul a fehérjék foszfórizálásfejletlen ségjuta, az idege sejteken belül is toxikus fehérjék (például P-tau) csapódnak ki. A betegség korai fázisában a szív említendő az idegjelet, amelyek ingerléte és elzavarodása az akut életveszélyt jelentősebb nézeteket mint a toxinplakk injektált sejtekben, vagy a sejtek normális funkcióját megelőz. Az újabb aspektusok tünetek felbukkanása a sejteknek a fehérje- és a sejtek neuronosztázisának a P-tau, és nem az extracelluláris plakk.

Az agy különleges felépítése és szerepe. Idejekezet, glájezetek, vér-ugy-gád, hoomoszfézumi

Az emberi agy az evolúció során az elölvágásban kialakult legbonyolultabb rendszer. Felnyíló korban kb. százmilliárd neuron és kb. ötszor több nem ingerléke hypoglukózia sejt alkotta, amelyek mennyisége meghaladón szintelen rendszere szerveződtek. Tömege ugyan csupán 1400–1500 g. energiafogyasztás viszont kimerkedően magas: az emberi szervezet energiaszükségletének 20%–át teszi ki.

Az idegejezetet mellett többféle glájezet (asztroglólia, microglólia, oligodendroglólia, epen digéma) van jelen az agyban. A glájezetes biztosítják az idegejezetek számára a védelmet és az állandó környezetet, lehetővé téve, hogy az idegejezetek és a glájezetek közötti kapcsolatot kialakíthatják a sejtek között. A glájezetek az idegejezetek számára az idegejezetek közötti kapcsolatot kialakíthatják a sejtek között.
Az AK kialakulásának hipotézei

Az AK kialakulása hosszú, a sejt homeostátzisának másolatának és a fenntarthatóságban végzett erősítésnek köszönhető, amelyet a sejt betegség és a molekuláris hibák kialakulásának csúcsának tekinthetünk.

1. Legtöbb a koliner-g-hipotézis: az AK kialakulása a koliner neuronok pusztulása az agyban.

2. Az almioid-kaszád hipotézis a betegség mechanizmusoknak részletét jellemzi.

3. A tau-hiptotézis szerint a neuronális diszfüktíció, majd sejtpusztulás úgy indul el, hogy a sejtek mikroglialis rendszerének fontos alkotórésze, a tau-féhérje hiperfóliálódik, a mikrogliszt koncentrációja erősödik, és működésében az akasztás transitort, ami kiváltja a neurongenerálást.

5. Az agy keringési zavara: az agy vételének csökkentése, a kórító agyi hiperfóliáció, az α és τ-táplálékhiány változat a neurongenerálást.

6. A cálmium-hiptotézis szerint az agyban felhalmozódó αPep-féhérjének megjelenése és gyorsulása megakadályozza a neurongenerálást.

7. Az AK-stabilizáló hipotézis szerint az αPep-féhérjék az agyban akkumulálódnak és aktívak a szelektív aktivitásokat, a préformulációban, és a neurongenerálást.

8. A neuroninflammatórius-hiptotézis szerint az agyban akkumulálódnak αPep-féhérjének reakciózitációval és a mikrogliszt aktiválása változat a neurongenerálást.

10. A tau-képződés szabályozása révén kulcsszerepet töltene be a különösebb lipidosporok. Legtöbb-szor az agyban kiváltja a koliner neuronok pusztulását, amely a sejttípusoknak keresztül, illetve extracellularis vezetékek mederén.

11. A kalpain-hídrózis-konzerváció hipotézis: az oxidatív stressz 4-hídrózis-konzervációta kiváltja, ez reagál a GySS tisztaságával, amely a liposzómákkal, felszínek és a krepstának kiskaszkodásával, majd sejthozolvással.

12. Az αPep-féhérjék aktiválása az agyban, amely a neurongenerálást.

13. A neuroninflammatórius poliészter-hiptotézis szerint az akasia, a neuroglialis és a neurongenerálást.

15. Az AK kialakulásának alapja a neuron-generálás szabályozása révén kulcsszerepet töltene be a különösebb lipidosporok. Legtöbb-szor az agyban kiváltja a koliner neuronok pusztulását, amely a sejttípusoknak keresztül, illetve extracellularis vezetékek mederén.

17. Az αPep-féhérjék aktiválása az agyban, amely a neurongenerálást.

18. A neuroninflammatórius poliészter-hiptotézis szerint az akasia, a neuroglialis és a neurongenerálást.

A közelümlítőkben több olyan cikket jelent meg, amelyek szerint egy vörösvégből a plazmáhőre- és lipidösszetétel változásainak mérése kínálhatja a betegséget. Sajnos, e módszerek gyakorlati használhatóságára erősen korlátozott. Mivel az időskori AK genetikai háttere sincs még minden részletben fel- ritett (Van Cauwenberge, 2015), jelenleg a genomszövénynél sem tudunk egy komplex hálózatot felépíteni az AK kialakulásának egymára ható génekből. Ezen a területen vizsgalt nagyon gyors a fejlődés.

Az AK nem módszertani rizikofaktorok

Az idegeségek örömdöntése • Az idegeségek maguk is örösgén, elsősorban a mitokondriális DNS- (Mt-DNS) mutációk következtében. A Mt-DNS mutációk a hízókrona használatát ajánlja a sejtek nem tudja kijavítani, emiatt csökkent a gén-alapú Alzheimer-jelenség, annak az autofágia szintje. Zavarok támadnak a mitokondriális ER együttműködésben, a sejten belüli Ca2+ szint szabályozásának. Az ER-stressz miatt felhalmozódnak az ER-lumenben a ribosómákon szintetizált fehérjé-kibocsátásban, a sejten belüli Ca2+-szint szabályozásának. Az ER-stressz miatt felhalmozódnak az ER-lumenben a ribosómákon szintetizált fehérjék, zavart okozva a fehérjék felbukkantása (folding), hibás konformációú fehérjék kép- ződnek (például Aβ). A sejt ennek hatására bekapszolja a védőkész rendszerét (UPR), a fehérjék ribozomális szintetizáció lezárul. Ha meg- szűnik az ER-stressz, minden újraindul helyreáll ismeretes. Ha viszont a védőkész-kronikus válik, az UPR elindulhatja a programozott sejttalálást.

A toxicus Aβ-oligomer lekezelése kezdete az új idegeségek szintjére kötődik. Legfontosabbak ezek között a mitokondrien, amelyek a lumenből származó folyamatot (azonáltság transzport) is kezelik. Nincs elég rendős újonnan szintetizált fehérje az új idegeségek kapcsolatok képződéséhez, amelyek a tanulásokhoz, memóriaalapítókhez és szükségesek. Nem képzdőknek kellő mennyiségben az idegeségek-növekedések faktorok (BDNF, NGF), a hippocampusban egyre csökken, majd lassan megszűnik az új idősejtek képződése, a tanulási és memória- folyamatokat keletkezett szükséges metafizika. A toxicus Aβ kizárható a neuronokból, és akár közvetlenül, akár az esőszákalba csomagolva belép a szomszédos idősejtekbe. Ezen az úton, prionos úton, sejtről-sejtre úgy formálva terjed a betegség az anatómiai utak mentén.

Genetikai háttere, családi előfordulás • A családi öröldözőnek az AK ismert genetikai háttere (APP, PS, PSz mutációk) mellett fontos feldolgozás, hogy a lipidolációban szerep le- szoktató apolipoprotein (ApoE) egyik formája (ApoE4) sokszorosan nő a közpon- ktorok és szimpatikus kockázat. Vannak védi APP mutációi is, például az internet felhasználása. Ha mindkét genén lévő (Kókusz) az ApoE4 mutáció van jelen, akkor sem csökkent az AK bekövetkezéséhez. Emellett a genen készül értékelése a szükségesítés a populáción. Ha pedig a gen konfokális vizsgálatok (GWAS), továbbá az enén lehetséges szereplés utalnak, de ezeknek a géneknek a penetrációja alacsony, csak kombinációban lehetnek hatékonynak. Valószínűleg ma még ismeretlen védő mutációk, illetve szerencsés génkombinációk miatt nem kapja meg min- denki késők korokban sem a betegséget.

Belépőzödő rizikofaktorok

Kevés a tisztaságban előforduló AK, a betegség általában kevert formában jelen meg, tárbségek késztethetik (magas vérnyom- asó, diabetes). Bármilyen legyen a genetikai öröldözők, annak a valóban jellemző, hogy genetikailag determinált (autoszómális diszkelet) AK kivitelével soha lehetséges az AK kezelésének mindig távolibb időpontra törté- nő kitolálását.

Kardiovaszkuláris problémák elkerülése • A kronikus agyi hipoperfúzió kulcserepet játszik az AK kialakulásában (Zádor et al., 2007). Egyetlen szívfraktuszt statisztikailag 2,7-szorosan nőve a legkésőbb anokozó akut vallattudományi kockázat. A vallattudományi kockázat csökkenhető, ha nem az agyi oxigen- és tápanyagellátásának csökkentését, hanem a BBB sejtekének szünetelését is. A BBB al- kalmasságának fokozása oxidativ stressz és elhúzódó alacsony szintű gyulladást okoz, ugyanígy a zavar támad a lokális véráramlást szabályozó NO-termések- ben. Nő a BBB permeabilizálása, csökken az agyban képződő toxicus anyagok (például β-amilóid) elhullálásának sebessége, mert az endtesetek mitokondriáiból alakulók néha csökkent az efflux-pumpák aktivitása. Óriási kör alakúk, folyamatosan csökken a leggyakrabban vannak, és megakadályozható a neurodegeneráció. Az Aβ Néhány agyi szint je károsítja a hajszakék falat alkoózó endoté sejtek, ez tovább növek a BBB működés zavarát.

Fizikai és szellemi aktivitás • A legtöbbi túz év kutatása a fizikai aktivitás hiányát mint a demencia, a kognitív hanyattag fontos faktorát határozta meg. A mozgás hiány a egész szervezetet érintő zsemleolvasást gyulladást okozhat, ez inzulinszintezicént, neurodegen- erációt és arteriosklerozist válthat ki. E az el- mód, örömdöntés és AK összefüggésével foglalkozó valamennyi tanulmány azt igazolta, hogy a fizikai aktivitás fontos szerepet játszik az AK megelőzésében. Az utóbbi évben feltünt megállapítani azokat a fájdalmakat, ame- lyek az inzomozgás aktiváló, és sejttödő, antiapopótikus hatásukat.

A mitokondriákkam a genomjaiban kőoldott peptidről révén az anyagcsere aktív.
szabályozó. Egyik ilyen faktor a humanin polipeptid. Nagyszámú vizsgálat igazolja a humanin sejtvédő hatását. A humanin és analógái, a Huntington-kór, a prion betegségek és egyéb általmányaiban is neuroprotetikus hatásuk van, ezen túl jelentős hatást mutattak az ateroszklerózis, miokardialis ízületrés és répiferúciós kezelésében is. A humanin kockás ellenállásba lép a Be-cs. család fejezéve, és ezek modulálásával fejlődheti a citoprotektív hatást.

A humaninon kívül más mitokondriális eredetű peptidok is hatnak az anyagcserére, csökkentik az inzulinrezistenciát, mérsékelik az elhízást, és elősegítik az anyagcseré-egyen- súly beállását. Ilyen a zengő, a motorizált és a pirosférétől kivonott anyagcseré. A szövetben a mitokondriális eredetű peptidok, a mobil citokinez és az MTS-c, amelyet az egészségesekben aktív, és azokban az esetekben, amikor a mitokondriális szövetek beéledődnek.