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A B S T R A C T

Glioblastoma multiform (GBM) is the most common and most aggressive primary brain tumor. The
fibronectin receptor, α5 integrin is a pertinent novel therapeutic target. Despite numerous data showing
that α5 integrin support tumor cell migration and invasion, it has been reported that α5 integrin can
also limit cell dispersion by increasing cell–cell interaction. In this study, we showed that α5 integrin
was involved in cell–cell interaction and gliomasphere formation. α5-mediated cell–cell cohesion limited
cell dispersion from spheroids in fibronectin-poor microenvironment. However, in fibronectin-rich mi-
croenvironment, α5 integrin promoted cell dispersion. Ligand-occupied α5 integrin and fibronectin were
distributed in fibril-like pattern at cell–cell junction of evading cells, forming cell–cell fibrillar adhe-
sions. Activated focal adhesion kinase was not present in these adhesions but was progressively relocalized
with α5 integrin as cell migrates away from the spheroids. α5 integrin function in GBM appears to be
more complex than previously suspected. As GBM overexpressed fibronectin, it is most likely that in vivo,
α5-mediated dissemination from the tumor mass overrides α5-mediated tumor cell cohesion. In this
respect, α5-integrin antagonists may be useful to limit GBM invasion in brain parenchyma.

© 2016 Published by Elsevier Ireland Ltd.

Introduction

Glioblastomamultiform (GBM, grade IV astrocytoma) is the most
frequent and most aggressive brain cancer. Despite surgical resec-
tion, radiotherapy and concomitant chemotherapy, median survival
for a patient with high grade glioma does not exceed 15 months.
GBM is characterized by a diffuse infiltration of the brain tissue by
tumor cells. This highly invasive phenotype prevents complete sur-
gical resection, limits the efficiency of radiotherapy and is a critical
prognostic factor for primary brain tumors. The establishment of
efficient therapies requires a better understanding of the infiltra-
tive behavior of glioma cells and the development of new strategies
targeting cell invasion [1,2]. In situ, glioma cells individually infil-
trate the brain tissue either by migrating along the blood vessels
or by invading the parenchymal tissue [3,4]. Invasion is modu-
lated by regional expression of extracellular matrix (ECM)molecules
[5,6]. Some ECM proteins are overexpressed in human brain tumors

and their upregulation correlates with disease progression andworse
prognosis. Comparison of gene expression in invasive GBM versus
non-invasive pilocytic astrocytoma using suppressive hybridiza-
tion identified fibronectin (FN) as one of the most overexpressed
gene in GBM [7]. FN accumulates around neovasculature [8,9] and
into tumor ECM as dense linear strands of assembled FN surround-
ing cancer cells [10–13]. FN supports tumor growth [14] and is
unequivocally capable of mediating glioma cell motility and pro-
moting invasion [11,13,15].

As primary receptors involved in cell–matrix adhesion, integrins
bidirectionally link the ECMwith the intracellular signaling network.
They profoundly impact on tumor cell proliferation, survival and
invasion, and trigger resistance to radio- and chemo-therapy [16].
In human brain, the FN receptor, α5β1 integrin, is expressed at sig-
nificantly higher level in GBM than in adjacent normal tissue [17].
We [18,19] and others [20–22] recently confirmed these data in larger
cohorts of patients and showed that a high expression of α5β1
integrin is associatedwith aworse prognosis. Preclinical data support
the ability of α5β1 integrin antagonists to disrupt integrin signal-
ing pathways leading to inhibition of angiogenesis and/or tumor
growth but also to sensitization toward therapies [23]. Depletion
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of α5 integrin increased p53 activity and sensitized cells to che-
motherapeutic agents [19,24]. Moreover α5β1 integrin antagonists
facilitated chemotherapy-induced apoptosis in human glioma cells
[24,25]. Collectively, these data establish α5β1 integrin as a prom-
ising target in GBM. α5 integrin mediates fibronectin assembly, an
essential process that regulates cell morphology, growth and mo-
tility [26]. On 2D cell culture, fibrillogenesis is initiated by α5 integrin
in cell–substratum adhesion sites called fibrillar adhesion (FBs). FBs
are functionally and molecularly distinct from the classical focal ad-
hesion (FAs) as they did not contain activated FAK (focal adhesion
kinase) or other FAs proteins such as paxillin or vinculin [27,28].
Drug-mediated inhibition of FN fibrillogenesis sensitizes glioma cells
to chemotherapy in vitro and in vivo [12]. Fibrillar FN/α5 axis may
thus play a pivotal role in glioma resistance to therapy and invasion.

Using single cell tracking assays, we showed that expression of
α5 integrin in U87MG cells increased cell migration speed, which
could be inhibited by the use of specific non-peptidic antagonists
of α5β1 integrin [29,30]. However, other reports showed that α5β1
and fibrillary FN can promote cell/cell cohesion in various tissue
[13,31–33] and may impair glioma cell dispersion [32]. This obser-
vation point out a potential anti-invasive role for α5β1 and cell-
mediated FN assembly. This may raise an important issue concerning
the development of anti-invasive therapeutic strategies that target
α5β1 integrin.

In the present work, we showed that α5-mediated cell–cell in-
teraction can counteract cell dissemination only if fibronectin is
absent from tumor cell microenvironment. We observed that in cells
collectively emerging from the spheroid, α5 integrin delineated
plasma membrane in a fibrillar-like pattern and is associated with
a dense FN fibril network. Importantly, activated FAK (pFAK-
tyr397) was not recruited by α5 integrin in these cell–cell fibrillar
adhesions. As cells moved away from the spheroids, α5 became
strictly engaged in cell–substratum adhesion sites, where it pro-
gressively recruited pFAK-tyr397. In conclusion, our data indicate
that in GBM α5 integrin may have different function and that glioma
cell invasion is regulated by the balance between α5-mediated cell–
cell and cell–substratum interaction.

Material and methods

Reagents

Function blocking antibodies directed against α5 integrin, clone IIA1 was from
BD Biosciences and against αv integrin, clone 69.6.5 was produced and purified as
previously described [34]. Following antibodies were used for confocal microsco-
py. Conformation dependent LIBS anti-α5 antibody clone SNAKA-51 was from
Millipore. Phycoerythrin-conjugated anti-α5 antibody (clone SAM-1) was from
BioLegend. Anti-β1 antibody clone TS2/16 was produced from the hybridoma cell
line TS2/16.2.1 (HB-243, ATCC) and purified on protein-G-sepharose column (Pierce).
Anti-αv antibody, clone PLW7, was from Santa Cruz Biotechnology, anti-fibronectin
antibody, clone 10, was from BD Biosciences, anti-pFAK-tyr397, clone 141-9 from
Life Technologies. Fluorescently labeled secondary antibodies were purchased from
Invitrogen (Alexa Fluor −488; −546; −647). Dapi was purchased from Santa Cruz Bio-
technology. Human fibronectin stabilized solution was purified as described in
Reference 35. Cell culture medium and reagents were from Lonza. All other re-
agents were of molecular biology quality.

Cell culture

The human glioblastoma cell line U87MGwas obtained from ATCC. U87MG cells
were maintained in Eagle’s minimum essential medium (EMEM) supplemented with
10% fetal bovine serum (FBS), 1% L-glutamine, 1% sodium pyruvate and 1% non-
essential amino-acid, in a 37 °C humidified incubator with 5% CO2. U87MG cells were
transfected with plasmid encoding α5 cDNA or specific shRNA targeting α5mRNA
as described [19], except that after selection with antibiotics, stably transfected cells
were mass-selected by two steps of cell sorting (FACSAria™ II, BD Bioscience) using
PE-conjugated SAM-1 antibody. We selected cells expressing various amount of α5
integrin. Cell surface expression of β1 and αv subunits were controlled by flow
cytometry analysis (10,000 cells analyzed for each condition) using TS2/16 and 69-
6-5 monoclonal antibodies respectively. α5 and β1ntegrin expression levels were
further analyzed by immunoblot using IIa1 and TS2/16 monoclonal antibodies as
described [19]. In the present study we used U87 cells transfected with pcDNA3.1α5

as high α5 expressing cells (U87α5+) and U87 cells expressing α5-shRNA as low α5
expressing (U87α5−). LN229 and LN443 cells were cultured as described in Reference
24. LN229 cells were transfected as described for U87 cells. LN229 clonal popula-
tions were obtained by limited dilution and clones expressing various amount of
α5 integrin were selected.

Proliferation assay

Cells were plated (1000 cells/well) onto a 96-well plate in EMEM supple-
mented with 10% FBS. At indicated times, cell viability was determined using a
tetrazolium compound [3-(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium, inner salt (MTS assay – CellTiter 96 AQueous One
Solution Cell proliferation assay from Promega).

Spheroid formation

Six grams of methylcellulose was dissolved in 250 mL of EMEM and heated at
60 °C for 1 h. The solution was then kept at 4 °C under agitation for 18 hours. The
solution was cleared by centrifugation (5000 g, 2 h). Single cell suspension was gen-
erated from trypsinized monolayers and diluted at the desired cell density. Cell
suspension was mixed in EMEM/10%FBS containing 20% of methylcellulose. All the
spheroids were made with 2000 cells. Cell spheroids were formed by hanging drop
methods (25 μL, 2000 cells per sphere) or on a U-bottom 96well plate (Greiner Cellstar
U-bottom culture plate) (100 μL, 2000 cells).

Spheroid organization

Spherical organization of 20 spheroids/condition was followed regularly from
0 to 48 hours on phase-contrast images (EVOS xl Core, 20× magnification). Circu-
larity measurements (roundness) were measured using shape descriptors of ImageJ
software [36]. When indicated function blocking anti-integrin antibodies (anti-α5,
clone IIa1; anti-αv, clone 69.6.5) were added at 10 μg/mL in the cell suspension.

Spheroid migration assays

Plastic dishes were coated with poly-L-lysine (10 μg/mL) or fibronectin (indi-
cated concentration) in PBS solution for 2 h at 37 °C. Two-day old spheroids were
allowed to adhere to 24-well plates in complete medium (EMEM, 10% FBS). Eigh-
teen hours later, cells were fixed with paraformaldehyde 3.7% (Electron Microscopy
Sciences) and stained with DAPI. Phase-contrast images (EVOS xl Core, 5× magni-
fication) were acquired. Cell number was quantified with a home-made macro using
ImageJ software.

Confocal microscopy and image analysis

Coverslips were coated with fibronectin (10 μg/mL in PBS). Two-day old spher-
oids were seeded in complete medium for 18 hours. Cells were then fixed in 3.7%
paraformaldehyde, and permeabilized with 0.1% Triton-X100. After a 1 hour block-
ing step using TBS-BSA 3% solution, cells were incubated with primary antibodies
O/N at 4 °C (2 μg/mL each in TBS-BSA 3%). Cells were incubated with appropriate
secondary antibodies (1 μg/mL in TBS-BSA 3%) and DAPI for 1 hour. Spheroids were
mounted onmicroscope slides using Permafluor AqueousMountingMedium (Fisher).
Images were acquired using a confocal microscope (LEICA TCS SPE II, 60× magnifi-
cation oil-immersion). Feret’s diameter used as adhesion size criteria were quantified
using an ImageJ plugin developed in the lab. Pearson correlation coefficient was cal-
culated using JACop plugin ImageJ software [37]. Suspended spheroids were fixed
with 3.7% paraformaldehyde, and permeabilized with 0.1% Triton-X100 for 5 min.
Saturation and immunolabeling were performed on U-bottom 96 well plates.

Immunostaining on patient-derived xenograft

A patient-derived integrin α5 expressing glioblastoma xenograft was selected
for in vivo analysis as described in Reference 19. Briefly, formalin-fixed paraffin-
embedded xenograft was prepared as previously described [19] and 4 μm sections
were deparaffinized, rehydrated and subjected to unmask the antigen protocol using
Dako retrieval solution pH9. Next, blocking buffer (5% Goat serum, 0.1% Tween-20,
PBS) was applied for 1 hour at room temperature. Integrin α5 and fibronectin were
labeled with rabbit antibody directed against α5 integrin cytoplasmic tail (AB1928,
Millipore) and mouse anti-fibronectin Alexa Fluor® 488 (FN-3, eBioscience), re-
spectively (overnight incubation at 4 °C). After washing in PBS-Tween 0.1%, tissue
sections were incubated for 1 hour with appropriate secondary antibody (goat anti-
rabbit IgG Alexa Fluor® 647, Invitrogen). Nuclei were counterstained with DAPI and
coverslips were mounted onto tissue section using Permafluor Aqueous Mounting
Medium (Fisher). Images were acquired using a confocal microscope as previously
described.

Dual wide field/TIRF imaging

Dual Wide field/TIRF images were acquired using an iMIC microscope (Till Pho-
tonics) equipped with a Cobolt Dual Calypso Laser 491/532 nm, a monochromator
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Polychrome V and an Olympus 60× TIRFM (1.45 NA) objective. A multiband filter set
was used for excitation of DAPI, Alexa fluor 491 and Alexa fluor 568. Wide field and
TIRF images were recorded on an EMCCD camera (Andor Technology) and ana-
lyzed using ImageJ software.

Statistical analysis

Data are reported as mean ± S.E.M. unless otherwise stated. Statistical analysis
between samples was done by one way analysis of the variance (ANOVA) followed
by Bonferroni post-test with the GraphPad Prism program. Significance level is con-
trolled by 95% confidence interval.

Results

α5 integrin and FN are involved in U87MG cell cohesion

Multicellular tumor spheroid is an in vitro model used
in numerous studies to mimic micro-tumors [38]. FN assembly can
promote cell–cell adhesion and foster spheroid formation
in various cell types [39,40] including U87MG glioma cells [13,32].
In CHO cells, this process involves the α5β1 integrin [31,41]. We
seek to assess the role of the FN receptor α5β1 in glioma cell–cell
adhesion. U87MG cells express α5β1 integrin endogenously and
were manipulated to increase or decrease the expression of the
α5 integrin subunit. Cells were sorted for various expressions of
α5 integrin. α5, β1 and αv integrin expression was controlled
by flow cytometry analysis (Fig. 1A, left panel). α5 and β1
expression was further confirmed by immunoblot (Fig. 1A,
right panel). For this study we consistently used the cell
expressing the highest (U87α5+) and lowest (U87α5−) level of α5
integrin.

Under conventional culture condition, upon reaching high cell
density, α5 integrin depletion significantly decreased the sponta-
neous formation of multicellular organoid (Fig. 1B). After 3 days
of culture, cell growth was similar for both cells indicating that
the absence of spheroids in U87α5− cell culture was not due to a
decrease in cell density (Fig. 1B). We next challenged U87α5+ and
U87α5− cells in spheroid formation from suspended cells. Wemoni-
tored the kinetics of spheroid formation, i.e., spheroid area and
spherical form (roundness) to assess the role of α5 integrin in cell
aggregation and tissue compaction. As shown in Fig. 1C, initial cell
aggregation (after 6 hours of incubation) was not dependent on
α5 expression level. At 24 hours, U87α5+ cells increased their com-
paction and adopted a regular circular shape whereas α5-depleted
cells presented a delayed cell compaction and spheroid forma-
tion. This difference is no more observed after 48 hours. α5 integrin
involvement in U87 spheroid formation was further confirmed by
antibody-mediated. As a control, function inhibition of αv integrin
(another fibronectin receptor) had no impact on spheroid forma-
tion (Fig. 1D). Confocal microscopy was next used to reveal the
distribution of α5 integrin, β1 integrin and FN on 2-day-old spher-
oids. For staining α5 integrin, we used amonoclonal antibody (clone
Snaka51) that recognizes a LIBS (ligand-induced binding site) epitope
on the calf1/calf2 domain of α5 integrin and that is a reporter of
α5β1 integrin activation and binding to FN [42]. Confocal images
of U87α5+ spheroids clearly show the localization of the ligand-
occupied α5 integrin at the cell/cell contact and in vesicular-like
intracellular structures (Fig. 2). Low-level α5 expressing cells present
a faint staining, with some remaining cell surface labeling in only
a fraction of the cells. Anti-β1 integrin antibody stained the cell
membrane similarly in both cell lines. FN labeling revealed a dense
fibrillar network of assembled FN between U87α5+ cells. FN
fibrillogenesis was α5β1-dependent as depicted by FN-
immunolabeling in U87α5− spheroids. Accordingly, immunolabeling
of FN in LN229 glioma spheroids revealed the presence of a dense
fibrillary network on α5 expressing cells. As shown in U87 cells,

α5-depletion on LN229 cells decreased FN assembly (Fig. S1). Con-
sistent with previous published data [13,31,39,41], our results
highlighted that α5β1 integrin mediates FN fibrillogenesis in tumor
sphere and can promote glioma cell–cell adhesion via α5β1/FN-
mediated bridges.

Balance between α5-mediated cell–cell and cell–substratum
adhesion directs U87 evasion

FN-mediated cell/cell cohesion has been associated with a de-
crease in cell dispersion from prostate tumor spheroids, suggesting
that α5β1 may have anti-invasive function [32]. To confirm this
observation on glioma cells, we examined the effect of α5 integrin
expression on spheroid evasion, a model of collective migration.
In the first set of experiments, U87 spheroids were deposited onto
poly-L-lysine coated plates. Phase contrast images (Fig. 3A) and image
analysis show that α5 integrin depletion or its functional inhibi-
tion significantly increased the number of evading cells (Fig. 3B)
but had no effect on the mean distance of migration from the spher-
oids (Fig. 3C). Similar data were obtained using clonal population
of LN229 GBM cells genetically manipulated to express various
amount of α5 integrin (Fig. S1). Inhibition of αv integrin sup-
pressed U87 cell evasion and migration in all experimental
conditions. Since αv inhibition had no impact on spheroid forma-
tion (Fig. 1D), these data suggested that migration on poly-L-
lysine did not require α5 integrin but was αv-dependent. The non-
receptor tyrosine kinase FAK (focal adhesion kinase) is an essential
marker of focal adhesions and is phosphorylated on tyr397 upon
its recruitment by integrins [43]. After immunolabeling the mi-
grating cells, confocal images show the localization of αv integrin
in pFAK-tyr397 positive focal adhesion (FA), supporting for a func-
tional role of this integrin in U87α5− cell dispersion on
poly-L-lysine (Fig. S2). Taken together, these data are in line with
those from Reference 32, suggesting that α5 integrin/FN mediated
cell–cell adhesion may impede cell dispersion from tumor
mass.

However, cell dispersion from multicellular aggregates is regu-
lated by opposite forces produced by cell–cell adhesion and ECM
mediated cell migration [44,45]. In such a case, the presence of FN
in the surrounding microenvironment would engage α5β1 integrin
in cell–substratum interaction and challenge FN-mediated cell–
cell adhesion. To test this hypothesis, we examined cell dispersion
of U87 spheres plated on wells coated with increasing amounts of
FN. Phase-contrast images (Fig. 4A) and image quantification (Fig. 4B
and C) showed that U87α5+ cell dissemination was dependent on
FN concentration. By contrast, evasion andmigration of U87α5− cells
were not stimulated by the presence of FN in spheroid microenvi-
ronment. To assess the integrin involved in cell evasion andmigration
from the spheroid, we used function blocking antibodies on spher-
oid plated on FN-rich substratum. In this case, the number of U87α5+
cells evading cells and their distance of migration were α5β1-
dependent and did not require functional αv (Fig. 4D, left panels).
By contrast, for U87α5− cells, the number of evaded cells was in-
hibited by anti-αv antibody and to a lesser extent by anti-α5
antibody, and their distance of migration was strictly dependent of
αv integrin and not of the α5 integrin (Fig. 4D, right panels). In-
volvement of αv integrin in U87α5− cell migration was further
confirmed by immunostaining of αv integrin and pFAK-tyr397. Our
data clearly show the presence of mature FAs containing both αv
integrin and pFAK-tyr397 on U87α5− cells that migrated at great
distances away from spheroids (Fig. S2). Altogether, these results
highlight that changes in FN concentration in the tumor sphere mi-
croenvironment regulate the balance between α5 integrin-mediated
cell–cell and cell–substratum adhesion, and as a consequence, U87
cell dissemination.
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Remodeling of α5 integrin adhesion during cell evasion from
spheroid

To gain insight into the role of α5β1 in cell–cell interaction and
during cell evasion from tumor organoid, we examined by confo-
cal microscopy, the distribution of ligand-occupied α5 integrin and
FN. In the first series of images (Fig. 5A), focal planes were se-
lected at a distance of 5 μm above the coverslips at the margin of
the spheroid (indicated by the dashed lines in the figures). As U87α5+
cells emerged from the spheroid, α5 integrin depicted a pattern with
thin and long fibrils. 3D reconstruction of whole z-stacks showed
that ligand-occupied α5 is clearly around the cells (Fig. S3). More-
over, a dense fibrillar network of assembled FN was clearly visible.
In α5-depleted glioma cells evaded from the spheroid did not form
any FN network (Fig. 5A). To confirm these results, we used LN443,
another GBM cell line expressing a high level of α5 integrin (Fig. S2).
In LN443 cells, activated-α5 integrin depicted a similar pattern to
that of U87α5+ cells (Figs. S4 and S5). We also observed a dense
network of assembled FN surrounding emerging LN433 cells (Figs. S6
and S7). To assess the presence of fibrillogenesis in vivo, FN and α5
integrin distribution were examined by confocal immunofluores-
cence on paraffin embedded tissue sections of human tumor
xenografts. Interestingly, we found numerous areas presenting dense
FN fibrillary network and strong α5 immunoreactivity (Fig. S8), con-
firming the relevance of fibrillary FN in GBM models. These
observations indicated that glioma cells evaded collectively from
the spheroid. During this process, α5 integrin maintained cell–
cell interaction in fibrillar-like adhesions. To the best of our
knowledge, this is the first description of this kind of adhesive
structure.

To examine the organization of α5 integrin and of its ligand at
the cell–substratum level, a second series of confocal images was
taken on the same microscopic fields, but at a focal plane corre-
sponding to the cell–substratum interface (Fig. 5B). Matrix-bound

α5 integrin exhibited a pattern clearly distinguishable to that of cell–
cell fibrillar adhesions. The integrin was distributed in thin dots with
some elongated labeling resembling small fibrils (arrow heads). These
integrin adhesion sites were morphologically distinct from classi-
cal focal adhesions (FAs, Fig. 6C). The presence of thin and short FN
fibrils (arrow heads) indicated a reduced FN assembly at the sub-
stratum level compared to the one observed at cell–cell interaction
level. In our experimental settings, coated FN was also
immunodetected. The loss of immunoreactivity under the spher-
oid and under the evading cells likely reflected an intense matrix
remodeling. In U87α5− cells, FN assembly was further decreased
and FN remodeling was less pronounced. Together, these experi-
ments described that glioma cells may maintain contact with their
neighbor during collective evasion using α5 integrin and as-
sembled FN.

α5 integrin does not colocalize with pFAK-tyr397 in cell–cell fibrillar
adhesion

By confocal microscopy, we examined α5 and pFAK-tyr397
colocalization on U87α5+ and LN433 glioma cells. Surprisingly, in
cells that collectively emerged from the spheroid, pFAK-tyr397 was
distributed as punctate intracellular clusters (Figs. 6A and S4A) of
size smaller than the classical FAs (Fig. 6C and D). Image quantifi-
cation showed that in U87 cells, pFAK-tyr397 did not colocalize with
FN-bound α5 integrin (Fig. 6E). The absence of colocalization between
pFAK-tyr397 and α5 integrin at cell–cell junction was also ob-
served on confocal images of U87α5+ suspended spheroids (Fig. S9).
Altogether, these data indicate that pFAK-tyr397 was not associ-
ated with cell–cell fibrillary adhesion. At the substratum level of
glioma cells close to spheroids (Figs. 6B and S4B), pFAK-tyr397 was
also found in small punctate cluster (Fig. 6D) that did not colocalize
with α5 integrin (Fig. 6E). Classical labeling of FAs and strong
colocalization between α5 integrin and pFAK-tyr397 were found in
cells that had migrated to long distances from the tumor sphere
(Figs. 6C, E and S4, arrow heads). α5 integrin was also detected in
thin classical fibrillar adhesions characterized by the absence of pFAK-
tyr397 (Figs. 6C and S4C, arrows).

The previous experiments suggest that classical FAs were pro-
gressively formed as glioma cells migrated away from the spheroids.
To further confirm this observation, we examined α5 integrin ad-
hesion reorganization at the substratum level using total internal
reflection microscopy (TIRF). Dual color wide field TIRF experi-
ments confirmed the presence of a punctate pFAK-tyr397 staining
in cells localized beneath and in close proximity of the spheroid,
suggesting that they were not able to assemble mature FAs. Integrin
α5 was not found with these punctuate structures but was rather
associated with cell–cell contacts and/or fibronectin fibrils as sug-
gested by the elongated form of the staining (Fig. 7A and B). On the
other hand, when cells migrated away from the spheroid,
colocalization of integrin α5 and pFAK-tyr397 at focal complexes
and focal adhesions could be observed (Fig. 7C). Our data showed
that cell–cell fibrillar adhesion did not contain activated FAK and
that classical α5-containing FAs are progressively formed during the
process of cell migration.

Fig. 1. 87 cells expressing high (U87α5+) or low (U87α5−) amount of α5 integrin were analyzed to show the involvement of α5 in cell–cell adhesion. (A) Left panel – ana-
lyzed by flow cytometry of α5, αv, β1 cell surface expression on U87 cells manipulated to overexpress or repress α5 integrin. Right panel – confirmation by immunoblot of
α5 and β1 expression level on the U87 cell lines: lane 1, U87α5+; lane2, U87pcDNA, lane3, U87α5−; lane4, U87shCtrl. (B) Phase contrast images of U87 cells cultured for 4
days under conventional conditions. Scale bar: 200 μm. The number of cell clusters per field was manually counted. Data presented are the mean ± s.e.m. of 3 different ex-
periments (4 fields/experiments). U87 cells were cultured for 3 days on plastic dishes and cell growth was monitored as described in Material and methods. (C) Left panel
– phase contrast images of U87 cell spheroid for the indicated period of time in non-adherent U-shaped wells (2000 cells/well). Right panel – morphological parameters
(area and roundness) of each spheroid were measured using ImageJ sofware. (D) Spheroids were formed for 18 h in the presence of irrelevant IgG or function-blocking
antibodies targeting α5 or αv integrins (10 μg/mL each) and spheroid roundness was monitored. Data are the mean ± s.e.m of 15–20 spheroids from 3 independent experi-
ments. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Fig. 2. Distribution of α5, β1 integrins and fibronectin in U87 cell spheroids. Sus-
pended spheroids were immunolabeled as described in Material and methods.
Confocal images were taken at an optical section between 10 μm and 20 μm above
the base of the spheroid. Note the increase amount of fibrils in U87α5+ cells. Nuclei
were stained with DAPI. Bar = 20 μm.
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Discussion

Highly efficient infiltration in the surrounding brain paren-
chyma is a hallmark of glioblastoma cells and a major cause of
therapy failure. A better understanding of GBM cell invasive be-
havior is urgently needed to improve therapeutic approaches to fight
these tumors [2]. In the present work, we intended to clarify the
function of α5 integrin, the fibronectin receptor, in GBM spheroid
formation and in cell dispersion. We found that ligand-occupied α5
integrin can be localized in fibrillar adhesion at cell–cell interac-
tion. These results exemplify the molecular and morphological
diversity and the plasticity of α5 adhesions engaged both in cell–
cell and cell–substratum interactions. We showed that cell evasion
from tumor sphere is regulated by a balance between α5-mediated
cell–cell and cell–substratum interactions. In clinical situation, GBM
frequently overexpressed FN that is found in fibrillar deposit in the
tumor [12]. High level of FN expression will thus promote α5β1-

mediated glioma cell dissemination from the tumor mass. In such
case patients would benefit from anti-α5 integrin therapy.

Multicellular tumor spheroids are three dimensional (3D) ar-
chitecture that mimic avascular tumor areas comprising the
establishment of diffusion gradients, reduced proliferation rates and
increased drug resistance. They are increasingly used as an im-
provement of conventional 2D culture systems as they offer 3D in
vivo-like environment as well as cell–ECM and cell–cell interac-
tions. Spheroid formation from a cell suspension is a multistep
process that required cell aggregation and tension force mediated
cell compaction [46]. The present work illustrated that α5β1 and
cell-mediated FN fibrillogenesis play a pivotal role in glioma spher-
oid formation. Time course experiments indicated that α5β1
expression level has no impact on the early phase of spheroid for-
mation. This is in line with other studies [47,48] showing that
integrins are not involved in cell aggregation but rather promote
the condensation phase of the spheroid formation. In agreement

Fig. 3. Two-day old spheroids were plated onto poly-L-lysine coated plastic dishes in the presence of irrelevant IgG or function-blocking antibodies targeting α5 or αv integrins
(10 μg/mL each). (A) Phase contrast images of representative spheroids after 24 hours of migration. Scale bar = 100 μm. (B) After DAPI staining, the number of evading cells
were quantified by automated counting of nuclei using ImageJ software and plotted as the mean ± s.e.m. (C) The distance of migration from the spheroid was measured for
each cell and the mean distance was calculated for each spheroid. Data are plotted as Tukey box and whiskers. 15 spheroids from 3 independent experiments were used
per condition. **p < 0.05; ***p < 0.001.

Fig. 4. (A) Two-day-old spheroids were plated on plastic dishes coated with indicated amount of fibronectin (FN). Phase contrast images were taken 24 hours after spher-
oid seeding. Scale bar = 200 μm. (B) After DAPI staining, cell evasion was quantified and mean number of evading cells was plotted ± s.e.m. (C) The distance of migration
from the spheroid was measured for each cell and the mean distance was calculated for each spheroid. Data are plotted as box and whiskers (min–max). (D) Spheroids
were plated on plastic dishes coated with fibronectin in the presence of irrelevant IgG or function-blocking antibodies targeting α5, β1 or αv integrins (10 μg/mL each).
Data are the mean cell number ± s.e.m. and the mean distance of cell migration per spheroid plotted as box and whiskers (min–max) – 12 to 18 spheroids from 4 indepen-
dent experiments were analyzed. *p < 0.05; **p < 0.01; ***p < 0.001.
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Fig. 5. Two-day-old spheroids were plated on FN-coated (10 μg/mL) glass coverslips. 18 hours later, cells were fixed and immunolabeled to detect ligand-occupied α5 integrin
(α5) and fibronectin (FN) as described in Material and methods. Confocal images were taken at 2 different zones as depicted in the diagrams to examine (A) cells emerging
from the tumor sphere at a focal plane 5 μm above the coverslips and (B) same microscopic field but at a focal plane corresponding to the substratum. Orange dotted lines
indicate the border of the spheroid. Arrow heads = fibrillar adhesion. Scale bar = 10 μm.

Fig. 6. Two-day-old U87α5+ spheroids were plated on FN-coated (10 μg/mL) glass coverslips. 18 hours later, cells were fixed and ligand-occupied α5 integrin (α5) and pFAK-
tyr397 (pFAK) were immunodetected. Confocal images were taken at 3 different zones as depicted in the diagrams to examine (A) cells emerging from the tumor sphere at
a focal plane 5 μm above the coverslips, (B) same microscopic field but at a focal plane corresponding to the substratum and (C) cell/substratum interface of cells that mi-
grated away from the sphere. (D) Quantitative image analysis of pFAK-tyr397 cluster size was performed as described in Material and methods. Data are presented as the
mean Feret diameters of each individual image (n = 8–12) from 2 independent experiments. (E) Integrin/pFAK-tyr397 colocalization was evaluated using Pearson’s corre-
lation coefficient. 10–12 images from 2 experiments were used. ****p < 0.0001. Orange dotted lines indicate the border of spheroids. Arrow heads = fibrillar adhesions; arrows = focal
contacts. Scale bar = 10 μm.
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with previous published data [13,31–33,40,41,49], it is likely that,
in tumor cell aggregates, α5-mediated cell tension and contractil-
ity promotes FN assembly and cell–cell interaction.

An important observation of our work is that during their col-
lective evasion from tumor sphere, glioma cells maintained contacts
with their neighbor using cell–cell fibrillar adhesions. In line with
previous studies comparing FN fibrillogenesis in 2D and 3D cell cul-
tures [50–52], we observed that fibrillar FN networks were much
more developed at cell–cell interaction than at cell–substratum level.
In our experimental model, α5 integrin relocalized at cell substra-
tum adhesion sites and progressively formed mature FAs as cells
migrated at distance from the spheroid, requiring FN matrix re-
modeling and turnover. It has been shown that RhoA signaling
pathway and inverted formin 2 promote fibrillary adhesion and FN
matrix assembly [53–57]. Conversely, the caveolin-1 and RAS-RAF
signaling pathway inhibit FN fibrillogenesis [52,58]. FN fibrils turn-
over is also regulated by extracellular proteins such as
transglutaminase 2 or the membrane typematrix metalloproteinase
1 [12,59,60]. Future experiments will help to decipher molecular
pathways involved in cell–cell fibrillar adhesion turnover during
glioma cell dissemination. In this context, cell dispersion from spher-
oids represents a useful model to study the dynamics of α5 integrin
adhesion sites and fibrillar FN remodeling that may take place during
glioma cell invasion in vivo.

Our data indicate that α5 integrin can trigger cell–cell interac-
tion and FN fibrillogenesis independently of pFAK-tyr397
recruitment. At cell–substratum level, pFAK-tyr397 was poorly as-
sociatedwith ligand-bound α5 integrin on cells close to the spheroid.
pFAK-tyr397/integrin association was progressively detectable on
migrating cells. This observation suggests that α5 integrin engage-
ment at cell–cell contact may regulate cell–substratum interaction
by inhibiting pFAK-tyr397 recruitment at the plasmamembrane and
therefore FAs formation and maturation. In glioblastoma, α5β1
integrin may thus not always be associated with pFAK-tyr397 and
their interaction may be finely regulated by the balance between
cell–cell and cell–substratum interactions. For instance, in situ anal-
ysis revealed that in glioblastoma, co-expression of β1 integrin and
pFAK-tyr397 was detected in morphologically defined regions such
as perivascular or tumor infiltration zones and not in the tumormass
[61].

In the present work, we described for the first time cell–cell fi-
brillar adhesions as pFAK-tyr397-independent α5 adhesion sites
involved in glioma cell–cell interactions. A recent study demon-
strated that α5 integrin can foster cell–cell adhesion by an alternative
mechanism, involving direct interaction between inactive integrins
expressed by adjacent cells [62]. In light of these new data, it appears
that α5 integrin function is not restricted to cell–substratum ad-
hesion and that its involvement in glioma and in other solid cancers
progression may deserve a reevaluation. We and others have shown
that α5 integrins play a critical role in glioma resistance to radio-
and chemo-therapy. It will be important in the future to charac-
terize the composition, the regulation and the function of cell–
cell fibrillar adhesions in order to better assess its involvement in
glioma progression and resistance to therapy. In this context, our
experimental model will be useful for the design of new effective
strategies for fighting GBM.
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Fig. 7. Two-day-old U87α5+ spheroids were plated on FN-coated (10 μg/mL) glass coverslips in complete medium for 18 hours. Fixed cells were immunolabeled using anti-
α5 and rabbit anti-pFAKtyr397 antibodies. Dual color wide field TIRF images were acquired at increasing distances from the spheroid.
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promotes organization of fibronectin matrix and fibrillar adhesions, J. Cell Sci.
117 (2004) 177–187, doi:10.1242/jcs.00845.

[57] C.T. Skau, S.V. Plotnikov, A.D. Doyle, C.M. Waterman, Inverted formin 2 in focal
adhesions promotes dorsal stress fiber and fibrillar adhesion formation to drive
extracellular matrix assembly, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) E2447–
E2456, doi:10.1073/pnas.1505035112.

[58] J. Sottile, J. Chandler, Fibronectin matrix turnover occurs through a caveolin-
1–dependent process, Mol. Biol. Cell 16 (2005) 757–768, doi:10.1091/mbc.E04-
08-0672.

[59] F. Shi, J. Sottile, MT1-MMP regulates the turnover and endocytosis of
extracellular matrix fibronectin, J. Cell Sci. 124 (2011) 4039–4050, doi:10.1242/
jcs.087858.

[60] T. Takino, R. Nagao, R. Manabe, T. Domoto, K. Sekiguchi, H. Sato, Membrane-type
1 matrix metalloproteinase regulates fibronectin assembly to promote cell
motility, FEBS Lett. 585 (2011) 3378–3384, doi:10.1016/j.febslet.2011.09.039.

[61] M.J. Riemenschneider, W. Mueller, R.A. Betensky, G. Mohapatra, D.N. Louis, In
situ analysis of integrin and growth factor receptor signaling pathways in human
glioblastomas suggests overlapping relationships with focal adhesion kinase
activation, Am. J. Pathol. 167 (2005) 1379–1387.

[62] D. Jülich, G. Cobb, A.M. Melo, P. McMillen, A.K. Lawton, S.G.J. Mochrie, et al.,
Cross-scale integrin regulation organizes ECM and tissue topology, Dev. Cell
34 (2015) 33–44, doi:10.1016/j.devcel.2015.05.005.

ARTICLE IN PRESS

Please cite this article in press as: Anne-Florence Blandin, Fanny Noulet, Guillaume Renner, Marie-Cécile Mercier, Laurence Choulier, Romain Vauchelles, Philippe Ronde, Franck
Carreiras, Nelly Etienne-Selloum, Gyorgy Vereb, Isabelle Lelong-Rebel, Sophie Martin, Monique Dontenwill, Maxime Lehmann, Glioma cell dispersion is driven by α5 integrin-
mediated cell–matrix and cell–cell interactions, Cancer Letters (2016), doi: 10.1016/j.canlet.2016.04.007

11A.-F. Blandin et al./Cancer Letters ■■ (2016) ■■–■■

766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788

789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

http://dx.doi.org/10.1016/j.canlet.2016.04.007

	 Glioma cell dispersion is driven by 5 integrin-mediated cell–matrix and cell–cell interactions
	 Introduction
	 Material and methods
	 Reagents
	 Cell culture
	 Proliferation assay
	 Spheroid formation
	 Spheroid organization
	 Spheroid migration assays
	 Confocal microscopy and image analysis
	 Immunostaining on patient-derived xenograft
	 Dual wide field/TIRF imaging
	 Statistical analysis

	 Results
	 5 integrin and FN are involved in U87MG cell cohesion
	 Balance between 5-mediated cell–cell and cell–substratum adhesion directs U87 evasion
	 Remodeling of 5 integrin adhesion during cell evasion from spheroid
	 5 integrin does not colocalize with pFAK-tyr397 in cell–cell fibrillar adhesion

	 Discussion
	 Acknowledgements
	 Conflict of interest
	 Supplementary material
	 References


