POTENCIÁLISAN ONKOGÉN FEHÉRJEMOLEKULÁK
(TASK-3 ÉS PKC) MEGOSZLÁSÁNAK ÉS
JELENTŐSÉGÉNEK VIZSGÁLATA EGÉSZSÉGES ÉS
KÓROS SZÖVETEKBEN

Dr. Kovács Ilona
POTENCÍÁLISAN ONKOGÉN FEHÉRJEMOLEKULÁK
(TASK-3 ÉS PKC) MEGOSZLÁSÁNAK ÉS
JELENTŐSÉGÉNEK VIZSGÁLATA EGÉSZSÉGES ÉS
KÓROS SZÖVETEBEN

Dr. Kovács Ilona

Témavezető: Dr. Nemes Zoltán

DEBRECENI EGYETEM
ORVOS- ÉS EGÉSZSÉGTUDOMÁNYI CENTRUM
ÁLTALÁNOS ORVOSTUDOMÁNYI KAR
PATOLÓGIAI INTÉZET
DEBRECEN, 2005.
TARTALOMJEGYZÉK

1. K⁺-CSATORNÁK ÉS JELENTŐSÉGÜK A SEJTEK MŰKÖDÉSBEN – AMIRÓL A MIKROELEKTRÓDÁK NEM BESZÉLNEK ...5
1.1. A „KLASSZIKUS” K⁺-CSATORNÁK MOLEKULÁRIS SZERKEZETE ÉS CSOPORTOSÍTÁSA ...5
1.1.1. A “KLASSZIKUS” K⁺-CSATORNÁK MOLEKULÁRIS SZERKEZETE ÉS CSOPORTOSÍTÁSA ...5
1.1.2. AZ IKERPÓRUSÚ K⁺-CSATORNÁK – EGY DOGMA HALÁLA ..7
1.1.3. A TASK-CSALÁD JELLEMZŐI ...10
1.1.4. EGYES K⁺-CSATORNÁK JELENTŐSÉGE A ROSSZINDULATÚ DAGANATOK KELETKEZÉSBEN ..14
1.2. A PROTEIN KINÁZ C IZÖENZIMEK ..15
1.2.1. A PROTEIN KINÁZ C IZÖENZIMEK ÁLTALÁNOS JELLEMZÉSE ..15
1.2.2. A PKC ÉS A KERATINOCYTÁK – AZ IZÖENZIMEK SOKRÉTŰ BIOLÓGIAI SZEREPE A PROLIFERÁCIÓ ÉS DIFFERENCIÁLÓDÁS SZABÁLYOZÁSÁBAN ..17
1.2.3. AZ EGYES PKC IZÖENZIMEK AKTIVITÁSÁNAK HATÁSA A SEJTEK PROLIFERÁCIÓJÁRA, DIFFERENCIÁLÓDÁSÁRA ÉS A TUMORGENEZISRE ...19
1.3 A MUNKA CÉLKÖRÜLMÉNYEI ..20
2. ANYAGOK ÉS MÓDSZEREK ..22
2.1. A SZÖVETMINTÁK ÉS FELDOLGOZÁSUK ..22
2.2. IMMUNHISZTOKÉMIA ...23
2.3. WESTERN-BLOT TECHNIKA – TASK-CSATORNÁK ..25
2.4. WESTERN-BLOT TECHNIKA – HÚGYHÓLYAGTUMOROK ..26
3. EREDMÉNYEK ...28
3.1. A TASK-3 CSATORNÁK MEGOSZLÁSÁNAK IMMUNHISZTOKÉMIAI VIZSGÁLATA – AZ OPTIMÁLIS REAKCIÓKÖRÜLMÉNYEK KIDOLGOZÁSA ..28
3.2. A TASK-3 CSATORNÁK MEGOSZLÁSÁNAK IMMUNHISZTOKÉMIAI VIZSGÁLATA A GASTROINTESTINALIS RENDSZERBEN ..30
3.3. A TASK-3 CSATORNÁK MEGOSZLÁSÁNAK IMMUNHISZTOKÉMIAI VIZSGÁLATA EMLŐDAGANATOKBAN ..37
3.4. A PKC-IZÖENZIMMINTÁZAT VÁLTOZÁSA ROSSZINDULATÚ HÚGYHÓLYAGTUMOROKBAN ...41
4. MEGBESZÉLÉS ...43
4.1. A TASK-3 CSATORNÁK MEGOSZLÁSÁNAK IMMUNHISZTOKÉMIAI VIZSGÁLATA – REAKCIÓKÖRÜLMÉNYEK ÉS SPECIFICITÁS ...43
4.2. A TASK-3 CSATORNÁK LEHETSÉGES FIZIOLÓGIAI SZEREPE A GASTROINTESTINALIS RENDSZERBEN ...47
4.3. A TASK-3 CSATORNÁK JELENTŐSÉGE ROSSZINDULATÚ DAGANATOKBAN – NEM MINDEGY HOGY CORE-BIOPSZIA VAGY MÚTÉTI ANYAG? ...49
4.4. A PKC-IZÖENZIMMINTÁZAT ÉS A ROSSZINDULATÚ HÚGYHÓLYAGTUMOROK KAPCSOLATA ...51
4.5. BEFEJEZÉS ...53
6. A TÉZISEKBEN ELŐFORDULÓ HIVATKOZÁSOK JEGYZÉKE ..54
1. BEVEZETÉS

1.1. K⁺-csatornák és jelentőségük a sejtek működésben – amiről a mikroelektródák nem beszélnek...

1.1.1. A „klasszikus” K⁺-csatornák molekuláris szerkezete és csoportosítása

1. ábra
A feszültségvezérelt K⁺-csatornák egy alegységének molekuláris szerkezete
Az ábra részleteivel kapcsolatosan lásd a szöveget.
A 4. pozícióban található domén (S4) jelentőségét az adja, hogy itt számos pozitív töltéssel rendelkező aminosav található, így ez a szakasz képezi a csatorna feszültségszenzorát. Említést érdemel még, hogy az S5 és az S6 transzmembrán régiók közötti hurok (H5- vagy P-régió) mélyen benyúlik a sejtfelszíni membránba. A funkcióképes K⁺-csatornákat felépítő négy alegység ezen hurkot formáló régiói egymás felé tekintenek, így hozva létre a K⁺-permeábilis pórust. A jellegzetes molekuláris struktúrából fakadóan a Kv osztályba sorolható K⁺-csatornákat 6TM-P csatornák néven is említi az irodalom, utalva az egyes alegységek hat transzmembrán szakaszára és a pórusformáló hurokra.

A feszültségvezérelt K⁺-csatornák igen sokrétű funkcióval rendelkeznek, de általánosságban elmondható, hogy többnyire az akciós potenciálokat követő repolarizáció és utóhiperpolarizáció kialakításáért, valamint egyes típusaik az akciós potenciálok késleltetéséért, esetleg azok kialakulásának megakadályozásáért felelősek. A Kv-csatornák heterogenitásának hátterében az áll, hogy az egyes csatornaalegységek több alegység összeszerelése következtében jönnek létre, és az alegységek kombinációjával egészen eltérő funkcionális sajáttságokkal felruházott K⁺-csatornák jöhetnek létre.

1949-óta ismert (Katz, 1949), hogy léteznek olyan membránok, amikben nem pusztán a depolarizáció, hanem a hyperpolarizáció alkalmazása is a membrán K⁺-permeábilitásának fokozódásával jár. A későbbi célszű vízsgálatok rámutattak, hogy a Katz által elsőként megfigyelt, hyperpolarizáció hatására aktiválódó csatornák két nagy alegység összeszerelése következtében jönnek létre. Az alegységek tulajdonképpen egyenirányító (inward rectifier) K⁺-csatornák (ezek aktivitására figyelt fel elsőként Katz) és a hyperpolarizáció hatására aktiválódó nem-specifikus kationcsatornák. Utóbbi csatornaféleség tárgyalása nem célja a jelen disszertáció, ám mindenképpen említesre érdemes, hogy ezek az ioncsatornák felelősek a szív ingerképzéséért (Brown és munkatársai, 1979; Brown és DiFrancesco, 1980), de jelenlétük és aktivitásuk különböző neuronok esetében is bizonyított, igen szerteágazó funkciókkal (Banks és munkatársai, 1993; Cuttle és munkatársai, 2001).

Hasonlóan a Kv-család tagjaihoz, a befelé egyenirányító K⁺-csatornák (Kir) is négy alegység összeszerelődése következtében jönnek létre (Doupnik és munkatársai, 1995). Az alegységek tulajdonképpen egy „lecsupaszított” Kv-alegységek felelnek meg, ugyanis a Kv-alegységek karboxi-terminálisán található két utolsó (azaz az 5. és 6.) transzmembrán szakaszát és a köztük elhelyezkedő pórusformáló hurkot
tartalmazzák (Kubo és munkatársai, 1993; 2. ábra). Az alegységek ezen jellegzetességei miatt az ilyen csatornákat gyakran 2TM-P csatornákként említi az irodalom. Mivel a befelé egyenirányító K+-csatornák kifelé irányuló K+-áram vezetésére is képesek, aktivitásuk hozzájárulhat a nyugalmi membránpotenciál kialakulásához (bár önmagukban nem elégségesek annak létrehozásához; Stanfield, 1988); ugyanakkor (mivel erősebb depolarizáció hatására záródnak) nem szegülnek szemben a depolarizáló hatásokkal, energetikailag kedvezőbb helyzetet teremtve az akciós potenciállok kialakulásához. Az is felmerült, hogy a befelé egyenirányító K+-csatornák biztosíthatják a harántcsíkol izom aktivitásának következményeként a transversalis tubulusokban felhalmozódott K+ sejtbe jutását (lásd Adrian, 1969; Hille és Schwarz, 1978; Hagiwara és Jaffe, 1979).

2. ábra
A befelé egyenirányító K+-csatornák egy alegységének molekuláris szerkezete
Az ábra részleteivel kapcsolatosan lásd a szöveget.

1.1.2. Az ikerpórusú K+-csatornák – egy dogma halála

Régóta ismeretes, hogy az élő sejtek intra- és extracelluláris tere között potenciálkülönbség mérhető, aminek értéke a vizsgált sejt típusától függően viszonylag tág határok között változik (ám az intracelluláris tér mindig negatívak a környezeténél). A membránpotenciál aktuális értékének számítására a Goldman-Hodgkin-Katz (GHK) egyenlet alkalmazható:

\[
E = \frac{RT}{F} \ln \left(\frac{p_{K^+} [K^+]_e + p_{Na^+} [Na^+]_e + p_{Cl^-} [Cl^-]_e}{p_{K^+} [K^+]_i + p_{Na^+} [Na^+]_i + p_{Cl^-} [Cl^-]_i} \right),
\]

ahol \(E\) a számított membránpotenciál, \(R\) az univerzális gázállandó, \(T\) a hőmérséklet Kelvinben kifejezett értéke, \(F\) a Faraday-állandó, \(p\) az egyes ionok permeábiliségének, \([X]_e\) és \([X]_i\) az adott ion extra- és az intracelluláris koncentrációja. Az egyenlet egyik igen lényeges üzenete, hogy a sejtek nyugalmi membránpotenciálja azért alakul ki, mert a sejtfelszíni membrán K+-ra vonatkozó permeábiliség igen jelentős. Annak ellenére,
hogy már az 1940-es éve óta ismert volt mind a GHK-egyenlet, mind a nagy K^+-
permeábilis jelentősége a nyugalmi membránpotenciál kialakulásában, az azért felelős
ioncsatornák azonosítására csaknem az ezredfordulóig kellett várni. *Ketchum és
munkatársai* 1995-ben számoltak be arról, hogy egy, az addig ismert K^+-csatornáktól
teljesen különböző K^+-permeábilis molekulát találtak, ami molekuláris szerkezetében,
viselkedésében és funkcióiban is teljesen eltérőt attól, amit a K^+-csatornák struktúrája
vontakozásában már-már dogma szerűen rögzült a tudományos gondolkodásban
(3. ábra).

3. ábra
Az ikerpórusú K^+-csatornák egy alegységének molekuláris szerkezete
Az ábra részleteivel kapcsolatosan lásd a szöveget.

Ezen új típusú K^+-csatornák esetében a funkcióképes molekulát felépítő
alegységek négy transzmembrán szakaszt tartalmaznak, és az alegységek
mindegyikében két olyan hurok azonosítható, ami szerepet játszik a pórus
kialakításában. Ezek a pórusformáló hurkok az alegységen belül egymás után
(„tandem” elrendezésben) helyezkednek el. Szemben az eddig ismertetett K^+-
csatornákkal, ahol a működőképes struktúra kialakulása négy egyedi alegység
összeszerelődését követelte meg, ezen új típusú csatornák esetében az alegységek
dimerizációja következik be, amihez az 1. és a 2. transzmembrán szegmens között
található, 44 aminosavat tartalmazó, α-helikális struktúrát mutató szakaszt, az ún. „self-
interacting domain” (SID) épsége szükséges (*Lesage és munkatársai, 1996*). A SID-en
belül kiemelkedő jelentőségűnek tűnik a 69-es pozícióban található cisztein, mivel a két
szembenálló cisztein között kialakuló diszulfid-kötés stabilizálja a kész csatornát.
Tekintve, hogy a dimerizációban részt vállaló két alegység mindegyike két
pórusformáló hurkot tartalmaz, a csatornafehérje összeszerelődése után a kész pórusban
ugyanúgy négy hurok található, mint a Kv- és a Kir-struktúrák esetében.

A jellegzetes molekuláris szerkezet alapján az itt vázolt főcsoportba tartozó
csatornákat 4TM-PP csatornákként jelöli az irodalom, bár az „ikerpórusú K^+-csatorna”
elnevezés is létjogosultságot nyert. (Meg kell azonban jegyezni, hogy a funkcióképes csatorna valószínűleg nem rendelkezik két független K+-permeábilis pórussal, pusztán a pörust formáló aminosavszekvenciából rendelkezik kettővel, amik azonban egyetlen pórus kialakításában vesznek részt.)

A további vizsgálatok rámutattak, hogy ennek a csatornacsaládnak számos reprezentánsa van, melyek több-kevesebb szekvenciáhomológiait mutatnak. Az elsőként leírt osztály a TWIK-csatornák (Lesage és munkatársai, 1996; Chavez és munkatársai, 1999) csoportja volt (Tandem of pore domains in weak inward rectifier K+ channels), és valamennyi később felfedezett csatorna ezen családról kapta a nevét. A jelenleg ismert további ikerpórusú K+-csatornaosztályok az alábbiak:

<table>
<thead>
<tr>
<th>Osztály</th>
<th>Leírás</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREK</td>
<td>TWIK-related K+ channel (Fink és munkatársai, 1996; Patel és munkatársai, 1998; Patel és munkatársai, 2000; Bang és munkatársai, 2000; Lesage és munkatársai, 2000)</td>
</tr>
<tr>
<td>TRAAK</td>
<td>TWIK-related arachidonic acid-stimulated K+ channel (Fink és munkatársai, 1998)</td>
</tr>
<tr>
<td>TASK</td>
<td>TWIK-related acid-sensitive K+ channel (Duprat és munkatársai, 1997; Leonoudakis és munkatársai, 1998; Reyes és munkatársai, 1998; Kim és munkatársai, 1999; Kim és munkatársai, 2000; Rajan és munkatársai, 2000; Kim és Gnatenco, 2001; Ashmole és munkatársai, 2001)</td>
</tr>
<tr>
<td>TALK</td>
<td>TWIK-related alkaline pH activated K+ channel (Girard és munkatársai, 2001; Decher és munkatársai, 2001)</td>
</tr>
<tr>
<td>THIK</td>
<td>TWIK-related halothane-inactivated K+ channel (Rajan és munkatársai, 2001)</td>
</tr>
<tr>
<td>TRESK</td>
<td>TWIK-related spinal cord K+ channel (Sano és munkatársai, 2003)</td>
</tr>
</tbody>
</table>

Az egyes osztályokon belül a csatornákat a felfedezésük sorrendjében látkárak el sorszámokkal, így létezik pl. TREK-1 és TREK-2 vagy TASK-1, TASK-2, TASK-3, TASK-4 és TASK-5 csatorna, stb.
1.1.3. A TASK-család jellemzői

A jelenleg általánosan elfogadott álláspont szerint emlősek nyugalmi K⁺-konduktancia kialakításáért (Duprat és munkatársai, 1997), így a TASK-1 csatornák különböző jelentősége a nyugalmi membránpotenciál, valamint a sejtek bemenő ellenállásának és ingerlékenységének meghatározásában. Bár a terminológia szerint a TASK-család jelenleg öt tagot számlál (TASK-1-5), a TASK-1, TASK-3 és TASK-5 csatornák lényegesen nagyobb szekvenciáhomológiait (így rokonságot) mutatnak egymással, mint a TASK-2 és a TASK-4 csatornák (Kim és munkatársai, 1999; Rajan és munkatársai, 2000; Czirják és Enyedi, 2002; Talley és munkatársai, 2002). Az újabban elfogadott álláspont szerint a TASK-2 és a TASK-4 csatornák inkább a TALK-familiához tartoznak (Girard és munkatársai, 2001; Decher és munkatársai, 2001).

A TASK-csatorkánk biofizikai jellegzetességeivel kapcsolatosan kiemelhető, hogy érzékenyen reagálnak a pH változásaira; az extracelluláris pH savas irányú eltolódása ez csatornák záródását idézi elő (Duprat és munkatársai, 1997; Leonoudakis és munkatársai, 1998; Kim és munkatársai, 2000; Reyes és munkatársai, 1998). A pH-érzékenység kialakulásában alapvető szerepe van a csatornaféhérje 98-as pozíciójában, a K⁺ permeábilis pórus külső sajátvédelmét közel elhelyezkedő hisztidinnek (Kim és munkatársai, 2000; Rajan és munkatársai, 2000). Míg a TASK-1 csatornák mintegy 90%-a található nyitott állapotban 7,7-es extracelluláris pH mellett, addig pH = 6,7 esetén ez az arány mindössze 10%. A TASK-2 és a TASK-3 csatornák pH érzékenysége némileg alacsonyabb, a TASK-3 csatornák kb. 1 pH egységgel durvább változásokat igényelnek az ugyanilyen mértékű gátlás kifejlődéséhez, míg a TASK-2 csatornák 90%-ának nyitott állapotban tartásához 8,8-es pH szükséges, és azt pH = 6,5-re kell csökkenteni ahhoz, hogy csupán a csatornák 10%-a legyen aktív állapotban.

A TASK-csatorkánk a közönséges K⁺-csatornagátló-szererekre (Cs⁺, Ba²⁺, 4-aminopiridin, tetraetil-ammoniúm) érzéketlenek; ugyanakkor néhány helyi érzéstelenítésre használatos szer (pl. lidokain, bupivikain) gátolja működésüket (Leonoudakis és munkatársai, 1998; Reyes és munkatársai, 1998; Kindler és munkatársai, 1999). Ezen túlmenően a TASK-1 csatorná az anandamid, a TASK-3 csatorna pedig a ruténiumvörös alkalmazásával specifikusan gátolható (Czirják és Enyedi, 2003a). Az is bebizonyosodott, hogy az anandamid TASK-1 csatornát gátló
effektusa nem a kannabinoidreceptorokra kifejtett hatás, hanem közvetlenül a csatornaféhérjével történő interakció következménye.

Igen lényegesnek tűnik az a felismerés, hogy egyes gáznemű altatószerek (pl. halotán) aktiválják a TASK-1 és TASK-2 (továbbá a TREK-1 és TREK-2) csatornákat ([Patel és munkatársai, 1999; Lesage és munkatársai, 2000]). Ennek nyomán úgy tűnik, hogy a 4TM-PP csatornák jelenléte nem pusztán a nyugalmi membránpotenciál kialakulásával kapcsolatos kérdésekre ad választ, hanem ezen csatornák képében megjelent a gáznemű altatószerek hatásának oly régóta keresett célpontja. Könnyű belátni ugyanis, hogy az itt tárgyalt K⁺-csatornák halotán jelenlétében bekövetkező aktivációja a neuronok hiperpolarizációját, így azok ingerlékenységének jelentős csökkenését okozza, ami megmagyarázhatja az inhalációs anestetikumok jól ismert altató, központi idegrendszer gátlan hatását.

Míg a TASK-csatornák biofizikájának és molekuláris biológiajának megismerése vonatkozásában jelentős előrehaladás történt a közelmúltban, a TASK-csatornák pontos szöveti megoszlásának és az ott betöltött szerepének vonatkozásában sokkal hízagosabb információval rendelkezünk. A TASK-csatornák egyik lehetséges konkrét biológiai jelentősége a perifériás kemoreceptorok működéséhez köthető ([Buckler és munkatársai, 2000]). Bebizonyosodott, hogy az I. típusú receptorsejtek a TASK-csatornákat expresszálják, és az oxigén jelenléte (eddig nem pontosan tisztázott módon) képes ezen TASK-csatornákat, így végső soron a receptorsejtek működésének befolyásolására. Ezen túlmenően a TASK- (és ezen belül a TASK-3) csatornák fontos szerepet töltethetnek be az aldoszteron szereplőjének szabályozásában is ([Czirják és munkatársai, 2000; Czirják és Enyedi, 2003b]).

Ugyancsak lényeges megállapításnak tűnik, hogy a patkány cerebellum szemcsesejtjeinek permanens K⁺-áramát (I_{Kso}; standing outward K⁺ current; [Watkins és Mathie, 1996]) ugyancsak a TASK-1 csatornák jelenléte és aktivitása okozza ([Millar és munkatársai, 2000]). Az is bebizonyosodott, hogy a kisagyi szemcsesejték permanens K⁺-árama a tenyészetben fenntartott neuronok esetében is megfigyelhető. A szerzők nem tapasztaltak ugyan érdesleges TASK-1 immunreaktivitást az egy napos szövettenyészetben elhelyezkedő szemcsesejtéken, a 7 napos tenyészeten azonban intenzív TASK-festődés volt demonstrálható. A munka egyik mellékeleteként az irodalomban elsőként számtalan be arról, hogy az astrocytákra specifikus GFAP-t (glial fibrillary acidic protein) expresszáló sejtek a TASK-1-specifikus immunreakcióra is pozitivitást mutattak. A későbbiek során más szerzők is igazolták az astrocyták TASK-

A TASK-csatornák működésének leírását célzó legfrissebb adatok egészen meghökkentő eredményeket szolgáltattak ezen csatornák lehetséges biológiai funkcióinak vonatkozásában. Az egyik tanulmány azt bizonyította, hogy a TASK-1 és a TASK-3 csatornák expressziója és funkciója fontos szerepet játszik az apoptózis indukciójában (Lauritzen és munkatársai, 2003). A szerzők megállapították, hogy a cerebellális szemcsesejtek perzisztens K⁺-áramait gátolva (akár genetikailag megakadályozva ezen csatornák expresszióját, akár a már megjelent csatornák működésének gátlása által) a sejtek pusztulása jelentősen csökkenthető volt. A TASK-csatornák apoptózis indukciójában betöltött fontos szerepet támasztja az is alá, hogy a TASK-1 és TASK-3 csatornákat hippocampalis neuronokban expresszálva (ahol fiziológiásan nincsenek jelen) azokban sejtproliférozist indukálnak.

Pei és munkatársai (2003) meg ennél is figyelemre méltóbb (ugyanakkor a fentieknek némileg ellentmondó) eredményekről számoltak be. Ismeretes volt, hogy a TASK-3 csatornák génészintű amplifikációja mutatható ki egyes tumorféléségekben, elsősorban emlőtumorok esetén (Mu és munkatársai, 2003). A szerzők megállapították, hogy a TASK-3 csatornák overexpressziója egér fibroblastenyészetben jelentősen növelte a sejtproliferáció mértékét; a funkcióképtelen (egy pontmutáció révén K⁺-ra impermeábilis) csatornaváltozat ugyanakkor ilyen hatást nem mutatott. Ezen túlmenően, a vadtípusú TASK-3 overexpressziója a fibroblastok TNF által kiváltott apoptózisát felére csökkentette, ugyanakkor a mutáns (funkcióképtelen) változatnak ilyen hatása nem volt. Ezek a kísérletek arra utaltak, hogy a funkcionális TASK-3 csatornák overexpressziójával fokozott sejtproliferációt okoz, mindamellett csökkenti az apoptózis valószínűségét, ami nyilvánvalóan tumorigén hatást jelent. A szerzők azt is megmutatták, hogy TASK-3 overexpressziót mutató C8 sejtekkel egerekbe injektálva két héten belül olyan tumorok alakultak ki, melyek mérete lényegesen meghaladta azoknak a daganatoknak a méretét, amiket a kontroll kísérletekben (overexpresszió nélküli C8 sejtek) laktak, vagy a funkcióképtelen TASK-3 csatornákkal overexpresszált C8 sejtek alkalmazásával tapasztaltak.
A fenti kísérleti adatokon végigtekintve, triviálisnak tűnik az a megállapítás, hogy a TASK-csatornák alapvető szerepet játszanak mind a fiziológiás, mind a patológiás sejtüködésben. Sajnálatosan kevés adat áll azonban rendelkezésre a TASK-csatornák pontos lokalizációjának és szöveti megoszlásának vonatkozásában. Míg a TASK-1 és a TASK-2 csatornák esetében történtek erőfeszítések a patkány központi idegrendszerében fellelhető megoszlásuk feltérképezésére, jóval kevesebb eredmény született a TASK-3 csatornák lokalizációjára vonatkozólag. Érdemes ugyanakkor megjegyezni, hogy *Karschin és munkatársai (2001)* erőteljes TASK-1-, TASK-3- és TASK-5-specifikus mRNA expresszióról számoltak be patkány központi hallórendszerében.

Még ennél is kevesebb adattal rendelkezünk a TASK-specifikus fehérjék emberi szövetekben tapasztalható lokalizációjára vonatkozólag. Az igen csekély számú dolgozat közül kiemelhető a *Medhurst és munkatársai (2001)* által közölt munka, amiben emberi szövetekből készült homogenizátumokban vizsgálták a TASK-1-, TASK-2- és TASK-3-specifikus mRNA expressziójának mértékét. A jelentősebb megállapítások közül kiemelhető, hogy a TASK-2-specifikus mRNA igen kicsiny, míg a TASK-3-specifikus mRNA jelentős mennyiségben volt kimutatható az emberi cerebellumban - a TASK-1-specifikus mRNA mennyisége a kettő között volt. Bár ezen, az mRNA jelenléte vonatkozó adatok igen érdekesek, önmagukban semmiképpen sem elegendők a TASK-csatornák humán szövetekben történő megoszlásának beható analízisére, hiszen nem adnak tájékoztatást a szöveten belüli, egyes sejtek szintjén megjelenő mintázatról. Ezen túlmenően az mRNA jelenléte (vagy hiánya) semmiképpen sem igazolja a kész fehérjetermék jelenlétét vagy hiányát, így a specifikus, fehérje szintű (és lehetőség szerint funkcionális) vizsgálatok elvégzése elkerülhetetlen. Részben ezen megfontolások által vezette tettünk már korábban is erőfeszítéseket arra, hogy a TASK-csatornák egyes tagjainak (TASK-1, TASK-2 és TASK-3) szöveti megoszlását az eddigiéknel is pontosabban feltérképezzük (*Rusznák és munkatársai, 2004*). Ezen munka keretében számoltunk be a TASK-3 csatornák patkány cerebellumban megfigyelhető megoszlási mintázatáról, továbbá megállapítottuk, hogy a TASK-csatornák mindegyike expresszálódik a patkány agyából izolálható astrocyták sejtfelszíni membránjában. Az eredmények azt is megmutatták, hogy jelentős TASK-expresszió lehet az astrocyták endoplasmaticus reticulumának membránjában is. A vizsgálatok eredményeként adatokat közöltünk a TASK-csatornák emberi szövetekben történő megoszlásáról is. Ezen kísérletek keretében
megállapítottuk, hogy a kisagyti Purkinje- és szemcsesajtók igen erőteljes TASK-3, ugyanakkor valamelyest gyengébb TASK-1 expressziót mutatnak, de pozitívnak mutatkozott a molekuláris réteg is. Összhangban a korábbi, mRNS-szintű adatokkal (Medhurst és munkatársai, 2001), csupán igen gyenge TASK-2 expressziót tapasztaltunk a humán cerebellumban.

1.1.4. Egyes K⁺-csatornák jelentősége a rosszindulatú daganatok keletkezésében

1.2. A protein kináz C izoenzimek

1.2.1. A protein kináz C izoenzimek általános jellemzése

A protein kináz C (PKC) izoenzimcsaládba tartozó molekulák a szerin/treonin
kinázok jelentős képviselői. Ezidáig 11 különböző PKC izoenzimet azonosítottak
(Nishizuka, 1988, 1992; Jaken, 1996), melyek molekuláris szerkezetük (4. ábra) és
aktiválhatóságuk alapján 4 nagyobb csoportba sorolhatók. A „klasszikus” csoportba
c (cPKC) tartozó izoenzimek (PKCα, βI, βII és γ) közös jellemzője, hogy aktivitásukhoz
Ca\(^{2+}\)-ot és diacil-glicerolt (DAG), esetleg az utóbbi exogén megfelelőjeként működő
forbol-észtert igényelnek. A klasszikus PKC izonezimekkel szemben a nem Ca\(^{2+}\)-
dependens, ún. „novel” PKC izoenzimek (nPKCδ, ε, η és θ) aktivitásához Ca\(^{2+}\) nem
szükséges, azok forbol-észterek vagy DAG alkalmazásával is maximálisan aktiválhatók.
A harmadik csoportba tartozó „atípusos” izoenzimek (aPKC; ζ és λ/ι) aktiválódása sem
Ca\(^{2+}\), sem a forbol-észterek jelenlétét nem feltételezi. Végezetül a PKCμ mind
aktivációját, mind strukturális jegyeit tekintve rendhagyó izoformának tekinthető, így az
a fent említett csoportok egyikébe sem illeszkedik.

A 4. ábra részleteit illetően lásd a szöveteget.
A PKC izoformák aktiválódásának általános sémája egy többlépcsős eseménysorral jellemző (Nishizuka, 1988; 1992; Jaken, 1996), aminek kezdetén az aktivátor molekulák a regulátor doménhez kötődve olyan konformációváltozást hoznak létre, amelynek hatására a citoszólikus enzim pszeudoszubsztrát régiója levál a katalitikus domén szubsztrátkötő régiójáról, szabaddá téve azt a foszforilálandó molekula számára. Ezt követően az enzim a C1 doménen keresztül valamilyen intracelluláris struktúrához (sejtmembrán, Golgi-komplex, maghártya, citoszkeletális komponensek) transzlokálódik, majd a katalitikus C3 domén foszforilálja az enzimre specifikus szubsztrátot (pl. citoszkeletális fehérjék, ioncsatornák, receptorok, transzkripciós faktorok, kinázok, foszfátázok). Jelen tudásunk szerint a PKC aktiválását követően azért nem alakul ki tartós PKC aktivitás, mert az intracelluláris proteolitikus enzimek az aktivált PKC enzimet lebontják, ennélfogva inaktiválják azt.

Bár nincs olyan sejttípus a szervezetben, amely ne rendelkezne legalább egy PKC izoformával, általánosságban elmondható, hogy nem mindegyik izoenzim található meg minden sejtípusban. A PKC izoenzimek a szervezetben az adott fajra, szövetre, valamint sejtre jellemző megoszlást és mintázatot hoznak létre (Nishizuka, 1988 és 1992; Ohno és munkatársai, 1991; Baier és munkatársai, 1993; Goodnight és munkatársai, 1994). Míg a PKCα, δ, ε és ζ előfordulása ubiquiternek tekinthető, a PKCγ, η és 0 expressziója túlnyomórészt csak bizonyos szövetekre korlátozódik; így a PKCγ szinte kizárólag az agyban található meg, a PKCη leginkább keratinocytákban és T-sejtekben fordul elő, míg a PKC0 – habár megtalálható a testisben és egyes daganatokban is – a harántcsíkolt izom legjellemzőbb izoenzime (Boczán és munkatársai, 1992, 2000, 2001).

Részben ezen megoszlás gazdagságából fakad, hogy a PKC enzimek az élettani szabályozó folyamatok igen széles skáláját képesek befolyásolni. Alapvető és központi szereppel bírnak egyebek között a sejtek proliferációjának és differenciálódásának szabályozásában, a programozott sejthalál (apoptózis) folyamatosában, meghatározott sejttípusok által termelt mediátorok (vazoaktiv anyagok, növekedési faktorok, citokinek) szintezésében, az ingerlékeny szövetek elektrofiziológiai jellegzetességeinek kialakításában (csatornaaktivitás, akciós potenciálok kódolása, izomkontrakció), a központi idegenszer integritásának és működésének fenntartásában, a szervezet védekező mechanizmusaiban (fagocitózis, immunoglobulin-termelés), és a sor hosszan folytatható (lásd Decker, 2003).
Egyre több bizonyíték szól amellett, hogy a PKC izoenzimek nemcsak szerkezeti, aktivációs és megoszlási heterogenitást mutatnak, hanem regulációjuk és biológiai szerepük is jelentősen különböztet egymástól (Nishizuka, 1992; Decker, 2003). Az is bebizonyosodott, hogy a különböző izoenzimek egy adott sejtválasz (különös tekintettel a proliferációra és differenciálódásra) kialakításában nemcsak eltérő aktivitással vehetnek részt, de hatásuk gyakran ellentétes. Ezen megállapítás egyik kiváló példája, hogy a K-562 erythroleukaemia sejtvonálban a PKCα a forbol-észter által indukált cytostasis kialakulásáért felelős, ugyanakkor a PKCβII ezen sejtek proliferációjában játszik szerepet (Murray és munkatársai, 1993). Ezen túlmenően, az RBL-2H3 bazofil leukémia sejtekben a PKCα és ε izoenzimek legkifejezettebben a foszfolipáz-C aktivitását gátolták (Ozawa és munkatársai, 1993), ugyanakkor a PKCβ és ε izoenzimek a hízósejtek nagy affinitású IgE receptora által mediált c-fos és c-jun expressziója kialakításában vettek részt (Razin és munkatársai, 1994). További érdekes megfigyelés, hogy míg NIH 3T3 fibroblastok esetén a PKCδ megállította a sejtek proliferációját, addig a PKCε fokozta azt (Cacace és munkatársai, 1993; Mischak és munkatársai, 1993). A PKC izoenzimek heterogén funkcióját jelzi az is, hogy a C6 glioma sejtekben az egyes PKC izoenzimek expressziós szintje feltűnően megváltozik a sejtek differenciálódása során (Brodie és munkatársai, 1998).

1.2.2. A PKC és a keratinocyták – az izoenzimek sokrétű biológiai szerepe a proliferáció és differenciálódás szabályozásában

Viszonylag népszerűnek bizonyult a PKC izoenzimek kutatásával foglalkozó munkacsoportok körében a keratinocytta sejtvonalak alkalmazása, így meglehetősen nagy mennyiségű ismeret halmozódott fel az utóbbi időben ezen molekulák szerepének és a keratinocyták sejfolyamatainak kapcsolatára vonatkozólag (lásd Mitev és Miteva,
1999). A vizsgálatok fényt derítettek arra, hogy a különböző sejtfolyamatokban több izoenzime van/lehet szerepe (PKCα, δ, ε, η, ζ; Dlugosz és Yuspa, 1993, 1994). Igen elegáns kísérletek révén az is bebizonyosodott, hogy a PKC rendszer fontos szerepet játszik a sejtek proliferációs és differenciálódási programjának szabályozásában (Dlugosz és Yuspa, 1993, 1994; Denning és munkatársai, 1995). Megállapították, hogy az extracelluláris Ca^{2+}-konzentráció ([Ca^{2+}]_c) növelésével a sejtek differenciálódásra voltak kényszeríthetők, ám a folyamathoz elengedhetetlenn volt a PKC aktiválódása. Az is kiderült, hogy az itt vázolt folyamat szabályozásában a PKCα izoenzim meghatározó jelentőségű (Denning és munkatársai, 1995, Lee és munkatársai, 1997).

A normál humán epithelialis keratinocytákban (NHEK) ugyancsak kimutatták az előzőekben említett izoenzimeket (PKCα, δ, ε, η, ζ; Lee és munkatársai, 1998), de más izoenzimek jelenléte sem zárható ki (PKCβ és μ; Fisher és munkatársai, 1993; Rennecke és munkatársai, 1996). A kísérletek arra is rámutattak, hogy a PKC izoformák kifejeződése és szubcelluláris lokalizációja jelentősen megváltozott az [Ca^{2+}]_c megemelése, valamint a megnövekedett sejtdenzitás (konfluencia) által indukált differenciálódási program beindulásával párhuzamosan (Denning és munkatársai, 1995; Lee és munkatársai, 1998).

1.2.3. Az egyes PKC izoenzimek aktivitásának hatása a sejtek proliferációjára, differenciálódására és a tumorgenezisre

A specifikus kísérletek megmutatták, hogy a cPKCα központi szereppel bírh a terminális differenciálódási program beindításában és végrehajtásában (Murakami és munkatársai, 1996; Lee és munkatársai, 1998; Neill és munkatársai, 2003). Adenovírus vektorok alkalmazása során az is bevízonyosodott, hogy a PKCδ és η izoformák overexpressziója meggátolja a sejtek proliferációját, és differenciálódást vált ki (Ohba és munkatársai, 1998; Li és munkatársai, 1999). Igen jelentősnek tűnik az a felismerés, hogy a fenti izoformák transzgenikus jelenléte (ellentétben a tumorgenezist fokozó PKCε szerepével) jelentősen csökkentette egyes bőrdaganatok növekedési ütemét (Jansen és munkatársai, 2001).

A nPKCε számos sejttípus estében bizonyult a sejtproliferáció kulcsfontosságú pozitív regulátorának (Mischak és munkatársai, 1993; Goodnight és munkatársai, 1994; Brodie és munkatársai, 1998; Gutcher és munkatársai, 2003). Bebizonyosodott, hogy a nPKCε overexpressziója patológiás proliferációhoz (hyperproliferatív transzformációhoz) vezet, míg az enzim down-regulációja (továbbá domináns negatív mutánsának overexpressziója) a proliferáció gátlását, valamint a differenciálódás indukcióját eredményezte (Mischak és munkatársai, 1993; Goodnight és munkatársai, 1994; Brodie és munkatársai, 1998). Ezen túlmenően, a nPKCε szerepet játszik transzgenikus egerek bőrtumorainak kialakulásában is (Jansen és munkatársai, 2001).

A nPKCδ a differenciálódás és az apoptózis pozitív regulátoraként működik, és ezzel párhuzamosan gátoló hatást fejt ki a sejtproliferációra és a tumornövekedésre (Li és munkatársai, 1999; Denning és munkatársai, 1998; 2002; Fukunaga és munkatársai, 2001). Érdekes megfigyelés, miszerint a Ha-ras overexpresszió okozta malignus
transzformáció (azaz megnövekedett proliferációs kapacitás és lecsökkent differenciálódási tendencia) esetében a nPKCζ izoenzim eltűnik a sejtek közé (Geiges és munkatársai, 1995).

1.3 A munka célkitűzései

A jelen munka alapvető célkitűzése az volt, hogy az eddig tárgyalt két, potenciálisan tumorigén fehérjémolekula jelenlépével, megoszlását és jelentőségét tanulmányozzuk egészséges és tumorosan malformált humán szövetekben. A konkrét célkitűzések az alábbiakban foglalhatók össze:

1. A kísérletek első lépésében egy újonnan kifejlesztett poliklonális anti-TASK-3 ellenanyag tesztelését kívántuk elvégezni. Különösen nagy figyelmet fordítottunk az antitest specificitásának ellenőrzésére, valamint formalinban fixált, beágyazott metszetek estében az optimális antigénfeltárási technika megtalálására.

2. Az antitest optimális reakciókörülményeinek kidolgozása után a humán gastrointestinalis rendszerben kívántuk elvégezni a TASK-3 csatornák megoszlásának vizsgálatát. A gastrointestinalis rendszer azért szerepet építő vizsgálataink első tárgyaként, mert a későbbiekben elemezni kívánjuk az itt (sajnálatosan nagy számban és gyakorisággal) előforduló malignus daganatok TASK-3 expresszióját.

3. Meg kívántuk vizsgálni a pancreas TASK-3 expresszióját, ami különösen annak tükrében igérkezett izgalmas kérdésnek, hogy a TASK-3 csatornával viszonylag szoros rokonságban álló TASK-5 csatornákat kodoló mRNS-t nagy mennyiségben mutatták ki ezen struktúrából. Mivel a TASK-3 csatornák az extracellulris acidózis hatására záródnak, jelenlétük esetleg arra utalhatott, hogy szereppel bírnak a pancreas hormontermelő sejtjeinek szabályozásában.

4. Pozitív kísérleti adatok birtokában meg kívántuk vizsgálni a Langerhans-szigetek hormontermelő sejtjeinek TASK-3 expresszióját A- és B-sejtekre specifikus markerekkel történő kettős immunjelölés után is.

5. Meg szeretnénk volna nézni, hogy a malignus daganatok mutatnak-e bármilyen említést érdemlő különbséget a TASK-3 immunjelölési mintázatukat tekintve az ép szövetekhez képest. 42 emlőtumor feldolgozása után korrelációit szerettünk
volna találni a daganatok TASK-3 expressziójája, valamint azok szövettani típusa, grádusa, valamint prognosztikai markerei között.

0. Meg kívántuk vizsgálni, hogy van-e különbség a különböző módon eltávolított (core-biopszia, műteti beavatkozás) szövetminták TASK-3 expressziójában (annak intenzitásában és/vagy megoszlásában).

0. Meg szerettük volna vizsgálni transitionalis sejtes húgyhólyagtumorokban a tumoros epithelium PKC izoenzimmintázátát, annak változásait és az izoenzimmintázat módosulását a tumor grádusának előrehaladásával.

0. Fel szerettük volna térképezni, hogy a PKC izoenzimek megoszlása jellemző-e bármilyen módon a tumor grádusát, azaz szóba jöhet-e a PKC izoenzimek prognosztikai markerként való alkalmazása.
2. ANYAGOK ÉS MÓDSZEREK

2.1. A szövetminták és feldolgozásuk

A TASK-3 expresszió vizsgálatára használt szövetmintákat (a cerebellum kivételével) a Kenézy Gyula Kórház Pathológiai Osztályának szövettani preparátumaiból választottuk ki. A kimetszés a műtőből érkező natív mintából történt, mind a tumoros, mind a kóros elváltozást nem mutató gyomor és vastagbél részletekből. A natív mintákból részben fagyasztott preparátum készült (aminek egy részét a Western-blot vizsgálatok céljaira metszettük ki). Az esetek egy részében a nyállahártát elválasztottuk az alatta található izomréteg előtt. A kimetszéssel szomszédos területből szövetblokk készült, melyet 4 %-os, pufferelt formalinban fixáltunk (18-24 h), majd szokványos módon parafinba ágyaztunk.

Az emlőmintáknál (42 eset) preoperativ core-biopszia és ugyanazon beteg sebészeti beavatkozás során eltávolított szövetmintája is rendelkezésre állt. A cerebellum sectios anyagból származott.

A húgyhólyag transitocelluláris carcinomáinak PKC izoenzimmintázatát célzó vizsgálatainkhoz mindösszesen 23 betegből (17 férfi és 6 nő) származó, hólyagcarcinomát tartalmazó daganatszövetet alkalmaztunk, melyek a DE OEC Pathológiai intézetének vizsgálati anyagából származtak. A szövetdarabokat transurethralis resectio (17 beteg), részleges hólyagresectio (4 beteg) vagy cystectomia (2 beteg) alkalmazásával távolítottuk el. A kontrollként alkalmazott szövetminták prostatectomia céljából végzett sebész beavatkozásból származtak. Minden eltávolított szövetmintát két részre osztottunk. A minták egyik felét rutin hisztopatológiai feldolgozás után hematoxilin-eozinnal festettük a tumorok klasszifikációja, és grádusának (Mostofi és munkatársai, 1973), valamint a TNM-rendszer szerinti stádiumbeosztásának (Silverberg és munkatársai, 1997) meghatározása céljából. A
hisztopatológiai diagnózis alapján 9 eset G1 grádusú volt (melyből 1 pTa, 8 pedig pT1 stádiumúnak volt minősíthető). A fennmaradó esetekből 8 volt G2 (4 pT1, 3pT2 és 1 pT3b) és 6 G3 grádusú (2 pT2 és 4 pT3b).

2.2. Immunhisztokémia

A parafinos blokkokból készült 4 μm-es metszeteken a deparafinálást követő rehidrálás után, különböző antigénfeltárási (AF) módokat próbáltunk ki, melyeket az 1. táblázatban foglalunk össze.

<table>
<thead>
<tr>
<th>Az antigénfeltárás típusa</th>
<th>Protokoll</th>
<th>Időtartam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteolízis</td>
<td>Pronáz (0.1 %) 37°C</td>
<td>3 perc</td>
</tr>
<tr>
<td>Mikrophullámú besugárzás (750 W)</td>
<td>8 mM Tris-puffer (pH = 8.4)</td>
<td>15 perc</td>
</tr>
<tr>
<td></td>
<td>1 mM EDTA-puffer (pH = 8.0)</td>
<td>15 perc</td>
</tr>
<tr>
<td>Magas nyomású hőkezelés (kuktában)</td>
<td>0.1 M Citrát-puffer (pH = 6.0)</td>
<td>2 perc</td>
</tr>
</tbody>
</table>

1. táblázat
Az antigénfeltárás céljára alkalmazott technikák összefoglalása

Az AF után az endogén peroxidáz aktivitás blokkolása történt 3 %-os H₂O₂-oldat alkalmazásával (10 perc, szobahő), majd a nem-specifikus fehérjekötődés megakadályozása végett a metszeteket Protein Block Serum Free Reagenssel (DAKO, Glostrup, Dánia) inkubáltuk (5 perc, szobahő). Ezen lépés befejeztével a 2. táblázatban bemutatott elsődleges antitestek alkalmazására került sor (egy éjszakán át, nedveskamrában, 4 °C-on). Az inkubáció végeztével (továbbá minden további lépés között) a metszeteket PBS-ben mostuk (3x5 perc), majd a másodlagos antitestek

A fagyasztott metszetek esetén az antigénfeltárás kivételével a lépések azonosak voltak a beágyazott minták esetében részletezettekkel.

Rendszeresen sor került kontroll kísérletek végzésére is, melynek során az elsődleges antitesteket a rájuk specifikus blokkoló peptiddel előinkubáltuk (a blokkoló peptideket az antitestek gyártójára biztosította, azok felhasználása a gyártó által javasolt protokoll alkalmazásával történt). A fentieken túl elvégeztük a reakciókat primer antitest nélkül, továbbá a primer antitest állatfajából származó nem immunizált savóval.

A kettős immunhisztokémiai jelölést a pancreas szigetsejteinek elkülönítésére, és a Langerhans-szigetek A- és B-sejtjei TASK-3 expressziójának igazolására alkalmaztuk. Az immunreakciókat egymás után végeztük, minden esetben a TASK-3-specifikus reakcióval kezdve a procedúrát, az EnVision+ System-HP (DAB; DAKO) detekciós rendszer alkalmazásával. A DAB-os előhívást követően ismételt blokkolás történt Block Serum Free Reagenssel (5 perc, szobahő). A blokkolószérum lefújása után poliklonális, tengerimalacban termeltetett anti-inzulin („ready-to-use”, 10 perc, szobahő) vagy ugyancsak poliklonális, nyúlnál termeltetett anti-glukagon („ready-to-use”, 10 perc, szobahő) antitestek alkalmazása (DAKO) történt. A biotinilált másodlagos antitesttel végzett inkubációt követően alkalikus foszfátázzal konjugált streptavidint (DAKO) alkalmaztunk (1:100, 30 perc, szobahő), majd a reakciókat AP-KIT (Vector Laboratories, CA, USA) segítségével vizualizáltuk. A kettős immunjelzés esetén háttérfestést nem végeztünk, a fedés vizes alapú fedőanyaggal történt. A kettős festés előtt megelőző vizsgálatok történtek arra vonatkozólag, hogy a TASK-3 által igényelt antigénfeltárás mellett is megfelelően működik-e az inzulin és a glukagon ellen termeltetett antitest. Ezen vizsgálat során kielégítő eredményt tapasztaltunk.
Gyártó cég	Santa Cruz Biotechnology Inc.¹	Alomone Labs Ltd.²
Katalógus kód | Sc-11320 | APC-044
Specificitás | Anti-TASK-3, humán specifikus | Anti-TASK-3, humán és patkány specifikus
A faj amiben termeltették | Kecske | Nyúl
Az antitest típusa | Poliklonális | Poliklonális
Epitóp | A csatornaféhérje C-terminálisának közlében | Extracelluláris, a csatorna-fehérje P1-hurkának közelében (az 57-73 aminosavak közötti szekvencia)
Inkubációs időtartam | Egész éjen át | Egész éjen át
Hígítás | 1:100 | 1:800
Az antitest végső fehérje koncentrációja | 2 μg/ml | 1 μg/ml

¹Santa Cruz, CA, USA
²Jerusalem, Israel

2. táblázat
A TASK-3 immunhisztokémiai vizsgálatoknál alkalmazott elsődleges antitestek

Az immunreakciók végeredményét Nikon Eclipse 600W mikroszkóp (Nikon, Tokyo, Japan) és az ahhoz csatolt CCD kamera alkalmazásával vizsgáltuk. A mikrofotókat a Spot RT v3.5 program segítségével készítettük, a disszertációban bemutatott képeket az Adobe Photoshop segítségével állítottuk össze.

2.3. Western-blot technika – TASK-csatornák

A szövetmintákat folyékony nitrogén alkalmazásával mélyfagyasztottuk, majd porcelán dörzsoszárban apróra őrültük. A szövetdarabokat lizispufferbe helyeztük, (20 mM Tris-HCl, 5 mM EGTA, 1 mM 4-(2-aminoetil)benzénesulfonil-fluorid, 20 μM leupeptin, pH 7,4; valamennyi összetevő a Sigmától került beszerzésre), majd ultrahang
alkalmazásával homogenizáltuk. A minták fehérjetartalmát módosított BCA protein-assay (Pierce, Rockford, IL, USA) segítségével határoztuk meg. A sejtizátumokat SDS-PAGE sample pufferben oldottuk, majd 10 percen át forraltuk. Az így nyert mintákat SDS-PAGE-nek (poliakrilamid-gélelektroforézis) vetettük alá. Az általunk használt gél 7,5 %-os volt, mintánként 80-160 μg proteint alkalmaztunk. Az elektroforézis végeztével a mintákat nitrocellulóz membránra vittük át (BioRad Laboratories, CA, USA). A membránokat 5% os, PBS-ben oldott tejporral blokkoltuk, majd a TASK-3-specifikus elsődleges antitestetek alkalmazására került sor (Santa Cruz - 1:50; Alomone - 1:800). A másodlagos antitest vagy biotin-konjugált kecske anti-nyúl IgG (BioRad – 1:1000) vagy ugyancsak biotin-konjugált, nyúl anti-kecske IgG volt (Vector Laboratories, CA, USA – 1:1000), függően az elsődleges antitest típusától. A kötödés specificitását az elsődleges antitesteknek a nekik megfelelő blokkoló peptiddel történő előinkubációjával vizsgáltuk; ilyenkor a procedúra végeztével értékelhető immunjelölődést nem tapasztaltunk. Az immunreaktív sávokat kemilumineszcens ECL Western blotting detection kit (Amersham, Little Chalfont, Anglia) segítségével, fényérzékeny filmen (AGFA, Brüsszel, Belgium) vagy Fujifilm Labs 3000 sötétkamrában (Tokió, Japán) tettük láthatóvá.

2.4. Western-blot technika – húgyhólyagtumorok

A 2.1. pontban már részletezett feldolgozás után a húgyhólyag-nyálkahártyából preparált mintákat proteáz-inhibitorokat tartalmazó lizispufferben homogenizáltuk, majd szigorúan azonos mennyiségű fehérjét tartalmazó (20-30 μg) mintákat alkalmaztunk a Western-blot kísérletekhez, melyek főbb lépései megegyeztek az előzőekben leírattal.

A vizsgálatokhoz használt elsődleges antitesteket részben a SIGMA (nyúlban termelt, poliklonális anti-PKCα, β, γ, δ, ε, η és ζ), részben a Santa Cruz (anti-PKCα/ι és μ) által fejlesztett és forgalmazott antitestek voltak. Az alkalmazott hígítás 1:500 – 1:1000 volt. Az immunreakció vizualizálása peroxidáz-konjugált, kecskében termeltetett (1:1000; BioRad) másodlagos antitest alkalmazásával, és egy „enhanced chemiluminescence detection kit” (ECL) alkalmazásával történt. A kvantitatív denzitometriát GelDoc rendszer (BioRad) alkalmazásával végeztük (Papp és
A statisztikai vizsgálatok céljára Student t-tesztet használtunk, a különbségeket a p < 0,05 feltétel teljesülése esetén tekintettük statisztikailag igazoltnak.

munkatársai, 2003
3. ERDEMÉNYEK

3.1. A TASK-3 csatornák megoszlásának immunhisztokémiai vizsgálata – az optimális reakciókörülmények kidolgozása

A TASK-3 csatornákat célzó kísérletek kezdetén az Alamone Labs Ltd. által gyártott és forgalmazott antitest „bevizsgálása” történt, aminek során az optimális hígítás és a legmegfelelőbb AF technika meghatározására került sor. A vizsgálatok ezen fázisában humán cerebelláris szövetblokkokat alkalmaztunk pozitív kontrollként, mivel ebben a szövetféleségben a TASK-3 specifikus mRNS-t kiemelkedően nagy mennyiségben detektálták (Medhurst és munkatársai, 2001), és korábbi vizsgálataink megmutatták, hogy a Purkinje-sejtek igen erős; a molekuláris és a szemcsesejtes rétegek pedig kifejezett TASK-3 specifikus festődést mutatnak (Rusznák és munkatársai, 2004).

Az 5. ábra demonstrálja az Alamone által forgalmazott antitesttel történt immunfestés eredményét antigénfeltárás nélkül (5A ábra), valamint különböző antigénfeltárási módszerek alkalmazásával (5B-E ábrák). Fontos megjegyezni, hogy az AF alkalmazása után valamennyi, az 5. ábrán bemutatott immunreakció egyidejűleg készült. Amint az jól megíthető, az AF nélkül kivitelezett reakció igen gyengének bizonyult (5A ábra), de hasonlóan gyenge eredményt hozott a pronázzal végzett proteolízis is (5B ábra). Citrát- (5C ábra), Tris- (5D ábra) vagy EDTA-pufferes (5E ábra) előkezelést követően azonban erős, a várt cerebelláris struktúrákra lokalizálódó immunreakciót tapasztalhattunk. Bár mindhárom utóbbi technika értékelhető eredményt hozott, azok jól azonosítható és erős immunreakciókat eredményeztek, a legerőteljesebb festődést a Tris-pufferben történt AF után tapasztalhattuk (ami különösen nyilvánvaló volt a Purkinje-sejtek [lásd a nagy nagyítású felvételek], a molekuláris és a szemcsesejtes rétegek esetében). A disszertáció anyagát képező kísérletekben a formalinban fixált és beágyazott szövettani minták vizsgálatához minden esetben Tris-, citrát- és EDTA-pufferes AF-t alkalmaztunk. Az említett antigénfeltárási technikák alkalmazása nem okozott érdemi különbséget a festődési mintázat vonatkozásában, ám a legintenzívebb és legkontrasztosabb (azaz a leglátványosabb) reakciókat mindig a Tris-inkubáció alkalmazása után figyelhetjük meg. Mindezek alapján a disszertáció további részében mindig a Tris-feltárás után kapott reakciókat demonstráljuk, amennyiben az.
immunhisztokémiai vizsgálatok formalinnal fixált, beágyazott szövettani metszeteken történtek. Igen fontos kísérlet volt a preadszorpciós kontroll (5F ábra), aminek végén értékelhető immunreakciót nem tapasztaltunk. Tekintettel arra, hogy az itt bemutatott reakció előzetes Tris-inkubáció után történt, az immunfestődés hiányát a reakció specificitásának igen jelentős bizonyítékaként értékeltük.

5. ábra
Különböző antigéntártási módszerek alkalmazásának hatása a TASK-3- specifikus immunjelölésre formalinban fixált, parafinba ágyazott, humán cerebellum metszetek esetében
Ezen preadsorpciós kontroll előzetes Tris-inkubáció után (azaz a leghatásosabb antigénfeltárást követően) történt. Az elsődleges antitest (Alomone Labs. Ltd.) hígítása valamennyi esetben 1:800 volt. Az A ábrán látható kalibráció (100 μm) valamennyi képre alkalmazható. Minden esetben DAB kromogén alkalmazása történt.

A bevezető kísérletek során az elsődleges antitest különböző hígításait használtuk (1:200 és 1:4000 között) és az 1:800-as titer bizonyult a legcélravezetőbbnek.

3.2. A TASK-3 csatornák megoszlásának immunhisztokémiai vizsgálata a gastrointestinalis rendszerben

A kísérletsorozat következő lépésében a humán gastrointestinalis rendszerből származó szövetmintákban (nyálmirigy, gyomor, vékonybél, pancreas és vastagbél) vizsgáltuk meg a TASK-3 expressziójának megoszlását két, eltérő epitópok ellen irányuló elsődleges antitest alkalmazásával. A 6. ábra a colon esetében tapasztaltatjuk eredmények összefoglalását adja. A felső sor (6A1-6A3 ábrák) a Santa Cruz által gyártott és forgalmazott antitest alkalmazásával kapott immunreakciót mutatja. A 6A1 ábra fagyasztott metszet alkalmazásával demonstrálja a TASK-3 immunpozitivitás megoszlását, ahol a vastagbél nyálkahártyájának intenzív jelölődése és ezen belül is a felszíni epithelium és a mirigyek hámbélésének igen erőteljes reakciója emelhető ki. A 6A2 ábrán demonstrált reakciót ugyanazon szövetblokkkon végzettük, aminek eredményét a 6A1 ábra mutatja, de ezúttal formalinvala történő fixálás, beágyazás (azaz rutin szövettani feldolgozás) és Tris-inkubációval történő AF után. Megállapíthatók, hogy a fagyasztott metszetben tapasztalható megoszlási mintázat (nevessen a vastagbél nyálkahártyájának festődése) reprodukálható volt, bár annak intenzitása némileg gyengébbnek bizonyult. Ugyanezen reakciót AF nélkül elvégezve érdemi immunjelölődést nem tapasztaltunk. Fontos megjegyezni, hogy amennyiben az elsődleges antitesteket a specifikus blokkoló peptiddel előinkubáltuk, úgy értékelhető immunreakció nem alakult ki még az AF alkalmazása után sem (6A3 ábra).

A 6A ábrán demonstrált eredmények arra utaltak, hogy a humán vastagbél epitheliális sejttek erőteljes TASK-3-expressziót mutatnak. Ezt a feltevést megerősítettek azon vizsgálatok is, amikor a másik típusú elsődleges antitesttel (Alomone Labs Ltd.) végeztük az immunreakciókat. Valamennyi, a 6B és a 6C ábrán bemutatott kép ugyanazon beteg vizsgálati anyagából származik; előbbi esetben
fagyasztott, utóbbi esetben pedig formalinban fixált, beágyazott minták alkalmazására került sor. A fagyasztott minták esetében természetesen nem volt szükség antigénfeltárásra, a bemutatott eredmények a preparátum ilyenfaja előkezelése nélkül születtek. Amint az jól látható, a fagyasztott metszetekben az intestinalis epithelium erőteljes TASK-3-specifikus jelölődést mutatott (6B1 és 6B2 ábra). A 6B3 ábra egy a plexus myentericus Auerbachioz tartozó, intenzív TASK-3 festődést mutató neuronális struktúra immerziós objektívvvel készített képét demonstrálja. A 6B3 ábrán látható kisebb fénykép a plexus környezetének áttekintő képet mutatja, amin a neuronális struktúrát övező simaizomréteg lényegesen gyengébb festődése demonstrálható.

6. ábra
TASK-3 expresszió vastagbélben

Mindkét elsődleges antitest felhasználásával történtek Western-blot kísérleteket is; a 6B1 ábrán a colon mucosájából (CM) és simaizomrétegából (CSM) készített homogenizátum felhasználásával nyert eredményeket ábrázoltuk. A Western-blot kísérletek egyik lényeges eredménye, hogy aspecifikus kötődésre utaló sávokat nem találtunk. Ezen túlmenően, igen lényegesnek ítéljük azt a megfigyelésünket, miszerint a vastagbél nyálkahártyájából készített szövetmintá alkalmazásakor lényegesen erőteljesebb és vastagabb csíkok észleltünk, mint az izomfalat tartalmazó homogenizátum alkalmazása során. Ez a megfigyelés (tökéletes összhangban az immunhisztokémiai vizsgálatok által nyújtott eredményekkel) arra utalt, hogy a mucosa TASK-3 expressziója számtévesen intenzívebb, mint az izomfalban tapasztalható helyzet (az összehasonlítás céljából lásd a 6B1 ábrát és a 6B3 kép kis nagyítású részét).

A 6C1-6C3 ábrák a 6B részen már bemutatott szövetblokk TASK-3-specifikus festődését mutatjuk, a rutin szövettani feldolgozás (formalinos fixálás, majd beágyazás) után, Tris-inkubációval kivitelezett AF-t követően. Amint az a 6C1 ábrán jól látható, a szövetminta megtartotta TASK-3-specifikus jelölődését. Lényeges megjegyezni, hogy bár az AF után tapasztalt reakció némileg gyengébb volt (lásd a 6C2 ábrát), mint a fagyasztott preparátumon kivitelezett festés eredményeként megfigyelhető jelölődés, állpozitív reakció nem alakult ki. Immerziós objektív alkalmazásával egyébként még ezen gyengébb immunjelölődés is könnyedén megítélhetővé vált (lásd a 6C2 ábrán bemutatott kisebb fényképet). A plexus myentericus homoz tartozó idegi struktúrák a formalinos fixálást követően is erős és határozottan elkölönlő jelölődést mutattak, amennyiben Tris-inkubációt alkalmaztunk az AF céljára (6C3 ábra, a kisebb kép a bemutatott terület kis nagyítású felvételét demonstrálja). Preadsorpciós kontroll vizsgálatok kivitelezésére is sor került (mind a fagyasztott, mind a beágyazott és antigénfeltárására átesett szövetminták esetében); értékelhető immunpozitivitást azonban egyik esetben sem kaptunk. Mindösszesen 6 különböző betegeből származó
vastagbélmintát vizsgáltunk, és minden esetben az itt bemutatottal megegyező eredményre jutottunk.

A 7. ábra néhány további, a gastrointestinalis rendszer részét képező szerv TASK-3-specifikus jelölődését mutatja. Valamennyi itt demonstrált eredményt formalinban fixált és Tris-inkubációval történt AF-on átesett metszetről nyertük. A 7A és 7B ábrák a gyomor corpus (A) és antrum (B) mucosa rétegének TASK-3-specifikus jelölődését mutatják. Amint az tisztán megítélhető, a gyomor epithelialis sejtjei is erőteljes TASK-3-specifikus reakciót mutattak. Az expresszió erőteljesnek bizonyult a cytoplasmában, valamint a magban vagy annak környékén egyaránt. Szöges ellentétben a gyomor nyálkahártyájában tapasztalt helyzettel, a simaizomréteg nem mutatott említésre méltó TASK-3 festődést, csupán az izomsejtek nuclearis-perinuclearis területén tapasztaltunk némi pozitivitást (7C ábra). A specifikus blokkoló (immunizáló) peptid jelenlétében immunreakciót megfigyelni nem tudtunk (7E ábra), ami az immunreakció specificitásának egyik lényeges bizonyítéka.

Igen fontosnak tűnik az a megfigyelésünk, ami szerint a rosszindulatúan elfajult sejték is mutatnak TASK-3-pozitivitást. A 7D ábra egy közepesen differenciált gyomor adenocarcinoma TASK-3 expresszióját mutatja, ahol erőteljes TASK-3-specifikus jelölődésfigyelhető meg a tumorsejtek felszínén és cytoplasmájában. Ezen túlmenően föltétlenül említésre érdemes még a daganatsejtek intenzív nuclearis-perinuclearis immunjelölődése is.

Western-blot kísérletek is történtek a gyomor különböző területeiről izolált szövetminták felhasználásával (7F és 7G ábrák). A 7F ábrán látható esetben a gyomor corpusából és cardiójából kimetszett, a gyomorfal valamennyi rétegét tartalmazó szövetminta vizsgálata történt. Amint azt az egyes sávok optikai denzitás értékei mutatják, nem tapasztaltunk érdemi különbséget ezen régiók TASK-3 expressziójának nagyságában.

A 7G ábrán demonstrált eredmények egy másik betegből származó szöveti preparátum felhasználása nyomán születtek. A bemutatott esetben három minta vizsgálata a korlát nagyon rendszeres volt, amiket rendre az ép terület simaizomrétegéből, az ép terület nyálkahártyájából és a daganatszövetből metszettünk ki. A homogenizálásra szánt vizsgálati anyagokat a szövetblokkból készítettük, amelyikkel szomszédos területről a 7A-7E ábrákon bemutatott immunhisztkémiai vizsgálat történt. A Western-blot kísérletek megerősítették azt a korábbi megfigyelésünket, miszerint a rákosan elfajult szövetminták TASK-3 expressziót mutatnak (lásd 7D ábra).
7. ábra
TASK-3 specifikus jelölődés a gyomorban, glandula submandibularisban és egy nyálkahártyában található nyiroktüszőben.
Valamennyi itt bemutatott immunreakció formalinban fixált, beágyazott szövetblokkokból készített metszetén lett kivitelezve, a Tris-inkubációs antigénfeltárást követően. A H ábrán dokumentált esetben az
elsődleges antisztet a Santa Cruz Biotechnology, Inc.-tól származott, valamennyi több esetben az Alomone Labs. Ltd. volt az ellenanyag forrása. Az A-E ábrasoron bemutatott metszetek ugyanazon gyomorból származnak (A: corpus nyálkahártya, B: antrum nyálkahártya, C: simaizomréteg, D: közepesen differenciált gyomorrák, E: preadszorpciós kontroll). Az F ábráreszen demonstrált Western-blot kísérlet egy más betegből eltávolított, fagyasztott, homogenizált gyomorszövet felhasználásával történt; a felhasznált szövetdarabokat az alkalmazott preparátum két különböző régiójából metszettük ki. A G kép egy másik Western-blot kísérlet eredményét foglalja össze (a vizsgálat alapjául az a szövetblokk szolgált, aminek immunhisztokémiai vizsgálatát az A-E ábrákon mutattuk be), külön homogenizációt készítettünk a simaizomrétegből, a nyálkahártyanyúzatból és a daganatszövetből. Minden szimultán elvégzett Western-blot kísérlet során azonos mennyiségű protein felvitele történt; az egyes immunreaktív csíkok optikai denzitásának értékeit ugyancsak feltüntettük a maximális intenzítésű csíkra vonatkoztatva.

A 7H és a 7I ábrák néhány más szerv TASK-3 expresszióját mutatják. A 7H ábrán a glandula submandibularis TASK-3 expressziós mintázata látható, amiből kitűnik, hogy a ductalis epithelium mutatta a legintenzívebb jelölődést. A 7I ábra egy lymphoid tüsztőt demonstrál, azon általános megfigyelésünket illusztrálva, miszerint a lymphocytákban egyértelmű TASK-3 pozitivitás volt demonstrálható.

A 8. ábra a pancreas területén tapasztalható TASK-3 jelölődést mutatja. Az A és B, valamint a C és D részeken demonstrált képek alapjául szolgáló szövetmintákat két különböző személyből eltávolított szövetblokkok felhasználásával nyertük. A felső sorban bemutatott reakciót a Santa Cruz, az alsó sorban elhelyezkedőket az Alomone által kifejlesztett anti-TASK-3 ellenanyagok alkalmazásával kaptuk. Mindkét esetben sor került a preadszorpciós kontroll kísérletek kivitelezésére is, amik eredményét a kisebb képeken mutatjuk be. A kontroll kísérletek a tényleges kísérletekkel egyidejűleg történtek, és a fényképezés során az expozíció paraméterei teljes mértékben megegyeztek a kontroll és a tényleges preparátum dokumentálása során.

Az pancreas esetében tapasztalható immunjelölődés eredményét összefoglalva elmondható, hogy bár mind az exocrin, mind az endocrin állomány egyértelmű TASK-3 pozitivitást mutatott, a Langerhans-szigetek festődése jelentősen intenzívebbnek bizonyult, mint az exocrin állomány jelölődése. Igen lényegesnek ítéljük azt a megfigyelést, miszerint a kötőszöveti állomány TASK-3-specifikus jelölődést nem mutatott, még akkor sem, ha a közvetlen környezetében elhelyezkedő mirigyállomány a rá jellegzetes, kifejezetten erőteljes reakciót mutatta.

8. ábra
TASK-3 expresszió a pancreasban

Bár az előzőekben demonstrált immunhisztokémiai vizsgálatok egyértelműen jeleztek, hogy a pancreas hormontermelő sejtei erőteljes TASK-3 expressziót mutatnak, kettős immunjelölést is végeztünk annak bizonyítására, hogy a TASK-3-specifikus reakció megfigyelhető az A- és a B-sejteken egyaránt. A 9. ábrán olyan kettős immunjelölés eredményét demonstráljuk, ahol az A-sejteket gluakagon- (9A ábra), míg a B sejteket inzulin-ellenes (9B ábra) ellenanyaggal jelöltük (mélyvörös immunreakció); a TASK-3-specifikus jelölést mindkét esetben DAB segítségével hívtuk elő, azaz barna színnel rajzolódik ki. A vörössel festődött (tehát egyértelműen A- vagy B-sejtként azonosítható sejtek) határozottan immuno pozitívbal bizonyultak a TASK-3-specifikus jelölés elvégzése után. Figyelmet érdemel még, hogy - teljes összhangban a klasszikus szövettani tankönyvnek tanításaival - az A-sejtek száma lényegesen kevesebb volt az
egyes Langerhans-szigetekben, mint a B-sejteké; továbbá előbbiek elsősorban a szigetszövet perifériás részén, utóbbiak pedig döntően a centrális régióban voltak megfigyelhetők.

![9. ábra](image)

A Langerhans-szigetek A- és B-sejtjeinek TASK-3 expressziója

A kísérletek során az A-sejteket glukagon- (A), a B-sejteket inzulin-specifikus (B) elsődleges antitestek alkalmazással jelöltük (mélyvörös szín); a TASK-3 specifikus immunreakció barna színű. Kalibráció 25 μm.

Mindösszesen 5 különböző betegből származó szövetinta vizsgálatára került sor a jelen munka keretein belül, és valamennyi az itt bemutatottakhoz nagyban hasonló eredményt hozott (megjegyzésre érdemes, hogy egyik szövetinta sem származott olyan betegből, aki diabetes mellitusra utaló tüneteket mutatott volna).

3.3. A TASK-3 csatornák megoszlásának immunhisztokémiai vizsgálata emlődaganatokban

Amint azt a 7. ábrán bemutattuk, egyes gastrointestinalis tumorokban igen határozott TASK-3 jelölődést sikerült demonstrálni. A jelen tézisekben bemutatott esetben kívül egyértelmű TASK-3-specifikus reakciót tapasztaltunk még a vastagbél rosszindulatú daganataiban is. Mivel egyes emlőtumorokban a TASK-3 csatornák kódolásáért felelős gén overexpresszióját írták le (Mu és munkatársai, 2003), logikusnak tűnt annak vizsgálata, hogy megfigyelhető-e valamilyen összefüggés az egyes emlődaganatok szövettani típusa, grádusa, stádiuma, receptormintázata, prognosztikai faktorai és azok TASK-3 jelölődése között – feltéve, hogy a TASK-3 expressziót nekünk is sikerül demonstrálni ezen kóros szövetmintákon. A
vizsgálatokhoz olyan szövettani anyagokat használtunk, ahol mind a core-biopszia, mind az annak eltávolítását követő műteti anyag rendelkezésre állt.

10. ábra

Ductalis emlőcarcinoma TASK-3 immunjelölődése

A felső ábrasor (A-C) a core-biopszia során eltávolított szövetmintát mutatja, az alsó képeken (D-F) ugyanazon beteg ugyanazon tumorszövet műteti preparátumából származó metszetek láthatók. A D ábra részekén bemutatott bekeretezett kép a preadszorpciós kontroll vizsgálat eredményét demonstrálja. Kalibráció: 100 μm és 25 μm.

Az 10. ábrán bemutatott szövettani anyagok egy 75 éves nőbetegből származnak. Az 10A-C képek a core-biopsziás anyagot, a 10D-F felvételek pedig a műteti beavatkozás során nyert mintákat mutatják. Mivel mindkét esetben formalinos fixálás történt, a TASK-specifikus immunfestés kivitelezése előtt antigéntáratást végeztünk. A kis nagyítású felvételek mindkét szövetmintában a daganatos szövet egyértelmű TASK-3 pozitivitását mutatták, értékelhető immunreakció a kötöszövetes területeken nem volt megfigyelhető. A nagyobb nagyítású felvételeket összehasonlíthatva megállapíthattuk, hogy míg a core-biopsziás anyagban a TASK-3-jelölés a tumorsejtek cytoplasmájában volt a legkifejezetten, ugyanakkor a magok túlnyomó többsége egyértelműen negatívnek mutatkozott (10B és 10C); az ugyanazon betegből, ugyanazon régióból, de immár műteti körülmények között eltávolított szövetmintán elvégezve az immunreakciót a cytoplasmaticus reakció továbbra is jól megfigyelhető volt ugyan, ám a sejtmagok is határozott immunjelölődést mutattak.

A core-biopszia során és a műtétileg eltávolított szövetminta TASK-3 immunjelölődésében tapasztalt eltérést benignus elváltozások esetében is megfigyeltük. A 11. ábrán bemutatott emlőszövet egy 46 éves betegből származik; az ábra A és D része a core-biopszia és a műteti preparátum TASK-3-specifikus immunjelölését mutatja kis nagyítással. Jól megfigyelhető, hogy a mirigyállomány egyértelmű és erős pozitivitást mutat mindkét esetben, és (hasonlóan az előző ábrán demonstrálthoz) a D ábrarészen látható in situ carcinoma (*) is határozott TASK-3 pozitivitást mutat. A nagyobb nagyítású felvételek alapján megállapítható, hogy bár mind a core-biopszia (B és C), mind a műteti preparátum (E) esetében megfigyelhetők pozitivan és negatívan jelöldött sejtmagok egyaránt (a 11. ábra C részén világos nyílak jelölnek néhány egyértelműen negatív, sötét nyílak pedig két erősen pozitív jelölődést mutató magot), a
A TASK-3 jelölődéssel bíró magvak aránya a műteti anyagban lényegesen nagyobb volt. Függetlenül a mag által mutatott TASK-3-reakció intenzitásától, könnyen azonosítható és erőteljes TASK-3 jelölődést tapasztaltunk a cytoplasmában, ami a secretios tevékenységet mutató epithelium esetében az éppen lefűződő secretoros granulumokban is megfigyelhető volt (néhányat ezek közül nyílhegyekkel jelöltünk a 11. ábra B és E részén).

12. ábra

Ductalis invazív emlőcárcinoma TASK-3 expressziója

Az A és B képek core-biopszis anyagon kivitelezett immunreakció eredményét mutatják, a C és D felvételeken ugyanazon beteg ugyanazon régiójából származó preparátum látható, amit műteti körülmények között metszettek ki. A kis nagyítású felvételen jól megfigyelhető a mirigyállomány TASK-3 jelölődése, ami némileg kisebb intenzitású, mint a 10. és a 11. ábrán demonstrált. A B ábrán a nyilak olyan sejtekre mutatnak, ahol szembetűnő a TASK-3 pozitivitás kifejezetten perinuclearis jellege. A D ábrán két olyan sejtmagot jelöltünk, ahol nem látható TASK-3 expresszió; ugyanakkor környezetükben számos, egyértelműen pozitívan jelölödött mag figyelhető meg. Kalibráció: 100 μm és 25 μm.

A jelen tanulmányban mindösszesen 42 szövettani mintát vizsgáltunk meg, és a core-biopszis anyag és a műteti szövetminta között fennálló, előzőekben részletesebb különbség minden esetben megfigyelhető volt. Ugyancsak általánosnak bizonyult a daganatsejtek TASK-3-jelölődése (lokalizációját tekintve a cytoplasma, a sejtmag, a perinuclearis régió és a sejtfelszíni membrán említhető meg), bár a jelölődés
intenzitásában tapasztaltunk némi változatosságot. Ezt szemléltei a 12. ábra, ahol a TASK-3 specifikus reakció egyértelmű, ám annak intenzitása némileg gyengébb, mint a 10. és a 11. ábrán bemutatott esetekben. A nagyobb nagyítású felvételeken jól megfigyelhető, hogy a sejtmagok kisebb százalékban expresszálják a TASK-3 fehérjét a core-biopsziás anyagban (12B ábra; a nyilak néhány olyan területre hívják fel a figyelmet, ahol a TASK-3-festődés markánsan perinuclearis lokalizációjú, ugyanakkor a mag egyértelműen negatív). A múlté préparátumból származó szövet vizsgálata során láttunk ugyan TASK-3-jelölődést nem mutató sejtmagokat (12D ábra, nyilak), ám a nucleusok túlnyomó többségében pozitív festődés volt megfigyelhető.

3.4. A PKC-izoenzimmintázat változása rosszindulatú húgyhólyagtumorokban

A húgyhólyagtumorokból izolált szövetminták Western-blot vizsgálata során megállapítottuk, hogy a húgyhólyagepithelium öt PKC izoformát (cPKC α és β, nPKCδ és ε, továbbá az aPKCζ) tartalmaz. A PKC enzimcsalád többi tagját (cPKCγ, nPKCη és θ, aPKCλ/τ és PKCμ) a szövet homogenizátumban nem detektáltuk. Bár nem tapasztaltunk különbséget a PKC izoenzimek megoszlásában a tumoros és az egészséges minták között, azok mennyisége jelentős és statisztikailag is igazolható differenciát mutatott (13. ábra).

Az immunreaktív csíkok denzitometriás vizsgálata megmutatta, hogy a G1 grádusú daganatokban csupán a PKCζ izoforma mennyisége növekedett szignifikáns mértékben, és a többi izoenzim mennyisége változatlan maradt az egészséges szövetmintában tapasztalható mennyiséghez képest. Ezzel szemben a G2 és a G3 grádusú tumorokban már valamennyi jelenlévő izoforma esetében tapasztalható volt valamilyen statisztikailag is igazolható mértékű változás az ép szövethez képest. A G2 és a G3 grádusú mintákban cPKCβ és a nPKCδ i zoformák mennyisége jelentékeny csökkenést mutatott mind a kontroll, mind a G1 stádiumú daganatokhoz viszonyítva (p < 0,05). A G2 és a G3 stádium összehasonlításakor ugyanakkor nem mutatkozott szignifikáns különbség a fenti PKC izoenzimek esetében.
13. ábra

A PKC izoenzimmintázat változásai különböző grádusú húgyhólyagtumorokban

Ép (C) és tumorosan elfajult (G1, G2 vagy G3 grádusú) húgyhólyag epithelialis rétegből készített szövethomogenizátumok felhasználásával végzett Western-blot vizsgálat (egy reprezentatív vizsgálat eredményét demonstrálja az ábra A része) és annak kvantitatív analízise (B). Az egyes PKC izoformák mennyiségének számszerűsítése céljából meghatároztuk az immunpozitív csíkok optikai denzitásának (OD) értékeit, majd azokat a kontroll szövetminta esetében tapasztalhatóra normalizáltuk (az ép szövetben kapott mennyiséget 100 %-nak tekintettük). Az oszlopok az átlag és a S.E.M értékeit tükrözik, amiket több, egymástól független vizsgálat eredményeként kaptunk. Egy csillag jelöli a kontrolltól statisztikailag szignifikánsan különböző eseteket (p < 0,05). Két csillaggal jelöltük a G1 és a G2/G3 stádiumú daganatok közötti szignifikáns különbséget. Három csillag a G2 és a G3 grádusú daganatok között tapasztalható, statisztikailag szignifikánsnak bizonyult differenciát jelöli.

Ettől gyökeresen eltérő eredményt hozott a másik három PKC izoforma vizsgálata, ugyanis valamennyi fennmaradó változat határozott és statisztikailag is igazolható növekedést mutatott a carcinoma előrehadalottságával. Érdekes módon, szemben a cPKCα és az aPKCζ izoformákkal, amelyek mennyisége fokozatosan növekedett a tumör grádusának előrehaladásával, a nPKCε mennyisége ugyan szignifikánsan nagyobb volt a G2 és a G3 grádusú tumorok esetében, mint a kontroll és a G1 stádiumban lévő daganatokban, ám mennyisége a G2 és a G3 stádium között már nem változott.
4. MEGBESZÉLÉS

4.1. A TASK-3 csatornák megoszlásának immunhisztokémiai vizsgálata – reakciókörülmények és specificitás

A jelen disszertáció egyik igen lényeges megállapítása, hogy a rendelkezésre álló antitestekkel lehetséges a TASK-3 expresszió kimutatása formalinban fixált és beágyazott metszeteken is, ám a valóságot hűen tükrözéssel jelöltéssel csak akkor várható, ha az immunhisztokémiai metódus alkalmazását megfelelő antigénfeltárás előzi meg. Az antigénfeltárás nélkül vagy a nem megfelelő technika alkalmazásával kivitelezett reakció csupán igen gyenge festődést (esetleg alábbnegatív jelölést) eredményezhet. Ezen megfigyelésünk igen jó összhangban áll azzal az általánossági elgondolkodással, miszerint az immunhisztokémiai vizsgálatok reakciókörülményeinek kidolgozása során a formalinban fixált preparátumok esetében különös figyelmet kell szentelni az optimális antigénfeltárási technika megtalálásának (Montero, 2003).

A technikai részleteken túlmenően, a jelen munka keretében azt is sikeresen demonstráltuk, hogy a TASK-3 csatornák olyan szövetekben is nagy jelentőséggel bírhatnak, ahol csak viszonylag kis koncentrációban detektálták a TASK-3-specifikus mRNS-t (Medhurst és munkatársai, 2001). Vizsgálataink egyértelműen rámutattak, hogy a TASK-3-csatornák jelen vannak a humán gastrointestinalis rendszerben, ahol elsősorban az epithelialis sejtek és a neuronális elemek TASK-3 expressziója számottevő, bár más struktúrákban is megtalálhatók. Nem utolsó sorban arról is beszámolt hattunk, hogy a TASK-3 specifikus immunjelölődés az emlőszövetben is megfigyelhető, és annak megoszlása nagy mértékben függ attól, hogy a preparátumot core-biopszia vagy műteti bevétkezés keretében távolították el.

A TASK-család különböző tagjainak szövetei megoszlására és lehetséges funkciónak vonatkozó vizsgálatok kezdének a tudományos laboratóriumok érdeklődésének homlokterébe kerülni. A csatornák első leírása után a kutatók hajlottak arra, hogy ezen proteinmolekulákat ubiquiter megjelenésüknek tartsák, hozzájuk a membrán nyugalmi K+-permeabilitásának fenntartásán túlmenően más funkciókat nem kötöttek, így a nyugalmi membránpotenciál fenntartásáért felelős „szürke eminenciasokként” kezdték őket emlegetni. A specifikus és egyre kiterjedtebb vizsgálatok azonban felhívíták arra a figyelmet, hogy ezt a szemléletmódot minden
bizonnyal módosítani kell. Fény derült arra, hogy a TASK-család egyes képviselői igen lényeges és specifikus élettani regulatórikus funkcióval rendelkeznek (példaként említhető az apoptózis-, a légzés- és az aldoszteronszkréció szabályozása).

A TASK-csatornák mellett a klinikumban dolgozók sem mehetnek el közömbösen, hiszen a legújabb adatok szerint ezen molekulák jelentenék az inhalációs aneszetetikumok oly régen (mineddig sikertelenül) keresett célpointjait. A TASK-csatornák „unalmas” minősítésére mért legújabb, és kétségtelenül az egyik legjelentősebb csapás a TASK-3 csatornák onkogén potenciáljának felismerése volt. A legújabb vizsgálatok alapján bizonyítást nyert, hogy egyes rosszindulatú daganatokban a TASK-3 kódolásáért felelős génzakasz overexpressziója figyelhető meg; sőt, egy modellrendszerben azt is igazolni lehetett, hogy a működőképes (azaz K⁺-ra permeábilis) TASK-3 csatornának onkogén potenciálja van.

Ezen felismerések után nyilvánvaló vált, hogy a TASK-csatornák (és különösen a TASK-3 csatornák) igen komoly jelentőséggel bírhatnak a patológusok számára is, és a világ több laboratóriumban szinte egyidejűleg kezdődtek el azok a kísérletek, amelyek a TASK-3 csatornák jelenlétének, expressziós mintázatának és ezek változásainak vizsgálatát tűzték ki célul különböző rosszindulatú daganatokban.

Mivel a TASK-3-specifikus ellenanyagok immár hozzáférhetőek a kereskedelmi forgalomban, az ilyen és ehhez hasonló vizsgálatok elkezdése viszonylag egyszerű. Nyilvánvaló tény, hogy az immunhisztokémiai vizsgálatok kivitelezése a fagyasztott preparátumokon kecseg get a legjobb eredménnyel, ám ilyen metszetekre szert tenni és azokat vizsgálni a patológiai rutinfélé alakok mellett gyakorlatilag lehetetlen. Ebben a helyzetben az egyetlen működő alternatívát a formalin elengedhetetlen, hiszen a fixálás révén az immunhisztokémiai vizsgálatok kivitelezése a legjobb eredményt adja el. Ebben a helyzetben az egyetlen működő alternatívát a formalin felhasználása fenntartja.

Határozott probléma viszont, hogy ezen keresztköztések nem pusztán stabilizálják és
rögzítik a fehérjemolekulákat (azaz fixálnak), hanem olyan jelentős mértékben megváltoztathatják az eredeti fehérjemolekula struktúráját, hogy azok reakciókészsége a rájuk specifikus ellenanyagokkal számtettevő mértékben csökkenhet (akár meg is szűnhet); gyenge vagy álnegatív immunjelölődést eredményezve. Ezen problémák orvoslására egy lehetőség nyílik: valamilyen antigénfeltárási technikát kell alkalmazni. Ezen metódusok általában a pH megváltoztatásával (akár csökkentve, akár növelve azt), a hőmérséklet emelésével, valamilyen proteolítikus enzim alkalmazásával, esetleg ezek kombinációjával próbálják meg a fixált fehérjemolekulák elfedett epitópait újra hozzáférhetővé tenni a megfelelő ellenanyag számára (Bell és munkatársai, 1987).

A jelen munkában kipróbált és alkalmazott antigénfeltárási technikák bevált és gyakorta alkalmazott módszerek a mindennapos hisztopatológiai gyakorlatban (Shi és munkatársai, 1991; Shi és munkatársai, 1996). Az eredmények egyértelműen rámutattak, hogy a TASK-3 csatornák immunhisztokémiai detektálása céljára a Tris-pufferben történő inkubáció és a hőkezelés kombinálása jelenti az optimális technikát; konzisztens, megbízható és reprodukálható eredményt adva, ahol a megfigyelt immunfestődés teljesen megfelelt a fagyasztott preparátumban tapasztalható mintázatnak.

A jelen tanulmányban külön figyelmet fordítottunk az antigénfeltárással alkalmazhatóságának ellenőrzésére, hiszen a technika nem megfelelő megválasztása és alkalmazása ápolozitív vagy álnegatív reakciókat egyaránt eredményezhet. Az AF ellenőrzése során részben a jól ismert TASK-3 megoszlási mintázattal rendelkező humán cerebelláris szövetet alkalmaztuk pozitív kontrollként, részben összevetettük a TASK-3 jelölődést a fagyasztott preparátumokból készített (azaz megőrzött epitópokat tartalmazó) metszeteken, valamint az ugyanazon blokkból készült, de rutin hisztopatológiai eljárásra átérett mintákon, az AF elvégzése után. Előbbi esetben a várt jelölődési mintázatot tapasztaltunk, utóbbiban pedig mutatkozott ugyan némi különbség az immunreakciók intenzitásában, ám azok megoszlása teljes mértékben megegyezett. Fontos megjegyezni, hogy bár a beágyazott metszeteken kivitelezett reakció intenzitásának csökkenése észrevehető volt, az a vizsgálatok értékelését érdemben nem zavarta. A megfelelő antigénfeltárási technika alkalmazása és az így kapott immunreakció megoszlásának teljes összhangja egyértelműen arra utalt, hogy az a megfigyelésünk, miszerint a TASK-3-specifikus immunreakció egyes szöveti struktúrákóból hiányzik (pl. simaiizomsejtek), nem a detektálási módszer hiányosságainak vagy az epitópok módosulásának következménye.
Mindezek mellett meg kell azonban emlékezni egy másik igen lényeges (és gyakorta előforduló) hibaforrásról: az álpozitív reakció kialakulásáról. Az álpozitív reakció hátterében egyértelműen az alkalmazott antitestek nem megfelelő specifitása áll. Sajnálatos módon, ez a probléma még manapság is kíséri az immunhisztokémiával foglalkozókat, annak ellenére, hogy az alkalmazott ellenanyagok túlnyomó részét az arra specializálódott cégek állítják elő. A legjobb szándék és a leggondosabb elővizsgálatok ellenére előfordulhat azonban egy addig fel nem ismert keresztreakció, amikor a primer antitest nem csupán a célproteint ismeri fel, hanem valamilyen más molekulához is kötődik. A fenti okból kifolyólag, és mivel ez az első olyan tanulmány, ahol a TASK-3 csatornák megoszlási mintázatának vizsgálata történt a humán gastrointestinalis rendszerben, különösen nagy figyelmet kellett fordítanunk az immunjelölődés specificitásának ellenőrzésére.

Állatkísérletek esetében a leghitelesebb technika az alkalmazott antitestek specificitásának vizsgálatára a „knock-out” állatok létrehozása, hiszen az ilyen szövetekben kivitelezett immunjelölés negatív eredménye egyértelműsíti az ellenanyag specificitását. Emberi szövetek vizsgálata során (vagy életfontos fehérje tanulmányozása esetén, amikor a knock-out állat életképtelen) ez a metódus természetesen nem használható, ezért megfelelő alternatívákat kell alkalmazni. Mivel a további, specificitást ellenőrző és azt megerősítő kísérletek nem olyan döntő hatásfokúak, mint a knock-out állatok alkalmazása, a jelen munkában több ilyen technikát is alkalmaztunk, hogy azok együttesen elegendően egyértelműen jelezzék az itt vizsgált immunreakciók specifikusságát.

Igen komoly megerősítését jelentette az eredményeinknek, hogy a vizsgálatokhoz két elsődleges antitestet használtunk, amik a csatornaféhérje két különböző, egymástól igen messze található epitópja ellen irányultak (egyik kötőhely az N-, a másik a C-terminális területén található; egyikük a csatorna extra- a másikuk pedig annak intracelluláris részén). Az a megfigyelésünk, miszerint a két antitest alkalmazásával kivitelezett reakciók teljesen megegyező festődési mintázatot adtak, azokban csak intenzitásbeli különbség volt tapasztalható, feltétlenül arra utal, hogy ugyanazon fehérjémolekulák jelenlétéit detektálták, hiszen annak elhanyagolhatóan csekély a valószínűsége, hogy a két különböző ellenanyag aspecifikus módon teljesen azonos struktúrákat ismerjen fel.

Ugyancsak értékes, a primer antitestek specififikus kötődését megerősítő adatként interpretálható azon megfigyelésünk, miszerint a primer antitesteket a nekik megfelelő
immunizáló peptiddel előinkubálva értékelhető immunjelölődés nem jelentkezett. Ezen preadsorpciós kontroll vizsgálatokat minden alkalmazott preparátumon elvégeztük; sőt amennyiben ez lehetséges volt, akkor fagyasztott metszeteken is. Ha a formalinnal fixált minták vizsgálatára került sor, akkor ezek a kontroll vizsgálatok minden esetben a leghatékonyabbnak talált antigénfeltárási technika, azaz a Tris-pufferben történő inkubáció után történtek. Természetesen a preadsorpciós kontroll azt nem zárja ki, hogy az elsődleges antitest valamilyen más proteinhez ne kötődne (aminők van egy olyan epitópjára, ami nagyban hasonlíthat vizsgált fehérje célepitópjára), ám azt egyértelműen jelzi, hogy az immunhisztokémiai jelölés során az ellenanyag a specifikus, epitópfelismerő régiójával kapcsolódik a célfehérjéhez. Az előző bekezdésben részletezett kísérleti eredménnyel kombinálva azonban ez a vizsgálat is igen meggyőzően igazolja az elvégzett reakció specifikus voltát.

A fenti vizsgálatok mellett Western-blot kísérletekre is sor került. A Western-blot technika alkalmazását részben az indokolta, hogy megvizsgáljuk, vajon a felhasznált antitestek alkalmasak-e „lineáris” epitópok detektálására. A Western-blot vizsgálatok számos igen érdekes (és nagyban megunytató) eredményt hoztak. Kiderült, hogy mindkét elsődleges antitest alkalmas ezen vizsgálatok kivitelezésére, azaz nem pusztán „konformációs” epitópok ellen irányulnak. A másik lényeges megállapítás, hogy a Western-blot vizsgálatok után végzett denzitometria eredménye teljes összhangban állt az immunhisztokémiai adatokkal. Némileg meglepő módon, a Western-blot vizsgálatok során a csatornafehérje dimer változatának megfelelő magasságában (kb. 84 kDal) jelentkezett a legintenzívebb csík. A reakciókörülmények (és a fehérjepreparátum készítésének) módosításával sikerült ugyan a monomer fehérjemarkulát detektálni, azonban a dimer változat még ebben az esetben is nagyobb mennyiségben volt jelen. Fontos megjegyezni, hogy mind a monomerként, mind a dimerként azonosítható csík eltűnt a primer antitestek blokkoló peptiddel történő előinkubációja után.

4.2. A TASK-3 csatornák lehetséges fiziológiai szerepe a gastrointestinalis rendszerben

A jelen vizsgálatosorozat eredményeinek értelmezése és diszkussziója nem nélkülözheti az általunk leírt TASK-3 megoszlási mintázat esetleges funkcionális relevanciájának taglalását. Ismeretes, hogy a vastagbél nyálkahártyája által termelt
szekrétum K\(^+\)-koncentrációja magas. A mai napig nem teljesen világos azonban, hogy egészen pontosan milyen K\(^+\)-csatornák felelősek az apicalis és a basolateralis membránon történő K\(^+\)-forgalom biztosításáért (a témáról kíváló áttekintést ad Kunzelmann és Mall, 2002). A jelenleg elfogadott nézet szerint a vastagbél K\(^+\)-szekréciójának biztosításában ún. „maxi” és „ROMK”-típusú K\(^+\)-csatornák vehetnek részt, de a folyamatba bevont egyéb K\(^+\)-csatornákra vonatkozó információk igen hízagosnak mondhatók. Az intestinalis epithelium membránjában bizonyos cAMP- és Ca\(^{2+}\)-aktivált K\(^+\)-csatornák funkciója tűnik a leglényegesebbnek, ám egyéb (így pl. a TASK-3) csatornák szerepe sem zárható ki, különösen a jelen disszertációban részletezett kísérleti adatok tükrében.

A pancreasban számos érdekes funkció tételezhető fel a TASK-csatornák vonatkozásában. Ismert, hogy az ún. Cl\(^-\)-ot szekretáló epitheliumokban (amilyen a pancreas is) a K\(^+\)-csatornák jelenléte és aktivitása elengedhetetlen a Cl\(^-\) transzportjához, ugyanis a K-ionok mozgása biztosítja az anionok számára a szükséges hajtóeret. A folyamatban egyes Ca\(^{2+}\)-aktivált K\(^+\)-csatornák jelentőségét már leírták (Kim és Greger, 1999; Köttgen és munkatársai, 1999), de a jelen disszertációban részletezett megfigyelések arra utalnak, hogy a TASK-3 csatornák is szereppel bírhatnak a pancreas ductalis rendszerének Cl\(^-\)-szekréciójában.

A disszertáció egyik legérdekesebbnek tűnő megállapítása az a megfigyelés, miszerint az inzuláris sejtek jelentékeny TASK-3 expressziót mutatnak, azaz komoly jelentőségük lehet az inzulin- és/vagy glukagonszekréció szabályozásában. A jelenleg általánosan elfogadott elmélet szerint az inzulinszekréció szabályozásában az ATP-szenzitív K\(^+\)-csatornák játszanak meghatározó szerepet. A folyamat kulcsfontosságú eleme, hogy az extracelluláris glükózkonzentáció növekedését a B-sejtek ATP-szintézisének fokozódása követi, aminek révén az intracelluláris ATP-koncentráció emelkedése következik be. Ezen folyamat eredményeként a sejtfelszíni membrán ATP-szenzitív K\(^+\)-csatornái záródnak, ami a sejték depolarizációjához vezet. A membránpotenciál csökkenése a feszültségvezérl Ct\(^{2+}\)-csatornák megnyilását okozza, lehetővé téve a Ca\(^{2+}\) cytoplasmába történő áramlását, ami az inzulinszekréció közvetlen induktora. Őnként kínálkozik a feltételezés, hogy a B-sejték membránjában található TASK-3 csatornák egy jelentős repolarizációs erőt jelenthetnek, azaz az inzulinszekréció egyik „fékjeként” komoly jelentőségű lehetnek a hormonszekrécióit szabályozó mechanizmusok között. Bár az itt felvetett hipotézist közvetlenül támogató kísérletes eredményeknél még híjan vagyunk, közvetett bizonyítékként megemlíthető
az a hosszú ideje ismert, ám mindmáig megmagyarázatlan megfigyelés, miszerint az extracelluláris pH változásai hatást gyakorolnak a B-sejték inzuliszekréciójára (Hutton és munkatársai, 1980). Mivel a TASK-csatornák az extracelluláris pH savas irányba történő módosulása következményeként záródnak, hozzájárulhatnak a B-sejték depolarizációjához, így jelentőségük lehet az acidosis következményeként jelentkező inzulinszekréció-fokozódás kialakulásában.

4.3. A TASK-3 csatornák jelentősége rosszindulatú daganatokban – nem mindegy hogy core-biopszia vagy műteti anyag?

Összhangban más szerzők adataival azt tapasztaltuk, a TASK-3 csatornák jelen vannak tumoros szövetekben is. A vizsgálatok malignus daganatokra vonatkozó részét abban a reményben végeztük, hogy talán sikerül majd összefüggést találni a tumorok hisztológiai típusa, prognosztikai faktorai és azok TASK-3 mintázata (vagy a jelölődés erőssége) között. Nem kis csalódásunkra ilyen összefüggést (eddig legalábbis) nem találtunk, ám sikerült rávilágítani egy nagyon érdekes jelenségre, aminek pontos tisztázása még nyilvánvalóan sok munkát fog igényelni. Megállapítottuk, hogy a core-biopsziák formájában nyert szövetmintákban a TASK-3 jelölődés döntően cytoplasmaticus, az a magot legnagyobb részt megkíméli. Az intracelluláris lokalizáció arra utal, hogy ezek a csatornák nagy mennyiségben vannak jelen az endoplasmaticus reticulum területén. Ez a jelenség igen hasonló ahhoz, amit TASK-1 csatornákat overexpresszáló, transzfektált COS-sejtéken, valamint tenyészttet astrocyták esetében.
a TASK-1, TASK-2 és TASK-3 csatornák kapcsán korábban leírtak (Girard és munkatársai, 2002; Rusznák és munkatársai, 2004). Igen figyelemre méltónak ítéljük, hogy a TASK-3 jelölődés nagyon gyakran kifejezett perinuclearis rajzolatot mutatott, ami arra utalhat, hogy a csatornák megtalálhatók a maghártya közelében, esetleg annak részét képezhetik. Továbbra sem világos azonban ezen csatornák funkciója az intracelluláris membránokban. Felmerül, hogy egy könnyen hozzáférhető és gyorsan mobilizálható „tartalékot” jelentenek az itt elhelyezkedő TASK-3 csatornák, amiket a sejt szükség esélén igen gyorsan tud rendeltetési helyükre szállítani. Az sem kizárható azonban, hogy az endoplasmaticus reticulumban már kifejezett funkcióval bírnak. Érdemes megjegyezni, hogy a témával foglalkozó kutatók továbbra is sikertelenül keresik azon ioncsatornákat, amelyek az endoplasmaticus reticumból történő Ca2+-felszabadulás során a kifelé elmozduló pozitív töltések által keltett töltésmegoszlás kiegyenlítését hivatott végezni. Az erre a kérdésre vonatkozó kísérleteknek igen súlyos (jelenleg megoldhatatlan) metodikai nehézségét az jelenti, hogy az intracelluláris membránok nem vizsgálhatók a klasszikus mikroelektróda-technikával, ennél fogva kizárólag hipotézisek léteznek az említett csatornák mibenlétére vonatkozólag. Mindezek alapján nem kizárható, hogy a TASK-csatornák jelentik az endoplasmaticus reticulum „leak”-csatornáit.

Szemben a core-biopsziákkal, a múltéti beavatkozás során eltávolított szövetmintákban a TASK-3 immunjelölődés nem kizárólag a cytoplasmára és intracelluláris membránokra korlátozódott, hanem igen jelentékeny festődést tapasztaltunk a sejtmagok területén is. Nem világos azonban, hogy a megfigyelt jelölődés valóban a magban van, vagy csupán a magot övező sejtmaghártya intenzív jelölődéséről van szó - válasz a humán szövetmintákon végzett fluoreszcens immunjelölés és a konfokális mikroszkópia alkalmazásától remélhető. Természetesen nem mellőzhető a core-biopszis anyagban és a múltéti preparátumban tapasztalt megoszlásbeli különbség lehetséges okának diszkussziója sem. Mivel mind a vizsgált szövet minősége, mind az immunjelölés kivitelezése teljesen azonos a demonstrált két esetben, a legkézenfekvőbbnek tűnő metodikai problémák/különbségek/hibák kizárhatók. Fontos azonban megjegyezni, hogy jelentős különbség van a szövetminta kezelésében a core-biopszis és a múltéti anyag között. A core-biopszia során a beteget nem altatják, és az eltávolított szövetminta azonnal a fixáló oldatba kerül, ráadásul az így eltávolított anyag mérete miatt a fixáló igen gyorsan átjárja a szövetet. Ezzel szemben a műtét természetesen általános narkózisban
történik, és a kivett szövetminta csak némi idő (esetenként 20-30 perc) elteltével kerül formálna, addig fiziológiás sóoldatban áll. Ez felveti annak lehetőségét, hogy a csatornák esetleg a szöveti hipoxia vagy acidosis (esetleg az ezen tényezők következményeként felszabaduló szöveti faktorok) következményeként kerülnek át a sejtmag környékére a hipoxiára adott sejtválasz részeként. Ez a feltételezés azért tűnik kecségtetőnek, mert az egyik szerzőcsoport vélekedése szerint a TASK-3 csatornák szerepet játszanak a perifériás kemoreceptorok hipoxiára adott válaszreakciójában (Buckler és munkatársai, 2000); mások pedig a TASK-3 csatornákat összefüggésbe hozták a sejtek (elő sorban a tumorosejtiek) fokozott hipoxiatűrő képességével; a pH változásainak TASK-csatornákra kifejtett hatása pedig már hosszabb idő óta ismert.

Egy további lehetőség, ami ugyancsak figyelmet érdemel a gáznemű altatószerek alkalmazásával kapcsolatos. Több szerző beszámolt arról, hogy a halotán és más gáznemű anesztetikumok a TASK-csatornákra közvetlenül hatnak; nevezetesen aktiválják azokat (Patel és munkatársai, 1999; Lesage és munkatársai, 2000), ily módon hyperpolarizálva a neuronokat, ami végül a narkózis kialakulásához vezet. A jelen munkában bemutatott eredmények alapján az sem kizárható, hogy a gáznemű anesztetikumok nem csupán hatnak a TASK-csatornákra, de azok transzlokációját is indukálhatják.

4.4. A PKC-izoenzimmintázat és a rosszindulatú húgyhólyagtumorok kapcsolata

A jelen munka egyik kiemelkedően fontos eredménye annak igazolása volt, hogy a humán húgyhólyag epithelialis rétegből kiinduló rosszindulatú daganatok által expresszált PKC izoenzimek jelentős, a tumor grádusával összefüggő, mennyiségi változást mutatnak. A vizsgálatok arra derítettek fénnyt, hogy a tumor előrehaladásával a PKCβ és δ izoenzimek mennyisége csökkent, míg a PKCα, ε és ζ ezzel ellentétes irányú változást mutattak. A megfigyelések arra utalnak, hogy a tumor előrehaladásával a PKCβ és δ izoenzimek mennyisége csökken, míg a PKCα, ε és ζ ezzel ellentétes irányú változást mutatt. A megfigyelések arra utalnak, hogy (hasonlóan más szövetekhez, Mischak és munkatársai, 1993; Goodnight és munkatársai, 1994; Bamberger és munkatársai, 1996; Franz és munkatársai, 1996; Neill és munkatársai, 2003; Selzer és munkatársai, 2003; Koren és munkatársai, 2004) a PKC izoenzimek központi szerepet játszhatnak a húgyhólyag epitheliumának daganatos elváltozásaiban is. A kísérleti eredmények azt is sugallják, hogy az egyes PKC izoformák ellentétes szereppel bírhatnak a tumorok kialakulásában. Érdekesnek tűnik az a megfigyelés,
miszerint ez a fajta antagonizmus még az ugyanazon csoportba tartozó formák között is megfigyelhető; a „konvencionális” vagy Ca²⁺-függő csoportba tartozó PKCₓ és PKCᵧ, valamint a „novel” típusú PKC₀ és PKCₑ mennyisége ellentétes irányú változást mutatott a tumor grádusának előrehaladásával. Ez a megfigyelés arra utal, hogy a leírt és itt tapasztalt módosulások nem egyszerűen az egyes csoportok aktiválódási körülményeinek változásaival hozhatók összefüggésbe, hanem olyan eltérésekkel is, amelyek képesek az egyes izoformák megjelenését szelektív módon befolyásolni.

Fontos megjegyezni, hogy ezidáig rajtunk kívül csupán egyetlen munkacsoport vizsgálta a PKC izoenzimmintázát változásait a hólyag rosszindulatú daganataiban (Koren és munkatársai, 2000; Langzam és munkatársai, 2001). Bár megfigyeléseink egy része teljes hasonlóságot mutat az idézett szerzőcsoport eredményeivel (a cPKCᵧ és a nPKC₀ mennyiségének csökkenése, valamint az aPKCₓ mennyiségének fokozódása a tumor előrehaladásával), néhány adat mutat némi eltérést a két munkacsoport esetében. Ezek sorában megemlíthető, hogy szemben a Koren és munkatársai (2000) és a Langzam és munkatársai (2001) által leírtak, a jelen vizsgálatban jelentős változást tapasztaltunk a cPKCₓ és a nPKCₑ mennyiségében (főtétlenül megemlíthető ugyanakkor, hogy a nPKCₑ vizsgálata nem képezte tárgyát az idézett tanulmányoknak).

Ugyancsak lényegesnek tűnő differenciálat jelent a két tanulmány között, hogy (szemben az idézett közleményekkel) az általunk vizsgált szövetmintákban a nPKCₑ jelenlétét nem tudtuk igazolni. Természetesen számos lehetőség mérlegelendő ezen különbségek értelmezése, azok okainak keresése során, és nem zárhatók ki az eltérő antitestek alkalmazásából, a technikai különbözőségekből és az esetleges geográfiai-populációgenetikai differenciákból származó eltérések. Mérlegelést érdemel azonban két további tényező, ami ugyancsak magyarázhatja az említett különbségeket. Egyrészt az idézett munkákban a G1 és G2 grádusú minták pTa stádiumú, a mi vizsgálatainkban pedig pT1 és pT2 stádiumú daganatokból lettek eltávolítva. Ezen túlmenően, Langzam és munkatársai (2001) olyan mintákon végeztek a Western-blót analízist, amihez a teljes tumorszövet homogenizálása után jutottak, így eredményeik a tumorszövet mesenchimalis eredetű részének viselkedését is tükrözik. Ettől jelentősen eltérően, a mi vizsgálatainkban a hólyagfal epithelialis rétegét elválasztottuk az alatta található szöveti régióktól, így a disszertációban szereplő megállapítások kizárólag az epithelialis rétegre vonatkoznak.
Mindent összevetve megállapítható, hogy a PKC izoenzimmintázat jelentős eltérést mutat a különböző grádusú hólyagtumorokban. Ha az itt bemutatott tendenciákat sikerül megerősíteni, esetleg még a jelenleginél is nagyobb esetszám felhasználásával tovább finomítani azokat, akkor komoly esélye lehet annak, hogy a PKC izoenzimmintázat vizsgálatával további adatokat nyerhetünk a daganatok progressziójára (esetlegesen prognózisukra) vonatkozólag. Ezen túlmenően igen lényeges lesz annak tisztázása, hogy ok avagy okozat-e a PKC izoenzimmintázat módosulása a rosszindulatú elváltozások kialakulása során.

4.5. Befejezésül...

A jelen tézisekben két olyan molekula megoszlását, és lehetséges kapcsolatát tanulmányoztuk egyes humán rosszindulatú daganatok keletkezésével, amik kifejezetten ubiquiternek tekinthetők, szerteágazó fiziológiai és patológiai funkciókkal rendelkeznek. A kérdéses fehérjék (PKC és TASK) egyértelműen jelen vannak az ép szövetekben is, így onkogén potenciáljuk nem pusztán jelenlétiükönél, hanem megoszlásuk és funkcióik megváltozásából fakad(hat). A jelen disszertáció eredményei rámutatták, hogy egyes PKC izoenzintípusok mennyisége nő, másoké csökken a rosszindulatúan elfajult sejtekben, ami reményt jelenthet arra, hogy egyes pontosan irányított és izoenzim-specifikus PKC agonisták és/vagy antagonisták hatással lehetnek a tumor növekedésére, esetleg hozzásegíthetnek azok regressziójához. A TASK-csatornákkal kapcsolatos vizsgálataink azonban arra is rámutatnak, hogy (bár a TASK-3 csatornák onkogén potenciálja manapság széles körben elfogadott) ez a molekula az ép szövetekben is jelen van, és a funkcióját gátló anyagok (amiket sok szerző tekint reménybeli daganatellenes szereket) komoly zavarokat okozhatnak a szervezet fiziológiai működésében. Mindezek alapján eredményeink azt a meglehetősen pesszimistának tűnő, ám igencsak realista megállapítást erősítik meg, hogy a rendelkezésre álló és folyamatosan növekvő mennyiségű kísérletes adat ellenére fájdalmasan keveset tudunk a daganatok keletkezéséről, és igen szívós és kitartó munkára van ahhoz szükség, hogy akár egy parányi lépést is tehetünk a rosszindulatú tumorok megelőzésében hatásos, valamint a kifejlődött daganatokra ható, ugyanakkor az ép szövetek funkcióit csak kevessé befolyásoló szereket fejlesztése felé.
6. A TÉZISEK BEN ELŐFORDULÓ HIVATKOZÁSOK

JEGYZÉKE

Fraenkel-Conrat H., Olcott H.S. (1948a) The reaction of formaldehyde with proteins. V. Cross-linking between amino and primary amide or guanidyl groups. J. Am. Chem. Soc. 70 :2673-2684.

Stanfield P.R. (1988) Intracellular Mg²⁺ may act as a cofactor in ion channel function. TINS 11: 475-477.

A jelen tanulmányban két olyan protein (PKC és TASK-3) vizsgálatát végeztük, amelyek hatással vannak a sejtek differenciálódására, proliferációjára és apoptóti folyamataira, ezáltal jelentőségük lehet a egyes rosszindulatú daganatok kialakulásában és növekedésében.

A TASK-3 csatornák vizsgálata során elvégeztük két, a kereskedelmi forgalomban hozzáférhető ellenanyag vizsgálatát; igazoltuk specificitásukat, valamint kidolgoztuk az immunreakció optimális feltételeit, beleértve az ideális antigénfeltárási technika megtalálását. Az antigénfeltárás adekvát voltát fagyasztott preparátumokon kivitelezett immunreakciók alkalmazásával erősítettük meg.

Megállapítottuk, hogy a humán gastrointestinalis rendszer epithelialis sejtjei intenzív TASK-3 expressziót mutatnak. Erőteljes reakciót tapasztaltunk a plexus myentericus Auerbach idegelemeiben, miközben az azokat övező simaizomrétegben lényegesen gyengébb reakciót figyeltünk meg. Erőteljes és jellegzetes TASK-3 specifikus reakciót láttunk a pancreas területén, az endocrin és az exocrin állományban egyaránt. Kettős immunjelöléssel a Langerhans-szigetek A- és B-sejtjeinek TASK-3 pozitivitását is igazoltuk. Erőteljes TASK-3 jelölődést figyelhettünk meg a gastrointestinalis rendszert és az emlőszövetet érintő malignus daganatokban is, de nem találtunk egyértelmű összefüggést a TASK-3 expresszió erőssége vagy eloszlása, valamint a daganatok szöveti képe, stádiuma és prognosztikai markerei között.

Határozott különbséget tapasztaltunk viszont a TASK-3 jelölődés megoszlásában a core-biopszia és a műteti beavatkozás során eltávolított szövetminta esetén. Előbbi esetben a jelölődés döntően cytoplasmaticus volt és a magok csupán csekély százaléka mutatott TASK-3 pozitivitást, utóbbi esetben a sejtmagok jelentős része erőteljes immunfestést produkált.

A PKC izoenzimmintázat tumorprogresszióval összefüggő változásait húgyhólyagból izolált, transitionalis sejtjei daganatok Western-blot vizsgálatával végeztük. Megállapítottuk, hogy a humán húgyhólyag epithelialis sejtjei öt PKC izoformát (PKCα, PKCβ, PKCδ, PKCe és PKCζ) expresszálnak. A tumorosan elfajult epitheliumból készített szöveti homogenizátumban ezen izoformák mennyisége jellegzetes, a tumor grádusával összefüggő, statisztikailag is szignifikáns változást mutatott. Míg a PKCβ és PKCδ mennyisége a tumor előrehaladásával fokozatosan csökkent, addig a PKCα, PKCe és PKCζ mennyisége fokozódott.
The two proteins investigated in the present study (PKC and TASK-3) are known to influence cell differentiation, proliferation and apoptotic processes, thus they may have roles in the genesis and growth of certain malignant tumours.

In the frame of the work concerning the TASK-3 channels we evaluated two commercially available antibodies targeting the TASK-3 channels, we confirmed their specificity and we worked out the optimum conditions for the immunoreactions performed with these antibodies. Specific emphasis was laid upon the finding of the ideal antigen retrieval technique. The adequacy of the antigen retrieval was confirmed by performing TASK-3 specific labelling on frozen tissue samples.

We found that the epithelial cells of the human gastrointestinal tract showed intense TASK-3 specific immunolabelling. Strong immunoreaction could be observed in the neural elements of the myenteric plexus, whereas the surrounding smooth muscle layer exhibited markedly weaker immunolabelling. The pancreas also showed strong and rather characteristic TASK-3 immunopositivity pattern in both the endocrine and exocrine portions. Double immunolabelling experiments revealed that both the A and B cells of the islets of Langerhans expressed TASK-3 channels.

Strong TASK-3 labelling could also be observed in the malignant tumours of the gastrointestinal tract and in breast cancers, but no correlation could be found between the intensity/distribution pattern of the TASK-3 immunopositivity and the histological picture, grade and prognostic markers of the tumours. Definite differences could be observed, however, between the TASK-3 distribution of the tissue samples obtained during core-biopsy and surgical intervention, respectively. We found that in the core-biopsies the TASK-3 specific immunoreaction was predominantly cytoplasmic, most of the nuclei were spared after the labelling. In the surgical specimens, however, a large proportion of the nuclei demonstrated strong and distinct TASK-3 specific labelling.

The grade-dependent alterations of the PKC isoenzyme pattern of human bladder carcinomas have been investigated by using Western-blotting. The epithelial cells of the human bladder expressed five PKC isoenzymes (PKCα, PKCβ, PKCδ, PKCe és PKCζ). Moreover, characteristic, grade-dependent, statistically significant changes were found in the amount of the individual types of PKC isoenzymes in the homogenised tissue samples prepared from the tumorous epithelial cells of the urinary bladder. The amounts of PKCβ and PKCδ reduced, whereas the quantities of PKCα, PKCe and PKCζ increased as the tumour progressed.
Köszönetnyilvánítás

Ezúton szeretném hálámat kifejezni Nemes Zoltán Professzor Úrnak, témavezetőmnek, a DE OEC Pathologia Intézet igazgatójának, amiért támogatott és segített munkám elvégzésében. Ugyancsak nagy-nagy köszönettel tartozom Kovács László Professzor Úrnak, a DE OEC Élettani Intézet igazgatójának, segítségéért, valamint azért, hogy lehetővé tette számomra, hogy a jelen tézisekben vázolt kísérletek egy részét Intézetében végezhessem. Köszönöm Dr. Berecz György és Dr. G. Kiss Gyula főigazgató uraknak és Dr. Krajczár Géza főorvos úrnak, hogy lehetővé tették számomra a PhD képzésbe való bekapcsolódást.

Külön köszönet illeti Lukács Edit és Horváth Timea immunhisztokémiai szakasszisztenseket pontos, precíz és lelkes munkájukért.

Hálás vagyok Petinek, Lilinek, valamint szüleim a segítségért, támogatásért és a türelemért.

Köszönöm továbbá a Kenézy Kórház Patológia Osztálya munkatársainak segítségét és támogatását, és hálás vagyok mindenki másnak, aki gondolataival, ötleteivel vagy bármilyen más módon segített munkámban.
A téziseket megalapozó tudományos munkák jegyzéke

In extenso közlemények

Előadások és poszterek

A tézisekben fel nem használt tudományos munkák jegyzéke

In extenso közlemények

Idézhető kivonatok

Előadások és poszterek

