22 C-Glucopyranosyl-1,2,4-triazol-5-ones: synthesis and inhibition of glycogen phosphorylase

Q1 Éva Bokor ${ }^{\text {a }}$, Zsolt Széles ${ }^{\text {a }}$, Tibor Docsa ${ }^{\text {b }}$, Pál Gergely ${ }^{\text {b }}$, László Somsák ${ }^{\text {a,* }}$
${ }^{\text {a Department of Organic Chemistry, University of Debrecen, POB 20, H-4010 Debrecen, Hungary }}$
${ }^{\mathrm{b}}$ Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary

A R T I C L E I N F O

Article history:

Received 8 October 2015
Received in revised form 7 December 2015
Accepted 11 December 2015
Available online

Keywords:

C-glucosyl derivative
1,2,4-Triazol-5-one
Glycogen phosphorylase
Inhibitor

Abstract

Various C-glucopyranosyl-1,2,4-triazolones were designed as potential inhibitors of glycogen phosphorylase. Syntheses of these compounds were performed with O-perbenzoylated glucose derivatives as precursors. High temperature ring closure of N^{1}-carbamoyl- $C-\beta$-D-glucopyranosyl formamidrazone gave 3- β-D-glucopyranosyl-1,2,4-triazol-5-one. Reaction of N^{1}-tosyl-C- β-D-glucopyranosyl formamidrazone with ClCOOEt furnished 3- β-D-glucopyranosyl-1-tosyl-1,2,4-triazol-5-one. In situ prepared β-Dglucopyranosylcarbonyl isocyanate was transformed by PhNHNHBoc into 3- β-D-glucopyranosyl-1-phenyl-1,2,4-triazol-5-one, while the analogous 1-(2-naphthyl) derivative was obtained from the unsubstituted triazolone by naphthalene-2-boronic acid in a $\mathrm{Cu}(\mathrm{II})$ catalyzed N-arylation. Test compounds were prepared by Zemplén deacylation. The new glucose derivatives had weak or no inhibition of rabbit muscle glycogen phosphorylase b: the best inhibitor was 3- β-D-glucopyranosyl-1-(2-naphthyl)-1,2,4-triazol-5one ($\mathrm{K}_{\mathrm{i}}=80 \mu \mathrm{M}$).

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Glycogen phosphorylase (GP) inhibitors (GPIs) may find applications in antidiabetic therapy especially in type 2 diabetes mellitus, ${ }^{1}$ but also in other diseases like cerebral ${ }^{2,3}$ and cardiac ${ }^{4}$ ischemias, other cardiovascular impairments, ${ }^{4,5}$ and tumours. ${ }^{6,7}$ A very broad range of compounds with a number of scaffolds was shown to have inhibitory effect against GP ${ }^{8}$ through binding to one (or sometimes more) of the binding sites discovered so far. ${ }^{9}$ The catalytic site of GP can be targeted by glucose derivatives which are competitive inhibitors of the enzyme. ${ }^{10,11}$ Several glucose based GPIs show submicromolar efficiency: the best known inhibitors can be found among glucopyranosylidene-spiro-heterocycles, N-acyl- $N{ }^{\prime}-\beta$-Dglucopyranosyl ureas, and C- β-D-glucopyranosyl heterocycles. In the latter class of compounds structure-activity relationships have been established for 5-membered heterorings and some of their benzologs (Chart 1). Thus, 2- β-D-glucopyranosyl benzothiazole 1 proved to be a weaker inhibitor in comparison to benzimidazole $2 \mathbf{2 . ~}^{12}$ This observation could be rationalized by X-ray crystallography of the enzymeinhibitor complexes showing an H -bond between the imidazole NH and the main chain carbonyl of His377 in the vicinity of the active site of GP. ${ }^{13}$ Extension of $\mathbf{2}$ by a further aromatic ring as in $\mathbf{3}$ re-

[^0]sulted in an even stronger inhibitor indicating that a large hydrophobic moiety properly protruding into the β-channel ${ }^{\text {a }}$ of the enzyme can be beneficial for the binding. ${ }^{14}$ Studies with each possible C-glucosyl oxadiazole isomer revealed that the constitution of the heterocycles was also an important factor and $5-\beta-\mathrm{D}-$ glucopyranosyl-3-substituted-1,2,4-oxadiazoles 4 and 7 proved to be the best inhibitors of these series. ${ }^{15,16}$ Changing the oxadiazole to 1,2,4-triazole furnished inhibitors $\mathbf{5}$ and $\mathbf{8}$ exhibiting stronger binding most probably due to the H -bonding capacity of the triazoles, ${ }^{17,18}$ and imidazoles $\mathbf{6}$ and $\mathbf{9}$ were shown to be even better inhibitors. ${ }^{19}$ Although no structural data have yet been available to rationalize this finding, one may speculate that the stronger inhibition of imidazoles can be a result of the smaller number of ring tautomers in comparison to the case of triazoles. Tautomeric forms have recently been shown to have a very important contribution to the determination of the binding strength of GP inhibitors. ${ }^{20}$ The observation that the naphthyl substituted compounds 7-9 bind stronger to the enzyme than the phenyl substituted $\mathbf{4 - 6}$ corroborates the role of the large hydrophobic group. Based on the above considerations, we have designed 3-C-glucopyranosyl-1-substituted-1,2,4-triazol-5-ones as further candidates of potential GPIs in which the presence of the carbonyl group might result in decreasing the number of tautomers due to the stability of the NHCO moiety.

[^1](2.4)

Chart 1. Inhibitory potency ($\mathrm{K}_{\mathrm{i}}[\mu \mathrm{M}]$) of selected C- β-D-glucopyranosyl heterocycles against rabbit muscle glycogen phosphorylase b (RMGPb).

2. Results and discussion

Several methods were reported for the syntheses of various 1,2,4-triazol-5-ones, ${ }^{21}$ e.g. starting with nitriles, ${ }^{22,23}$ imidates, ${ }^{24} N^{1}$-acyl-semicarbazides, ${ }^{25} N^{1}$-tosyl-amidrazones, ${ }^{26}$ or aldehyde-semicarbazones. ${ }^{27}$ C-Glycosyl-1,2,4-triazol-5-ones could not be located in the literature. The only related work found was that of Poonian and Nowoswiat ${ }^{28}$ reporting the transformation of β-D-ribofuranosyl formimidate by (thio)semicarbazide to the corresponding $C-\beta-D-$ ribofuranosyl $-N^{1}$-(thio)carbamoyl formamidrazones. While the ring closure of the thiocarbamoyl de-

Table 1
Synthesis of O-perbenzoylated N^{1}-substituted C- β-D-glucopyranosyl formamidrazones
a) dry EtOH , reflux; b) dry pyridine, rt.

Scheme 1. Reagents and conditions: a) dry m-xylene, reflux; b) dry DMF, reflux; c) ClCOOEt, dry CHCl_{3}, dry pyridine, $0^{\circ} \mathrm{C}$ to rt; d) cat. NaOMe in dry MeOH , rt.
rivative to a 1,2,4-triazol-5-thione could be achieved at elevated temperature, similar attempts to get the corresponding 1,2,4-triazol5 -one failed. ${ }^{28}$

Since from earlier work we had in hand the O-perbenzoylated β-D-glucopyranosyl formimidate ${ }^{14}$ ($\mathbf{1 0}$, Table 1), this compound was used as the starting material for the preparation of some new amidrazones suitable for ring closure towards the expected 1,2,4-triazol-5-ones. Reactions of 10 with ethyl carbazate (11), semicarbazide (12) or 2,4-dinitrophenylhydrazine (13) smoothly gave the corresponding C-glucosyl formamidrazones 14-16, respectively.

Boiling a solution of $\mathbf{1 4}$ in m-xylene brought about the expected ring closure; however, the reaction was accompanied by a 1,2-elimination of benzoic acid resulting in glucal 18 in low yield (Scheme 1). Cyclization of N^{1}-carbamoyl-amidrazone $\mathbf{1 5}$ in boiling DMF took place without concomitant elimination producing the expected triazolone 19 in good yield. Subsequent O-debenzoylation under Zemplén conditions gave test compound 20. Attempted cyclization of $\mathbf{1 6}$ with ClCOOEt in CHCl_{3} in the presence of 2 equiv. of pyridine or DIPEA at r. t. or with boiling failed; actually, no reaction could be observed. Reaction ${ }^{26}$ of tosyl-amidrazone $17^{17,29}$ with CICOOEt produced the tosylated triazolone $\mathbf{2 1}$ which was deprotected according to the Zemplén protocol to give the test compound 22.

Reagent	R	Product	Conditions	Yield (\%)
11		14	a	55
12		15	b	80
13		16	a	83

 starting material 24

Scheme 2. Reagents and conditions: a) (COCl$)_{2}$, dry 1,2 -dichloroethane, reflux; b) dry $\mathrm{THF}, 0^{\circ} \mathrm{C}$ to rt; c) dry m-xylene, reflux; $\left.\left.d\right) \mathrm{CF}_{3} \mathrm{COOH}^{2}, \mathrm{dry}^{\mathrm{CH}} \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt} ; e\right)$ cat. NaOMe in dry MeOH , rt.

Next we wished to prepare isomers of N-phenyl substituted triazolones. To obtain 5- β-D-glucopyranosyl-1-phenyl-1,2,4-triazol-3-one, compound 25 was prepared as the starting material (Scheme 2). C-Glucosyl formamide $\mathbf{2 3}^{30,31}$ was converted by oxalyl chloride ${ }^{32}$ into the acyl isocyanate 24 which was used without purification for the next reaction with PhNHNH_{2} to give 25 in very good yield. Towards 3- β-D-glucopyranosyl-1-phenyl-1,2,4-triazol-5-one, intermediate 24 was reacted with Boc-protected PhNHNH_{2} to give 26. Treatment of $\mathbf{2 6}$ by $\mathrm{CF}_{3} \mathrm{COOH}$, in analogy with a reported procedure, ${ }^{33}$ cleaved the protecting group and spontaneous ring closure gave the expected triazolone $\mathbf{2 7}$. To our surprise, this compound proved identical with that obtained by heating 25 in m-xylene; however, this unexpected outcome had a precedent in the literature. ${ }^{34}$ Besides the chemical evidence of the route $\mathbf{2 6} \rightarrow \mathbf{2 7}$, spectroscopic verification for the structure of 27 was also sought for. To this end, a $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ ROESY spectrum was recorded which showed the vicinity of the triazolone NH to H1 and H2 of the sugar moiety, thereby indicating the position of the aromatic residue (Fig. 1; for the spectra see Supporting information). Deprotection of 27 under Zemplén conditions furnished test compound 28 in excellent yield.

In order to have a triazolone with a larger aromatic substituent, synthesis of the 2-naphthyl derivative was envisaged. Although a synthetic sequence analogous to $\mathbf{2 3} \rightarrow \mathbf{2 4} \rightarrow \mathbf{2 6} \rightarrow \mathbf{2 7}$ seemed straightforward, the unavailability of the necessary 2-naphthyl-hydrazine prevented the application of this route. Therefore, a copper catalyzed cross-coupling protocol for the N-arylation of amides was adapted. ${ }^{35}$ The reaction of triazolone 19 with naphthalene-2boronic acid in the presence of $\mathrm{Cu}(\mathrm{OAc})_{2}$ and $\mathrm{Et}_{3} \mathrm{~N}$ gave low yield of 29 (Scheme 3). The structure of this product was considered to be analogous to that of 27 based on the coincidences of the chemical shifts both in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 27 and 29. In

Fig. 1. Nuclear Overhauser effects in 1-aryl-3- β-D-glucopyranosyl-1,2,4-triazol-5ones $27(\mathrm{Ar}=\mathrm{Ph})$ and 29 ($\mathrm{Ar}=2$-naphthyl).
addition, the structure was also corroborated by a $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ ROESY experiment (Fig. 1; for the spectra, see Supporting information). Zemplén deprotection of $\mathbf{2 9}$ produced test compound $\mathbf{3 0}$ in good yield.

The new compounds were assayed against rabbit muscle glycogen phosphorylase b (RMGPb) as described previously ${ }^{36}$ (Table 2). The unsubstituted triazolone $\mathbf{2 0}$ and its 1-tosylated derivative $\mathbf{2 2}$ had no significant effect. In the case of $\mathbf{2 0}$, the inefficiency may be explained by the relatively small size of the aglycon which cannot interact in the β-channel of the enzyme. This resembles the case of the similarly non inhibitory $5-\beta$-D-glucopyranosyl tetrazole. ${ }^{12}$ For 22, where the tosyl substituent can occupy the β-channel, the lack of efficiency may be attributed to the presence of the SO_{2} moiety. Such a tetrahedral linking element in the aglycon was shown to be detrimental to the binding in some types of glucose derived compounds. ${ }^{8,11,38-40}$ The 1-aryl-substituted triazolones 28 and $\mathbf{3 0}$ had weak inhibitory effects whereby the 2-naphthyl derivative $\mathbf{3 0}$ showed stronger binding than the phenyl compound 28. This reflects the general trend regarding the size and orientation of aryl substituents that were observed in many cases (cf examples 4-6 vs 7-9 in Chart 1). On the other hand, the triazolone ring between the sugar

$$
\begin{aligned}
b \square & 29 \mathrm{R}=\mathrm{Bz}(20 \%) \\
\longrightarrow 30 \mathrm{R} & =\mathrm{H}(84 \%)
\end{aligned}
$$

Scheme 3. Reagents and conditions: a) $\mathrm{Cu}(\mathrm{OAc})_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$; b) cat. NaOMe in dry MeOH , rt.

Table 2
Inhibition of RMGPb by C-glucopyranosyl-1,2,4-triazol-5-ones
Inhibition $[\mu \mathrm{M}]$
${ }^{\text {a }}$ Calculated from the IC ${ }_{50}$ by a web-based tool. ${ }^{37}$
and the aromatic part must have insufficient interactions with the amino acid side chains of RMGPb, resulting in weaker inhibition than many of other 5-membered C-glucosyl heterocycles studied so far.

In conclusion, synthetic methods have been elaborated to obtain hitherto unknown 3- β-D-glucopyranosyl-1-(un)substituted-1,2,4-triazol-5-ones. Enzyme kinetic tests with rabbit muscle glycogen phosphorylase b revealed 1-aryl-triazolones to be weak inhibitors, thereby contributing to structure-activity relationships of C-glucosyl heterocycles.

3. Experimental

3.1. General methods

Melting points were measured on a Kofler hot-stage and are uncorrected. Optical rotations were determined with a Perkin-Elmer 241 polarimeter at rt. NMR spectra were recorded with Bruker 360 (360/ 90 MHz for ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$) or Bruker $400\left(400 / 100 \mathrm{MHz}\right.$ for $\left.{ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\right)$ spectrometers. 2D ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ ROESY $(400 \mathrm{MHz})$ spectra were acquired with 150 ms spinlock for mixing in overnight experiments. Chemical shifts are referenced to $\mathrm{Me}_{4} \mathrm{Si}\left({ }^{1} \mathrm{H}\right)$, or to the residual solvent signals $\left({ }^{13} \mathrm{C}\right)$. Mass spectra were obtained by Thermo Scientific LTQ XL or MicroTOF-Q type Qq-TOF MS (Bruker Daltonik, Bremen, Germany) instruments. TLC was performed on DC-Alurolle Kieselgel $60 \mathrm{~F}_{254}$ (Merck) plates, visualized under UV light and by gentle heating. For column chromatography, Kieselgel 60 (Merck, particle size 0.0630.200 mm) was used. Toluene, m-xylene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$ were distilled from $\mathrm{P}_{4} \mathrm{O}_{10}$ and stored over $4 \AA$ molecular sieves or sodium wires. MeOH was purified by distillation after refluxing for a couple of hours with magnesium turnings and iodine. THF was distilled from sodium benzophenone ketyl and stored over sodium wires. Anhydrous solvents: EtOH (Sigma-Aldrich), DMF (Sigma-Aldrich), 1,2dichloroethane (Sigma-Aldrich) and pyridine (VWR) were purchased from the indicated companies. Ethyl C-(2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl)formimidate ${ }^{14}$ (10), N^{1}-tosyl-C-(2,3,4,6-tetra-O-benzoyl- β-D-glucopyranosyl)formamidrazone ${ }^{17}$ (17), C-(2,3,4,6-tetra-O-benzoyl- β-D-glucopyranosyl)formamide ${ }^{30}$ (23) and PhNHNHBoc ${ }^{41}$ were synthesized according to published procedures.

3.2. General procedure for removal of benzoyl protecting groups by the Zemplén protocol

To a solution of an O-perbenzoylated compound in anhydrous $\mathrm{MeOH}\left(5 \mathrm{~mL} / 100 \mathrm{mg}\right.$, a few drops of anhydrous CHCl_{3} were added in case of incomplete dissolution), a catalytic amount of a NaOMe solution (1 M in MeOH) was added and the mixture was left at rt. After completion of the reaction monitored by TLC (1:1 EtOAchexane and 7:3 $\mathrm{CHCl}_{3}-\mathrm{MeOH}$), the mixture was neutralized with a cation exchange resin Amberlyst 15 (H^{+}form), then the resin was filtered off and the solvent was removed. The crude product was purified by column chromatography.

3.3. N^{1}-Ethoxycarbonyl-C-(2,3,4,6-tetra-O-benzoyl- β-Dglucopyranosyl)formamidrazone (14)

Ethyl
C-(2,3,4,6-tetra-O-benzoyl- β-D-glucopyranosyl)formimidate ${ }^{14}$ ($\mathbf{1 0}$, $1.00 \mathrm{~g}, 1.53 \mathrm{mmol}$) and ethyl carbazate ($\mathbf{1 1}, 0.16 \mathrm{~g} 1.53 \mathrm{mmol}$) were stirred in anhydrous EtOH (20 mL) at reflux temperature, and the reaction was monitored by TLC (1:1 EtOAc-hexane). After completion of the reaction (5 h), the mixture was evaporated under diminished pressure, and the crude product was purified by column chromatography ($1: 1$ EtOAc-hexane) to yield $0.60 \mathrm{~g}(55 \%)$ white solid. Mp: $104-106{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-21\left(\mathrm{c} 0.55, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):$ 8.61 ($1 \mathrm{H}, \mathrm{br}$ s, NH), 8.04-7.82 (8H, m, Ar), 7.57-7.25 (12H, m, Ar), $5.99,5.74,5.63(3 \times 1 \mathrm{H}, 3$ pseudo $\mathrm{t}, J=9.6,9.6 \mathrm{~Hz}$ in each, $\mathrm{H}-2, \mathrm{H}-3$, H-4), 5.15 ($2 \mathrm{H}, \mathrm{br}$ s, NH_{2}), 4.63 ($1 \mathrm{H}, \mathrm{dd}, J=12.3,<1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$), 4.52 ($1 \mathrm{H}, \mathrm{dd}, J=12.3,5.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$), 4.46 ($1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{H}-1$), 4.25 (1 H , ddd, $J=9.6,5.3,<1 \mathrm{~Hz}, \mathrm{H}-5) 3.94\left(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.00(3 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 166.0,165.5(2), 165.1$ ($\mathrm{C}=0$), 155.5 (COOEt), $146.9(\mathrm{C}=\mathrm{N}), 133.3-128.1$ (Ar), 77.4, 76.0, 73.6, 70.4, 69.2 (C-1 - C-5), 63.0, $61.4\left(\mathrm{C}-6, \mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right)$. MSESI (m / z) : Calcd. for $\mathrm{C}_{38} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{NaO}_{11^{+}}[\mathrm{M}+\mathrm{Na}]^{+}$: 732.216. Found: 732.216.

3.4. N^{1}-Carbamoyl-C-(2,3,4,6-tetra-O-benzoyl- β-Dglucopyranosyl)formamidrazone (15)

Ethyl

C-(2,3,4,6-tetra-O-benzoyl- β-D-glucopyranosyl)formimidate ${ }^{14}$ ($\mathbf{1 0}$, $0.10 \mathrm{~g}, 0.15 \mathrm{mmol}$) and semicarbazide hydrochloride ($12,0.03 \mathrm{~g}$, 0.31 mmol) were stirred in anhydrous pyridine (3 mL) at rt . After disappearance of the imidate (3 h) monitored by TLC (EtOAc), the pyridine was removed under diminished pressure and the residue was purified by column chromatography (EtOAc) to give $0.08 \mathrm{~g}(80 \%)$ white solid. Mp: $131-133^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+36\left(\mathrm{c} 0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 9.57(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 8.02-7.82(4 \times 2 \mathrm{H}, 4 \mathrm{~d}, J=7.3 \mathrm{~Hz}$, Ar), $7.55-7.24(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.94,5.83,5.68(3 \times 1 \mathrm{H}, 3$ pseudo $\mathrm{t}, J=9.2$, 9.2 Hz in each, $\mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4), 5.25\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 4.63(1 \mathrm{H}, \mathrm{dd}, J=12.6$, $2.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 4.46$ ($1 \mathrm{H}, \mathrm{dd}, J=12.6,5.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}), 4.29$ ($1 \mathrm{H}, \mathrm{d}$, $J=9.2 \mathrm{~Hz}, \mathrm{H}-1$), 4.19 ($1 \mathrm{H}, \mathrm{ddd}, J=9.2,5.3,2.6 \mathrm{~Hz}, \mathrm{H}-5$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 166.1,165.8,165.5,165.1(\mathrm{C}=\mathrm{O}), 159.0\left(\mathrm{C}=\mathrm{ONH}_{2}\right)$, $141.5(\mathrm{C}=\mathrm{N}), 133.4-133.1,129.7-128.2$ (Ar), 77.2, 76.1, 74.0, 69.7, 69.2 (C-1 - C-5), 63.0 (C-6). MS-ESI (m / z): Calcd. for $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{10}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}$: 681.2. Found: 681.7.

3.5. N^{1}-(2,4-Dinitrophenyl)-C-(2,3,4,6-tetra-O-benzoyl- β-Dglucopyranosyl)formamidrazone (16)

Ethyl
C-(2,3,4,6-tetra-O-benzoyl- β-D-glucopyranosyl)formimidate ${ }^{14}$ (10, $0.10 \mathrm{~g}, 0.15 \mathrm{mmol}$) and 2,4-dinitrophenylhydrazine ($\mathbf{1 3}, 61 \mathrm{mg}$, 0.31 mmol) were refluxed in anhydrous EtOH (3 mL), and the reaction was monitored by TLC (2:3 EtOAc-hexane). After total consumption of the imidate (1 d), the solvent was removed and the
residue was purified by column chromatography (3:7 EtOAchexane) to give $0.10 \mathrm{~g}(83 \%)$ red syrup. R_{f} : 0.50 (2:3 EtOAc-hexane); $[\alpha]_{\mathrm{D}}=-66\left(\mathrm{c} 0.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 10.16(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $8.89(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}, \mathrm{Ar}), 8.04-7.84(4 \times 2 \mathrm{H}, 4 \mathrm{dd}, J=7.3,1.0 \mathrm{~Hz}$ in each, Ar$), 7.62(1 \mathrm{H}, \mathrm{dd}, J=9.6,2.6 \mathrm{~Hz}, \mathrm{Ar}), 7.54-7.24(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, $7.05(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{Ar}), 6.11,5.82,5.77(3 \times 1 \mathrm{H}, 3$ pseudo $\mathrm{t}, J=9.6$, 9.6 Hz in each, H-2, H-3, H-4), 5.31 (2 H , br s, NH_{2}), 4.75 (1 H , dd, $J=12.6,2.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 4.58(1 \mathrm{H}, \mathrm{dd}, J=12.6,5.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}), 4.54(1 \mathrm{H}$, d, $J=9.6 \mathrm{~Hz}, \mathrm{H}-1), 4.36(1 \mathrm{H}$, ddd, $J=9.6,5.3,2.6 \mathrm{~Hz}, \mathrm{H}-5) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 166.3,165.8,165.3(2)(\mathrm{C}=\mathrm{O}), 150.1,145.3(\mathrm{C}=\mathrm{N}$, DNP-C-1), 137.0 (DNP-C-4), 133.7-133.4, 129.9-128.4 (Ar), 123.2, 116.0 (DNP-C-3, DNP-C-6) 77.0, 76.6, 73.4, 70.5, 69.1 (C-1 - C-5), 63.0 (C-6). MS-ESI (m / z) : Calcd. for $\mathrm{C}_{41} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{13}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 804.2$. Found: 804.5.
3.6. 3-(3', $4^{\prime}, 6^{\prime}$-Tri-O-benzoyl-2'-deoxy-D-arabino-hex-1'-enopyranosyl)-1H-1,2,4-triazol-5(4H)-one (18)

The solution of amidrazone $14(0.40 \mathrm{~g}, 0.56 \mathrm{mmol})$ in anhydrous m-xylene (8 mL) was heated at $140^{\circ} \mathrm{C}$, and the reaction was monitored by TLC ($4: 1$ EtOAc-hexane). After total consumption of the starting material (2 h) the solvent was removed, and the residue was purified by column chromatography (7:2 EtOAc-hexane) to yield $0.11 \mathrm{~g}(37 \%)$ pale yellow solid. Mp: $205-207{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+13(\mathrm{c} 0.51$, DMSO); ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ (ppm): 11.92, $11.83(2 \times 1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{NH})$, 7.97-7.93 (6H, m, Ar), 7.67-7.64 (3H, m, Ar), 7.54-7.48 (6H, m, Ar), $5.91\left(1 \mathrm{H}, \mathrm{dd}, J=5.5,3.7 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.83\left(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.80$ ($1 \mathrm{H}, \mathrm{dd}, J=6.8,5.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime}$), 5.06 (1 H , ddd, $J=6.8,5.5,3.1 \mathrm{~Hz}, \mathrm{H}-5^{\prime}$), $4.77\left(1 \mathrm{H}, \mathrm{dd}, J=12.3,5.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 4.66(1 \mathrm{H}, \mathrm{dd}, J=12.3,3.1 \mathrm{~Hz}$, H-6'b); ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) δ (ppm): 165.3, 165.0, 164.5 (C=O), 155.5 (triazolone $\mathrm{C}=\mathrm{O}), 143.1,140.4\left(\mathrm{C}-1^{\prime}\right.$, triazolone $\left.\mathrm{C}-3\right), 133.8$, 133.7, 133.5, 129.4-128.7 (Ar), 98.1 ($\mathrm{C}-2^{\prime}$), 74.1, 67.8, 67.0 ($\left.\mathrm{C}-3^{\prime}-\mathrm{C}-5^{\prime}\right)$, 61.4 (C-6'). MS-ESI (m / z): Calcd. for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{8}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 542.2$. Found: 542.3.
3.7. 3-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-Tetra-O-benzoyl- β-D-glucopyranosyl)-1H-1,2,4-triazol-5(4H)-one (19)

The amidrazone 15 ($2.0 \mathrm{~g}, 2.94 \mathrm{mmol}$) was refluxed in anhydrous DMF (50 mL), and the reaction was monitored by TLC (EtOAc). After disappearance of the starting material (2 h), the solvent was removed under reduced pressure, and the residue was purified by column chromatography (EtOAc) to yield 1.35 g (69\%) white solid. Mp: $281-283{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-13$ (c 0.47, DMSO); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta$ (ppm): 11.91, $11.46(2 \times 1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{NH}), 8.04-7.36$ (20H, m, Ar), 6.15, $5.82,5.69\left(3 \times 1 \mathrm{H}, 3\right.$ pseudo $\mathrm{t}, J=9.2,9.2 \mathrm{~Hz}$ in each, $\left.\mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}\right)$, $5.10\left(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.67\left(1 \mathrm{H}, \mathrm{ddd}, J=9.2,5.3,<1 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right)$, 4.53 (2H, s, H-6'a, H-6'b); ${ }^{13}$ C NMR (DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm}): 165.3,165.1$, 164.7, $164.3(\mathrm{C}=\mathrm{O}), 155.8$ (triazolone $\mathrm{C}=0$), 143.3 (triazolone $\mathrm{C}-3$), 133.8-133.4, 129.4-128.3 (Ar), 74.5, 73.8, 71.6, 70.1, 68.6 (C-1' - C-5'), 62.3 (C-6'). MS-ESI (m / z): Calcd. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{10}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 664.2$. Found: 664.3.

3.8. 3-(β-D-Glucopyranosyl)-1H-1,2,4-triazol-5(4H)-one (20)

Prepared from compound $19(0.27 \mathrm{~g}, 0.41 \mathrm{mmol})$ according to the general procedure (Section 3.2.). Reaction time: 1 d . Purified by column chromatography (5:4 $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}\right)$ to yield $60 \mathrm{mg}(60 \%)$ colourless syrup. $\mathrm{R}_{\mathrm{f}}=0.32\left(1: 1 \mathrm{CHCl}_{3}-\mathrm{MeOH}\right),[\alpha]_{\mathrm{D}}=+9(\mathrm{c} 0.10$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6}+1$ drop $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta(\mathrm{ppm}): 4.70(1 \mathrm{H}, \mathrm{d}$, $\left.J=9.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.46\left(1 \mathrm{H}, \mathrm{dd}, J=11.9,2.6 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 4.25-4.18$ (2 H , $\mathrm{m}, \mathrm{H}-2^{\prime}$ or $\mathrm{H}-3^{\prime}$ or $\left.\mathrm{H}-4^{\prime}, \mathrm{H}-6^{\prime} \mathrm{b}\right)$, $4.06-4.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right.$ or $\mathrm{H}-3^{\prime}$ or $\left.\mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime}\right), 3.93$ (1 H , pseudo $\mathrm{t}, ~ J=9.9,9.2 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$ or $\mathrm{H}-3^{\prime}$ or $\mathrm{H}-4^{\prime}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 156.1$ (triazolone $\left.\mathrm{C}=\mathrm{O}\right), 145.7$ (triazolone $\mathrm{C}-3$), 81.3, 77.7, 74.7, 71.0, 69.8 ($\mathrm{C}-1^{\prime}-\mathrm{C}-5^{\prime}$), 61.1 ($\mathrm{C}-6^{\prime}$). MS-ESI $(\mathrm{m} / \mathrm{z})$: Calcd. for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 248.1 ; \mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaO}_{6}{ }^{+}$
$[\mathrm{M}+\mathrm{Na}]^{+}:$270.1. Found: $[\mathrm{M}+\mathrm{H}]^{+}: 248.2$; $[\mathrm{M}+\mathrm{Na}]^{+}: 270.5$. Anal: Calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{6}$ (M 247.205): C, 38.87; H, 5.30; N, 17.00. Found: C, 39.09; H, 5.43; N,16.89.
3.9. 3-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}-$ Tetra-O-benzoyl- β-D-glucopyranosyl)-1-tosyl-1H-1,2,4-triazol-5(4H)-one (21)

To a solution of amidrazone ${ }^{17} 17(0.20 \mathrm{~g}, 0.25 \mathrm{mmol})$ in anhydrous CHCl_{3} (3 mL) anhydrous pyridine ($37 \mu \mathrm{~L}, 0.45 \mathrm{mmol}$, 1.8 equiv.) was added. The mixture was then cooled in an ice bath, and a solution of ethyl chloroformate ($36 \mu \mathrm{l}, 0.38 \mathrm{mmol}, 1.5 \mathrm{ekv}$.) in anhydrous $\mathrm{CHCl}_{3}(3 \mathrm{~mL})$ was added dropwise over 15 minutes. The mixture was then stirred at rt, and the reaction was monitored by TLC (2:3 EtOAchexane). After 1 week, the mixture was concentrated under diminished pressure, and the crude product was purified by column chromatography (1:2 EtOAc-hexane) to give $0.14 \mathrm{~g}(70 \%)$ white solid. Mp: $105-107{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+6\left(\mathrm{c} \mathrm{0.56}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):$ $10.89(1 \mathrm{H}$, br s, NH $), 8.06-7.16(22 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.02(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}$, Ar), $6.01\left(1 \mathrm{H}\right.$, pseudo $\mathrm{t}, J=9.2,9.2 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$ or $\mathrm{H}-3^{\prime}$ or $\left.\mathrm{H}-4^{\prime}\right), 5.84-$ $5.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right.$ and/or H-3' and/or H-4'), $4.86(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}$, $\left.\mathrm{H}-1^{\prime}\right), 4.63\left(1 \mathrm{H}, \mathrm{dd}, J=12.3,<1 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 4.50(1 \mathrm{H}, \mathrm{dd}, J=12.3,4.9 \mathrm{~Hz}$, H-6'b), $4.32\left(1 \mathrm{H}\right.$, ddd, $\left.J=9.2,4.9,<1 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 2.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 166.2,165.6,165.1,164.8(\mathrm{C}=\mathrm{O}), 151.9$ (triazolone $\mathrm{C}=0$), 145.6, 145.0 (triazolone $\mathrm{C}-3, \mathrm{Ts}-\mathrm{C}-1$ or Ts-C-4), 133.7 (Ts-C-1 or Ts-C-4), 133.4-133.1, 130.0-127.9 (Ar), 76.6, 73.5, 72.6, 69.8, $69.0\left(\mathrm{C}^{\prime} 1^{\prime}-\mathrm{C}-5^{\prime}\right), 63.0\left(\mathrm{C}-6^{\prime}\right), 21.5\left(\mathrm{CH}_{3}\right) . \mathrm{MS}-\mathrm{ESI}(\mathrm{m} / \mathrm{z})$: Calcd. for $\mathrm{C}_{43} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 818.2. Found: 818.5.

3.10. 3-(β-D-Glucopyranosyl)-1-tosyl-1H-1,2,4-triazol-5(4H)-one

 (22)Prepared from compound $21(0.20 \mathrm{~g}, 0.24 \mathrm{mmol})$ according to the general procedure (Section 3.2). Reaction time: 7 h . Purified by column chromatography ($9: 1 \mathrm{CHCl}_{3}-\mathrm{MeOH}$) to yield 55 mg (56\%) colourless syrup. $\mathrm{R}_{\mathrm{f}}=0.54\left(7: 3 \mathrm{CHCl}_{3}-\mathrm{MeOH}\right),[\alpha]_{\mathrm{D}}=-7(\mathrm{c} 0.31, \mathrm{MeOH})$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) δ (ppm): $12.34(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.84,7.48(2 \times 2 \mathrm{H}$, $2 \mathrm{~d}, J=7.9 \mathrm{~Hz}$ in each, Ar), 5.24, 5.14, 5.02, $4.46(4 \times 1 \mathrm{H}, \mathrm{OH}), 3.89$ ($1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$), $3.64\left(1 \mathrm{H}, \mathrm{dd}, J=11.9,2.6 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 3.22-$ 3.07 (5H, m, H-2', H-3', H-4', H-5', H-6'b), 2.41 (3H, s, CH3); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 154.4,150.6,147.7$ (triazolone $\mathrm{C}=\mathrm{O}$, triazolone C-3, Ts-C-1 or Ts-C-4), 135.7, 131.2 (2), 129.1 (2) (Ar), 82.2, 78.9, 76.0, 73.0, 70.9 ($\left.\mathrm{C}-1^{\prime}-\mathrm{C}-5^{\prime}\right), 62.4\left(\mathrm{C}-6^{\prime}\right), 21.7\left(\mathrm{CH}_{3}\right) . \mathrm{MS}-\mathrm{ESI}(\mathrm{m} / \mathrm{z})$: Calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 402.1. Found: 402.3. Anal: Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}$ (M 401.39): C, 44.88; H, 4.77; N, 10.47. Found: C, 45.16; H, 4.85; N, 10.42.

3.11. N^{1}-Phenyl- $\mathrm{N}^{4}-\left(2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}-\right.$ tetra-O-benzoyl- β - D -
 glucopyranosylcarbonyl)semicarbazide (25)

To a solution of C-(2,3,4,6-tetra-O-benzoyl- β-D-glucopyranosyl) formamide ${ }^{30}(\mathbf{2 3}, 2.5 \mathrm{~g}, 4.0 \mathrm{mmol})$ in anhydrous 1,2-dichloroethane (50 mL) oxalyl chloride $(0.68 \mathrm{~mL}, 8.0 \mathrm{mmol})$ was added, and the mixture was refluxed for 1 d . The reaction mixture was then concentrated under diminished pressure, and traces of oxalyl chloride was removed by repeated co-evaporations with toluene. The remaining syrup was dissolved in anhydrous THF (50 mL), the solution was cooled to $0^{\circ} \mathrm{C}$ and phenylhydrazine ($0.6 \mathrm{~mL}, 6.0 \mathrm{mmol}$) was added. Subsequently the reaction mixture was allowed to warm to rt and stirred for 1 d . The solvent was then removed under reduced pressure, and the residue was crystallized from diethyl ether to give 2.1 g (69\% for two steps) pale yellow solid. Mp: 219-221; $[\alpha]_{D}=-17$ $\left(\mathrm{c} 0.51, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 9.53,9.47(2 \times 1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{NH})$, $8.03-6.86(25 H, \mathrm{~m}, \mathrm{Ar}), 6.21(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.89(1 \mathrm{H}$, pseudo $\mathrm{t}, J=9.0$, $8.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$ or $\mathrm{H}-3^{\prime}$ or $\left.\mathrm{H}-4^{\prime}\right), 5.75-5.64\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right.$ and/or $\mathrm{H}-3^{\prime}$ and/ or $\mathrm{H}-4^{\prime}$), $4.64\left(1 \mathrm{H}, \mathrm{dd}, J=11.5,<1 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 4.42(1 \mathrm{H}, \mathrm{dd}, J=11.5$, $\left.3.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 4.15\left(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.09\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right) ;{ }^{13} \mathrm{C}$

NMR (CDCl_{3}) δ (ppm): 168.0, 166.4, 165.7, 165.1 (2), 154.1 ($\mathrm{C}=0$), 147.6, 133.6-133.2, 129.8-128.3, 121.0, 113.1 (Ar), 76.4, 76.2, 73.2, 69.4, 69.0 (C-1' - C-5'), 63.0 (C-6'). MS-ESI (m / z): Calcd. for $\mathrm{C}_{42} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{11^{+}}[\mathrm{M}+\mathrm{H}]^{+}: 758.2$. Found: 758.5.

3.12. N^{1}-(tert-Butoxycarbonyl)- N^{2}-phenyl- N^{4}-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-O-

 benzoyl- β-D-glucopyranosylcarbonyl)semicarbazide (26)To a solution of C-(2,3,4,6-tetra-O-benzoyl- β-D-glucopyranosyl) formamide ${ }^{30}$ ($\mathbf{2 3}, 0.5 \mathrm{~g}, 0.80 \mathrm{mmol}$) in anhydrous 1,2-dichloroethane (12 mL) oxalyl chloride ($136 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$) was added, and the mixture was heated at reflux temperature for 1 d . The reaction mixture was then concentrated under diminished pressure, and traces of oxalyl chloride was removed by repeated co-evaporations with toluene. The remaining syrup was dissolved in anhydrous THF (10 mL), the solution was cooled to $0^{\circ} \mathrm{C}$ and PhNHNHBoc (0.25 g , 1.2 mmol) was added. Subsequently, the reaction mixture was allowed to warm to rt and stirred for 3 h . The solvent was then evaporated under reduced pressure and the residue was purified by column chromatography (1:2 EtOAc-hexane) to obtain the title compound $26(0.35 \mathrm{~g})$ as the first than amide $23(0.12 \mathrm{~g})$ as the second fraction. Yield of the title compound for two steps: 66% (corrected with the recovered starting material 23). Mp: 192-194 ${ }^{\circ} \mathrm{C}$ (white solid); $[\alpha]_{D}=-7\left(c \quad 0.21, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ (ppm): 10.03, 9.86 ($2 \times 1 \mathrm{H}, 2 \mathrm{br} \mathrm{s}, \mathrm{NH}$), 7.98-7.17 ($25 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 6.03, 5.80, 5.68 ($3 \times 1 \mathrm{H}, 3$ pseudo $\mathrm{t}, \mathrm{J}=9.4,9.4 \mathrm{~Hz}$ in each, $\mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}$), 4.91 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.4 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$), 4.57-4.41 (3H, m, H-5', H-6'a, H-6'b), 1.34 (9H, s, C(CH3 $)_{3} ;{ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6}) δ (ppm): 165.3 (2), 165.1, 164.6, 164.4, 154.5, 150.3 ($\mathrm{C}=0$), 141.0, 133.7-133.4, 129.2-128.4, 124.0 (Ar), $80.6\left(\mathrm{C}_{(}\left(\mathrm{CH}_{3}\right)_{3}\right), 75.5,74.6,74.0,69.4,68.6\left(\mathrm{C}-1^{\prime}-\mathrm{C}-5^{\prime}\right), 62.8(\mathrm{C}-$ $\left.6^{\prime}\right)$, $27.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. MS-ESI $(\mathrm{m} / \mathrm{z})$: Calcd. for $\mathrm{C}_{47} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{13}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 858.3. Found: 858.1.
3.13. 1-Phenyl-3-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-O-benzoyl- β-D-glucopyranosyl)-1H-1,2,4-triazol-5(4H)-one (27)

A: The solution of compound 25 ($1.0 \mathrm{~g}, 1.32 \mathrm{mmol}$) in anhydrous m-xylene (40 mL) was heated at boiling temperature, and the reaction was monitored by TLC (1:1 EtOAc-hexane). After total consumption of the starting material (1 d), the solvent was removed, and the residue was purified by column chromatography (1:2 EtOAc-hexane) to give 0.36 g (37%) colourless syrup. B: To a solution of compound $26(0.23 \mathrm{~g}, 0.27 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ trifluoroacetic acid ($124 \mu \mathrm{~L}, 1.61 \mathrm{mmol}$) was added and the mixture was stirred at rt. After disappearance of the starting material (4 d) monitored by TLC (2:3 EtOAc-hexane), the solvent was removed under diminished pressure, and the residue was purified by column chromatography (1:2 EtOAchexane) to yield $0.17 \mathrm{~g}(87 \%)$ colourless syrup. R_{f} : 0.54 (1:1 EtOAchexane); $[\alpha]_{\mathrm{D}}=+16\left(\mathrm{c} \mathrm{0.61}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 11.58$ ($1 \mathrm{H}, \mathrm{br}$ s, NH), $8.00-7.83(4 \times 2 \mathrm{H}, 4 \mathrm{~d}, J=7.0 \mathrm{~Hz}$ in each, Ar), 7.67 ($2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ar}$), $7.52-7.10$ ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 6.06, 5.91, 5.80 $\left(3 \times 1 \mathrm{H}, 3\right.$ pseudo $\mathrm{t}, J=9.4,9.4 \mathrm{~Hz}$ in each, $\left.\mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}\right), 4.90$ ($1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$), 4.69 ($1 \mathrm{H}, \mathrm{dd}, J=12.5,3.1 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}$), 4.57 ($\left.1 \mathrm{H}, \mathrm{dd}, J=12.5,5.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 4.35$ ($1 \mathrm{H}, \mathrm{ddd}, J=9.4,5.5,3.1 \mathrm{~Hz}$, $\left.\mathrm{H}-5^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 166.2,165.8,165.1,165.0(\mathrm{C}=\mathrm{O})$, 153.4 (triazolone C = O), 142.6 (triazolone C-3), 137.3, 133.5133.1, 129.9-128.3, 125.5, 118.7 (Ar), 76.8, 73.5, 72.7, 70.2, 69.2 (C-1' - C-5'), 63.1 (C-6'). ESI-MS positive mode (m / z): calcd for $\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{10}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 740.2$. Found: 740.4.
3.14. 3-(β-D-Glucopyranosyl)-1-phenyl-1H-1,2,4-triazol-5(4H)-one (28)

Prepared from compound 27 ($0.23 \mathrm{~g}, 0.31 \mathrm{mmol}$) according to the general procedure (Section 3.2). Reaction time: 6 h . Purified by
column chromatography ($85: 15 \mathrm{CHCl}_{3}-\mathrm{MeOH}$) to yield 94 mg (95%) white solid. Mp: $238-240^{\circ} \mathrm{C}[\alpha]_{\mathrm{D}}=+30(\mathrm{c} 0.40, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6}+1$ drop $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta(\mathrm{ppm}): 7.83(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ar}), 7.43(2 \mathrm{H}$, pseudo $\mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{Ar}$), $7.21(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{Ar}), 4.04(1 \mathrm{H}, \mathrm{d}$, $\left.J=9.4 \mathrm{~Hz}, \mathrm{H}^{\prime} 1^{\prime}\right), 3.69\left(1 \mathrm{H}, \mathrm{dd}, J=11.7,5.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 3.46(1 \mathrm{H}$, pseudo $\mathrm{t}, J=9.4,9.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$ or $\mathrm{H}-3^{\prime}$ or $\left.\mathrm{H}-4^{\prime}\right), 3.44(1 \mathrm{H}, \mathrm{dd}, J=11.7,3.1 \mathrm{~Hz}$, $\mathrm{H}-6^{\prime} \mathrm{b}$), $3.30-3.25$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}$ or $\mathrm{H}-3^{\prime}$ or $\mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime}$), 3.16 (1 H , pseudo $\mathrm{t}, \mathrm{J}=9.4,9.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$ or $\mathrm{H}-3^{\prime}$ or $\mathrm{H}-4^{\prime}$); ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta(\mathrm{ppm})$: 152.6 (triazolone C = O), 145.7 (triazolone C-3), 137.7, 129.0 (2), 124.7, 117.9, 117.7 (Ar), 81.4, 77.5, 74.5, 71.1, 69.8 (C-1' - C-5'), 61.1 (C$\left.6^{\prime}\right)$. MS-ESI $(\mathrm{m} / \mathrm{z})$: Calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 324.1. Found: 324.2. Anal: Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{6}$ (M 323.30): C, 52.01; H, 5.30; N, 13.00. Found: C, 52.09; H, 5.46; N,12.85.
3.15. 1-(2-Naphthyl)-3-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}-$ tetra-O-benzoyl- β - D -glucopyranosyl)-1H-1,2,4-triazol-5(4H)-one (29)

To a solution of compound 19 ($0.10 \mathrm{~g}, 0.15 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ 2-naphthylboronic acid ($52 \mathrm{mg}, 0.30 \mathrm{mmol}$), $\mathrm{Cu}(\mathrm{OAc})_{2}$ ($27 \mathrm{mg}, 0.15 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(42 \mu \mathrm{~L}, 0.30 \mathrm{mmol})$ were added, and the reaction mixture was stirred at rt. When the TLC (1:1 EtOAchexane) showed total consumption of $\mathbf{2 0}(1 \mathrm{~d})$, the solvent was evaporated. The residue was purified by column chromatography (2:3 EtOAc-hexane) to give 24 mg (20\%) pale yellow amorphous solid. $\mathrm{R}_{\mathrm{f}}: 0.51$ (1:1 EtOAc-hexane); $[\alpha]_{\mathrm{D}}=+11$ (c $0.44, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 11.89(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 8.12(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 7.97-7.20(26 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 6.10,5.98,5.84(3 \times 1 \mathrm{H}, 3$ pseudo $\mathrm{t}, J=9.2,9.2 \mathrm{~Hz}$ in each, $\left.\mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}\right), 4.95$ ($1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$), 4.72 ($1 \mathrm{H}, \mathrm{dd}, J=11.9$, $\left.2.6 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 4.61\left(1 \mathrm{H}, \mathrm{dd}, J=11.9,5.3 \mathrm{~Hz}, \mathrm{H}^{\prime} \mathrm{6}^{\prime} \mathrm{b}\right), 4.37$ ($1 \mathrm{H}, \mathrm{ddd}$, $\left.J=9.2,5.3,2.6 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 166.2,165.8,165.1$ (2) (C=O), 153.7 (triazolone C = O), 142.9 (triazolone C-3), 134.8125.4, 118.0, 116.2 (Ar), 76.7, 73.5, 72.6, 70.3, 69.3 ($\mathrm{C}-1^{\prime}$ - $\mathrm{C}-5^{\prime}$), 63.1 (C-6'). ESI-MS positive mode (m/z): calcd for $\mathrm{C}_{46} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{10}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 790.2. Found: 790.4.
3.16. 3-(β-D-Glucopyranosyl)-1-(2-naphthyl)-1H-1,2,4-triazol-5(4H)-one (30)

Prepared from compound $\mathbf{2 9}$ ($0.12 \mathrm{~g}, 0.15 \mathrm{mmol}$) according to the general procedure (Section 3.2). Reaction time: 4 h . Purified by column chromatography ($85: 15 \mathrm{CHCl}_{3}-\mathrm{MeOH}$) to yield $48 \mathrm{mg}(84 \%)$ colourless syrup. $\mathrm{R}_{\mathrm{f}}=0.43\left(7: 2 \mathrm{CHCl}_{3}-\mathrm{MeOH}\right),[\alpha]_{\mathrm{D}}=+33$ (c 0.13, MeOH); ${ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6}+1$ drop $\mathrm{D}_{2} \mathrm{O}$) δ (ppm): 8.31 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}$), 8.04-7.88, 7.54-7.45 (6H, m, Ar), 4.10 ($1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$), 3.69 ($1 \mathrm{H}, \mathrm{dd}, J=11.7,2.3 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}$), 3.50 (1 H , pseudo $\mathrm{t}, J=9.4,9.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$ or $\mathrm{H}-3^{\prime}$ or $\mathrm{H}-4^{\prime}$), 3.47 ($1 \mathrm{H}, \mathrm{dd}, J=11.7,5.5 \mathrm{~Hz}, \mathrm{H}^{\prime} 6^{\prime} \mathrm{b}$), $3.34-3.29$ (2 H , $\mathrm{m}, \mathrm{H}-2^{\prime}$ or $\mathrm{H}-3^{\prime}$ or $\mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime}$), 3.21 (1 H , pseudo $\mathrm{t}, J=9.4,9.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$ or H-3' or H-4'); ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) δ (ppm): 152.7 (triazolone C = O), 145.9 (triazolone C-3), 135.3, 133.0, 130.3, 128.9, 127.8, 127.6, 127.5, 127.4, 117.6, 114.5 (Ar), 81.4, 77.4, 74.6, 71.1, 69.8 (C-1' - C-5'), $61.0\left(\mathrm{C}-6^{\prime}\right)$. MS-ESI $(\mathrm{m} / \mathrm{z})$: Calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 374.1$. Found: 374.3. Anal: Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6}$ (M 373.36): C, 57.90; H, 5.13 ; N, 11.25. Found: C, 57.83 ; H, 5.31; N, 11.39.

Acknowledgements

This work was supported by the Hungarian Scientific Research Fund (OTKA PD105808). The authors thank K. E. Kövér and I. Timári for recording the ROESY spectra and A. Kiss for the MS measurements.

Supplementary material

Supplementary data to this article can be found online at doi:10.1016/j.carres.2015.12.005.

References

1. Henke BR. RSC Drug Discov Ser 2012;27:324-65.
2. Sun H, Xu L. Mini Rev Med Chem 2010;10:1188-93.
3. Guan T, Qian YS, Tang XZ, Huang MH, Huang LF, Li YM, et al. J Neurosci Res 2011;89:1829-39.
4. Tracey WR, Treadway JL, Magee WP, Sutt JC, McPherson RK, Levy CB, et al. Am J Physiol Heart Circ Physiol 2004;286:H1177-84.
5. Treadway JL, Magee WP, Hoover DJ, McPherson RK, Martin WH, Zavadoski WJ, et al. Diabetes 2000;49:A127.
6. Favaro E, Bensaad K, Chong MG, Tennant DA, Ferguson DJP, Snell C, et al. Cell Metab 2012;16:751-64.
7. Zois CE, Favaro E, Harris AL. Biochem Pharmacol 2014;92:3-11.
8. Somsák L, Czifrák K, Tóth M, Bokor É, Chrysina ED, Alexacou KM, et al. Curr Med Chem 2008;15:2933-83.
9. Hayes J, Kantsadi A, Leonidas D. Phytochem Rev 2014;13:471-98.
10. Praly JP, Vidal S. Mini Rev Med Chem 2010;10:1102-26.
11. Somsák L. Compt Rend Chimie 2011;14:211-23.
12. Hadady Z, Tóth M, Somsák L. Arkivoc 2004;vii:140-9.
13. Chrysina ED, Kosmopolou MN, Tiraidis C, Kardarakis R, Bischler N, Leonidas DD, et al. Protein Sci 2005;14:873-88.
14. Bokor É, Szilágyi E, Docsa T, Gergely P, Somsák L. Carbohydr Res 2013;381:17986.
15. Benltifa M, Vidal S, Fenet B, Msaddek M, Goekjian PG, Praly J-P, et al. Eur J Org Chem 2006;4242-56.
16. Tóth M, Kun S, Bokor É, Benltifa M, Tallec G, Vidal S, et al. Bioorg Med Chem 2009;17:4773-85.
17. Bokor É, Docsa T, Gergely P, Somsák L. ACS Med Chem Lett 2013;4:612-5.
18. Kun S, Bokor É, Varga G, Szőcs B, Páhi A, Czifrák K, et al. Eur J Med Chem 2014;76:567-79.
19. Bokor É, Kun S, Docsa T, Gergely P, Somsák L. ACS Med Chem Lett 2015;doi:10.1021/acsmedchemlett.5b00361.
20. Begum J, Varga G, Docsa T, Gergely P, Hayes JM, Juhász L, et al. Med Chem Comm 2015;6:80-9.
21. Polya JB. in Potts KT, editor. Comprehensive heterocyclic chemistry. Exeter: Pergamon; 1984. p. 733-90.
22. Weidinger H, Kranz J. Chem Ber 1963;96:1064-70.
23. Davoodnia A, Bakavoli M, Soleimany M, Behmadi H. Chin Chem Lett 2008;19:6858.
24. Dowell RI, Hales NH, Tucker H. Eur J Med Chem 1993;28:513-6.
25. Mano M, Seo T, Matsuno T, Imai KI. Chem Pharm Bull 1976;24:2871-6.
26. Chouaieb H, Ben Mosbah M, Kossentini M, Salem M. Synth Commun 2003;33:3861-8.
27. Milcent R, Nguyen TH. J Heterocycl Chem 1986;23:881-3.
28. Poonian MS, Nowoswiat EF. J Org Chem 1980;45:203-8.
29. Bokor É, Fekete A, Varga G, Sző́cs B, Czifrák K, Komáromi I, et al. Tetrahedron 2013;69:10391-404
30. Somsák L, Nagy V. Tetrahedron Asymmetry 2000;11:1719-27, Corrigendum 2247.
31. Misra AK, Bokor É, Kun S, Bolyog-Nagy E, Kathó Á, Joó F, et al. Tetrahedron Lett 2015;56:5995-8.
32. Speziale AJ, Smith LR, Fedder JE. J Org Chem 1965;30:4306-7.
33. Deng JZ, Burgey CS. Tetrahedron Lett 2005;46:7993-6.
34. Tsuge O, Hatta T, Mizuguchi R. Heterocycles 1994;38:235-41.
35. Rao KS, Wu T-S. Tetrahedron 2012;68:7735-54.
36. Oss E, Somsák L, Szilágyi L, Kovács L, Docsa T, Tóth B, et al. Bioorg Med Chem Lett 1999;9:1385-90.
37. Cer RZ, Mudunuri U, Stephens R, Lebeda FJ. Nucleic Acids Res 2009;37:W4415.
38. Kun S, Nagy GZ, Tóth M, Czecze L, Nguyen van Nhien A, Docsa T, et al. Carbohydr Res 2011;346:1427-38.
39. Feuillastre S, Chajistamatiou AS, Potamitis C, Zervou M, Zoumpoulakis P, Chrysina ED, et al. Bioorg Med Chem 2012;20:5592-9.
40. Goyard D, Docsa T, Gergely P, Praly J-P, Vidal S. Carbohydr Res 2015;402:245-51.
41. Graham MA, Bethel PA, Burgess J, Fairley G, Glossop SC, Greenwood RDR, et al. Org Lett 2013;15:6078-81.

[^0]: * Corresponding author. Department of Organic Chemistry, University of Debrecen, POB 20, H-4010 Debrecen, Hungary. Tel.: +36 52512900 ext 22348; fax: +36 52512744.

 E-mail address: somsak@tigris.unideb.hu (L. Somsák).

[^1]: ${ }^{\text {a }}$ The β-channel is an empty space next to the catalytic site of GP in the direction of the β-anomeric substituent of bound D-glucose surrounded by both polar and apolar amino acid side chains.

