Decreased peroxisome proliferator-activated receptor γ level and signalling in sebaceous glands of patients with acne vulgaris

A. Dozsa,1,2,4 J. Mihaly,1 B. Dezso,3 E. Csizmadia,1 T. Keresztessy,4 L. Marko,4 R. Rühl,1 E. Remenyik4 and L. Nagy1,5

Departments of 1Biochemistry and Molecular Biology; 2Pathology and; 3Dermatology; 4and DE-MTA ‘Lendület’ Immunogenomics Research Group, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary; and 5Department of Dermatology, Semmelweis Ignác Hospital and University Teaching Hospital in Miskolc, Miskolc, Hungary

doi:10.1111/ced.12794

Summary

Little is known about the altered lipid metabolism-related transcriptional events in sebaceous glands of patients with acne vulgaris. Peroxisome proliferator-activated receptor (PPAR)γ, a lipid-activated transcription factor, is implicated in differentiation and lipid metabolism of sebocytes. We have observed that PPARγ and its target genes, ADRP (adipose differentiation related protein) and PGAR (PPARγ angiprotein related protein) are expressed at lower levels in sebocytes from patients with acne than in those from healthy controls (HCs). Furthermore, endogenous PPARγ activator lipids such as arachidonic acid-derived keto-metabolites (e.g. 5KETE, 12KETE) are increased in acne-involved and nonacne involved skin of patients with acne, compared to skin from healthy individuals. Our findings highlight the possible anti-inflammatory role of endogenous ligand-activated PPARγ signalling in human sebocyte biology and suggest that modulating PPARγ-expression and thereby signalling might be a promising strategy for the clinical management of acne vulgaris.

Introduction

Peroxisome proliferator-activated receptor (PPAR)γ is a lipid-activated nuclear hormone receptor that plays a role in sebaceous lipogenesis, differentiation and inflammation.1–3 Sebaceous glands (SG) express PPARγ, and various eicosanoids can activate this transcriptional factor in vitro.2,3 This results in raised lipid production, as shown in SZ95 sebocytes.1 However, it is not known what role PPARγ expression, endogenous PPARγ ligands and PPARγ-mediated signaling play in acne-involved sebaceous glands.

To address these issues, focusing on expression levels of PPARγ in acne vulgaris, we systematically examined the expression pattern of this transcription factor in sebocytes using immunohistochemistry. We also assessed in situ laser-micro dissected SGs from fresh frozen human tissue biopsies and determined mRNA expression levels of the PPARγ gene and its target genes, adipose differentiation related protein (ADRP) and PGAR (PPARgamma angiprotein related protein). In addition, we measured eicosanoid levels in SGs from the skin of patients with acne and of healthy controls (HCs). Patients with acne had low PPARγ expression and signalling activity, and increased levels of various eicosanoids with PPARγ-activation potential. Therefore, it is reasonable to speculate that specific PPARγ-activating eicosanoids might have important roles in acne pathomechanism.

Methods

The study was approved by the research ethics committee of University of Debrecen, and adhered to the guidelines of the Declaration of Helsinki. All patients provided informed consent.
Skin biopsies

Patients were examined according to the Global Acne Grading System Score (GAGS) to evaluate the severity of acne vulgaris.¹ Patients selected for biopsy had GAGS grade 1 (mild) acne; in total, nine patients with acne vulgaris provided biopsy tissue. The biopsies were taken from the upper back; both from acneic papules on acne-involved skin (AS) and from nonacne-involved skin (NAS). Skin biopsies were also taken from five age-matched HCs as reference (Fig. 1a,b).

Isolation of eicosanoids

Previously we found that administration of various PPARγ-activating eicosanoids significantly increased the expression levels of PGAR and ADRP.³ Selected PPARγ-activating eicosanoids may play an important role in the pathogenesis of acne vulgaris.¹² In the present study, we determined the level of various PPARγ-activating eicosanoids in skin biopsies from patients. For quantitative determination of various eicosanoids and docosanoids we used analytical sample preparation and determination based on an established high performance liquid chromatography–tandem mass spectrometry method used for retinoid quantification,⁵ which was recently used in a published report on eicosanoid and docosanoid analysis for organs and serum analysis.⁶ Owing to the limited amount of tissue available, we pooled three skin samples from HCs, and compared these with three pooled AS acne and three pooled NAS acne samples from three patients. Two sets of data were analysed.

Results

Peroxisome proliferator-activated receptor-γ and its target genes are expressed in situ both in normal sebaceous glands, and in the acne-involved and nonacne-involved sebaceous glands of patients with acne

Immunolabelling identified PPARγ protein expression predominantly in the nuclei of normal SGs obtained from HCs (3+), but expression was lower in SG cells of patients with acne, both in AS and NAS samples as well.

SGs were isolated in situ from the cryosection samples by laser-microdissection,³ and mRNA level of PPARγ was examined from the collected cells using real-time quantitative PCR (qPCR). The expression of PPARγ mRNA was higher in SGs from HCs than in AS or NAS samples (Fig. 1c).

It is generally accepted that PPARγ activity is indicated by mRNA expression of its target genes such as ADRP or PGAR, as established in other cell types.⁷ We also found that laser-microdissected SG samples from HCs expressed ADRP and PGAR mRNA at higher levels than SGs in AS or NAS samples from patients with acne (Fig. 1c). These data suggest that PPARγ and its target genes are present in healthy SGs of patients with acne and also in SGs of age-matched HCs.

Various eicosanoids are present and increased in the skin of patients with acne

The level of PPARγ-activating eicosanoids was lowest in healthy skin samples, while NAS acne skin samples had higher levels, and AS acne samples had the highest level of eicosanoids (Fig. 1d). This suggests that the level of PPARγ-activating eicosanoids is sufficient or even excessive in the SGs of patients with acne, maybe due to the low level of PPARγ and reduced feedback regulation in SG samples from patients with acne.

Discussion

We found that PPARγ and its target genes ADRP and PGAR were expressed at lower levels in sebocytes of AS from patients with can compared with those from healthy individuals. Interestingly, the receptor and its targets were detected at low levels in NAS SGs from patients with acne. These results appear to be consistent with the established anti-inflammatory role of PPARγ and indicate that the inflammatory milieu is likely to contribute to reduced receptor levels and signalling.

Previously we showed that selected PPARγ-activating eicosanoids were able to initiate PPARγ signalling in SZ95 sebocytes.³ We demonstrated that the same compounds are present in acne-affected skin and that their levels are increased. Therefore, it is tempting to speculate that this might be part of feedback regulation. However, other lipids or cytokines might contribute to regulation as well.¹ Nevertheless, our findings suggest that PPARγ might play a protective role in normal human sebocytes against excessive lipid accumulation and induction of inflammatory responses. In the skin of patients with acne, PPARγ expression was lower or even absent in inflamed and NAS sebaceous glands; this appears to be a major feature and may be the reason behind dysregulated lipid homeostasis and inflammation. Alestas et al. reported that increased level of the eicosanoids prostaglandin E3 and leucotriene (LT)B4 were
detected in arachidonic acid (AA)-treated SZ95 sebocytes, and enzymes that regulate production of these eicosanoids (LTA₄ hydrolase, 5-lipoxygenase and cyclooxygenase-2), were increased in SGs of AS skin of patients with mild or moderate acne, but not in SGs from NAS skin or in SGs from HCs.

These results suggest that the enzymatic machinery for functional leucotriene and prostaglandin pathways
are active in sebocytes, and that the enzymes that regulate these pathways are increased in AS SGs. It is possible that PPARγ is a key molecule in negative feedback regulation as an anti-inflammatory molecule and that when PPARγ level and activity is low, the negative feedback reaction is turned off, and the enzyme machinery of inflammation, such as the leukotriene and prostaglandin pathways, is not inhibited. It is possible also that under these conditions, production of PPARγ ligand eicosanoids is not inhibited, thus the level of these eicosanoids are also raised compared with healthy SGs. This would be a classic hormonal regulation. Furthermore, elevation of PPARγ ligand eicosanoids in NAS skin was also observed in the current study. Based on these data, it could be speculated that that PPARγ is not a secondary molecule that is downregulated due to inflammation, but rather that it is already low prior to inflammation, which suggests that downregulation of PPARγ has a causative role in the initiation of the autoinflammatory reaction in acne vulgaris. Confirming this theory, it is known that topical application of the PPARγ agonist azelaic acid (AA) produces anti-inflammatory effects in acne vulgaris. In addition, AA induces PPARγ mRNA expression and transcriptional activity in human sebocytes, which also supports the possible anti-inflammatory role of PPARγ in sebocytes.

It has also been reported that PPARγ activation increases lipogenesis. However, these measurements were carried out in human immortalized seocyte cultures (Seb-1, SZ95), and the primary cells were obtained from healthy sebaceous glands, which express high levels of PPARγ. Thus, it is possible that if PPARγ is at a high level, its activation increases lipid production in healthy SGs. In the present study, we observed that PPARγ is low in SGs in both AS and NAS skin of patients with acne. Therefore, it seems likely that when PPARγ is missing, the inflammatory regulation of SG fails, and autoinflammatory reactions are turned on. In addition lip production in acne SGs is higher than in healthy SG, which suggests that in AS SG the primary effect of PPARγ might be regulation of inflammation, and maybe also in maintaining the balance of lipid production, but not simply the level of lipids.

Our data clearly show that PPARγ levels and signalling activity are decreased in sebocytes from patients with acne. This suggests that PPARγ might be a clinical target in affected sebocytes in the management of acne vulgaris.

Acknowledgements

We thank M. Besenyei and M. Porcelán for their excellent technical assistance.

Learning points

- PPARγ protein is a transcription factor that is involved in regulation of lipid metabolism of sebocytes.
- PPARγ protein and mRNA levels are high in SGs of skin from healthy individuals, but low in SGs of patients with acne.
- PPARγ activity is indicated by the mRNA expression of its target genes such as ADRP and PGAR in sebocytes and in other cell types.
- ADRP and PGAR levels –referring to PPARγ activity – are low in SGs of patients with acne, compared with normal SG.
- PPARγ activator ligand eicosanoids are presented at high levels in the skin of patients with acne.
- Our data suggest that in normal human sebocytes in healthy individuals, PPARγ might play a protective role against excessive lipid accumulation and inflammatory responses, which makes this molecule a possible therapeutic target in acne vulgaris.

References

