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Highlights 

 

PARP-1 is not a key regulator of photochemotherapy. 

The PARP inhibitor PJ-34 sensitizes cells to UVA-induced phototoxicity by a PARP 

independent mechanism.  

Photosensitization by PJ-34 is associated with increased ROS production and DNA damage. 

Cells sensitized by PJ-34 undergo caspase-mediated apoptosis. 
 

Abstract 

A combination of a photosensitizer with light of matching wavelength is a common treatment 

modality in various diseases including psoriasis, atopic dermatitis and tumors. DNA damage 

and production of reactive oxygen intermediates may impact pathological cellular functions 

and viability. Here we set out to investigate the role of the nuclear DNA nick sensor enzyme 

poly(ADP-ribose) polymerase 1 in photochemical treatment (PCT)-induced tumor cell killing. 

We found that silencing PARP-1 or inhibition of its enzymatic activity with Veliparib had no 

significant effect on the viability of A431 cells exposed to 8-methoxypsoralen (8-MOP) and 

UVA (2.5 J/cm2) indicating that PARP-1 is not likely to be a key player in either cell survival or 

cell death of PCT-exposed cells. Interestingly, however, another commonly used PARP 

inhibitor PJ-34 proved to be a photosensitizer with potency equal to 8-MOP. Irradiation of PJ-

34 with UVA caused changes both in the UV absorption and in the 1H NMR spectra of the 

compound with the latter suggesting UVA-induced formation of tautomeric forms of the 

compound. Characterization of the photosensitizing effect revealed that PJ-34+UVA triggers 

overproduction of reactive oxygen species, induces DNA damage, activation of caspase 3 and 

caspase 8 and internucleosomal DNA fragmentation. Cell death in this model could not be 

prevented by antioxidants (ascorbic acid, trolox, glutathione, gallotannin or cell permeable 

superoxide dismutase or catalase) but could be suppressed by inhibitors of caspase-3 and -8. 

In conclusion, PJ-34 is a photosensitizer and PJ-34+UVA causes DNA damage and caspase-

mediated cell death independently of PARP-1 inhibition.  
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Introduction 
Phototherapy, photochemotherapy and photodynamic therapy are efficient treatment 

modalities used to treat various different types of diseases ranging from psoriasis [1], acne [2] 

to certain forms of cancer [3] [4] [5]. 

Photodynamic therapy (PDT) is based on the combination of a photosensitizing compound 

with irradiation using a light source emitting at or near the absorption maximum of the 

photosensitizer [6]. In turn, the excited photosensitizer promotes the generation of oxygen 

radicals by directly (type I reaction) or indirectly (via intracellular substrates; type II reactions) 

interacting with molecular oxygen [7]. Reactive oxygen species (ROS) formed in these 

reactions mediate the cytotoxic effects of PDT [8].  

Photochemotherapy (PCT) utilizes the combination of psoralen with suberythemogenic 

ultraviolet A (PUVA) [9]. Psoralens are tricyclic furocoumarins [10] with 5- methoxypsoralen (5-

MOP), 8-methoxypsoralen (8-MOP) and trioxalen (TMP) being the most commonly used 

sensitizers [11]. Photochemical interaction between psoralens and DNA may follow three 

pathways: a) intercalation of psoralen into DNA (it may also take place without UV radiation); 

b) formation of 3,4-monoadducts or 4,6-monoadducts with the latter being capable of 

crosslinking psoralen with DNA following the absorption of a second photon; c) excited 

psoralen may directly react with molecular oxygen leading to the generation of singlet oxygen 

as in PDT [12]. 

PCT or PDT trigger DNA damage either directly or via ROS generation [13] [14]. The 

cellular response to DNA strand breaks caused by ROS or by the nucleotide excision repair 

pathway involves the activation of poly(ADP-ribose) polymerase-1 (PARP-1). PARP-1 is a 

DNA nick sensor enzyme that is abundantly expressed by most eukaryotic cell types [15] [16] 

[17]. Upon binding to broken DNA ends, PARP-1 becomes activated and modifies itself and 

nearby proteins with NAD-derived ADP-ribose. By cleaving more NAD molecules and 

attaching their ADP-ribose moieties to the protein proximal ADP-ribose unit, PARP-1 creates 
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a long, branched poly(ADP-ribose) (PAR) polymer that is essential for the recruitment of 

various adapter and effector DNA repair proteins [18]. 

From its role in DNA repair follows the plausible assumption that PARP-1 can be 

considered as a “survival enzyme”. Indeed, inhibition of its activity (or silencing of its 

expression) sensitizes cells (e.g., cancer cell lines) to subtoxic doses of ionizing radiation [19], 

DNA alkylating agents [20] or topoisomerase [21] inhibitors. In fact, the clinical value of such 

sensitization therapy has been tested in various promising clinical trials suggesting that certain 

tumors can indeed be eradicated more efficiently if DNA damaging chemotherapeutics are 

combined with PARP inhibitors [22] [23]. It may be worth mentioning here that PARP-1 

inhibition/silencing/knockout may also protect cells from programmed necroptotic cell death 

(e.g., under conditions of severe oxidative stress) [24]. Thus, depending on the intensity of the 

genotoxic stimulus PARP-1 may act as a dual regulator of cell fates [16]. 

In a previous study from our group we reported a surprising photosensitizing effect of the 

PARP inhibitor PJ-34 in UVA-irradiated keratinocytes [25]. This has prompted us to investigate 

whether PARylation represents a possible target in PCT and whether efficiency of PCT can be 

improved by targeting PARP-1. It appears that while targeting PARP-1 is not likely to enhance 

the efficiency of PCT, one of its most widely used inhibitor PJ-34 sensitizes tumor cells to the 

toxic effects of UVA. Interestingly, however, the photosensitizing effect of PJ-34 is unrelated 

to its PARP inhibitory property.  

 

1. Materials and Methods 

1.1. Cell culture 

The human epidermoid carcinoma cell line A431 (European Collection of Cell Cultures) 

was cultured in Dulbecco’s modified Eagle’s medium with high glucose supplemented with 

10% heat-inactivated fetal bovine serum (Sigma- Aldrich, St. Louis, MO), 5% penicillin-

streptomycin and 5%, L-glutamine (Lonza, Basel, Switzerland). Cells were maintained at 37°C 

in a humidified atmosphere (5% CO2), and were split at 70-80% confluency after trypsinization 
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with trypsin-EDTA solution (Sigma- Aldrich, St. Louis, MO). Cultures at 80-95% confluency 

were used in all experiments. 

 

1.2. Spheroid culture 

     We grew spheroids from A431 cells in 96 well plates pre-coated with 0.5% agar-water 

solution. Cells were seeded onto plates at 1x104 cells/ml density in 50 µl cell suspension per 

well. The cells were allowed to clump together for 48 h and were then pretreated with PARP 

inhibitors (PJ-34 and Veliparib) for 50 min. Cells were irradiated with UVA (2.5 J/cm2) as 

described below. Immediately after irradiation, the medium was changed to fresh cell culture 

medium and spheroids were incubated for 16 h. Pictures of spheroids were taken with a Leica 

confocal microscope system. Diameter of spheroids was measured with Image J software. 

 

1.3. Cell treatment and UVA irradiation 

In all experiments the cells were pretreated for 50 min with the photosensitizer 0.8 M 8-

methoxypsoralen (8-MOP) or with PARP inhibitors, 10 μM PJ-34 (Inotek Corporation, Beverly, 

MA) or 10 μM Veliparib (Selleck Chemicals, Munich, Germany). In assays involving 

antioxidants, 200 μM Trolox (Sigma- Aldrich, St. Louis, MO) or 500 μM ascorbic acid (Sigma- 

Aldrich, St. Louis, MO) were added to the cultures together with the PARP inhibitors. Following 

pretreatment the cells were irradiated with UVA (2.5 -10 J/cm2) in the presence or absence of 

PARP inhibitors in plates of uniform depth (0.109 cm in 96 well plate and 24 well plate) of 

phosphate-buffered saline (PBS) (0.2 M, pH 7.4). The cells were irradiated with a Bio-Sun 

microprocessor-controlled UV irradiation system (Wilber Lourmat, Marne-la-Vallée, France). 

The equipment operates at wavelength 365 nm (UVA): After irradiation PBS was replaced with 

fresh cell culture medium.  

 

1.4. Cell viability assay 
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Cell viability was determined with MTT assay at indicated time points after irradiation [26]. 

 

1.5. Detection of reactive oxygen species 

A431 cells were seeded into 96 well plates one day before the experiments. Cells were 

incubated for 50 min with 10 µM 2’,7’-dichlorodihydrofluorescein diacetate (Sigma-Aldrich, St. 

Louis, MO), (In preliminary experiments we have established that in a cell-free system UVA 

irradiation does not activate H2DCFDA and increased fluorescence could not be detected in 

UVA-irradiated H2DCFDA solution.). Fluorescence was detected with a Fluoroskan Ascent FL 

plate reader (Thermo Scientific, Vantaa, Finland) immediately after UVA irradiation (ex. 480 

nm, em. 590 nm). 

 

1.6. Gene silencing 

A431 cells were transfected in suspension (after trypsinization and prior to seeding). 

SiGENOME SMARTpool siRNA specific for human PARP-1 sequence, ON-TARGET plus 

Control siRNA and DharmaFECT 2 transfection reagent were obtained from Dharmacon 

Research, Inc. (Lafayette, CO) and silencing was carried out according to the manufacturer’s 

instruction. After 48 h, efficiency of silencing was determined from 24-well plates by Western 

blotting and cells in 96-well plates were used for the viability assay 16 h after irradiation with 

different doses of UVA (2.5-10 J/cm2). 

 

1.7. Western-blotting 

Antigens were detected by Western blotting according to standard procedures as described 

previously [27]. Antibodies specific for PAR (primary antibody: clone 10H), PARP-1, 

H2AX/gamma-H2AX, cleaved-PARP-1 were purchased from Cell Signaling Technology Inc. 

(Danvers, MA)  
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1.8. Immunostaining for -H2AX 

Cells were irradiated with 5 J/cm2 UVA for 30 min, then fixed (4% PFA for 20 min) and 

permeabilized (0.2% Triton X-100 in PBS buffer for 15 min). After washing, cells were 

blocked for one hour with 20% FCS in PBS buffer. Labeling with anti--H2.AX antibody 

(Cell Signaling Technology, Danvers, MA) was performed overnight at 4oC. Samples 

were washed three times with PBS and then incubated for 45 min with the peroxidase-

conjugated secondary antibody (Envision, Dako). Color was developed with the 

chromogen DAB (3,3'-diaminobenzidine) substrate. After mounting, samples were 

viewed and imaged with a LeicaTCS SP8 confocal microscope. Foci were evaluated 

in Image J with Focinator extension [28]. 

 

1.9. Comet assay 

Single-stranded DNA breaks were detected by alkaline comet assay (single-cell gel 

electrophoresis) as described previously [29]. 

 

1.10. Caspase activity assay and DNA fragmentation 

Cells were harvested 4, 8, 16 h after irradiation, washed 1x with PBS and were lysed in lysis 

buffer [10 mM HEPES, 0,1% CHAPS, 5 mM dithiothreitol, 2 mM EDTA, 1 mM proteinase-

inhibitor cocktail (Sigma-Aldrich, St. Louis , MO), 1 mM PMSF, pH 7.25]. Cell lysate and 

fluorogenic substrates [aminomethylcoumarin-conjugated caspase-3- and caspase–8- specific 

peptides (Ac-DEVD-AMC for caspase-3 and Ac-VETD-AMC for caspase-8; Sigma- Aldrich, St. 

Louis, MO)] were mixed in caspase reaction buffer (for caspase-3: 100 mM HEPES, 10% 

sucrose, 5 mM dithiothreitol, 0,1% CHAPS pH 7.25; for caspase-8: 75 mM Na+ MOPS, 10% 

glycerol, 1 mM dithiothreitol, 0.25 mM EDTA pH 7.5). Aminomethylcoumarine (AMC) liberation 

was detected after 1 h incubation at 37°C using a Fluoroskan Ascent FL plate reader (Thermo 

Scientific, Vantaa, Finland) with excitation at 355 nm and emission at 460 nm. 
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Internucleosomal DNA fragmentation was detected 4, 8, 16 h after UVA irradiation (2.5 J/cm2) 

by agarose gel electrophoresis as described previously [30]. 

 
1.11. [3H]-NAD Incorporation Assay 

 
The PARP activity assay was carried out as described previously [31].  

 

1.12. Immunofluorescent staining for PAR 

PAR polymer was detected by immunocytochemistry as described previously [26], except 

that fluorescence detection (AlexaFluor488-conjugated anti-mouse IgG antibody; Life 

Technologies, Budapest, Hungary) was used instead of peroxidase-labeled secondary 

antibody and nuclei were stained with TO-PRO-3 dye (Thermo Scientific, Vantaa, Finland). 

Samples were viewed and imaged with a Leica TCS SP8 confocal microscope. 

 

1.13. Spectroscopy 

Absorption spectrum of PJ-34 (dissolved in PBS) was measured with a Thermo Scientific 

Multiskan GO UV/VIS spectrophotometer. The NMR measurements were performed at 298 K 

on a Bruker AVANCE II spectrometer operating at 500.13 MHz proton resonance frequency. 

PJ34 (1 mg) was dissolved in 500 l DMSO-d6 in order to make all proton signals - including 

those of exchangeable NH- and OH-protons as well - detectable. 

 

1.14. Statistical analysis 

All experiments were performed at least three times on different days. All the values shown 

in the figures are expressed as mean±S.E.M. of n observations where n represents the number 

of observations. Intergroup comparisons involved one-way ANOVA followed by Tukey's test. 

A p-value less than 0.05 was considered as significant. 

 

2. Results 



PARP-independent photosensitization by PJ-34 9

2.1. Silencing PARP-1 in A431 cells 

In order to investigate the role of PARP-1 in photochemotherapy, we chose A431 skin 

carcinoma cells (a common model cell line in PCT research [32]) and tried to silence PARP-1 

expression using siRNAs. The silencing efficiency of siRNAs in A431 cells was confirmed by 

a dual approach. On the one hand, we have detected PARP-1 protein levels by Western 

blotting, thus proving efficient gene silencing (Fig.1A). We have also used a functional test by 

treating cells with H2O2 in order to induce DNA breakage and detected poly(ADP-ribose) 

formation as a sign of PARP-1 activation. This latter approach also confirmed that our siRNA 

treatment was effective as PAR polymers could not be detected in H2O2-treated cells when 

PARP-1 was silenced (Fig.1B). 

 

2.2. PARP-1 is not a key regulator of PUVA-induced cytotoxicity 

Next, we determined the UVA sensitivity of A431 cells by irradiating them with different UVA 

doses (2.5–10 J/cm2) and determining the viability of cells at 16 h after irradiation (Fig. 2A). 

Based on these results, we chose the 2.5 J/cm2 UVA dose for subsequent experiments as it 

had no significant toxic effect on the cells (Fig. 2A) even after 48 h incubation (data not shown). 

In order to set up a photodynamic model we chose the photosensitizer compound 8-

methoxypsoralen (8-MOP) and pretreated the cells with the photosensitizer prior to irradiation 

with the non-toxic UVA dose (2.5 J/cm2). The combination of photosensitizer concentration 

and UVA dose was selected so that their combination cause a near 50% drop in viability in 

order to allow detection of further sensitization or protection by PARP-1 silencing (Fig. 2B). 

Interestingly, however, silencing PARP-1 had no significant effect on cell viability in this 

photochemotherapeutic cell death model. 

 

2.3. The PARP inhibitor PJ-34 acts as a photosensitizer  
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In order to further confirm that PARP-1 is not an important regulator of cell death in PUVA-

induced cytotoxicity, we also used two common PARP inhibitors PJ-34 and Veliparib. Cells 

were pretreated for 50min with PJ-34 (10 µM) or Veliparib (10 µM) followed by either the 

standard irradiation protocol with 2.5 J/cm2 UVA or (8-MOP treatment+UVA irradiation). 

Interestingly, PJ-34 (Fig. 2C) sensitized cells to UVA and also to UVA+8-MOP. It is noteworthy 

that the photosensitizing effect of PJ-34 was as potent as that of 8-MOP (Fig. 2C). In the dark 

control samples (cells kept in the dark without UVA radiation) PJ-34 had no toxic effect. In 

contrast to PJ-34, Veliparib a PARP inhibitor with comparable potency to PJ-34 (Fig. S1) had 

no such sensitizing effect to UVA (Fig. 2D). From the data obtained with the PARP-1 silenced 

A431 cells and those treated with Veliparib we concluded that PARP-1 is not a major player in 

PCT, but the PARP-1 independent photosensitizing effect of PJ-34 is worthy of investigation.  

 

2.4. The photosensitizing effect of PJ-34 can also be detected in spheroids 

In order to test whether or not the photosensitizing effect of PJ-34 is restricted to 2D 

cultures, we managed to grow spheroids from A431 cells and repeated the photosensitization 

experiments. We found that under special culture conditions (as detailed in the “Materials and 

Methods” section) A431 cells form spheroids (Fig. 3). PJ-34 sensitized cells to otherwise non-

toxic UVA doses, while the structurally unrelated Veliparib had no such effect (Fig. 3). The 

photosensitizing effect of PJ-34 in monolayers as well as in spheroids was also confirmed in 

an independent laboratory (Juarranz laboratory, Universidad Autónoma of Madrid; Fig. S2). 

 

2.5. The phototoxic effect of PJ-34 is not suppressed by antioxidants 

ROS are considered as central mediators of UVA toxicity [33]. Therefore, we have 

investigated whether or not PJ-34 augments ROS production and to what extent this may 

explain the photosensitizing effect of the compound. We detected ROS production using the 

ROS-sensitive fluorescent dye CM-H2DCFDA (Fig. 4) and in control experiments we ruled out 

false positive results caused by UVA-induced photooxidation of the probe. (Photooxidation 
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could be observed only at UVA doses higher than 20 J/cm2; data not shown). Moreover, we 

found that the antioxidants Trolox and ascorbic acid could not prevent phototoxicity of PJ-

34+UVA (Fig. 4A) despite efficiently scavenging UVA or PJ-34+UVA-induced ROS production 

(Fig. 4A, B). We have also tested the cytoprotective effects of additional antioxidants such as 

the cell-permeable antioxidant enzymes PEGylated-Catalase (PEG-CAT), PEGylated-

superoxide dismutase (PEG-SOD), glutathione (GSH), and gallotannin. These antioxidants 

either lacked any significant effect (PEG-CAT, GSH, gallotannin) or even sensitized cells 

further to PJ-34+UVA-induced cytotoxicity (PEG-SOD). Moreover, the fact that ROS 

production was significantly but not dramatically higher in PJ-34-UVA-treated cells compared 

to UVA-irradiated cells (Fig. 4B) may also raise the possibility that the photosensitizing effect 

of PJ-34 is not due to increased ROS production. However, definitive conclusions regarding 

the exact role of ROS species in this model cannot be drawn from data obtained with 

antioxidants and this issue may require further investigation. 

 

2.6. DNA damage accompanies the photogenotoxic effect of PJ-34 

In order to better understand the mechanism of the photosensitizing effects of PJ-34 in 

UVA-irradiated A431 cells, next we determined DNA damage in the irradiated cells. We found 

that at this subtoxic UVA dose no obvious sign of DNA strand breakage could be revealed with 

the alkaline single cell gel electrophoresis assay (comet assay) (Fig. 5A). However, in the 

presence of PJ-34, marked DNA breakage could be observed both immediately and 1 h after 

UVA treatment, which was absent in Veliparib-pretreated cells.  

Moreover, detection of phosphorylated H2AX histone variant (γH2AX) is a commonly used 

indicator of DNA damage triggered by photosensitizers [34]. We found γH2AX accumulation 

in PJ-34-pretreated and UVA-irradiated cells while the applied UVA dose alone or in 

combination with Veliparib had no such effect (Fig. 5B). In summary, of these two experiments 

it can be stated that DNA damage occurs in the presence of PJ-34 if cells are exposed to a 

subtoxic dose of UVA. In the timeframe, the investigated DNA damage proved stable. 
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2.7. UVA-irradiated A431 cells die by apoptosis in the presence of PJ-34 

In order to characterize the cell death induced by PJ-34+UVA treatment, apoptotic 

parameters were investigated. We found that 4 h after irradiation caspase-3, a central 

executioner of apoptosis is activated in UVA irradiated cells if PJ-34 is present (Fig. 6A), whilst 

Veliparib had no such effect. In the PJ-34+UVA-treated samples caspase activity was further 

enhanced at 8 h and the activity was sustained even 16 h after irradiation. Increased caspase-

3-like activity was also evidenced by detecting PARP-1 cleavage (PARP-1 was one of the first 

described substrates of caspase-3). The 89 kDa cleavage product of PARP-1 was detectable 

at 4 h after irradiation with its abundance increasing even further at 8 h and 16 h (Fig. 6B). 

Activation of caspase-8, an initiator caspase of the extrinsic apoptotic pathway could also be 

detected as early as 4 h after irradiation with further significant increases at 8 h and 16 h (Fig. 

6C). The active role of caspases in the cell death process initiated by PJ-34+UVA treatment is 

supported by our observations that the pan-caspase inhibitor z-vad-fmk, the caspase-3 

inhibitor z-DEVD-fmk as well as the caspase-8 inhibitor z-IETD-fmk protected A431 cells from 

the toxicity (Fig. 6D). In the course of apoptosis, effector caspases unleash the DNA 

fragmentation machinery. Internucleosomal DNA fragmentation could also be detected in our 

UVA irradiation model but only in the presence of PJ-34 and not in the presence of Veliparib 

(Fig. 7). A marked necrotic component could not be seen to accompany apoptosis.  

 

3. Discussion  

Although PDT and PCT differ in their applications as well as mechanism of action [3], both 

methods rely on the cytotoxic combination of a photosensitizer with light of matching 

wavelength [35]. While in PCT cellular events that are triggered by DNA damage which may 

induce secondary generation of reactive oxygen species, in PDT production of ROS is a 

primary event causing secondary oxidative DNA damage [5] as well as membrane damage 
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[36], activation of the immune system [37] [38], inhibition of cell proliferation [39] and 

vascularization [40].  

Current aims of PDT- and PCT-related research focus on improving equipment and the 

delivery of activating light, increasing the tumor specificity of the treatment and developing 

novel, more powerful sensitizer compounds [41]. The current paper investigates the potential 

role of PARylation in photosensitization which fits this latter trend. 

PARP-1 has already been implicated in the repair of UVC-induced DNA damage via the 

nucleotide excision repair (NER) pathway [42], its role in PUVA lesion repair has not yet been 

investigated. Thus, the primary aim of our study was to investigate the role of PARylation in 

the response of the cells to PUVA treatment. Our original hypothesis was that by inhibiting the 

repair of PUVA-induced DNA damage, PARP inhibition would sensitize cells to UVA light. 

Somewhat surprisingly, this hypothesis had to be rejected because both PARP-1 silencing and 

PARP inhibition by the specific and potent PARP inhibitor Veliparib (which is now in phase III 

clinical trial for the treatment of HER-2 negative breast cancer associated with BRCA mutations 

[43]) failed to sensitize cells to the toxic effects of PUVA or to low dose UVA radiation. The 

compound was not inactivated by the applied UV dose (Suppl. Fig S1), therefore, it seems that 

PARylation is not of vital importance for the repair of PUVA photoproducts and cannot be 

considered as a crucial survival mechanism in PUVA-treated cells.  

Interestingly, however, PJ-34 is a PARP inhibitor with similar or somewhat lower potency 

than Veliparib that did sensitize the cells to UVA both in 2D cultures and in spheroids. One 

peak in the absorption spectrum of PJ-34 overlaps with the emission spectrum of the UVA 

irradiator used in this study raising the possibility that the compound can absorb UVA light. 

Moreover, it appears likely that UVA irradiation triggers a structural change in the PJ-34 

molecule as indicated by the altered absorption spectrum and NMR spectrum of the compound 

recorded before and after UVA irradiation (Fig. S3). Based on the new resonance signals 

appearing in the aromatic (7-9 ppm) and phenolic -OH (11-11.5 ppm) regions, tautomers (ca. 

20-30% of PJ-34) with extended conjugated pi-electron system are likely to be formed (Fig. 

S3C). 
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The fact that the sensitizing effect of PJ-34 could be observed both in 2D and in 3D 

cultures is important because 3D spheroid cultures represent a “microtumor” and this model 

has been used with increasing frequency to evaluate photosensitizing agents [44] as spheroids 

more closely model nutrient supply, oxygenation, pH inhomogeneities than traditional 2D 

cultures. Similar sensitivity of cells to PJ-34+UVA in 2D as well as in 3D cultures provides 

support for confirming this effect also in in vivo animal models. 

Further characterization of the effects of PJ-34 revealed that the compound slightly 

increases UVA-induced ROS production and dramatically enhances DNA damage. Somewhat 

surprisingly, the antioxidants trolox or ascorbic acid (and several other antioxidants) failed to 

prevent photosensitization by PJ-34 despite efficiently scavenging UVA-induced or PJ-

34+UVA-induced ROS production. It must be noted here, however, that the data in the 

literature on the effects of various antioxidants are rather controversial with reports on ascorbic 

acid or trolox (the antioxidants used in our study) ranging from protection, to lack of effect or 

even potentiation of PDT phototoxicity [45-48]. The key to understanding this controversy may 

lie in differences in the severity of the PDT/PCT model, the cell type, the concentration and 

cellular/subcellular penetration of the photosensitizer, concentration of the antioxidants and 

various other variables of the biological models used in these studies. 

Two types of regulated cell death pathways (apoptosis and necrosis) have been shown to 

be induced by the interaction of light and photosensitizers [49] [32]. PCT-induced DNA damage 

triggered apoptotic cell death characterized by caspase activation and internucleosomal DNA 

fragmentation [34]. As for the caspases, both caspase-3 and caspase-8 were activated in PJ-

34+UVA-treated cells. Activation of caspase 8 may indicate that PCT treatment activated the 

extrinsic apoptotic pathway (e.g., via FAS signaling). Previous reports [50] showing the 

involvement of this route in PCT may support this scenario [51]. Alternatively, caspase-8 

activity may also result from activation of the caspase-3-caspase-6 axis downstream of 

apoptosome formation [52] [53]. Which of these two options may be relevant and what the 

hierarchy of caspases is in our model, requires further investigation. No sign of necrosis could 
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be seen in our model, thus necrosis does not appear to be the major pathway of cell death in 

PJ-34-sensitized and UVA-irradiated A431 cells. 

As for the practical implications of our findings, it appears plausible to suggest that PJ-34 

may be worth investigating as a novel photosensitizer with potential applications in PDT or in 

PCT. However, several open questions remain to be answered before PJ-34 may enter the 

path of translation. Its photosensitization effect must be characterized in more detail and 

various different types of cancer cell lines should be tested for sensitivity to PJ-34+UVA 

treatment. Furthermore, the in vivo efficiency of the compound should also be verified. 
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Legends of figures 

Figure 1. Silencing of PARP-1 by siRNA 

PARP-1 expression was suppressed in A431 cells by siRNA. (A) Efficiency of silencing was 

confirmed by Western-blot analysis using a PARP-1 specific antibody. (B) In order to 

functionally characterize the effect of silencing, the cells were treated with 1 mM hydrogen-

peroxide and PAR production was detected by immunoblotting (TR control: DharmaFECT 

transfection reagent without siRNA; siCTL: transfected with non-target control siRNA; siPARP-

1: transfected with PARP-1-specific siRNA). In both cases ß–actin was used as loading control. 

Intensity of the bands was quantified by densitometry. Star symbol represents a statistically 

significant (*p<0.05) difference between A431 control cells and PARP-1 silenced cells on panel 

A or between H2O2 unexposed and exposed cells on panel B. Hashtag symbol indicates 

statistically significant (#p<0.05) difference in PAR accumulation between siCTL+ H2O2 and 

siPARP-1 + H2O2. 
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Figure 2. PARP-1 is not a key regulator of PDT but PJ-34 acts as a photosensitizer 

independently of its PARP inhibitory effect (A) The hypothesized potentiating effect of 
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PARP-1 silencing to UVA was tested by comparing the effects of PARP-1 silencing (siPARP-

1) to non-target siRNA (siCTL) or transfection reagent only (TR). Viability of cells was 

measured 16 h after UVA irradiation (2.5 – 10 J/cm2) with MTT assay. (B) Phototoxic effect of 

8MOP+UVA (2.5 J/cm2) on PARP-1 silenced A431 cells was measured in MTT assay 16 h 

after irradiation. (C) Effect of PJ-34 on 8MOP+UVA-induced cell death and (D) 

photosensitizing effect of PJ-34 compared to another potent PARP inhibitor Veliparib were 

determined in MTT assay at 16 h after UVA irradiation (2.5 J/cm2). Data on panels represent 

mean±S.E. of three independent experiments. Star symbol represents statistically significant 

(*p<0.05) difference between dark control cells and 8MOP+UVA-treated cells (B) or phototoxic 

effect of PJ-34 and 8MOP (C and D). Hashtag symbol indicates statistically significant 

(#p<0.05) sensitization by PJ-34 compared to 8MOP+UVA (C) or UVA (D).  
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Figure 3. Chemical phototoxicity of PJ-34 in spheroid cultures 

A431 spheroids were either left in the dark or were irradiated with 2.5 J/cm2 UVA in the 

presence of two PARP inhibitors PJ-34 (10 µM) or Veliparib (10 µM). Diameters were 
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measured 16 h after irradiation. Scale bar is 200 µm. Data on panels represent mean±S.E. of 

three independent experiments. Star symbol represents statistically significant (*p<0.05) 

difference between dark control and UVA irradiated cells. Hashtag symbol indicates 

statistically significant (#p<0.05) difference between UVA-irradiated and PJ-34+UVA-treated 

cells. 
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Figure 4. Antioxidants do not prevent UVA+PJ-34 induced phototoxicity despite 

efficiently scavenging ROS 
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A431 cells were either left in the dark or irradiated with 2.5 J/cm2 UVA in the presence of two 

PARP inhibitors PJ-34 (10 µM) or Veliparib (10 µM). Cell viability was measured with MTT 

assay 16 h after irradiation. The effects of the antioxidants trolox (200 µM) or ascorbic acid 

(500 µM) were tested on the viability (A) at 16 h or ROS production (B) (immediately after UVA 

irradiation). Data on panels represent mean±S.E. of three independent experiments. Star 

symbol represents statistically significant (*p<0.05) difference between dark control and UVA-

irradiated cells. Hashtag indicates statistically significant (#p<0.05) difference between UVA-

irradiated and PJ-34+UVA-treated cells. Dollar symbol indicates statistically significant 

($p<0.05) effect of antioxidants. 
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Figure 5. PJ-34 + UVA causes DNA damage  

(A) DNA single strand breaks were detected in alkaline Comet assay in the dark control cells 

and immediately or 1 h after UVA irradiation in the presence or absence of PARP inhibitors 
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PJ-34 (10 µM) or Veliparib (10 µM). Values of olive tail moment were used for quantitative 

analysis of DNA damage. Original magnification was 63x. Scale bar is 25 µm. (B) DNA double 

strand breaks were assessed by detecting γ-H2AX in the dark control cells or at indicated times 

after UVA irradiation (2.5 J/cm2) in the presence or absence of PARP inhibitors PJ-34 or 

Veliparib (10 µM). Intensity of the bands was quantified by densitometry. Data on panels 

represent mean±S.E. of three independent experiments. Star symbol represents statistically 

significant (*p<0.05) difference between dark control and UVA irradiated cells. Hashtag symbol 

indicates statistically significant (#p<0.05) effect of PJ-34 compared to UVA-exposed samples.  
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Figure 6. Photogenotoxic effect of PJ-34 triggers apoptotic cell death.  

(A) Caspase-3 and (C) caspase-8 activities were measured in dark control cells or at indicated 

times after UVA irradiation (2.5 J/cm2 ) in the presence or absence of the PARP inhibitors PJ-
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34 (10 µM) or Veliparib (10 µM). (B) PARP-1 cleavage was detected by immunoblotting in dark 

control cells or after UVA irradiation in the presence or absence of the PARP inhibitors PJ-34 

or Veliparib (10 µM) at indicated time points. ß–actin was used as loading control. Intensities 

of the bands were quantified by densitometry. (D) Protective effect of caspase inhibitors on 

cell viability was measured with MTT assay 16h after UVA irradiation (2.5 J/cm2) in the 

presence or absence of PARP inhibitors PJ-34 or Veliparib (10 µM) or in dark control cells. 

Data on panels represent mean±S.E. of three independent experiments. Star symbol 

represents statistically significant (*p<0.05) difference between dark control and UVA 

irradiated cells. Hashtag symbol indicates statistically significant (#p<0.05) between UVA 

irradiated and UVA + PJ-34 treated cells.  
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Figure 7. PJ-34 + UVA treatment causes DNA fragmentation.  

DNA fragmentation was detected in dark control cells or after UVA irradiation (2.5 J/cm2) in the 

presence or absence of PARP inhibitors PJ-34 or Veliparib (10 µM). Intensities of the bands 
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were quantified by densitometry. Data in panels represent mean±S.E. of three independent 

experiments. Star symbol represents statistically significant (*p<0.05) difference between dark 

control and UVA irradiated cells. Hashtag symbol indicates statistically significant (#p< 0.05) 

increase in DNA fragmentation in the presence of PJ-34. 
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Supplementary Figure S1. PJ-34 and Veliparib are similarly potent PARP inhibitors and 

they do not lose their inhibitory ability upon UVA irradiation 
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(A) A431 cells were exposed to hydrogen-peroxide (1 mM) for 7 min and PARP activation was 

measured in the 3H-NAD-based PARP activity assay. (B and C) Hydrogen-peroxide- (1 mM) 

or UVA-induced PAR accumulation was detected by immunostaining and Western-blot 

analysis using a PAR-specific antibody. In the case of immunostainings (B) nuclei were 

counterstained with TO-PRO. Original magnification was 63x. Scale bar is 25 µm. On the 

immunoblots (C) ß–actin was used as a loading control and the intensity of the bands was 

quantified by densitometry. In all experiments, A431 cells were pretreated with two specific 

PARP inhibitors PJ-34 or Veliparib (in indicated concentrations) prior to the hydrogen-peroxide 

treatment or UVA irradiation (2.5 J/cm2). Data on panels represent mean±S.E. of three 

independent experiments. Star symbol represents statistically significant (*p<0.05) effect of 

hydrogen-peroxide treatment. Hashtag symbol indicates statistically significant (#p<0.05) 

effect of PARP inhibitors on hydrogen-peroxide-induced PARP activation (A) or PAR 

accumulation (C). 

 

Supplementary Figure S2. Confirmation of spheroid data 

Spheroid data presented in Figure 3 (produced in the Virag laboratory, Debrecen, Hungary) 

were confirmed by findings from an independent laboratory (i.e., that of Angeles Juarranz, 

Madrid, Spain).  

A. Cellular morphology of A-431 cells (monolayer and spheroids) analyzed by phase contrast 

at 16 h after treatments. B. Cell survival of A-431 cells (monolayer and spheroids) measured 

by MTT assay at 16 h after the different treatments. (**p<0,001) 

Method used to grow spheroids was different from the protocol used by the Virag laboratory. 

Here, 80% confluent cultures were harvested with trypsin and gently pipetted to form a single 

cell suspension. The cells were centrifuged at 1700 rpm for 5 min, resuspended in spheroid 

medium and plated in appropriated plates. Parallel control cultures were seeded in spheroid 

medium and grown as attached monolayers on conventional plastic plates. The spheroid 

medium consists of DMEM/F12 (1:1) (HyClone, Logan, Utah/Gibco, Waltham, Massachusetts) 

containing 2% B27 serum-free supplement (Invitrogen, Frederick, Maryland), 20 ng/ml EGF, 
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0.4% bovine serum albumin and 4 μg/ml insulin (Sigma, St. Louis, Missouri). The cells were 

plated at 40,000 cells per 9.5 cm2 well in 1.2% poly-HEMA coated plates. Poly-HEMA was 

prepared by suspending 1.2 g poly-HEMA (Sigma, 2-hydroxyethyl methacrylate) per 100 ml 

95% ethanol and heating at 65°C with mixing. Dishes were coated by addition of 2.5 ml of poly-

HEMA stock per 9.5 cm2 dish in a sterile hood. The ethanol was evaporated overnight and the 

plates were sterilized by 1 h UV irradiation (Adhikary G et al. 2013; DOI: 

10.1371/journal.pone.008432). For treatments, both spheroids and attached monolayer 

cultures were treated for 1 h with 10 µM PJ-34, washed in PBS and subjected to UVA 

irradiation (2.5 J/cm2). Cultures were evaluated morphologically by phase contrast microscopy 

and by MTT for measuring cell survival after treatment (16 h). Scale bar is 100 µm.  

 

Supplementary Figure S3. UVA irradiation alters the absorption spectrum and the 1H 

NMR spectrum of PJ-34 

The absorption spectrum of PJ-34 solution (500 M in PBS) has been recorded with a UV/VIS 

spectrophotometer (A). The compound was dissolved in DMSO-d6 (1 mg/500 l) for NMR 

spectroscopy (B). UV and NMR spectra were recorded both before and after irradiation with 

2.5 J/cm2 UVA. Structure of PJ-34 as well as proposed structures of UVA-induced tautomers 

are shown (C). 

 

Supplementary Table S1 

A431 cells were pretreated for 30 min with the indicated concentrations of the listed 

antioxidants followed by PJ34+UVA treatment as described in the ‘Methods’ section. Viability 

was determined with the MTT method and cytoprotective effects were calculated and 

expressed as % protection. (Negative values indicate sensitizing rather than a protective 

effect.) Star symbol represents statistically significant (*p<0.05; **p<0.01) cytoprotective or 

sensitizing effects of the treatments. 
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