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Silica@zirconia@poly(malic acid) nanoparticle: a promising  

nanocarrier for theranostic applications  
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Silica@zirconia@poly(malic acid) nanocarriers of 130 nm mean diameter were designed, synthesized and characterized for 

the targeted delivery of diagnostic and therapeutic 99mTc isotope to folate-overexpressing tumors. An important 

achievement was that a multifunctional L-(−)-malic-acid-based copolymer was formed in situ at the surface of the 

inorganic cores in a single synthetic step incorporating L-(-)-malic acid, β-cyclodextrin rings, folic acid moieties, and 

polyethylene glycol chains. Morphological and in-depth structural analysis of the particles proved their core@shell 

structure. Stability experiments in aqueous media evidenced that stable suspensions can be obtained from the lyophilized 

powder in 10 mM phosphate buffer at pH 7.4. During 14-day degradation experiments, the nanoparticles were found to be 

slowly dissolving (including inorganic core) in saline and also in total cell medium. In vitro toxicity assay on hepatocytes 

showed a concentration-dependent decrease of cell viability down to 63±1% at the highest applied concentration (0.5 

mg/ml). Proof of concept experiments of technetium-99m radiolabelling and in vivo labelling stability are presented. 

Introduction 

Application of nanotechnology in the field of theranostics has 

become a promising strategy for personalized medicine1−4. 

Various multifunctional nanoparticles are synthesized for 

targeted drug delivery5,6. However those, which combine 

diagnostic and therapeutic functionalities (nanotheranostics) 

and can be used for advanced in vivo imaging techniques (e.g. 

single photon emission computed tomography coupled to 

computer tomography, SPECT/CT)7,8 are the most important. 

The biodistribution of nanotheranostics is quantitatively 

evaluated on the basis of radiation detection, which enables 

excellent evaluation and planning of dosage when the same 

nanocarrier is used for drug delivery. 

Nanocarriers used in theranostic applications are of various 

compositions: inorganic
9,10

, organic
11−13

, biological
14

 as well as 

their combinations
15,16

. The main advantages of inorganic 

nanoparticles are their well-defined size and shape, longer 

shelf-life and the conservation of their integrity in biological 

medium. On the other hand the degradability has become a 

priority to avoid the accumulation of these materials in the 

body causing unknown long-term effects. Biodegradability is 

an inherent advantage of most organic and biological 

nanocarriers. 

Silica is, however, one of the exceptional biodegradable 

inorganic materials
17,18

, which has several additional 

advantages, too: it is biocompatible, its surface modification is 

relatively easy
19,20

, and further, the diameter and shape of 

nanoparticles can be easily controlled (18-1000 nm)
21,22

.  

Zirconia, though not biodegradable, is another ceramic 

material used in medical applications as implant
23−25

. Few 

papers mention its use as a drug delivery nanocarrier
26

. In fact, 

pure ZrO2 colloid with uniform size and shape could only be 

obtained with a particle diameter above 200 nm
27,28

. However, 

when silica is used as a template, continuous zirconia shell may 

be deposited on its surface and particles can be obtained with 

well-controlled size
29,30

. 

We aimed at the preparation of a new complex nanocarrier for 

the targeted delivery of theranostic 
99m

Tc isotope to folate 

overexpressing tumours by combining the advantageous 

properties of silica, zirconia with those of degradable 

polymers. Our concept was to cover Stöber silica core of nearly 

100 nm diameter with zirconia (silica@zirconia), and then form 
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a new poly(ester-amide) outer shell to be able to chelate 
99m

Tc 

ions and achieve multiple functionalities (Scheme 1).  

 

Scheme 1 Schematic representation of the silica@zirconia@polymer complex 

nanocarrier. The malic acid-based poly(ester-amide) copolymer is formed in a one-step 

surface catalysed condensation of the components. 

We chose the components of the polymeric shell on the basis 

of our previous (non-published) experience. L-(−)-malic acid is 

a potentially interesting, biocompatible material, from which a 

low molecular weight homopolymer can be easily formed by 

polycondensation
31

. According to our observations malic acid 

adsorbs strongly at the zirconia surface and still participates in 

homopolymerization reaction allowing the formation of 

surface polymeric shell. Unfortunately, the homopolymer of 

malic acid (in bulk or at the surface of ZrO2) undergoes rapid 

hydrolysis in water due to the autocatalytic effect of multiple 

unreacted carboxyl groups. This is why it cannot be used as a 

drug delivery polymer in itself. A polyol was chosen, therefore, 

to be the second component of the copolymer: β-cyclodextrin 

that should increase the conversion of polymerization 

(consumption of free carboxyl groups) and serve later as host 

for the complexation of small hydrophobic drug molecules
32

.  

Further components of the polymeric shell were: diamino 

derivative of polyethylene glycol (increases circulation time in 

blood stream
33

) and folic acid (achieves active targeting of 

folate receptor expressing tumours
34,35

). According to our 

hypothesis, these amine-containing components should 

further set back the degradation of the final copolymer thanks 

to the stability of amide bonds. 

We report on the design, synthesis and physico-chemical 

characterization of the obtained complex nanocarriers (called 

thereafter CN) including stability and degradability conditions. 

Cell viability assay on hepatocyte cells and proof-of-concept 

SPECT/CT experiments are also presented. 

Experimental section 

Materials 

Ethanol (a.r., 99.98%, max. 0.02% water, Reanal), ammonia 

solution (25%, a.r., Reanal), tetraethyl-orthosilicate (TEOS, 

puriss. GC, Sigma-Aldrich), zirconium-n-butoxide solution 

(TBOZ, 80 wt% in 1-butanol, Aldrich), L-(−)-malic acid (MA, 

puriss. >99.5%, Fluka Analytical), folic acid (FA, ≥97%, Sigma-

Aldrich), N,N-dimethyl formamide (DMF, ACS-for analysis, min. 

99.8%, Carlo Erba), β-cyclodextrin (β-CD, Cyclolab), 

dipropylamine-polyethylene glycol (diaminoPEG, SUNBRIGHT 

DE-034PA MW 2000, NOF Corporation), acetonitrile (HiPerSolv 

CHROMANORM for HPLC, VWR), Na2HPO4×2H2O (Sigma), 1 N 

NaOH solution (for analysis, Carlo Erba), saline (SALSOL, 9 

mg/ml NaCl, TEVA), penicillin-streptomycin mixture (cell 

culture tested, Sigma-Aldrich), methyl ethyl ketone (MEK, 

Reanal Ltd.), total cell medium (RPMI1640, Sigma-Aldrich), 

xylazine hydrochloride (CP-Pharma) and ketamine 

hydrochloride (CP-Pharma) were used as received. TEOS and 

TBOZ were kept under argon. Silica gel impregnated instant 

thin layer chromatography paper (ITLC-SG) was obtained from 

Pall Corporation. Millipore water (18.2 MΩcm, MilliQ System) 

was used during the experiments. Poly(L-(−)-malic acid – β-CD) 

copolymer (T40) was prepared and kindly provided by J. 

Telegdi36. The white solid has a melting point of 232.6°C and a 

specific rotation value of ����
�� = +41,5° (C=2, water) and a 

molar weight estimated on the basis of static light scattering 

measurement: 3530 Da. (The specific rotation of L-(−)-malic 

acid is ����
�� = -7.66° (C=2, acetone), melting point: 109.5°C.) 

 

Preparation of complex nanocarriers 

Silica sols with 112 nm mean particle diameter were prepared 

according to the procedure of Stöber et al.
21 using 10 ml of 

TEOS, 16 ml of ammonia solution and 250 ml ethanol. 

Zirconia layer was deposited on the surface of silica particles 

with the adaptation of the procedure of Kim et al.
29. 50 ml of 

silica sol (10.0±0.1 mg/ml) was diluted to 350 ml with ethanol 

under argon atmosphere in a stirred three-neck flask equipped 

with a dropping funnel. 1.5 ml of TBOZ was quickly diluted 

with 50 ml of ethanol in a mixing cylinder under argon in a 

glove box, and then was added dropwise into the vigorously 

stirred silica sol (1 h) at room temperature, 

 The reaction mixture was allowed to react for one hour. Then 

360 mg of L-(−)-malic acid was added and the particles were 

separated by centrifugation at 5000 rpm for 5 min. The acid-

capped inorganic particles were redispersed in 400 ml DMF 

solvent by ultrasonication for 2 min for further use.  

Complex nanocarrier particles were prepared by dissolving 50 

mg L-(−)-malic acid, 50 mg folic acid, 700 mg T40 copolymer 

and 50 mg diaminoPEG in 200 ml DMF solution of SiO2@ZrO2 

(2.2±0.2 mg/ml particle concentration) (molar ratio of malic 

acid : folic acid : T40 copolymer : diaminoPEG = 1 : 0.3 : 0.53 : 

0.067). The reaction mixture was heated up to 110°C, and 

stirred for one hour. After cooling down, the reaction mixture 

was purified by centrifugation and washed: once with DMF, 

three times with ethanol, and finally three times with water. 

The product was freeze-dried.  

 

Characterization 

Structure and stability of complex nanocarriers. Morphological 

investigation of nanocarriers was carried out on a MORGAGNI 

268(D) (FEI, Eindhoven, Netherlands) transmission electron 
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microscope (TEM). Diluted samples were dropped and dried 

on carbon coated copper grids. The mean particle diameter 

and shell thickness analyses were performed using Olympus 

Soft Imaging Solution iTEM Software 5.0. 

The stability of phosphate buffered CN suspensions against 

high electrolyte concentrations was checked by dynamic light 

scattering (DLS) measurements in an experimental design that 

was to imitate 
99m

Tc labelling procedure. The isotope is eluted 

from the column in saline, thus phosphate buffer was chosen 

instead of PBS to avoid double saline content. DLS 

measurements were carried out on an AvidNano w130i 

instrument (30 mW diode laser emitting at 660 nm, avalanche 

photo diode detector placed at 90° (SABRe optics)). 0.5 mg/ml 

CN suspensions in 0-90 mM phosphate buffer were prepared 

and saline was added to each suspension in 0-1 volume ratio 

(resulting buffer concentrations indicated in Table S-1 in 

Electronic Supplementary Information, ESI). 

The pH dependent zeta potential values of the samples were 

determined at 20 °C with a Malvern Zetasizer Nano ZS 

(Malvern, Worcs, UK) equipped with a He-Ne laser (λ = 633 

nm) and a backscatter detector at fixed angle of 173°. 2.5 mg 

of CN was suspended in 20 ml Millipore water and 

ultrasonicated before the measurement. 20 ml of SiO2, 

SiO2@ZrO2, and SiO2@ZrO2+MA samples in ethanol were 

centrifuged and the particles were suspended in Millipore 

water. HCl and NaOH solutions were used to adjust pH values 

between 3 and 10 (JENWAY 3540 Bench Combined 

Conductivity/pH Meter). Each symbol on the ζ-pH plot stands 

for the average and error of three measurements. 

Characterization of the polymeric shell. The presence of 

functional groups was demonstrated with attenuated total 

reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy 

using a BioRad FTS-60 spectrometer equipped with a DTGS 

(deuterated triglycine sulphate) detector and a single 

reflection diamond ATR accessory ('GladiATR' with 0.6×0.6 

mm2 active surface, PIKE Technologies, UK). Scans were 

performed in the wavenumber region 4000-350 cm
-1

. In 

general, 4 cm
-1

 resolution and records of 128 scans were 

applied.  

Thermogravimetry (TG) provided information about the 

polymerization conversion and the total mass of polymeric 

shell on the surface of nanoparticles. The CN powder was also 

thoroughly checked for traces of DMF solvent by coupled TG-

MS measurements. TG measurements were performed on a 

modified Perkin-Elmer TGS-2 thermobalance and a HIDEN HAL 

2/301 PIC quadrupole mass spectrometer. About 0.6 mg 

sample was placed into the platinum sample pan and heated 

at a 20°C min-1 up to 900°C in argon atmosphere. A small 

proportion of the evolved gas and vapor was introduced into 

the mass spectrometer through a glass lined metal capillary 

transfer line heated to 300°C. The quadrupole mass 

spectrometer operated at 70 eV electron energy. 

Surface-specific elemental analysis information about the 

polymeric shell was deduced from X-ray photoelectron 

spectrum (XPS). X-ray photoelectron spectra were recorded on 

a Kratos XSAM 800 spectrometer operated at fixed analyser 

transmission mode using Mg Kα1,2 (1253.6 eV) excitation. CN 

powder was fixed on a stainless steel sample holder by a 

vacuum-compatible double sided tape. Spectra were 

referenced to the energy of the C1s line of the hydrocarbon 

type carbon, present on the surface of the samples, set at 

284.2 eV binding energy (see more details in ESI). Chemical 

states of the constituent elements were determined and 

assigned by using available references
37–39

. 

Dissolution of the polymeric shell. 6.7 mg CN sample was put on 

the top of centrifugal ultrafilter (Sartorius Stedim, VIVASPIN 

500, 0.2 µm polyethersulfone, 5 µl dead-stop volume, 

prewashed with water) and 520 µl of either saline or total cell 

medium containing 5% penicillin-streptomycin was added to it. 

The filter was closed and left stirring at room temperature. On 

days 0-1-2-3-6-9-13 the samples were centrifuged at 12500 

rpm for 30 min. Permeates were frozen till analyses, and the 

particles were resuspended in 500-500 µl saline or total cell 

medium. UV-visible spectroscopy, ATR-FTIR spectroscopy and 

high-performance liquid chromatography coupled to mass 

spectrometry (HPLC-MS/MS, see details in ESI) were 

performed on saline permeates. ATR-FTIR analysis was carried 

out on total cell medium samples. The surface of CN particles 

was analysed using ATR-FTIR spectroscopy at the end of 

degradation experiment. UV-visible spectra were recorded in a 

small-volume quartz cuvette on a Hewlett-Packard 8453 

spectrophotometer.  

Cell viability assay, radiolabelling and in vivo biodistribution. 

Toxicity of CN nanoparticles was tested with CytoTox Fluor
TM

 

Cytotoxicity Assay (Promega) on 96-well plates using MTT (3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) 

dye and primary rat hepatocytes  (see details in ESI).  

For radiolabelling 0.5 mg of CN was suspended in 1 ml 10 mM 

Na2HPO4 phosphate buffer (pH 7.5). The sample was 

ultrasonicated for 10 min and its size distribution function was 

assessed by DLS measurement. 500 µl (680 MBq activity) of 

sterile generator-eluted pertechnetate (
99m

TcO
4-

) solution in 

saline was added to the nanocarrier suspension. The reduction 

was carried out with 37.5 μg SnCl2 (×2H2O) in 7.5 μl 0.05 M 

HCl. 
99m

Tc-pertechnetate was derived from an UltraTechnekov 

(10.75 GBq) 
99

Mo-
99m

Tc generator (Covidien Imaging Solutions, 

USA). Labelling was performed within 20 minutes at room 

temperature. Radiochemical purity of the 
99m

Tc-labelled 

nanocarrier was examined by means of thin-layer 

chromatography (TLC) (see details in ESI). 

In vivo biodistribution of CN nanoparticles was investigated on 

three rats. Adult male Fischer-344 rats weighing 150–200 g 

were used for tumour-transplanted animal experiments. 5x10
6
 

folate receptor overexpressing He/De tumour cells (rat 

epithelial liver carcinoma) in 150 µl saline were injected 

subcutaneously into the left thighs. The animals received 

humane care complying with the criteria outlined in the 

"Guidelines for the welfare and use of animals in cancer 

research”
40

 (see further in ESI). 
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For SPECT/CT investigations, a 300 µl volume (122 MBq of 

activity/100 µg CN) of sterile radiolabelled CN suspension was 

administered into the tail vein of animals 1 hour post-labelling. 

Animals were anesthetized by administering a combination of 

xylazine and ketamine hydrochloride by the intraperitoneal 

route before the CN injection
8
. 30 minutes, 3 hours and 20 

hours post injection whole-body fusion images were taken 

from the experimental animals using an AnyScan SPECT/CT 

hybrid scanner camera (Mediso Ltd., Hungary). Fused scans 

were processed using Interview Software (Mediso Ltd., 

Hungary). Region of interest (ROI) calculations were performed 

by outlining the borders of selected organs or tracts. Injected 

dose (ID)/whole organ values were estimated from the 

resulted ROI values. 

Results and discussion 

Structure and colloid stability of complex nanocarriers 

The diameter of silica core was chosen to be around 100 nm to 

benefit from enhanced permeation and retention effect 

(EPR)
41

. The TEM picture of the CN powder shows nearly 

spherical particles with an average particle diameter of 112±10 

nm (values obtained from TEM image analysis on 50 particles) 

(Fig.1). TEM pictures of SiO2 and SiO2@ZrO2 particles are 

shown in Fig. S-1 in the ESI. 

 

Figure 1 TEM pictures of complex nanocarriers. 

According to these images, the polymeric shell covers the 

surface of the SiO2@ZrO2 spheres with an average thickness of 

5.0±2.3 nm (measurement of thickness performed on the TEM 

image of 8 particles at 73 positions).  

The deposition of surface layers was further confirmed by DLS 

measurements (see Fig. S-2a in ESI). The mean hydrodynamic 

diameter of silica particles in ethanol is 112 nm. This increases 

to 134 nm due to ZrO2 deposition. The lyophilized CN particles 

redispersed in phosphate buffer show an increased mean 

hydrodynamic diameter of 275 nm and also a larger 

polydispersity index. This suggests that at least some of the 

particles underwent cross-linking during the polymerization 

step. 

The changes in surface charge during synthetic procedure, as 

well, as the pH dependent surface charge conditions of the 

final product are well demonstrated by zeta potential vs. pH 

curves (Fig.2). The isoelectric point (IEP) of native silica 

particles is below pH 3 in agreement with previous results
42,43

. 

The IEP shifts to pH 7.5 after the deposition of zirconia. This 

corresponds to the value reported earlier for pure zirconia
44

. 

 

Figure 2 Zeta potential vs. pH analysis of the SiO2 sol, the core@shell SiO2@ZrO2 sol 

before and after addition of malic acid (+MA), and the complex nanocarriers (CN). The 

experimental error is within the symbol’s size except where marked. 

After addition of malic acid to SiO2@ZrO2 the surface charge 

becomes lower than -30 mV in the whole pH range showing 

the high affinity of malic acid to zirconia surface. This is what 

has been assumed in advance as ZrO2 is known to form strong 

surface interactions with citric acid, which is an analogue 

polydentate ligand
45

. The polymerization of multiple 

components resulted in a slight shift in the zeta potential-pH 

curve. This shows the maintained dominance of free carboxylic 

groups. The newly established chemical bonds and the overall 

surface structure of the particles was analysed by ATR-FTIR 

method (Fig.3).  

 

Figure 3 Fourier-transform infrared spectra of SiO2 sol (A), SiO2@ZrO2 sol (B) and 

complex nanocarriers (CN) (C). The difference spectrum of SiO2@ZrO0−SiO2 (B−A) is 

plotted in grey. 
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ATR-FTIR showed that the intensity of the vibrational bands 

characteristic to native silica surface (ν(Si-OH) absorption band 

at 950 cm
-1

 and ν(Si-O) at 798 cm
-1

) is not reduced after 

zirconia deposition
29,46

. The detailed spectral analysis revealed 

a new band around 1033 cm
-1

, related to (Si-O-Zr) asymmetric 

stretching. The broad band around 450 cm
-1

 corresponds to 

crystalline zirconia
47

 (see subtracted spectrum, grey line in 

Fig.3). The surface structure of nanoparticles is significantly 

altered after polymerization: amide bonds appear at 1651 and 

1553 cm
-1

, and distinct carbonyl absorption is recorded at 

1736 cm
-1

 (see spectrum C in Fig.3). These findings permit us 

to state that not only malic acid and T40 copolymer were 

integrated into the polymeric network through ester bonds, 

but amine-containing components have also been covalently 

linked in through amide bonds. The lack of signal at 73 m/z in 

TG-coupled mass spectrum confirmed the complete removal 

of DMF solvent from the CN powder. 

 

Colloid stability. Preliminary stabilization experiments showed 

that despite the highly negatively charged particle surface in 

the pH range 3-11, CN particles could only be effectively 

suspended at neutral or basic pH. This apparent discrepancy 

can be understood if we consider the pKa values of malic acid 

(pKa1 = 3.40, pKa2 = 5.2048). At the intrinsic pH of the CN 

particle suspension (3.2), surface carboxylic groups are mainly 

protonated which can lead to the formation of numerous 

intraparticular and interparticular H-bonds. This hypotheses is 

supported by the findings of Wohlfahrt who performed 

quantum chemical calculations for the modelling of H-bonding 

ability between carboxylic side chains in proteins, and stated 

that for repulsion between proteins pH>7 is necessary49. 

Size distribution functions obtained from DLS measurements 

evidenced that 10 mM phosphate buffer is appropriate for 

stabilizing the 0.5 mg/ml suspension of CN particles up to 77 

mM NaCl concentration (see details in Figs.S-2b-d in ESI).  

 

Figure 4 DLS size distribution functions of 0.5 mg/ml CN suspension in 10 mM 

phosphate buffer before (solid line; Z-ave: 275 nm PdI: 0.163) and after 99mTc labelling 

(38.5 mM saline) (dashed line; Z-ave: 274 nm. PdI: 0.111), and 9 days after labelling 

process kept at the ambient (dotted line; Z-ave: 269 nm PdI: 0.168).  

The size distribution functions of the above suspension 

recorded repeatedly before and after radiolabeling with 
99m

Tc 

show that the colloidal stability has been maintained for at 

least 9 days after labeling as intensity weighted Z-average 

particle size and polydispersity index do not change 

significantly (38.5 mM final NaCl concentration) (Fig.4). 

 

Structure and composition of the polymeric shell 

The elucidation of the copolymer structure required a more 

detailed study. We wished to prove the presence and the 

covalent binding of all the added components. Reference 

samples have been prepared for ATR-FTIR and TG 

measurements: the physical mixture of the polymeric shell 

components (M, identical molar ratio then for CN) and their 

bulk polymerization product (PM, same molar ratio than CN 

and P, heated to 110°C in DMF for 1 h, and then washed with 

ethanol). The parallel measurement of these enabled the 

identification of spectrum signals arising from the appearance 

of new bonds. 

The superposition of absorbance bands of the monomers was 

observed in the ATR-FTIR spectrum of M. The bulk 

polymerization induced several important changes (Fig.S-3 in 

ESI). First, the dominating broad band around 1023 cm-1 

belonging to O-C(H) stretching of the cyclodextrin indicates 

that an ester backbone has formed (this band was also a 

dominating band for T40 copolymer). Second, the loss of the 

separated -OH/-NH stretching bands at 3319-3542 cm-1, and 

the appearance of characteristic amide bands at 1651 cm-1 

ν(C=O) and 1575 cm-1 δ(-NH) suggest the formation of amide 

with the amino groups of folic acid and/or diaminoPEG. It is 

important to note, that when the polymerization occurs at the 

surface of zirconia shell (CN sample), the relative intensity of 

ester-amide- vs. carboxylate-bands are reversed. This indicates 

that zirconia plays a definite role in the polymerization 

reaction, probably by forming metal-carboxylate complexes on 

its surface50. 

Similar information could be obtained from the thermal 

decomposition experiments of M, PM and CN samples (Fig.S-4 

in ESI). New degradation peaks appear for PM (e.g. intensive 

peak at 340°C), than observed previously for the mixture of 

monomers51-53 or for malic acid homopolymer54. For CN 

particles the degradation peaks are further shifted towards 

higher temperatures indicating higher polymerization 

conversion. Thus, thermogravimetric results support that the 

presence of zirconia surface interferes notably in 

polymerization process. The use of zirconia as a catalyst in 

liquid phase esterification of fatty acids was reported by 

Takahashi and coworkers
55

. However, our observation is that 

the zirconia surface itself becomes covered by a covalently 

bound polymer that cannot be completely removed of it 

anymore (the zeta potential of the particles remains highly 

negative in the pH range 3-11 after multiple dialyses). 

The surface elemental composition of the CN sample was 

analysed using X-ray photoelectron spectroscopy (see raw 

spectra in Fig.S-5 in ESI). This surface sensitive technique 

mainly provides information about the top 10 nm of the 
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sample (more than half of the information coming from the 

first nm), and could hardly detect the presence of the 

SiO2@ZrO2 core (Table 1). This result supports our observation 

based on TEM pictures that the coverage of the particles with 

polymer is complete. However, there are differences between 

the experimental (derived from XPS data) and theoretical 

composition of the polymeric shell (theoretical: 53.2% C, 

45.4% O and 1.4% N). 

 

The presence of nitrogen could not be evidenced by our XPS 

measurement (the detection limit is nearly 1 at% N). We have 

considered the possibility of segregation inside the polymeric 

shell, and calculated the atomic composition of monomers 

(Table S-2 in ESI). The experimental results agree best the 

atomic composition of diaminoPEG, which might be in excess 

on the particle surface. Similar effect has been described 

previously for poly(lactic-co-glycolic acid) surfaces prepared by 

spin coating from a homogeneous solution of polyester and 

PEG chains56.  

The presence of PEG chains at the surface of CN particles may 

ensure long circulation time in blood stream, which is 

favourable for theranostic application. On the other hand, 

these results indicate that folic acid may not be available at the 

particle surface in sufficiently high amount for folate receptor 

targeting. Further biological studies will be dedicated to the 

investigation of this issue. 

 

Dissolution of the polymeric shell  

According to our preliminary experiments the homopolymer of 

L-(−)-malic acid decomposes completely during 20 min of 

ultrasonication in water, even when formed by surface 

catalysis on silica@zirconia nanoparticles. (However, a 

monolayer of malic acid remains adsorbed at the particle 

surface.) The same occurs when a copolymer is formed at the 

surface of the particles using L-(−)-malic acid and β-

cyclodextrin monomers with the addition of diamino-PEG and 

folic acid for the last 10 min of the polymerization step (Fig.S-6 

in ESI). The rapid dissolution is a disadvantage for a 

pharmaceutical carrier candidate. We overcame this problem 

by using pre-formed copolymer of L-(−)-malic acid and β-

cyclodextrin, and with the presence of amine-bearing 

components throughout all the polymerization process. These 

nanocarriers did not lose their polymer coverage during 20 

min of ultrasonication in water according to TEM investigation. 

We examined thereafter their dissolution in saline and total 

cell medium during a two-week period. 

The dissolution rate of the polymeric shell in saline was 

analysed with mass spectrometry (Fig.5).  

 

Figure 5 Fraction of released malic acid in saline (symbols) and fitted curve (line). The 

fraction of dissolved malic acid was calculated taking the last measurement point at 

10000 min for 100%. 

The experimental points were fitted with the following 

equation: 
�
��
	 
 ��1 
 ����� 

where Q and Q0 are the quantity of released malic acid till a 

given time point and till the 14
th

 day of experiment, 

respectively, A is a constant, k is the dissolution rate, whose 

reciprocal is τ, the time constant. Malic acid release can be 

described with a time constant of 4.3 ± 0.4 day at 25°C under 

the given parameters (k = 0.232 ± 0.02 day
-1

,
 
τ1/2 = 2.98 ± 0.3 

day). Thus, half of the polymeric shell dissolves within three 

days, if the particles are daily put into fresh saline. 

Permeates in saline were further analysed by UV-visible 

spectroscopy (Fig.6a). The absorption curves show three main 

peaks at 210-219 nm, 239 nm and between 271-298 nm. The 

absorption band of malic acid (and that of T40) is near 210 nm 

(Fig.6b). It appears as a shoulder of the peak at 219 nm in the 

spectra of permeates. Folic acid absorbs light at 219 nm and at 

276 nm (depending slightly on pH
57

). β-CD has a weak 

absorption band near 240 nm, but it has two more absorption 

regions under 210 nm and between 300-320 nm. The relative 

intensity of these peaks in permeate spectra is varying in time 

confirming compositional changes during the dissolution. It is 

to note, that the most intensive absorption peak in all 

permeates observed at 239 nm cannot be assigned to any of 

the polymeric shell components. We thereafter examined the 

absorption bands of amide bonds and C=C double bonds, but 

they proved to be at lower wavelength. Finally, we prepared a 

mixture of an aqueous suspension of crystalline ZrO2 powder 

(obtained by the method of Zhou et al.
58

) with malic acid 
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solution and a second mixture with folic acid solution (Fig.6b). 

We observed the appearance of a new absorption band in the 

ZrO2+FA mixture at 239 nm, but not in ZrO2+MA. In fact, folic 

acid is known to form metal ion complexes
57,59

, but this is the 

first proof of the formation of zirconium-folate complex.  

 

Figure 6 UV-visible spectra of (a) permeates obtained from dissolution of CN particles 

in physiological salt solution and (b) day 1 dissolution sample compared to those of 

polymeric shell components and suspensions of crystalline ZrO2 powder in the 

presence of dissolved malic acid (MA) or folic acid (FA). 

As the maximal intensity of the absorbance band observed at 

239 nm is on the first day of dissolution, we assume that an 

amount of folic acid adsorbs directly to the surface of zirconia 

through carboxylic functional groups. The quick dissolution of 

these complexes suggests that the primary amine of these 

folates does not react in the polymerization reaction. 

We further analysed the FTIR spectra of CN particles at the end 

of the above 14-days-period dissolution in saline and also that 

of the sample stirred in total cell medium (Fig.S-7 in ESI). We 

not only observed the notable change in polymeric bands 

(quality and quantity) in both media, but also the partial 

dissolution of silica and zirconia. The dissolution of silica has 

been reported earlier in the literature
17,18

. On the other hand, 

the biodegradation of zirconia resulting probably from folate 

complex formation has not yet been mentioned in the 

literature. The FTIR absorption bands of the CN polyester shell 

mainly disappeared from the spectrum and there remained 

the bands of polyamide (1647 cm
-1

 and 1553 cm
-1

). The 

dissolution of silica is more pronounced in NaCl solution then 

in total cell medium. This difference is probably due to pH 

discrepancy between the two media (5.7 for saline and 7.8 for 

total cell medium). 

The results of dissolution tests suggest that silica@zirconia 

cores would not remain for long time in the living organism but 

would dissolve completely within a few months. 

 

Cell viability, radiolabeling and in vivo biodistribution  

MTT assay was used to establish the cytotoxicity of CN 

nanoparticles applying primary rat hepatocytes. Cells were 

treated for 24 h with the indicated concentration of CN, and 

then the particles were washed out. Cell viability was assessed 

following the 24 h exposure (24 h) and 24 h later (48 h), in 

order to study the longer term effect of CN. (In the second 24 

h term the cells were incubated without CN). Two-sample t-

test performed on resulting data showed a concentration 

dependent decrease of cell viability (Fig.7).  

 

Figure 7 Cell viability assay carried out on hepatocyte cells for 24 h exposure and two 

incubation times and CN concentrations between 10-500 µg/ml.  

The highest 0.5 mg/ml CN nanoparticle concentration reduced 

the viability to 63 ± 1 % and 43 ± 1 % of the control measured 

just after the exposure and at 48 h, respectively. Although NPs 

were washed out after 24 h exposure, the viability further 

decreased, which suggests that the NPs were retained in the 

hepatocytes, and/or initiated longer processes which lead to 

cell death.  

The radiolabelling efficiency was determined 30 minutes, 3 

hours and 20 hours postlabelling on the basis of TLC 

chromatograms (see chromatograms in Fig.S-8 in ESI). The 

radiolabelled products showed high degree (above 99%) and 

durable labelling efficiency during the entire in vitro follow-up 

study. We assume that the poly(ester-amide) backbone of the 
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polymeric shell with numerous pendant carboxyl groups acts 

as a polydentate chelator.  

The in vivo biodistribution of the radiolabelled nanocarriers 

showed good correlation with products described earlier with 

similar particle size distribution
60

. Particles were quickly 

accumulated in the organs of the reticuloendothelial system 

(RES) (e.g. liver, spleen, bone marrow), and a smaller 

proportion of the radioactivity immediately started to wash-

out through the urinary tract (kidneys, urinary bladder, urine). 

Clinical side effects in experimental animals were not recorded 

during the examinations. Out of the total injected activity, an 

average 48.4 % was accumulated in the liver (nearly 50 µg) and 

9.0 % in the tumour (9 µg) in the first 30 minutes (Fig.8).  

 

Figure 8 Photograph and overlaid SPECT/CT image of a He/De tumour transplanted 

Fischer rat 3 hours after 99mTc-labelled nanocarrier injection.  

Organ activities demonstrated the slow elimination of 

nanocarrier. 8 hours post-injection almost 70% of the total 

injected activity was traceable by whole body ROI analysis. 

However, a retained blood-background could be observed 

which could be related to a relative long circulation time. 

Besides, a negligible uptake was detected in the thyroids, 

salivary gland, stomach mucosa and lungs, indicating that in 

vivo radiolabelling efficiency and particle diameters of the 

labelled nanocarriers were practically constant after i.v. 

application: particle aggregation did not occur. The obtained 

values of the organ activity uptakes are presented in Fig.S-9 in 

ESI. These findings confirm the suitability of CN sample for 

SPECT/CT application. CN particles were further applied for the 

diagnosis of folate receptor overexpressing tumours in 

spontaneously diseased veterinary patients (dog and cats). 

They have shown fair accumulation in oral carcinomas
60

. 

Conclusions 

In this paper a novel, complex structure nanocarrier has been 

proposed with the prospect of theranostic application. The 

significance of this new nanocarrier lies in its versatility: the 

easy size tuning by means of the diameter of the silica core, 

and the one-step synthesis of the multifunctional polymeric 

shell surface-catalyzed by ZrO2 coating, which allows the 

incorporation of any stable compounds bearing –OH, -COOH or 

-NH3 functionality. The chelating property of the poly(ester-

amide) backbone of the shell has allowed the efficient and 

stable radiolabelling with 
99m

Tc, but we wish to demonstrate a 

more general chelating property in the future by conducting 

labelling experiments with other isotopes of shorter half-life. 

The present study did not give evidence of the presence of 

folic acid at the surface of complex nanocarriers. We, 

therefore, will proceed to the elucidation of this issue and 

carry out in vitro and in vivo biological experiments to observe 

folic acid targeting in a future study. We also aim to carry on 

characterization of hepatotoxic potential of NPs in vitro, and 

then to confirm the in vitro results in vivo.  

CN particles and analogues with porous structure will further 

be applied for the encapsulation and release of small 

hydrophobic drugs. Such molecules are prone to form 

inclusion complexes with inbuilt β-cyclodextrin, hence, 

chemotherapy could be realized by the same pharmaceutical 

carrier as diagnosis and radiotherapy.  
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