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Supported by DFT calculations, formation of stable mononuclear (N1Im, N1Im, N1Im) 
coordinated complexes was found in the [Ru(η6-p-cym)(H2O)3]

2+–Ac-HAHH-NH2 or –Ac-
HAHAH-NH2 systems in slow processes to model the metal ion binding capabilities of 
surface-accessible histidyl imidazoles of albumin and transferrin. 
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Abstract 

 In order to model the metal ion binding capabilities of high molecular mass 

components of blood the interaction between [(η
6-p-cym)Ru(H2O)3]

2+ and terminally 

protected oligopeptides containing three histidyl moieties (Ac-HHH-NH2, Ac-HAHH-NH2, 

Ac-HAHAH-NH2 and Ac-H*AH*AH*-NH 2, where A = L-alanyl, H = L-histidyl, H* = N3-

methyl-L-histidyl) were studied by pH-potentiometric, ESI-TOF-MS, circular dichroism and 

NMR methods at an ionic strength of 0.20 M KCl or KNO3 as well as using density functional 

theory (DFT) calculations. Protonation constants of the novel peptides are reported. Although 

for Ac-HHH-NH2 the immediate formation of precipitation with [(η6-p-cym)Ru(H2O)3]
2+ 

hindered any further solution investigations results of the detailed NMR and MS studies 

revealed that the other three ligands coordinate to the metal ion in rather slow processes via 

the imidazole moieties forming [(η6-p-cym)RuL]2+ (L = oligopeptide) type species in the 

slightly acidic, neutral pH-range. At pH ~ 7.5 identical binding mode of Ac-HAHH-NH2 and 

Ac-HAHAH-NH2 in the [(η6-p-cym)RuL]2+ via three imidazole nitrogens was found 

hindering completely the hydrolysis of the metal ion even at 1:1 metal ion to ligand ratio. At 

elevated pH MS evidences support the involvement of amide-N donor(s) in metal ion binding 

too beside partial hydrolysis. 0.20 M KCl medium was found to hinder effectively the 

hydrolytic processes of the metal ion in the basic pH-range without altering the coordination 

of the imidazole side chains. Both NMR and DFT results support the imidazole-N1 („far” or 

„τ”) over the N3 („near” or „π”) coordination of the histidyl side chains of all these 

oligopeptides to the organometallic ruthenium(II) cation. 

 

1. Introduction 

 The biologically active low oxidation state of various platinum metals with 

antiproliferative potential can be stabilized in half-sandwich type [(η6-arene)M(XY)Z] (M = 

Ru(II), Os(II)) and [(η5-Cp)M(XY)Z] (Cp = substituted cyclopentadienyl; M = Rh(III), Ir(III), 
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XY = chelator, Z = monodentate ligand) organometallic complexes. In blood serum these 

compounds may undergo various biotransformation reactions. As the histidyl residue of 

peptides possesses a very efficient, either „far” or „τ” (N1) as well as „near” or „π” (N3) 

nitrogen donor (see Scheme 1) in its side chain imidazole ring [1], surface-accessible histidyl 

imidazoles of albumin and transferrin (e.g. 38 histidyl residues available in apo-Tf) are 

important metal ion sites. It is widely accepted that these proteins have determining role in the 

uptake of platinum compounds therefore these interactions will determine the overall drug 

distribution and excretion and differences in efficacy, activity and toxicity [2]. Studies, 

therefore, involving the binding of imidazole, histidine or histidyl side chains to various metal 

ions are in the focus of intensive research [3-9]. 

Scheme 1. 

 Ruthenium compounds as a possible alternative to anticancer platinum complexes 

often selectively coordinate histidyl imidazole nitrogens on proteins and the N7 site on the 

imidazole ring of purine nucleotides, and so can take advantage of the properties of proteins, 

oligonucleotides and nucleic acids to target specific tissues [10,11]. As expected on the basis 

of the relative pKa of the ligands, ruthenium binding to imidazoles on protein surfaces is 

greater than to guanine N7 on DNA [1]. Such interactions could be responsible for drug 

inactivation (related to resistance) or activation (e.g. in the case of prodrugs) and drug 

delivery.  

 For a better understanding of the interaction between organometallic, half-sandwich 

type platinum metals and surface-accessible histidyl imidazoles of peptides in serum, 

previously the [(η6-p-cym)Ru(H2O)3]
2+ binding strength of N-methylimidazole was studied 

[12]. In particular, by the combined use of potentiometry, NMR and mass spectrometry (MS) 

we have shown that even this simple model ligand forms complexes with high stability with 

[(η6-p-cym)Ru(H2O)3]
2+ and can hinder its hydrolysis under physiologically relevant 

conditions at 1:3 metal ion to ligand ratio [12]. 

 Due to tautomerization in the imidazole ring of the histidyl side chain both the N1 and 

N3 nitrogen donors can coordinate to the metal ions; under special conditions imidazolato-

bridged dinuclear complexes can also be obtained [13,14]. In reactions of palladium(II) with 

histidyl peptides having free N-terminus, imidazole N3 coordination is preferred due to the 

[NH2, N3Im] „histamine-type” binding of the ligands [14,15]. On the contrary, previously 

reported oligopeptides with protected N-terminus (Ac-HAAAH-NH2 and Ac-HARAH-NH2) 

can bind to metal ions (M = [Pd(en)(H2O)2]
2+ and cis-[Ru(NH3)4]

2+) through imidazole N1 or 
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N3 of either histidine, thereby potentially forming linkage isomers, [M{1,5-Ac-H(N1)-(Xaa)3-

H(N1)-NH2}]
2+, [M{1,5-Ac-H(N1)-(Xaa)3-H(N3)-NH2}]

2+, [M{1,5-Ac-H(N3)-(Xaa)3-H(N1)-

NH2}]
2+ and [M{(1,5-Ac-H(N3)-(Xaa)3-(N3)-NH2}]

2+, resulting in 20-22-membered 

macrocycles [16-18]. Using 13C NMR spectroscopy for assignment, the differences between 

δC for each imidazole-C atoms (C2, C4 and C5) of the complexed and those of the free 

peptide assisted in identifying the structure of each possible isomers [19]. To simplify the 

chemistry, the number of linkage isomers was reduced by using N3-methylated histidines too, 

leaving only N1 for binding. It was shown by 13C NMR that N1 coordination of both of the 

His residues resulted in negative ∆δ for C4 and positive ∆δ values for the C5 atoms [16-19]. 

 In continuation of our work, further studies on the interaction between [(η6-p-

cym)Ru(H2O)3]
2+ and model peptides containing histidyl residues in various positions were 

undertaken. His-rich peptides e.g. HRP2 may be important targets for the development of 

novel antimalarial tests while histidine triad proteins (HIT) containing highly conserved 

HXHXH sequence by binding purine mono-nucleotides are shown to be involved in 

proapoptotic tumor suppression [20,21]. In the present work we report on the synthesis and 

results obtained with the ruthenium(II) complexes of terminally protected peptides containing 

three histidyl residues in different sequences (Ac-HHH-NH2, Ac-HAHH-NH2, Ac-HAHAH-

NH2 and Ac-H*AH*AH*-NH 2, where H* = N3-methyl-L-histidyl, Fig. 1). Beside the detailed 

equilibrium study carried out by the combined use of pH-potentiometric, NMR, CD and ESI-

MS techniques in aqueous solution, DFT methods were also used to calculate the optimized 

structures and the most stable isomers of the complexes formed at physiological pH. To 

model the biologically more relevant conditions the studies were also extended to a medium 

containing 0.20 M KCl ionic strength. 

Fig. 1  

 

2. Materials and methods 

2.1. Chemicals 

 RuCl3·xH2O, α-terpinene, AgCF3SO3, AgNO3, KNO3 and KCl were commercial 

products of the highest purity available (Sigma-Aldrich, Merck or VWR), and used as 

received. Solvents were dried and distilled according to standard methods [22]. [(η6-p-

cym)RuCl2]2  was synthesized and purified according to a literature protocol [23]. Aqueous 

solution of [(η6-p-cym)Ru(H2O)3](NO3)2 was obtained from [(η6-p-cym)RuCl2]2 by removal 

of chloride ion using equivalent amount of AgNO3 [24]. The N- and C-terminally protected 
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peptides with the sequence of Ac-His-His-His-NH2 (HHH), Ac-His-Ala-His-His-NH2 

(HAHH), Ac-His-Ala-His-Ala-His-NH2 (HAHAH) and Ac-His(N3-Me)-Ala-His(N3-Me)-

Ala-His(N3-Me)-NH2 (H*AH*AH*) (see Fig. 1) were obtained by solid-phase peptide 

synthesis using the Fmoc strategy. Rink Amide AM resin, TBTU and Fmoc-protected L-

amino acids (Fmoc-L-His(Trt)-OH, Fmoc-L-Ala-OH) were purchased from Novabiochem 

(Switzerland) and from Chem-Impex International Inc. (USA). N,N-diisopropyl-ethylamine 

(DIPEA), trifluoroacetic acid and analytical grade dimethylformamide (DMF) were Merck 

products. 3,6-dioxa-1,8-octanedithiol (DODT), N-methyl-pyrrolidone (NMP), 1-

hydroxybenzotriazole hydrate (HOBt·H2O), triisopropylsilane (TIS), 2-methyl-2-butanol and 

HPLC grade trifluoroacetic acid were supplied by Sigma-Aldrich. Dichloromethane (DCM), 

diethyl ether (Et2O), acetic acid, piperidine, acetic anhydride and acetonitrile (ACN) were 

purchased from Molar or VWR.  

 

2.2. Synthesis and physical measurements 

2.2.1. Peptide synthesis and purification 

The histidine-containing oligopeptides were synthesized by solid-phase peptide 

synthesis in a microwave-assisted Liberty 1 Peptide Synthesizer (CEM, Matthews, NC), using 

the TBTU/HOBt/DIPEA activation strategy on Rink Amide AM resin (substitution 0.71 

mmol·g–1, 0.25 mmol·g scale, 352 mg of resin). Removal of the Fmoc group was carried out 

by means of 20% piperidine/0.1 M HOBt·H2O in DMF at 75 °C with 35 watts microwave 

power for 180 s. 0.5 M HOBt·H2O/0.5 M TBTU in DMF and 2 M DIPEA in NMP were used 

for coupling at 75 °C with 25 watts microwave power for 300 s, adding 4-fold excess of 

amino acids (except for the coupling of Fmoc-L-His(N3-Me)-OH, where 2.5 equivalents of 

amino acid was used). The N-terminal Fmoc group was removed as described above. N-

terminal acetylation was achieved by treating the fully assembled peptide resin with capping 

reagents (5% Ac2O, 6% DIPEA in DMF). Histidines were protected with trityl (Trt) groups 

during the peptide assembly. Cleaving from the resin and removal of the side chain protective 

groups were carried out by treatment with a mixture containing TFA/TIS/H2O/DODT 

(94/2.5/2.5/1 v/v %) at room temperature for 1.5 h. After cleaving, the free peptide was 

separated from the resin by filtration. Cold Et2O was used to precipitate the crude peptides 

from the solution and to wash from the contaminants of the reagents of the synthesis and 

cleaving agents. After filtering, the product was dried under argon, redissolved in water and 

lyophilized. 
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In order to check the purity of the peptides analyses were performed using a Jasco 

analytical RP-HPLC instrument, equipped with a Jasco MD-2010 plus multi-wavelength 

detector on a Vydac C18 chromatographic column (250 x 4.6 mm, 300 Å pore size, 5 µm 

particle size). By eluting A solvent (0.1% TFA in water) and B solvent (0.1% TFA in ACN) 

at a flow rate of 1 ml/min the absorbance at 222 nm was monitored. Method A: 30 min 98% 

A and 2% B (isocratic), method B: 3 min 100% A and 0% B (isocratic), 15 min 90% A and 

10% B (gradient), 18 min 90% A and 10% B (isocratic), 20 min 100% A and 0% B (gradient). 

Purity of the peptides (> 95%) was checked by analytical RP-HPLC and the protonation sites 

were identified by pH-potentiometric measurements. ESI-TOF MS analysis in the positive 

mode was carried out on a Bruker micrOTOF-Q instrument. The measurements were 

performed in water, in the absence or presence of chloride ions at 1.0 mM [(η6-p-

cym)Ru(H2O)3]
2+ concentration using different pH values. Temperature of drying gas (N2) 

was 180 °C. The pressure of the nebulizing gas (N2) was 0.3 bar. The flow rate was 3 µL/min. 

The spectra were accumulated and recorded by a digitalizer at a sampling rate of 2 GHz. 

DataAnalysis (version 3.4) was used for the calculation. 

[Ac-HHH-NH2](CF3COO)3: Rt = 3.89 min (method A). Yield: 20.7%. ESI-MS (pos.) 

m/z: 157.744 [M – 3 CF3COO]3+, calc. for [M – 3 CF3COO]3+: 157.745; 236.108 [M – 3 

CF3COO – H]2+, calc. for [M – 3 CF3COO – H]2+: 236.114; 471.219 [M – 3 CF3COO – 2 H]+, 

calc. for [M – 3 CF3COO – 2H]+: 471.221. 

[Ac-HAHH-NH2](CF3COO)3: Rt = 4.24 min (method A). Yield: 46.5%. ESI-MS (pos.) 

m/z: 181.425 [M – 3 CF3COO]3+, calc. for [M – 3 CF3COO]3+: 181.424; 271.632 [M – 3 

CF3COO – H]2+, calc. for [M – 3 CF3COO – H]2+: 271.633; 542.263 [M – 3 CF3COO – 2 H]+, 

calc. for [M – 3 CF3COO – 2 H]+: 542.258.  

[Ac-HAHAH-NH2](CF3COO)3: Rt = 5.54 min (method A). Yield: 57.4%. ESI-MS 

(pos.) m/z: 205.104 [M – 3 CF3COO]3+, calc. for [M – 3 CF3COO]3+: 205.103; 307.151 [M – 

3 CF3COO – H]2+, calc. for [M – 3 CF3COO – H]2+: 307.151; 613.297 [M – 3 CF3COO – 2 

H]+, calc. for [M – 3 CF3COO – 2 H]+: 613.295. 

[Ac-H*AH*AH*-NH2](CF3COO)3: Rt = 11.1 min (method B). Yield: 39.5%. ESI-MS 

(pos.) m/z: 219.116 [M – 3 CF3COO]3+, calc. for [M – 3 CF3COO]3+: 219.119; 328.171 [M – 

3 CF3COO – H]2+, calc. for [M – 3 CF3COO – H]2+: 328.175; 655.341 [M – 3 CF3COO – 2 

H]+, calc. for [M – 3 CF3COO – 2 H]+: 655.343. 

 

2.2.2. pH-potentiometry 
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For solution studies doubly deionised and ultra-filtered water was obtained from a 

Milli-Q RG (Millipore) water purification system. pH-potentiometric measurements were 

carried out at an ionic strength of 0.20 M KNO3 or 0.20 M KCl and at 25.0 ± 0.1 oC. 

Carbonate-free KOH solutions of known concentrations (ca. 0.2 M) were used as titrant. 

HNO3 or HCl stock solutions (ca. 0.2 M) were prepared from concentrated nitric or 

hydrochloric acids, respectively, and the exact concentrations were determined by 

potentiometric titrations using the Gran's method [25]. A Mettler Toledo T50 titrator equipped 

with a Metrohm double junction electrode (type 6.0255.100) or a combined glass electrode 

(type 6.0234.100) was used for the pH-metric measurements. The electrode system was 

calibrated according to Irving et al. [26], the pH-metric readings could therefore be converted 

into hydrogen ion concentrations. The water ionization constant, pKw, was 13.76 ± 0.01. For 

the metal ion containing samples automatic titrations with a maximum waiting time of 30 

minutes in every step were performed in the pH range 2.0–11.0 using samples of 6.00 mL. In 

all cases the samples were completely deoxygenated by bubbling purified argon for ca. 20 

min before the measurements. Owing to slow equilibrium processes individual samples 

containing the metal ion and ligand in 1:1 ratio were also prepared in vials under an 

atmosphere of argon using 0.20 M KNO3 ionic strength. The samples were left to stand for 7 

days and the pH values were measured in the absence of CO2 from the air. Metal ion 

concentrations in all cases were varied in the range 1.0–5.0 mM. Concentration stability 

constants, βp,q,r = [MpLqHr]/[M] p[L] q[H] r (where “M” stands for [(η6-p-cym)Ru(H2O)3]
2+) 

were calculated with the aid of the SUPERQUAD and PSEQUAD computer programs 

[27,28]. During the calculations hydrolysis of [(η6-p-cym)Ru(H2O)3]
2+ was taken into 

consideration and the formation of the following species was assumed: [{(η6-p-cym)Ru}2(µ2-

OH)3]
+ (logβ2,0,−3 = –9.16) [29]. 

 

2.2.3. Spectroscopic measurements 

A JASCO J-810 spectropolarimeter was used to record the CD spectra of the 

complexes in the wavelength range of 200 to 800 nm using a 10 mm cell. Individual Ru-

containing samples at cRu = 1.0 mM were equilibrated in H2O for 7 days before 

measurements. 

The NMR spectra (1H, 13C, 1H-1H COSY, 1H-1H NOESY, 1H-13C HSQC, 1H-13C 

HMBC) were recorded on a Bruker Avance DRX 400 FT-NMR instrument. 2D NOESY 

experiment was carried out with a standard pulse sequence combined with gradient pulses in 
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mixing time. In the experiments 800 ms mixing time (d8) was used to allow time for 

magnetization exchange to occur for the NOE interactions. Chemical shifts are reported in 

ppm (δH) from sodium 3-(trimethylsilyl)-propionate (TSP) as internal reference. NMR studies 

were carried out in D2O (99.8%) at cRu = 5.0–10.0 mM in order to register the pH* 

dependence of the chemical shifts of the nuclei of various species. pH* was set up with 

NaOD, DNO3 or DCl in D2O. Individual Ru-containing samples were equilibrated for 7 days 

before measurements. pH* values (direct pH-meter readings in a D2O solution of a pH-meter 

calibrated in H2O according to Irving et al. [26] were converted to pH values measurable at an 

ionic strength of 0.20 M using the following equation: pH = pH* + 0.40 [30]. 

 

2.3. Density functional theory (DFT) calculations 

Geometries were fully optimized by DFT using the Gaussian 09 (revision C.01) 

software [31]. According to previous studies [32,33] the functional B3P86 was used which 

ensures a high degree of accuracy in the prediction of the structures of transition metal 

complexes [34]. The relativistic small-core ECPs SDD (the Stuttgart-Dresden ECP) [35] and 

LANL2DZ [36]  with the corresponding valence basis sets were employed on the ruthenium, 

and 6-311g on the ligand. For all the structures, minima were verified through a frequency 

calculation. The closed-shell Ru species were treated with the restricted formalism. The 

relative free energy of the several isomers and conformations of the ML complexes were 

calculated at the level of theory B3P86/6-311g by computing the solvent (in this study, water) 

effect using the SMD model available in Gaussian 09 software. The SMD model is based on 

the quantum mechanical charge density of a solute molecule interacting with a continuum 

description of the solvent, which takes into account the full solute electron density without 

defining partial atomic charges and represents the solvent not explicitly but rather as a 

dielectric medium with surface tension at the solute-solvent boundary. This model has been 

demonstrated to give good results in the prediction of solvation free energy [37]. The total 

value of ∆Gtot
aq can be separated into the electronic plus nuclear repulsion energy (∆Eele), the 

thermal contribution (∆Gtherm) and the solvation free energy (∆(∆Gsolv)): ∆Gtot
aq = ∆Eele + 

∆Gtherm + ∆(∆Gsolv). The thermal contribution was estimated by using the ideal gas model and 

the calculated harmonic vibrational frequencies to determine the correction arising from zero 

point energy and the thermal population of the vibrational levels. The theory was described in 

the literature [38-42]. 
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3. Results and discussion 

3.1. Characterization of the peptide ligands 

 As it was detailed in the Experimental section the novel oligopeptides were obtained 

via conventional solid-phase peptide synthesis. The crude products were purified via RP-

HPLC. A typical chromatogram is shown in Fig. S1 and indicated (as for the other ligands 

too) > 95% purity. Identity of the peptides was assessed by HR-ESI-MS and pH-

potentiometry. Evaluation of the titration curves (for a representative example, see Fig. S2) 

resulted in protonation constants of the ligands summarized in Table 1. The number and the 

numerical value of the pK data are both consistent with the presence of three imidazole 

moieties in each of the peptides providing thus further proof for the identity of them. The 

values are in the range 5.6–7.0 characteristic for the protonation of the histidyl moieties of 

small peptides [43]. The slightly increasing value of pK1 in the direction of HHH → HAHAH 

may be interpreted with the decreasing strength of H-bonding between the imidazole units due 

to the increasing size of the chelate that is formed in the doubly protonated ligands. 

Table 1. 

pH-dependent 1H NMR study of peptide ligands (as an example see HAHAH in Fig. 2) 

indicates that the Hε1 (□) and Hδ2 (○) protons of the imidazolyl moieties exhibit the largest 

upfield shift with increasing pH of the samples. COSY and HMBC experiments (Fig. S3) 

assisted in identifying the corresponding resonances belonging to the δ2 and ε1 protons of the 

imidazole rings. The chemical shift values registered for the fully protonated and fully 

deprotonated forms of HAHH and HAHAH are summarized in Table 2. 

Fig. 2 

Table 2 

 

3.2. Complex formation of the ligands with [(ηηηη6-p-cym)Ru(H2O)3]
2+ 

 Interaction between the His-containing novel peptides and [(η6-p-cym)Ru(H2O)3]
2+ 

was studied using pH-potentiometry. For HHH the formation of a yellow precipitate as low as 

pH = 2.0 and the very limited solubility of the complex(es) even at elevated pH hindered 

subsequent solution equilibrium studies with this ligand. For the tetrapeptide and pentapeptide 

slow complex formation processes were detected, 30 minutes waiting time being not enough 

to reach pH eqilibrium as it is shown in Fig. S2, curve b. Nevertheless, the titration curve in 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

9 
 

Fig. S2 clearly shows that in the presence of the metal ion the complex formation is 

significant by pH 4 as cooperative deprotonation and coordination of two imidazole units is 

detectable. A further base consumption process by pH 8 is consistent with the binding of the 

third imidazole group of the ligand while above pH 9 hydrolysis of the complex(es) present is 

indicated. Due to the non-equilibrium processes, however, no attempts were made to calculate 

stability constants for the metal complex(es) present in solution from the pH-potentiometric 

curves in neither of the systems.   

 pH-dependence of the aromatic region of 1H NMR spectra of equilibrated samples 

containing 1:1 metal ion to ligand ratio for the HAHAH system are presented in Fig. 3. As it 

can be seen in Fig. 3 at pH 2.17 beside the two doublets (∆, 5.73 and 5.98 ppm) belonging to 

the ring protons of the p-cymene unit of the aqua complex, [(η6-p-cym)Ru(H2O)3]
2+ (for 

notation see Scheme 1) [29], resonances of the ε1 protons (□, 8.63 ppm) and those of the δ2 

protons (○, 7.32 ppm) of the uncomplexed ligand are present. On increasing the pH, small 

new signals as low as pH 2.6 are detectable next to the above mentioned resonances 

indicating complex formation. This becomes more pronounced around pH 4 (suggesting 

binding isomers) and at pH 7.82 all the signals present unambiguously support the formation 

of a single complex (Hε1: ●, Hδ2: ■, p-cymene: ▲). Beside this species at more basic pH 

minor hydrolysis of the metal ion resulting in the formation of [{(η6-p-cym)Ru}2(µ2-OH)3]
+ 

(∆, 5.17 and 5.38 ppm) [29] and presence of some uncomplexed ligand (□, 7.64 and ○, 6.90 

ppm) are also detected. 

Fig. 3 

 It is also worth mentioning that the solution equilibrium studies carried out under 

biologically more relevant conditions, i.e. in the presence of 0.20 M KCl ionic strength, 

indicated that chloride ions are capable of hindering significantly the hydrolysis of the metal 

ion. To illustrate this, comparison of the pH-dependence of the 1H NMR spectra for the [(η6-

p-cym)Ru(H2O)3]
2+–HAHH system at 0.20 M KNO3 or KCl are shown in Fig. S4. 

 In order to assign all the resonances for the new complex at pH 7.82 1H–1H COSY 

(Fig. 4), 1H–13C HSQC (Fig. 5) and 1H-1H NOESY (Fig. S5) experiments were carried out. 

Fig. 4 clearly indicates the correlation between the corresponding ε1 signals (■) and δ2 signals 

(●); the assigned resonances together with chemical shift values are summarized in Table 2. 

As Fig. 5 demonstrates, the signals in the ppm range 6.1–5.6 involve the p-cymene ring 

carbons at 85–90 ppm while two C5 imidazole ring carbons out of the three ones appear at ~ 
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128 ppm. The third C5–Hδ2 crosspeak can be seen at 7.2 ppm in 1H NMR spectrum, while the 

three C2 signals are detectable in the range 140–145 ppm in the 13C NMR spectrum. The 

NOESY spectrum (Fig. S5) also shows that there is a through-space correlation between all 

the Im protons (ε1, δ2) and p-cym ring protons revealing the coordination of all the three Im 

units. All these data together with the absence of any uncomplexed ligand clearly support that 

at pH 7.8 a single species with (NIm, NIm, NIm) coordination is present with HAHAH and with 

HAHH (Fig. S4) too. 

Fig. 4. 

Fig. 5. 

 As it is seen in Fig. 3, above pH 7.8 upfield shift of the aromatic resonances belonging 

to the complex can be seen (similar trends are also observable for the [(η6-p-

cym)Ru(H2O)3]
2+–HAHH system) that indicates change in the coordination sphere of the 

metal ion. This can either be partial hydrolysis during which the imidazole(s) are replaced by 

hydroxide ions or metal ion assisted deprotonation and coordination of the amide group(s) of 

the peptides. Although the high field region of the spectra (not shown) are less informative 

due to the presence of numerous overlapping CH2 and CH signals and the disturbing water 

signal, comparison of these resonances in the absence and presence of the metal ion may also 

indicate some shift in accordance with literature data [44-47] suggesting amide coordination.  

Furthermore, the fact that even above pH 11 in both systems a significant amount of the metal 

ion can be found in complexed form may also suggest that hydrolysis can be ruled out. In 

order to obtain more information CD spectroscopy and ESI-MS techniques were also applied.  

 Selected CD spectra aquired in the range 2.2 < pH < 7.5 for the [(η6-p-

cym)Ru(H2O)3]
2+–tetrapeptide and –pentapeptide systems are shown in Fig. 6/A. As it is 

expected (not shown in Fig. 6) [(η6-p-cym)Ru(H2O)3]
2+ or [{(η6-p-cym)Ru}2(µ2-OH)3]

+ ions 

do not exhibit CD activity. Since coordination of a chiral ligand to the half-sandwich type 

metal core results in the formation of a stereogenic metal center CD activity in the VIS part of 

the spectrum can also be expected [48]. Spectra belonging to the two metal ion containing 

systems already at pH 2.2 show a positive Cotton-effect at ~ 400 nm indicating complex 

formation in agreement with the NMR results. Around pH 4 an increase of the CD activity 

together with a bathochromic shift is detected (Fig. 6/A spectra c and d) in both systems 

providing support for the likely formation of binding isomers (see Fig. 3, pH = 4.26; Fig. 

S4B, pH 4.67). Around physiological pH where a single complex was detected in both 
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systems by NMR the CD spectra (Fig. 6/A spectra e and f) have positive Cotton-effect at ca. 

300 and 370 nm different from those observed at pH 4. The similar pairs of CD spectra at 

various pH values support very similar binding modes with the HAHH and HAHAH ligands. 

Above pH 8.3, however, the aquired spectra for these two systems are rather different (Fig. 

6/B) indicating significant change in the structure of the corresponding metal complexes with 

the two peptides. While for the HAHH on increasing the pH an increase of the intensity of the 

band at 385 nm can be seen for HAHAH decrease and a parallel hypsochromic shift is 

observable (Fig. 6/B). 

Fig. 6 

 To provide further proof on the composition of the complexes, mass spectrometry was 

also used. The m/z values of the major species present in solution at various pH values are 

summarized in Table 3. All the detected ions in Table 3 were also simulated and an excellent 

agreement was found regarding observed and calculated isotope patterns and m/z values. As a 

representative example, MS spectrum of the [(η6-p-cym)Ru(H2O)3]
2+–HAHH system at 1:1 

ratio and at pH = 6.5 is shown in Fig. 7. It can be seen that, beside [ML]2+ with an m/z value 

of 388.630 (its simulation is presented in Fig. 8), another species with high intensity at 

776.257 m/z is detectable. This second one corresponds to a complex with monopositive 

charge and one hydrogen less than [ML]2+. These findings can be rationalized by assuming 

that in the latter species deprotonation and coordination of one of the amide nitrogens occurs 

(formation of a mixed hydroxido species with [ML(OH)]+ stoichiometry would result in a m/z 

value of 792 but this is not detectable in measureable concentration in the spectra). In contrast 

with the CD information obtained in the basic pH range, identical behaviour of the [(η6-p-

cym)Ru(H2O)3]
2+–HAHH and –HAHAH systems was found by MS. In particular, increasing 

hydrolysis resulting in the formation of  [{(η6-p-cym)Ru}2(µ2-OH)3]
+ (523.038 m/z) and 

parallel formation of [MLH–1]
+ or [MLH–2] type species (Table 3) are detected. 

Table 3 

Fig. 7 

Fig. 8 

Since the imidazole side chain of the His residue can in principle coordinate to a given metal 

ion at elevated pH via both of the N1 and N3 donors (due to tautomerization) it was also 

interesting to study what is the donor atom preference for these half-sandwich type Ru(II) 

complexes. Inspired by literature data on the 13C NMR behaviour of the square planar binding 
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isomers in the Pd(II)-Ac-HAAAH-NH2 system [19] we have also undertaken the 13C NMR 

study of the [(η6-p-cym)Ru(H2O)3]
2+–HAHH, and –HAHAH systems to clarify the most 

likely (N1 vs. N3) binding mode of the imidazole units. Based on the spectra, as it was 

detailed in the Introduction, the ∆δ values for the [ML]2+ complexes in these systems were 

calculated. As it is also indicated in Fig. 9, the positive ∆δ for the C5 and the negative ∆δ 

value for the C4 carbons in our systems show identical trend with those obtained for the 

(N1,N1) binding isomer of the Pd(II)–HAAAH system and, therefore, strongly supports the 

identical N1 coordination of imidazolyl moieties of the ligands in the [ML]2+ complexes with 

both HAHH and HAHAH. 

Fig. 9 

 In order to obtain further proof on this binding mode a model pentapeptide, Ac-

H*AH*AH*-NH 2 with three N3-methylated His units was also synthesized and its binding to 

[(η6-p-cym)Ru(H2O)3]
2+ was studied. MS results were consistent again with the formation of 

[ML] 2+ (obs.: 445.173, calcd.: 445.174 m/z) as major species at pH ~ 7.4 with this ligand too. 

Furthermore, based on the 13C NMR data, the calculated ∆δ values showed an identical trend 

in their sign as for the non-methylated oligopeptides, HAHH and HAHAH (Fig. 9), providing 

thus clear evidence for the identical (N1, N1, N1) coordination mode. 

 

3.3. DFT results 

 Over the last years, DFT methods were used with good results to calculate the relative 

stability of several metal complexes (see Section 2.3). In this study, the solvent (H2O) effect 

was simulated using the SMD model, based on the quantum mechanical charge density of a 

solute molecule interacting with a continuum description of the solvent; this model has been 

demonstrated to give good results in the prediction of solvation free energy [37]. In particular, 

two the conformers of ML (L = Ac-HAHAH-NH2 indicated with ML1 and ML2, with a 

different orientation of the isopropyl and methyl substituents on benzene) [49] and two 

coordinations of His residues (through N1 and N3 nitrogen donors) were examined: ML1(N1), 

ML1(N3), ML2(N1) and ML2(N3), see Fig. S6. 

The geometry of the four species was optimized considering the relativistic effects due 

to the presence of a heavy atom such as Ru. The most popular approximation to account for 

these effects is the pseudo-potential or effective core potential (ECP) approach, where the 

innermost electrons are not treated explicitly but subsumed into a specially designed, mean 
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potential acting upon the outer electrons. Recently, this approximation was used to predict the 

geometry of the complexes formed by second-row transition-metal ions [32,50-52]; it has 

been shown that the use of ECP with the valence basis sets SDD (the Stuttgart-Dresden ECP) 

[35] and LANL2DZ [36] on the metal gives good results in the geometry optimisation [32,50-

52]. Among the functionals, hybrid ones are shown to be superior to GGAs and meta-GGAs, 

and B3P86 is highly recommended [50]. 

The relative stability of the four species was determined in terms of the value of ∆Gtot
aq for 

the reactions (1)-(3): 

ML1(N1) ⇄ ML2(N1) (1) 

ML1(N1) ⇄ ML1(N3) (2) 

ML1(N1) ⇄ ML2(N3) (3) 

The value of ∆Gtot
aq can be separated into three parts: the electronic plus nuclear repulsion 

energy (∆Eele), the thermal contribution (∆Gtherm) and the solvation free energy (∆(∆Gsolv)), as 

given in eq. (4). The thermal contribution was estimated using the ideal gas model and the 

calculated harmonic vibrational frequencies to determine the correction due to zero point 

energy (ZPE) and to thermal population of the vibrational levels: 

 

∆Gtot
aq = ∆Eele + ∆Gtherm + ∆(∆Gsolv) (4) 

 

The Gibbs free energy in the gas phase (∆Gtot
gas), instead, can be found by neglecting the term 

(∆(∆Gsolv)): 

∆Gtot
gas = ∆Eele + ∆Gtherm (5) 

 

DFT methods indicate that the two conformers with coordination of N1, ML1(N1) and 

ML2(N1), are the most stable. The difference of free energy is very small, 5.7 kJ/mol. In 

contrast, the isomer with Ru binding by N3 donor, ML(N3), is significantly less stable, and 

almost 240 kJ/mol separates it from ML(N1). An examination of the data in Table 4 indicates 

that the value of ∆Gtot
gas (in the range 325-330 kJ/mol) favours ML(N1) over ML(N3); the 

more favorable ∆Gsolv for ML(N3) (89-93 kJ/mol) is not enough to compensate the value of 

∆Gtot
gas.  

The reason of this result resides in a higher intrinsic stability of ML(N1) than ML(N3). 

The coordination of N1 results in a more relaxed structure with an optimal value of the Ru–N 

distances, Ct–Ru–N and N–Ru–N angles, where Ct is centroid of the arene ligand (Table 5). 
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The optimized structures of the most stable conformers of ML(N1) (Fig. 10) and ML(N3) are 

shown in Fig. S7. 

Fig. 10 

 Similar DFT calculations were also carried out on the ML complex with Ac-HAHH-

NH2. Since for the pentapeptide a very small energy difference for ML1 and ML2 (regarding 

the position of the isopropyl and methyl groups of the benzene ring to the coordinating ligand) 

was found with the tetrapeptide only the N1 vs. N3 coordination of the imidazoles of the 

ligand was studied. Considering eq. (2), the results in Table 4 clearly support the preference 

of N1 coordination of this ligand too in the optimized structure. The calculated bond lengths 

and angles for both systems are summarized in Table 5.   

Table 4 

Table 5 

 

4. Conclusions 

Results of this study indicate that terminally protected oligopeptides containing three histidyl 

side chains are efficient binders of [(η6-p-cym)Ru(H2O)3]
2+, a model cation for studying 

biotransformation reactions of half-sandwich type organometallic complexes with 

antiproliferative potential. Although the rather slow complex formation processes in these 

systems prevented the estimation of stability constants for the various species present in 

aqueous solution the results of the combined use of NMR, MS and CD techniques are 

consistent with the formation of 1:1 [(η6-p-cym)RuL]2+ (L = oligopeptide) type complexes as 

major species under biologically relevant conditions. (NIm, NIm, NIm) binding mode of both 

HAHH and HAHAH in [(η6-p-cym)RuL]2+ is evidenced from the NMR and MS results. Both 

comparative NMR and DFT results support the N1 over N3 coordination of the imidazole 

rings of the ligands to the metal ion. On coordination of the ligands having the imidazole N 

donors in different chemical environment the metal ion also becomes a stereogenic center 

beside the α-carbon atoms of the L-amino acid building blocks. Monitoring the CD activity of 

samples with 1:1 metal ion to ligand ratio in the range 2.0 < pH < 8.0 reveals almost identical 

behaviour both with HAHH and HAHAH. This suggests that in the physiological pH range 

the position of the histidyl residues in the sequence has little effect on the stability of the 

[ML] 2+ complexes with (N1Im, N1Im, N1Im) binding mode. In the more basic pH range, 

however, the different CD spectra suggest different binding mode and/or arrangement of the 

two ligands in the appropriate half-sandwich complexes and this might be connected to the 
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position of the His moieties in the peptides. Namely, in HAHH it is more likely that the 

peptide bond between the adjacent His residues becomes a metal ion binding site than for 

HAHAH. To understand fully this behaviour further studies are in progress in our 

laboratories.   
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HAHAH – Ac-His-Ala-His-Ala-His-NH2 
H*AH*AH* – Ac-His( N3-Me)-Ala-His(N3-Me)-Ala-His(N3-Me)-NH2 

HMBC – heteronuclear multiple-bond correlation 
HOBt·H2O – 1-hydroxybenzotriazole hydrate 
HSQC – heteronuclear single quantum coherence 
Im – imidazole 
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Rt – retention time 
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Table 1. Overal protonation (logβ) and stepwise deprotonation (pK) constants of histidine-
containing oligopeptides at 25.0 ˚C and I = 0.20 M KNO3.

 

 Ac-HHH-NH2 Ac-HAHH-NH2 Ac-HAHAH-NH2 

[HL] + 6.95(1) 6.94(1) 7.02(1) 
[H2L] 2+ 13.27(1) 13.28(1) 13.35(1) 
[H3L] 3+ 18.88(1) 18.99(1) 19.15(1) 

pK1 5.61 5.71 5.80 
pK2 6.32 6.34 6.33 
pK3 6.95 6.94 7.02 
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Table 2.  Chemical shift values (δ) assigned in the aromatic region for the ligands and the p-
cymene unit of  [(η6-p-cym)Ru]2+ in free and complexed form at various pH values. 

 

 δ (ppm) 
Ac-HAHH-NH2 Ac-HAHAH-NH2 

Hε1 Hδ2 p-cymene Hε1 Hδ2 p-cymene 
uncomplexed 
pH = 2.0 

8.61 
8.61 
8.61 

7.29 
7.29 
7.28 

5.73 
5.98 

8.69 
8.69 
8.68 

7.33 
7.32 
7.30 

5.73 
5.98 

uncomplexed 
pH = 11.0 

7.65 
7.64 
7.63 

6.91 
6.88 
6.87 

5.17 
5.38 

7.65 
7.64 
7.64 

6.94 
6.91 
6.90 

5.17 
5.38 

complexed 
pH = 7.8 

8.51  –  4.72 
8.19  –  5.51 
8.17  –  6.38 

6.01 – 5.70 
5.90 – 5.78 

8.24  –  5.77 
8.17  –  5.87 
7.02  –  7.17 

6.01 – 5.64 
5.87 – 5.77 
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Table 3. Observed major cationic species in the [(η6-p-cym)Ru(H2O)3]
2+–peptide (L) systems 

together with their calculated m/z values given in parenthesis (A = Ala, H = His). 

 

 

 

  

 

 

L = Ac-HAHH-NH2 

pH 2.18 2.84 5.72 8.59 10.3 

[(η6-p-cym)Ru(L)]2+ 388.630 (388.632) - 

[(η6-p-cym)Ru(LH-1)]
+ - - 776.255 (776.257) 

[(η6-p-cym)Ru(LH-2)] + K+ - - - 814.213 (814.213) 

[{( η6-p-cym)Ru}2(µ2-OH)3]
+ - - - 523.038 (523.037) 

     

L = Ac-HAHAH-NH2 

pH 1.98 3.36 6.47 8.95 10.9 

[(η6-p-cym)Ru(L)]2+ - 424.152 (424.151) - 

[(η6-p-cym)Ru(LH-1)]
+ - - 847.294 (847.294) - 

[(η6-p-cym)Ru(LH-2)]
 + 2K+ - - - 462.104 (462.108) 

[(η6-p-cym)Ru(LH-2)]
 + K+ - - - 885.247 (885.250) 

[{( η6-p-cym)Ru}2(µ2-OH)3]
+ - - 523.038 (523.037) 
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Table 4. ∆Gtot values in the gas phase and in aqueous solution for the reaction of formation of 

the isomers ML2(N1), ML1(N3), ML2(N3) from ML1(N1). 

Ligand / Reaction ∆Eele ∆Gtherm b ∆Gtot
gas ∆(∆Gsolv) c ∆Gtot

aq 

L = Ac-HAHAH-NH2      

ML1(N1) ⇄ ML2(N1) -1.0 4.0 3.0 2.7 5.7 

ML1(N1) ⇄ ML1(N3) 314.1 11.7 325.8 -89.3 236.5 

ML1(N1) ⇄ ML2(N3) 319.4 11.0 330.4 -93.2 237.2 

L = Ac-HAHH-NH2      

ML1(N1) ⇄ ML1(N3) 247.5 8.1 255.6 -75.3 180.3 

a All the values reported in kJ mol−1. b Thermal contribution at 298 K with the zero-point 

energy included in the calculations. c SMD model used with water as the solvent. d M = [(η6-

p-cym)Ru]2+ 
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Table 5. Optimized bond lengths (Å) and angles (o) for the most stable ML(N1) and ML(N3) 

isomers. M = [(η6-p-cym)Ru]2+, # Ct indicates the centroid of the arene ring. 

Length /  
angle # 

Ac-HAHH-NH2 Ac-HAHAH-NH2 

ML(N1) ML(N3) ML(N1) ML(N3) 

Ru-N 
2.074 
2.080 
2.091 

2.107 
2.122 
2.232 

2.100 
2.123 
2.126 

2.149 
2.180 
2.222 

Ru-C 2.259-2.318 2.258-2.461 2.216-2.263 2.185-2.323 

Ru-Ct 1.767 1.749 1.723 1.740 

Ct-Ru-N 
123.3 
130.1 
130.5 

116.0 
123.0 
134.5 

124.8 
130.0 
130.9 

120.9 
121.2 
133.8 

N-Ru-N 
83.2 
86.3 
88.8 

79.7 
88.9 
106.2 

79.5 
87.6 
88.7 

79.3 
81.4 
109.4 
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Figure 1. Structure of the neutral forms of the oligopeptides containing L-amino acids. 
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Scheme 1. Structure of the imidazole ring of the histidyl side chain and that of the [(η6-p-
cym)Ru(H2O)3]

2+ together with the labeling of the protons. In subsequent Figures resonances 
belonging to uncomplexed entities are marked with open while those of complexed ones with 
filled symbols. 
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Figure 2. Dependence on pH of the low-field region of the 1H NMR spectra of Ac-HAHAH-
NH2 at 298 K in D2O (I = 0.20 M KNO3). For notation of the hydrogens see Scheme 1. 
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Figure 3. Dependence on pH of the low-field region of the 1H NMR spectra of [(η6-p-
cym)Ru(H2O)3]

2+ ‒ Ac-HAHAH-NH2 system at 1:1 ratio in D2O (T = 298 K, I = 0.20 M 
(KNO3), cRu = 5.00 mM). For notation of the resonances see Scheme 1; resonances belonging 
to uncomplexed entities are marked with open while those of complexed ones with filled 
symbols. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

Figure 4. Low-field region of the 1H-1H COSY spectrum of [(η6-p-cym)Ru(H2O)3]
2+ ‒ Ac-

HAHAH-NH2 at pH = 7.82 in D2O (T = 298 K, I = 0.20 M (KNO3). For notation see Scheme 
1. 
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Figure 5. Low-field region of the 1H-13C HSQC spectrum of [(η6-p-cym)Ru(H2O)3]
2+ ‒ Ac-

HAHAH-NH2 at pH = 7.82 in D2O (T = 298 K, I = 0.20 M (KNO3). For notation see Scheme 
1. 
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Figure 6. Effect of the increasing pH on the CD spectra of [(η6-p-cym)Ru(H2O)3]
2+ ‒ Ac-

HAHH-NH2 (A, pH: a: 2.32; c: 3.74; e: 7.45) and [(η6-p-cym)Ru(H2O)3]
2+ ‒ Ac-HAHAH-

NH2 (A, pH: b: 2.23; d: 3.91; f: 7.54) systems and [(η6-p-cym)Ru(H2O)3]
2+ ‒ Ac-HAHH-NH2 

(B, pH: g: 8.31; i: 8.81; k: 9.68 ) and [(η6-p-cym)Ru(H2O)3]
2+ ‒ Ac-HAHAH-NH2 (B, pH: h: 

8.49; j: 9.23; l: 10.2) systems in H2O (T = 298 K). 
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Figure 7. ESI-TOF-MS spectrum of the [(η6-p-cym)Ru]2+ – Ac-HAHH-NH2 system at 1:1 
metal ion to ligand ratio, pH = 6.5. 
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Figure 8. Representative observed and calculated ESI-TOF-MS spectra of [ML]2+ complex, 
where M = [(η6-p-cym)Ru]2+ and L = Ac-HAHH-NH2. 
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Figure 9. Deviation of chemical shifts of imidazole carbon atoms (C2, C4, C5) relative to 
those in the corresponding free peptide, ∆δ = δCim(complex) – δCim(free peptide) in D2O. 
aTaken from Ref. 18. 
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Figure 10. Optimized DFT structures of ML(N1) isomers, where L = Ac-HAHH-NH2 (a) and 

L = Ac-HAHAH-NH2 (b). Hydrogen atoms have been omitted for clarity. 
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• Solid-phase peptide synthesis of three histidine containing oligopeptides 
• Solution equilibrium studies on the interaction between [(η6-p-cym)Ru(H2O)3]

2+ and the Ac-
HAHH-NH2 and Ac-HAHAH-NH2 ligands   

• Formation of (NIm,NIm,NIm) coordinated 1:1 complexes with Ac-HAHH-NH2 and Ac-HAHAH-
NH2 

• DFT and NMR evidence for the N1 over N3 coordination of the imidazole moieties in the 
complexes 
 


