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Abstract. We give finiteness results concerning terms of linear
recurrence sequences having a representation as linear combina-
tion, with fixed coefficients, of powers of fixed primes. On one
hand, under certain conditions, we give effective bounds for the
terms of binary recurrence sequences with such a representation.
On the other hand, in case of some special binary recurrence se-
quences, all terms having a representation as sums of powers of 2, 3
and 2, 3, 5 are explicitly determined.

1. Introduction

Searching for specific terms of linear recurrence sequences has a long
history and a rich literature. Here we give only a few examples, and
refer the interested reader to the book [13] or the papers [5, 6, 11] and
the references given there.

Pethő [8] and Shorey and Stewart [12] independently proved that
under certain natural assumptions, a linear recurrence sequence may
contain only finitely many perfect powers. In case of some special,
famous sequences all perfect powers have been determined. In case
of the Pell sequence Pn, Pethő [9] proved that it does not contain
non-trivial powers. Bugeaud, Mignotte and Siksek [3] proved that the
Fibonacci-sequence Fn contains only the powers 0, 1, 8, 144, and the
only powers in the sequence of Lucas numbers Ln are 1, 4. Pethő and
Tichy [10] determined all Fibonacci numbers of the form pa + pb + pc,
where p is a fixed prime. Kovács [5] found all combinatorial numbers of
certain shapes among the terms of Fn, Ln, Pn and Qn (the associated
Pell-sequence).

Recently, Marques and Togbé [6] found all Fibonacci- and Lucas
numbers of the form 2a + 3b + 5c with c ≥ max(a, b). Note that in their
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approach, the assumption c ≥ max(a, b) is unavoidable. Finally, we
mention a result of Sanchez and Luca [11], who among others showed
that the only Fibonacci number of the shape ±m!± 2a3b5c7d is F24 =
8! + 25335071. Sanchez and Luca noted that by their method they
cannot solve the equation Fn = 2a + 3b.

The purpose of this paper is twofold. On one hand, under certain
assumptions, we give general finiteness result for the solutions of the
equation

Un = b1p
a1
1 + · · ·+ bsp

as
s

in non-negative integers a1, . . . , as, where Un is a binary recurrence
sequence of positive discriminant, b1, . . . , bs are fixed integers, and
p1, . . . , ps are given primes. Our result covers the case where some
(possibly all) of the pi-s are equal. On the other hand, we completely
solve the above equation for the cases where Un is one of the sequences
Fn, Ln, Pn, Qn, and (p1, . . . , ps) is (2, 3) or (2, 3, 5). In particular,
this result extends the theorem of Marques and Togbé [6], and solves
the above mentioned problem of Sanchez and Luca [11]. To prove our
theorems, we apply Baker’s method and involved local arguments.

2. Notation and main results

The sequence Un = U(A,B, U0, U1) is called a binary linear recur-
rence sequence if the relation

(1) Un = AUn−1 +BUn−2 (n ≥ 2)

holds, where AB 6= 0, U0, U1 are fixed rational integers and |U0| +
|U1| > 0. The polynomial f(x) = x2−Ax−B is called the companion
polynomial of the sequence Un. Let D = A2 + 4B be the discriminant
of f . We call D the discriminant of the sequence Un. The roots of
the companion polynomial are denoted by α and β. Throughout the
paper, we shall always assume that |α| ≥ |β|. Using this notation, if
D 6= 0 then as it is well known, we can write

(2) Un =
aαn − bβn

α− β

for n ≥ 0, where a = U1−U0β and b = U1−U0α. Note that α−β =
√
D.

The sequence Un is called non-degenerate, if abαβ 6= 0 and α/β is not
a root of unity.

Theorem 2.1. Let Un be a non-degenerate binary recurrence sequence
with positive discriminant, p1 ≤ p2 ≤ · · · ≤ ps be given, not necessarily
distinct prime numbers and b1, . . . , bs be nonzero integers. Put T =
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max
1≤i≤s

|bi|. Using the above notation, assume further that log(|a/bs
√
D|),

log |α| and log ps are linearly independent over the rationals.
Consider the equation

(3) Un = b1p
a1
1 + b2p

a2
2 · · ·+ bsp

as
s

in non-negative integers n, a1, . . . , as. Let 0 < ε < 1, and write Hε for
the set of those solutions (n, a1, . . . , as), for which as = max

1≤i≤s
ai, and

ai < (1− ε)as for those i = 1, . . . , s− 1 for which pi = ps.
Then Hε is finite, and for all (n, a1, . . . , as) in Hε we have

max{n, a1, . . . , as} < C,

where C is an effectively computable constant depending only on ε, A,
B, U0, U1, T , s, ps.

Remark 1. Obviously, if ps is greater than all the other primes
p1, . . . , ps−1, then Hε is independent of ε.

Remark 2. The condition that log(|a/bs
√
D|), log |α| and log ps are

linearly independent over the rationals is necessary. This is shown by
the following example. Put A = 5, B = −6, U0 = 0 and U1 = 1. Then
α = 3, β = 2, a = b =

√
D = 1 and we have

Un = 3n − 2n (n ≥ 0).

Take s = 2, p1 = 2, p2 = 3, b1 = −1 and b2 = 1. Then the equation

Un = b1p
a1
1 + b2p

a2
2

has infinitely many solutions given by (n, a1, a2) = (n, n, n) (n ≥ 0),

which belong to Hε for any ε. Observe that now log(|a/bs
√
D|), log |α|

and log ps are linearly dependent over Q, however, all the other condi-
tions of Theorem 2.1 are satisfied.

The sequences corresponding to the particular choices

(A,B, U0, U1) = (1, 1, 0, 1), (1, 1, 2, 1), (2, 1, 0, 1), (2, 1, 1, 1)

are the Fibonacci-sequence Fn, the sequence of Lucas-numbers Ln, the
Pell-sequence Pn and the associated Pell sequence Qn, respectively.
Our next theorem extends the above mentioned result of Marques and
Togbé [6]: we get rid of the condition c ≥ max(a, b) in the equation

Un = 2a + 3b + 5c

with Un = Fn, Ln, and we consider the cases Un = Pn, Qn, as well.
Further, we completely solve the above equation (for these four se-
quences) when the right hand side is replaced by 2a+ 3b. In particular,



4 CS. BERTÓK, L. HAJDU, I. PINK, AND ZS. RÁBAI

if Un = Fn, our result solves the previously mentioned problem of
Sanchez and Luca [11].

Note that the solutions of the equation Un = 2a are also known for
these sequences: for Un = Fn, Ln they can be obtained from the already
mentioned results of Bugeaud, Mignotte and Siksek [3] (the solutions
are (n, a) = (1, 0), (2, 0), (5, 3) and (n, a) = (0, 2), (1, 0), respectively),
for Un = Pn the only solution (n, a) = (1, 0) is given by the result of
Pethő [9], while for Un = Qn the only solutions are (n, a) = (0, 0) and
(1, 0), since all the terms of Qn with n > 0 are odd and greater than
one.

Theorem 2.2. Let Un be one of Fn, Ln, Pn, Qn. Then the solutions of
the equation

(4) Un = 2a + 3b

in non-negative integers n, a, b are given by Table 1.

(n, a, b)
Fn (3, 0, 0), (4, 1, 0), (5, 1, 1), (5, 2, 0), (7, 2, 2), (11, 3, 4)
Ln (0, 0, 0), (3, 0, 1), (2, 1, 0), (5, 1, 2),

(7, 1, 3), (4, 2, 1), (13, 9, 2), (5, 3, 1)
Pn (2, 0, 0), (3, 1, 1), (5, 1, 3), (3, 2, 0), (9, 8, 6)
Qn (2, 1, 0), (3, 2, 1), (4, 3, 2), (4, 4, 0), (5, 5, 2)

Table 1. Solutions of equation (4)

Further, still with Un being one of Fn, Ln, Pn, Qn, the solutions of the
equation

(5) Un = 2a + 3b + 5c

in non-negative integers n, a, b, c are those occurring in Table 2.

(n, a, b, c)
Fn (4, 0, 0, 0), (5, 0, 1, 0), (6, 1, 0, 1), (9, 1, 3, 1),

(6, 2, 1, 0), (9, 3, 0, 2), (12, 4, 1, 3), (9, 5, 0, 0)
Ln (2, 0, 0, 0), (4, 0, 0, 1), (7, 0, 1, 2), (5, 0, 2, 0), (7, 0, 3, 0),

(3, 1, 0, 0), (6, 2, 2, 1), (6, 3, 2, 0), (6, 4, 0, 0)
Pn (3, 0, 1, 0), (5, 0, 3, 0), (4, 1, 2, 0), (5, 0, 1, 2), (4, 2, 1, 1),

(4, 3, 1, 0), (6, 6, 0, 1), (8, 8, 3, 3), (10, 10, 6, 4)
Qn (2, 0, 0, 0), (3, 0, 0, 1)

Table 2. Solutions of equation (5)
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3. Proofs

To prove Theorem 2.1, we shall use Baker’s method. First we need
to introduce some notation.

For an algebraic number η of degree d over Q, we define as usual the
absolute logarithmic height of η by the formula

h(η) =
1

d

(
log |a0|+

d∑
i=1

log max
(
1, |η(i)|

))
,

where a0 is the leading coefficient of the minimal polynomial of η over
Z and the η(i)-s are the conjugates of η in the field of complex numbers.
In particular, if η = p/q is a rational number with gcd(p, q) = 1, then
h(η) = log max{|p|, |q|}.

Now we state a Baker-type result of Matveev [7], which will be used
in the proof of our Theorem 2.1.

Lemma 3.1 (Matveev). Assume that γ1, . . . , γt are nonzero algebraic
numbers in a real algebraic number field K of degree dK, d1, . . . , dt are
rational integers, and

Λ := γd11 . . . γdtt − 1

is not zero. Set

B ≥ max{|d1|, . . . , |dt|},
and

Ai ≥ max{dKh(γi), | log γi|, 0.16}, for all i = 1, . . . , t.

Then we have

|Λ| > exp(−1.4 · 30t+3(t+ 1)4.5dK
2A1 . . . At(1 + log dK)(1 + logB)).

Proof of Theorem 2.1. First, for later use observe that our assumptions
imply that
(6)

|b1pa11 +· · ·+bs−1pas−1

s−1 | = pass

∣∣∣∣b1pa11pass + · · ·+ bs−1
p
as−1

s−1

pass

∣∣∣∣ ≤ (s−1)Tp(1−δ1)ass ,

where

δ1 = min(ε, 1−max
pi<ps

(log(pi)/ log(ps))).

If p1 = · · · = ps then we take δ1 = ε. Since D > 0 and Un is assumed
to be non-degenerate, we have

(7) |α| > |β|.
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Note that by our assumptions we also have |α| > 1. A simple calcula-
tion shows that if ∣∣∣∣1− bβn

aαn

∣∣∣∣ ≤ 1

2

then n is bounded by a constant depending only on A,B, U0, U1. Then
since by (6) we get that the right hand side of (3) tends to infinity as as
tends to infinity, we obtain that as is bounded by a constant depending
only on A,B, U0, U1, s, ps. Hence the statement follows in this case. So
we may assume that ∣∣∣∣1− bβn

aαn

∣∣∣∣ > 1

2
.

Then (3) implies that

(8)

∣∣∣∣ aαn2
√
D

∣∣∣∣ < ∣∣∣∣aαn√D
∣∣∣∣ ∣∣∣∣1− bβn

aαn

∣∣∣∣ = |Un| ≤ sTpass .

This gives

(9) n ≤
log 2

√
DsT
|a| + as log ps

log |α|
.

If

log
2
√
DsT

|a|
> as log ps,

then our theorem trivially follows. So we may assume the contrary,
when by (9) we obtain

(10) n ≤ 2as log ps
log |α|

.

If |β| > 1 we need more. In this case, if

log
2
√
DsT

|a|
>
as log ps(log |α| − log |β|)

2 log |β|
then the theorem easily follows. So we may assume the opposite, when
by (9) we get

(11) n ≤ as log ps(log |α|+ log |β|)
2 log |α| log |β|

.

Now we rewrite (3) as

(12)
a

bs
√
D
αnp−ass − 1 =

b1p
a1
1 + · · ·+ bs−1p

as−1

s−1 + bβn
√
D

bspass
.
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In case of |β| ≤ 1 we obviously have

|β|n

pass
≤ p−ass .

If |β| > 1, then (11) implies

|β|n

pass
≤ p−δ2ass ,

where

δ2 = 1− log |α|+ log |β|
2 log |α|

.

Note that 1 > δ2 > 0. Using the above inequalities together with (6),
from (12) we get

|Λ| ≤ c2p
−δas
s ,

where Λ = a
bs
√
D
αnp−ass −1, δ = min{δ1, δ2} and c2 = (s−1)T+|b|/

√
D.

On the other hand, since by our assumption

log
|a|
|bs|
√
D
, log |α|, log ps

are linearly independent over the rationals, we have Λ 6= 0. Hence, in
view of (10) Lemma 3.1 gives that

|Λ| > exp(−c3 log as)

holds with some constant c3 depending only on A, B, U0, U1 and ps.
Combining the upper and lower estimates for |Λ|, we get an upper

bound for as in terms of ε, A, B, U0, U1, T , s and ps. Hence in view
of (10) the statement clearly follows. �

Proof of Theorem 2.2. Since we apply a similar method (local argu-
ments) for every equation, we only demonstrate our approach for the
case of Fn = 2a + 3b. For the remaining equations we only list the
moduli used.

We rewrite the equation Fn = 2a + 3b as

αn − βn −
√

5 · 2a −
√

5 · 3b = 0,(13)

where α = 1+
√
5

2
and β = 1−

√
5

2
. First we list all ”small” solutions of

this equation, i.e. the solutions with n, a, b ≤ 100. In fact, we just
find the solutions given in Table 1. We observe that in every ”small”
solution the exponent of 2 is at most 3, and instead of (13) we consider
the equation

αn − βn −
√

5 · 24 · 2a1 −
√

5 · 3b = 0.(14)
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We suspect that equation (14) has no solutions in non-negative integers
n, a1, b. To show this, we work in the ring of integers OK of the number
field K = Q(

√
5). We exhibit a modulus m ∈ OK such that (14) has

no solutions already modulo m. (Here, and elsewhere from this point
on, all congruences are to be taken in OK .) As we shall see,

m = 24 · 5 · 7 · 13 · 17 · 19 · 29 · 31 · 37 · 43 · 73

is an appropriate choice. For this, consider equation (14) modulo m1 =
24. One can easily check that ord24(α) = ord24(β) = 24, ord24(3) = 4,
where ordq(γ) is the smallest non-negative integer j for which γj ≡ 1
(mod q) for q, γ ∈ OK . (In all cases we consider, such a j will always
exist.) Since,

√
5 · 24 · 2a1 ≡ 0 (mod 24), we only need to consider

24 · 4 = 96 possibilities. By checking all possible cases, we get that
there are only eight solutions modulo 24. These solutions are given by

(n, b) ≡ (1, 0), (2, 0), (4, 1), (11, 2), (13, 2),

(14, 2), (16, 3), (23, 0) (mod (24, 4)),

where here and later on by

(u1, . . . , uk) ≡ (v1, . . . , vk) (mod (q1, . . . , qk))

we mean that ui ≡ vi (mod qi) for every i = 1, . . . , k. We consider
only the case n ≡ 4 (mod 24) and b ≡ 1 (mod 4), the other cases can
be handled similarly. Now putting n = 24n1 + 4 and b = 4b1 + 1, from
(14) we get

α4 · (α24)n1 − β4 · (β24)n1 −
√

5 · 24 · 2a1 −
√

5 · 3 · (34)b1 = 0.(15)

Take m2 = 5. As we have ord5(α
24) = ord5(β

24) = 5, ord5(2) = 4
and ord5(3

4) = 1, we need to consider 5 · 4 = 20 cases. By a simple
computation we get that

(n1, a1) ≡ (1, 3), (2, 0), (3, 2), (4, 1) (mod (5, 4)).

We pick up the case n1 ≡ 3 (mod 5) and a1 ≡ 2 (mod 4), the other
cases can be treated similarly. Now letting n1 = 5n2 + 3 and a1 =
4a2 + 2, (15) yields

α76 · (α120)n2 − β76 · (β120)n2 −
√

5 · 26 · (24)a2 −
√

5 · 3 · (34)b1 = 0.

(16)

We take m3 = 7. As one can easily check, we have ord7(α
120) =

ord7(β
120) = 2 and ord7(2

4) = ord7(3
4) = 3. That is, we have to

consider 2 ·3 ·3 = 18 cases. By doing this we get two solutions, namely

(n2, a2, b1) ≡ (0, 0, 0), (1, 2, 2) (mod (2, 3, 3)).
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Taking the first triplet (the other one can be handled similarly), putting
n2 = 2n3, a2 = 3a3 and b1 = 3b2, we obtain

α76 · (α240)n3 − β76 · (β240)n3 −
√

5 · 26 · (212)a3 −
√

5 · 3 · (312)b2 = 0.

(17)

Now choose m4 = 13. Then ord13(α
240) = ord13(β

240) = 7, and
ord13(2

12) = ord13(3
12) = 1. If we check all seven possibilities mod-

ulo m4 = 13, we get that there are no solutions.
By following the same argument as above for the occurring possi-

bilities, using the factors of m, we conclude that (14) has no solutions
modulo m. This implies that in (13) we must have a ≤ 3. From this
point one can either use the same method again to solve the four new
equations (with a = 0, 1, 2, 3), only in one free variable, or one can use
elliptic curves for the same purpose. We follow the latter approach
which, as we shall see, always becomes available whenever the number
of free variables is reduced to one. Before coming to that point, we
give some explanation about finding appropriate moduli to make the
local argument work.

In general, to apply the local method to solve the arising exponential
equations, we need to find a modulus m such that the orders of α, β,
2, 3 and 5 with respect to m are ”small”. To achieve such a modulus,
we used the method described in [1] (based on the work of Erdős,
Pomerance and Schmutz [4] on the ”small” values of Carmichael’s λ-
function). Typically, if m = pα1

1 · . . . ·p
αl
l with rational primes p1, . . . , pl,

then if pk− 1 has only ”small” prime divisors for every 1 ≤ k ≤ l, then
the condition above is satisfied. For details (for the rational case) see
[1].

In Table 3 we give the moduli used for our equations. Further, we
also indicate what is the conclusion we can draw by the help of that
modulus. In the table we use the notation

M1 = 7 · 13 · 17 · 19 · 29 · 31 · 37 · 73,

M2 = M · 37 · 5 · 11 · 41 · 12289 · 17497 · 18433 · 65537,

M3 = M · 211 · 37 · 12289 · 17497 · 18433,

M4 = M · 2 · 37 · 11 · 41 · 12289 · 17497,

M5 = M · 212 · 3 · 11 · 41 · 39367 · 65537,

where

M = 7 ·13 ·17 ·19 ·29 ·31 ·37 ·43 ·73 ·97 ·109 ·163 ·193 ·257 ·433 ·487 ·577·

·769 · 1153 · 1297 · 1459 · 2593 · 2917 · 3137 · 3457 · 3889 · 10369.
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seq. representation modulus conclusion modulus conclusion

Fn

2a + 3b M1 · 24 · 5 · 43 a ≤ 3 - -

2a + 3b + 5c
M1 · 26 · 97· a ≤ 5 M1 · 2 · 34· b ≤ 3
·109 · 193 · 769 ·97 · 109 · 769

Ln 2a + 3b

M1 · 34 · 5 · 43· b ≤ 3 - -
·97 · 109 · 163·
·193 · 257 · 433·

·487 · 577 · 769 · 3889

2a + 3b + 5c
M1 · 25· a ≤ 4 M1 · 25 · 34 · 112· b ≤ 3

·97 · 109 · 193 ·41 · 61 · 67·
·71 · 109 · 271

Pn

2a + 3b M2 b ≤ 6 - -

2a + 3b + 5c M3
a ≤ 10 or M4 resp. b ≤ 6 resp.
b ≤ 6 M5 a ≤ 11

Qn
2a + 3b

33 · 5 · 7 · 13· b ≤ 2 - -
·97 · 109 · 193

2a + 3b + 5c
22 a ≤ 1 3 · 7 · 11 · 13 · 17· b = 0

·19 · 31 · 37 · 73

Table 3. Used moduli and the conclusion drawn for the
equations considered

As we have mentioned already, it is sufficient to reduce the number
of free variables on the right side of equations (4) and (5) to one by the
local argument. Then by the help of the identities

(18) L2
n − 5F 2

n = ±4 and 2P 2
n −Q2

n = ±1

one can reduce the problem to finding integral points on elliptic curves.
We shall demonstrate our method by exhibiting a particular case. Re-
call that in case of the equation Fn = 2a + 3b our local arguments
implied a = 0, 1, 2, 3. As an example, we take a = 3, the other cases
can be handled similarly. In this case we need to solve the equation

(19) Fn = 3b + 8.

We can write b = 2k or b = 2k + 1 with some integer k. Put y = Ln
and x = 3k. Then from the first identity in (18) in case of b = 2k we
get

y2 = 5x4 + 80x2 + 320± 4,

while for b = 2k + 1 we obtain

y2 = 45x4 + 240x2 + 320± 4.



LINEAR COMBINATIONS OF PRIME POWERS IN RECURRENCES 11

Using the Magma [2] procedure IntegralQuarticPoints, we get the
integer solutions x, y of these equations. Namely, if (x, y) is a solution
to any of the above equations in positive integers, then it is one of

(x, y) = (0, 18), (9, 199), (15, 521).

Among these solutions we select those where x is a non-negative power
of 3. In this case the only such solution is (x, y) = (9, 199). We conclude
that equation (19) has the only solution b = 4 (with n = 11).

In case of all the other equations (4) and (5), after reducing the
number of variables on the right hand sides to one, the above method
worked and provided the solutions in Tables 1 and 2. �
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[8] A. Pethő, Perfect powers in second order linear recurrences, J. Number Theory
15 (1982), 5-13.
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[12] T. N. Shorey and C. L. Stewart, On the Diophantine equation ax2t + bxty +
cy2 = d and pure powers in recurrence sequences, Math. Scand. 52 (1983),
24-36.

[13] T. N. Shorey, R. Tijdeman, Exponential Diophantine Equations, Cambridge
University Press, Cambridge, 1986.
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