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Abstract 34 

Grapevine Trunk Diseases (GTD) are of great importance worldwide, including Hungary, a Center European 35 

country with long wine producing history. Several GTD pathogens have been described till now in Europe, but 36 

only a few from Hungary. The presence of a GTD pathogen in the vine does not necessarily result in the immediate 37 

appearance of disease symptoms, and information on the importance of environmental factors related to disease 38 

incidence are still limited. The aim of this research was to assess the occurrence of GTD in the Tokaj Wine Region, 39 

and to determine the biotic and abiotic factors influencing disease incidence. Five vineyards within 15 km radius 40 

– each with different topology, soil types, varieties and age – were studied for three consecutive years (2013 – 41 

2015). The incidence of GTD-infection was determined every year for each vineyard. Diplodia seriata was isolated 42 

with incidence ranging from 50 to 100 %, while Diaporthe spp. were the only other – minor –  GTD pathogen 43 

found. Topology and soil type appeared to be major abiotic factors affecting incidence of GTD symptom. Disease 44 

incidence was also positively correlating with the age of the vineyards, and it was in fact found to be the definitive 45 

biotic factor regarding incidence. In contrast, D. seriata infection rate appeared unrelated to disease incidence or 46 

to any of the biotic or abiotic factors investigated. 47 

 48 

Key words: disease incidence, Furmint, Hárslevelű, Diplodia seriata 49 

 50 

Introduction 51 

Grapevine trunk diseases (GTDs) restrict the productivity and longevity of vineyards, causing significant economic 52 

losses (Scheck et al. 1998; Siebert 2001). Eutypa, Botryosphaeria, Phomopsis dieback, Esca disease complex, and 53 

Petri disease are considered the major GTDs worldwide, and the causal pathogens attack the woody perennial 54 

organs of the vine and ultimately lead to the death of the plant (Lehoczky 1974; Larignon and Dubos 1997; 55 

Rolshausen et al. 2004; Úrbez-Torres et al. 2006; Kotze et al. 2011; Úrbez-Torres 2011; Bertsch et al. 2012; Úrbez-56 

Torres et al. 2013; Úrbez-Torres et al. 2014; Fontaine et al. 2015). 57 

Grapes are the largest fruit crop in Hungary, with high economic value (Hungarian Central Statistical Office, 58 

2014). Moreover there is also great cultural importance in the historic Tokaj Wine Region, which is listed on the 59 

UNESCO World Heritage since 2002 as a producer of the world’s oldest botrytized “aszú” wines. The actual size 60 

of cultivated areas in the Tokaj Wine Region is 5050 hectares, growing almost inclusively indigenous varieties 61 

(Furmint, Hárslevelű, Sárgamuskotály (yellow muscat), Zéta, Kövérszőlő, Kabar) (Hungarian Central Statistical 62 

Office, 2014). GTDs have significant effects on the profitability of grape production in the Tokaj Wine Region of 63 

Hungary, causing almost 110000 USD (32 million HUF) in losses annually (Bihari et al. 2015).  64 

Hewitt et al. (1957) observed that specific symptoms cannot be detected on the diseased trunks every year. Latest 65 

results have also proved that abiotic factors affect the appearance and the severity of the disease (Lecomte et al. 66 

2011). GTDs presents in different forms: (i) slow but chronic disease development over many years (grapevine 67 

leaf stripe disease, young esca or ‘Phaeotracheomycosis of grapevine’), or (ii) rapid, acute disease development 68 

(apoplexy, esca proper) within one season (Surico et al. 2006). GTDs are caused by many different Ascomycete 69 

fungi, including Diatrypaceaous and Botryosphaeriaceous species, Phomopsis species, Phaeomoniella and 70 

Phaeoacremonium species, as well as Basidiomycetous fungi such as Fomitiporia mediterranea (Kuntzmann et 71 

al. 2010; Kotze et al. 2011; Bertsch et al. 2012; Úrbez-Torres et al. 2014). GTD incidence has increased during 72 

the last few decades (Úrbez-Torres et al. 2014). Esca incidence has reached 60% to 80% in some old vineyards in 73 
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southern Italy (Pollastro et al. 2000; Sidoti et al. 2000; Surico et al. 2000; Romanazzi et al. 2006; Calzarano and 74 

Di Marco 2007). GTD incidence may vary between closely located vineyards possibly due to microclimate, soil 75 

composition or water supply, suggesting abiotic environmental factors are likely to have a role in the development 76 

of the disease (Lecomte et al.; 2011; Bertsch et al. 2012).  77 

GTDs have been reported previously in Hungary. Lehoczky (1974) described the black dead arm disease of 78 

grapevine, which is caused by Botryosphaeria stevensii (R. A. Schoemaker), in the Tokaj Wine Region. Later 79 

Phaeoacremonium hungarium (S. Essakhi, L. Mugnai, G. Surico & P. W. Crous (Pers.)) was identified as a new 80 

Phaeoacremonium species in the Tokaj Wine Region (Essakhi et al. 2008).The disease incidence of the esca was 81 

reported to increase from 2% to almost 13%, between 2003 and 2007 in Hungary (Dula 2011). However, there is 82 

limited information about the current extent and distribution of GTD in Hungary, especially in the Tokaj Wine 83 

Region.  84 

The effective control of GTD faces several problems. Although the susceptibility of the different cultivars are 85 

different (Marchi 2011; Romanazzi et al. 2009; Andreini et al. 2014; Murolo and Romanazzi 2014) and the 86 

rootstock may also affect the frequency of the symptoms (Marchi 2011; Murolo and Romanazzi 2014) there is no 87 

grapevine cultivar known to be resistant to GTD. Once GTD pathogens have entered the woody tissues, they 88 

proliferating inside the vine, where fungicides may have difficulty reaching them. Sodium arsenite, the previously 89 

used most effective chemical (Mugnai et al. 1999), was banned because of its human carcinogenic, and 90 

environmental toxic properties (Kuntzmann et al. 2010). Prevention of planting material (Gramaje et al. 2015) and 91 

appropriate protection of pruning wounds (Eskalen et al. 2007; Sosnowski et al. 2008; Rolshausen et al. 2010; 92 

Kotze et al. 2011; Sosnowski et al. 2013) are the most important techniques to prevent disease. The appropriate 93 

time for pruning by avoiding spore dispersal periods (Petzoldt et al. 1983; Rooney-Latham et al. 2005; Eskalen et 94 

al. 2007; Úrbez-Torres and Gubler 2008; Rolshausen et al. 2010; Fontaine et al. 2015) and pathogen free planting 95 

materials (Billones-Baaijens et al. 2015) may also prevent infection and decrease disease incidence.  96 

The aims of this research were (i) to investigate the incidence of GTD in different vineyards of the Tokaj Wine 97 

Region, Hungary; and (ii) to identify possible biotic (age, variety, endophytic fungi) and abiotic (plantation 98 

characteristics, soil, weather conditions, vintage) factors affecting disease incidence.  99 

 100 
Material and Methods 101 

Vineyard characteristics and meteorological data 102 

The survey was carried out in five vineyards (Bakonyi, Dorgó, Szemere, Szarvas and Várhegy) in the Tokaj Wine 103 

Region during 2013 and 2015, located close to each other, within 15 km (Fig. 1).  104 

The Bakonyi and Szarvas vineyards were planted on cambisols, while the Szemere, Dorgó, and Várhegy vineyards 105 

were planted on slope sediment from luvisols soil. All training systems were mid-high cordon, except for Szemere, 106 

which was Guyot (Table 1.). The rootstock 125AA was used only in Várhegy for the variety Zéta (Vitis vinifera), 107 

and Teleki 5C was used in all the other vineyards with varieties Furmint and Hárslevelű (V. vinifera). There was 108 

also difference on the direction of the rows on the slopes, as the Bakonyi vineyard is teracced, while the other 109 

vineyards are on steep slopes. All vineyards had only one variety, except Bakonyi which had both Furmint (4F), 110 

and Hárslevelű (4H). Data from Szarvas vineyard was also divided into two parts: the upper part of the vineyard 111 

with 5 – 8% slope (5S), and a lower, flat part at the foot of the hill (5L), thus data of seven sites were draw into 112 

the analysis (Table 1.). 113 
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Meteorological data were collected with MILLIMET Weather Station (Boreas Kft., Hungary) in the region. 114 

Minimum, maximum and average temperature, as well as total amount of precipitation was calculated from the 115 

data for each month. 116 

 117 

Disease incidence (DI) and collection of samples 118 

The evaluations of external GTD symptoms were carried out between May and August in each year from 2013-119 

2015, with visual inspections in the vineyards. . The disease incidence (DI) was calculated as the ratio of the 120 

number of plants expressing foliar symptoms with wood necrosis or dieback in each vineyard over the number of 121 

all vines and multiplying by 100. Samples were collected from each vineyard at several sampling times each year 122 

between May and September from the trunks with typical GTD symptoms. Only the upper parts of the plants 123 

(cordon) were sampled to leave the plants alive for further analysis. Samples were taken from all symptomatic 124 

plants for isolation. Moreover representative random sampling was performed to determine the infection rate of 125 

D. seriata in each vineyard. A minimum of three samples were collecting from each row for this representative 126 

sampling. We sampled at least 3% of vines in each vineyard except Bakonyi, where all plant were analyzed. 127 

Woody samples were transported in a cooler (under 10°C) to the laboratory at the University of Debrecen within 128 

48 hours to determine the colonizing fungal microflora of the wood tissues. 129 

 130 

Isolation of fungi from woody tissues 131 

We established the infection rate (IR) (percentage of infected vines in the sample) of D. seriata and Diaporthe sp. 132 

to characterize and compare the infection level in vineyards on the basis of microbiological analysis made in 2015.  133 

Wood chips from debarked and surface sterilized (10% Noemagnol solution than washing twice with sterile 134 

distilled water) plant samples were cut from both browned and adjacent apparently healthy wood tissues, and 135 

placed on malt extract agar medium (MEA, Scharlau, Spain) in 90 mm diameter Petri dishes with a sterile scalpel, 136 

under aseptic conditions following the method of Abreo et al. (2013), with modification described in Kovács et al. 137 

(2014). Plates were incubated at room temperature in darkness for 7 to 14 days, and mycelial fragments from 138 

emerging fungal colonies were transferred to new 2% MEA plates (Crous et al. 2006). Isolates were maintained 139 

on MEA. Mycelial or conidial suspensions were also stored in 50% glycerol at -80°C.  140 

 141 

Morphological and molecular identification of the isolated fungi 142 

Pure fungal cultures were used for the taxonomic identification of the fungi based on morphological and cultural 143 

features (mycelial color, cell wall structure). Pycnidia formation structures (presence, absence) on potato-dextrose 144 

agar medium with streptomycine sulfate (PDA, Scharlau, Spain) and conidia (color, shape, size) or conidiophores 145 

were examined under microscope. The morphological identification of Diplodia seriata were based on Crous 146 

(2006), and Phomopsis species on Mostert et al. (2001) and Van Niekerk et al. (2005). 147 

Molecular identification with sequence analysis of the Internal Transcribed Spacer (ITS) region of the rDNA was 148 

performed for isolates whose sporulation was not observed. Randomly chosen isolates from each morphological 149 

group were also sequenced. 150 

Fungal DNA was isolated from fresh mycelium scraped at the surface of PDA described previously (Assadollahi 151 

et al. 2013). DNA concentrations were measured by NanoDrop 2000 (Thermo Scientific). 152 
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Amplifications of 25 µl PCR reaction containing 12.5 µl 2 X PCR Master Mix (GoTaq Green Master (Promega), 153 

40-40 pmol of each primer, 20-40 ng of genomic DNA and nuclease free water were run. ITS4 and ITS5 primers 154 

(White et al. 1990) (Integrated DNA Technologies, Inc.) were used to amplify the full length of ITS region, with 155 

the following amplification protocol: 3 min initial denaturing at 95°C, followed by 5 cycles of 1 min at 95°C, 1 156 

min annealing at 50°C, 1 min at 72°C and 25 cycles of 1 min at 90°C, 1 min annealing at 50°C, 1 min at 72°C and 157 

15 min final extension at 72°C. Purified amplification products were sequenced by Microsynth Austria GmbH.  158 

The sequences were manually aligned and compared with those deposited in the NCBI GenBank database using 159 

the BLAST program (Altschul et al. 1990). The ITS sequences were also submitted to the NCBI GenBank 160 

(www.ncbi.nlm.nih.gov) for the species identification and KU377167-KU377290 accession numbers were 161 

obtained. 162 

 163 

Statistical analyses 164 

 165 

Binominal tests were used to analyze deviation of the infection rate in the sites from the summarized proportion 166 

in the whole sample. The relationship between IR and DI was analyzed with correlation analysis. Beyond that the 167 

effect of location (seven studied site), age of plantations (below or above 15 years old in 2013), vintage (three 168 

studied years), topology (slope and horizontal), soil types (luvisols and cambisoils) and grapevine variety (Furmint 169 

and Hárslevelű) on the DI were analyzed. The analyses were made on the whole samples in each case except the 170 

Várhegy vineyard, where only Zéta variety is grown, so it was excluded from the comparison of different grapevine 171 

variety. 172 

Three categories were used to characterize the temporal stability of symptom appearance between 2013 and 2015: 173 

occasional – symptoms appeared only one year, stable – symptoms appeared twice and continuous – symptoms 174 

appeared in all three studied years. The proportion of the three categories was calculated for each site and the effect 175 

of above mentioned biotic and abiotic parameters on it was analyzed. 176 

The Kolmogorov-Smirnov test for normality and the Levene test were used to test normality and the equality of 177 

variance assumptions of parametric tests. Considering that our data did not meet these assumptions in case of 178 

multiple comparison of groups Kruskall-Wallis nonparametric test were used. Pairs showing significant 179 

differences were compared by Mann-Whitney U-test. The paired comparisons were also made by Mann-Whitney 180 

U-test (Reiczigel et al. 2007). Statistical analyses were performed by SPSS 21.0 (Ketskeméty et al. 2011). 181 

 182 
 183 
Results 184 
 185 

The percentage of DI of GTD varied from 0.17 to 42.11% in the three-year study according to observations made 186 

on 22794 grapevines (Table 2). Large areas of chlorosis and deterioration between the veins were observed on the 187 

leaves of the diseased plants together with small black spots on the cross section of the cordon. Mean DI showed 188 

significant differences (Kruskal-Wallis test: H=19.375 df=6, n=21, p=0.004) in the different vineyards. The 189 

highest mean DI was detected in the Bakonyi vineyard. Here both Furmint (4F) and Hárslevelű (4H) varieties 190 

showed significantly higher DI than other vineyards and there was also significant difference between them. An 191 

intermediate mean DI value was observed in the Szarvas vineyard with significant difference between higher (5S) 192 
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and lower (5L) part of this site. The Dorgó vineyard also showed intermediate DI, while the Szemere and Várhegy 193 

vineyards had the lowest mean DI (Fig. 2.). 194 

The most frequently identified GTD pathogens from the upper part of the symptomatic grapevine woody tissues 195 

was D. seriata, while Diaporthe sp. was identified with much lower rates from the 558 samples taken in 2015. The 196 

mean infection rate (IR) of D. seriata was 76% with large variance among studied sites. Infection rate of each site 197 

significantly differed from the mean value (Binomial test p<0.05). The mean IR of Diaporthe sp. was 4% without 198 

significant deviation from this mean (Binomial test p>0.05) (Table 2). There was low correlation between IR and 199 

DI (r2=0.4818). The success of isolation was established in the ratio of infected plant to symptomatic plants (D. 200 

seriata: 75.51%, 406/558 plants; Diaporthe sp.: 3.71% 19/558 plants; see details in Table 3). 201 

D. seriata could be isolated from most of the symptomatic plants. Its isolation rate varied between 94 and 100%. 202 

Diaporthe species were isolated with much lower frequencies, while other Botryosphaeria sp. were detected only 203 

in one year (2013) from one vineyard (Bakonyi). 204 

Non-GTD pathogen, endophytic fungi (Trichoderma sp., Alternaria sp., Mucor sp., Penicillium sp, Epicoccum 205 

sp., Fusarium sp. and Aspergillus sp.) were also isolated with up to 100% isolation rates from symptomatic plants. 206 

Alternaria, and Fusarium species were the most frequently isolated non-GTD pathogens isolated with 43-100%, 207 

and 0-55% of the symptomatic plants. 208 

Among the studied abiotic and biotic factors topology, soil type and age of the vineyard showed significant effect 209 

on the disease incidence (DI) (Table 4). However variety and vintage (year) did not have a significant effect on 210 

the DI. There was no significant difference on the average DI of the vineyards at the different vintages (Kruskall-211 

Wallis test: H=0.0967, df=2, n=21, p=0.953). DI was the highest in 2014 in Szemere and Szarvas (sloped), but 212 

decreased during the three years in Dorgó, but did not change in Várhegy. 213 

In case of topology, significantly lower DI was detected in vineyards planted on slopes (Dorgó,Szemere, Várhegy), 214 

than in the terraced Bakonyi. This difference could be seen even within the same vineyard (Szemere) with different 215 

topology (5S and 5L, see above in the text and Fig. 2. and Table 1.). Plantations on luvisols soil also had 216 

significantly lower DI than on the cambisols with similar differences in mean values to that seen with topology 217 

(Table 4).  218 

Although in the Bakonyi vineyard there was a large difference in mean DI between two varieties Furmint (4F) and 219 

Hárslevelű (4H) (Fig 2). However DI of Furmint and Hárslevelű varieties was not statistically different across all 220 

vineyards with different age. There were no differences in the DI between years either. Because of the relatively 221 

short study period, the trends in temporal changes of DI could not been analysed but different tendencies could be 222 

observed in the different vineyards (Table 1. The Várhegy vineyard which was planted with the variety Zéta on 223 

rootstock 125AA, had the lowest disease incidence (0.17%) of all those examined (Table 1., Fig. 2.). 224 

The age of vineyard had an effect, with DI in the older vineyards (over 15 years) were significantly higher, 225 

comparing to the younger ones (under 15 years) (Table 4.). 226 

Neither studied abiotic or biotic factors, nor DI showed significant effect on D. seriata infection rate of the 227 

vineyards. Similarly no correlation was found between isolation rate of D. seriata from symptomatic plants and 228 

any of the studied factors. 229 

Only eight symptomatic plants could be detected in the Várhegy vineyard during the three years of the study, with 230 

one vine expressing symptoms over two years, but none with continuous disease incidence was observed (Table 231 

5). Therefore it was excluded from the statistical analysis of the symptom stability. The ratio of occasional disease 232 
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incidence was significantly (Mann-Whitney U test, p=0.0244) higher in younger vineyards (younger than 15 years 233 

at 2013), than stable or continuous disease incidence (Figure 3.). 234 

 235 

Discussion 236 

Grapevine trunk diseases are the most threatening problem to wine industries with increasing disease incidence 237 

worldwide (Bertsch et al. 2012; Úrbez-Torres et al. 2013). It is a complex disease with unique characteristics, 238 

infection can be latent without visible disease symptoms for years (Lehoczky 1974; Cristinzio 1978; Phillips 2002; 239 

Auger et al. 2004; Marchi et al. 2006; Van Niekerk et al. 2006; Savocchia et al. 2007; Rego et al. 2008), but the 240 

factors affecting the disease appearance are still only suspected. The influence of the weather conditions has been 241 

reported may affect symptom appearance. Increased disease incidence was reported in case of irrigation (Bertsch 242 

et al. 2012) or high amount of precipitation (Lehoczky 1974; Hewitt 1988). Bruno et al. (2007); Marchi et al (2006) 243 

and Andolfi et al. (2009) explained that increase with facilitated transport of the fungal toxins responsible for foliar 244 

symptoms. Moreover Surico et al. (2006) and Bertsch et al. (2012) reported increased disease appearance when 245 

drought weather was followed by rainy period. Sosnowski et al. (2007) reported that both temperature and rainfall 246 

were related to eutypa dieback symptom development. Different biotic factors, like variety (Marchi 2011; Maher 247 

et al. 2012; Murolo and Romanazzi 2014), rootstock type (Marchi 2011; Murolo and Romanazzi 2014) age of the 248 

plant (Mugnai et al. 1999) was also indicated may affect the disease incidence.  249 

The detection rate of the reported GTD pathogen D. seriata was high, but variable (50 – 100 %) in the vineyards 250 

when both symptomatic and asymptomatic plants were included in the test. This infection rate was similar to 251 

previously reported isolation rate of GTD pathogens, particularly D. seriata in other studies from symptomatic 252 

vines (Bruez et al. 2014). It was concluded that infection rate did not affect symptom appearance, expressed as 253 

disease incidence rate in this study. It must be mentioned, however that only the upper part was sampled for fungal 254 

isolation, therefore GTD pathogens  that may exist in the lower parts of the vine were not included.  255 

There was significant difference in the disease incidence of GTD at the different vineyards. DI was much higher 256 

in the Bakonyi vineyard, than in Dorgó vineyard with similar characteristics except soil type and topology. The 257 

Bakonyi vineyard is terraced, whereas the other examined vineyards with significantly lower disease incidence 258 

were planted with rows on the slopes. The difference of the DI could be detected even within the same vineyard 259 

(Szemere) with different topology. The DI was significantly higher on horizontal (5L) part, than on 5-8% slope 260 

(5S). Surico et al. (2000), and Robotic and Bosancik (2007) similarly found higher disease incidence in vineyards 261 

on gentler slope, than on sleep ones. 262 

Soil type was the other tested abiotic factor for GTD. Szemere, Dorgó, Várhegy vineyards were on luvisols, while 263 

vineyards Bakonyi and Szarvas on cambisols. DI of the vineyards on cambisols was significantly higher, 264 

comparing with the other soil type. Cambisol is considered as a soil with high water capacity (Rhoton and 265 

Markewich 2006). Soil with high water reserve was reported to enhance esca symptoms (Guérin-Dubrana et al. 266 

2005), and DI of GTD (Kovács et al. 2016).  267 

Regarding the varieties, higher disease incidence was observed on Furmint, than on Hárslevelű at Bakonyi 268 

vineyard in each year. However Furmint had lower disease incidence in the other two younger (age > 15 years) 269 

vineyards (Szemere and Dorgó), than in Szarvas vineyard planted later (age < 15 years) with Hárslevelű variety 270 

(Table 2, Fig. 2). Interestingly, Várhegy vineyard 3 had the lowest disease incidence (0.17%), among the examined 271 

ones. It had unique characteristics regarding variety (Zéta) and rootstock (125AA), comparing to the others. It was 272 
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among the youngest examined plantation (12 years old in 2013), and its disease incidence was lower, than Szemere 273 

vineyard with the same age.  274 

Although the weather conditions were different in the three years of the study, neither temperature nor amount of 275 

precipitation resulted differences of the DI  The trends of the DI changes were different in vineyards on slope (1-276 

3 and 5S), however vineyards 4F, 4H, and 5L, with horizontal topology showed an increasing DI between 2013 277 

and 2015. There was significant difference in DI of 5L and 5S (different topology) at 2013, and 2015, while the 278 

difference in the GTD symptom expression has disappeared at 2014, when higher amount of precipitation was 279 

observed during the summer (green berries growth) period on the slopes as well (Table 2). 280 

The majority of vines expressed disease symptoms in only one of the three years. The average disease incidence 281 

rate, regarding the individual vineyards was also the highest (62.42%) for the plants expressing symptoms only 282 

once. Occasional disease incidence ranged above 50% (55.17-80%) in all vineyards, except the 4H (Bakonyi with 283 

Hárslevelű variety), where stable disease expression occurred at 68%. Interestingly, not this vineyard had the 284 

highest DI value. 285 

It was concluded, that topology and soil type, and were the most important abiotic factors for disease incidence 286 

(DI) of the GTD symptom appearance expressed by foliar symptoms or dieback. The higher DI may have resulted 287 

by increased pathogen activity (growth or toxin production), or facilitated toxin transport (Bruno et al 2007; Marchi 288 

et al. 2006). Among the biotic factors, age of the vineyards had the highest detectable impact for the DI, resulting 289 

a significantly higher rate of diseased plants in the vineyards with older plants. It also may have caused by several 290 

factors, e.g. cumulated infection of the different GTD pathogens, moreover the change of the plant physiology and 291 

plant resistance, or the endophytic microbiota. Further studies are necessary to explain the role of the soil type, 292 

topology in the increase of the diseased plants in the vineyards. 293 
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Legend for figures 450 

 451 

Fig 1. Sampling sites in the Tokaj Wine Region, Hungary in 2013-2015. 1. Szemere vineyard; 2. Dorgó 452 

vineyard; 3. Várhegy vineyard; 4. Bakonyi vineyard; 5. Szarvas vineyard) 453 

 454 

Fig. 2 Mean disease incidence (DI% ±SE/SD) at the different vineyards in the Tokaj Wine Region, Hungary 455 

between 2013 and 2015. Letters indicate significant differences (p<0.05) according to Mann-Whitney U-test. 456 

Number of sampling sites according to Fig 1. 457 

 458 

Fig. 3 Ratio of different disease stability categories (mean ±SE/SD) in the studied sampling sites with different 459 

age in the Tokaj Wine Region, Hungary, between 2013 and2015.  460 


