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OMicroRNAs (miRNAs) are single-stranded, endogenous non-coding small RNAs, ranging from 18 to 25 nucleo-

tides in length. Growing evidence suggests that miRNAs are essential in regulating gene expression, cell develop-
ment, differentiation and function. Autoimmune diseases are a family of chronic systemic inflammatory diseases.
Recent findings on miRNA expression profiles have been suggesting their role as biomarkers in autoimmune
diseases such as systemic lupus erythematosus, rheumatoid arthritis and Sjögren's syndrome. In this review,
we summarize the characteristics of miRNAs and their functional role in the immune system and autoimmune
diseases including systemic lupus erythematosus, primary Sjögren's syndrome, rheumatoid arthritis, systemic
sclerosis, multiple sclerosis and psoriasis; moreover, we depict the advantages of miRNAs inmodern diagnostics.
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single-stranded, endogenous non-coding RNAs playing critical roles in
regulating gene expression [1,2].

miRNAs regulate approximately 90% of protein-coding genes, and
play a central role in various biological processes including immune
call lineage commitment, differentiation, proliferation, apoptosis and
maintenance of immune homeostasis. It is not surprising that
alterations in the expression of miRNAs potentially contribute to the
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development of certain pathological conditions and clinical disorders.
Nowadays, the pathogenetical role of miRNAs is most intensively
studied in malignant diseases as well as autoimmune conditions.
Changes in miRNA expression profiles have been identified in different
autoimmune diseases such as systemic lupus erythematosus (SLE),
rheumatoid arthritis (RA) and Sjögren's syndrome (SS) [3–5]. In this re-
view, we summarize the characteristics of miRNAs and their functional
role in the immune system and autoimmune diseases including SLE,
primary SS, RA, systemic sclerosis (SSc), multiple sclerosis (MS) and
psoriasis.

2. The biology of miRNAs

The majority of miRNA genes derived from the intergenic regions or
in oriented antisense to form independent transcription units. Most of
the others reside in the intron region of protein-coding genes [6].
Human miRNAs are not always genomically isolated; sometimes
several miRNAs are assembled as clusters for further transcription and
expression [7].

The miRNA biogenesis andmaturation occur first in the nucleus and
then in the cytoplasm with the help of several proteins and enzymes
(Fig. 1). The first step in the miRNA biogenesis is the generation of
primary miRNA transcripts (pri-miRNAs) from DNA molecules in the
nucleus of the cell. Most miRNA genes are transcribed by RNA polymer-
ase II to produce a few hundred to thousand nucleotide-long pri-miRNA
[6]. The pri-miRNAs are both capped and polyadenylated with a typical
hairpin structure [8]. These pri-miRNAs are recognized by an enzyme–
protein complex and further cleaved into 70–100 nucleotide-long pre-
cursor miRNA (pre-miRNA). This complex is composed of Drosha and
DiGeorge syndrome critical region gene 8 (DGCR8) and denoted as mi-
croprocessor complex [9]. Drosha is one of the two members of the
RNase III family while DGCR8 is the double-stranded RNA-binding pro-
tein which is deleted in DiGeorge syndrome [10]. The pre-miRNA then
exported to cytoplasm through exportin 5, which is a member of the
karyopherin family of nucleocytoplasmic proteins. The exportin 5 rec-
ognizes a two-nucleotide overhang left by Drosha at the 3′ end of the
pre-miRNA hairpin, requiring the GTP-bound form of the Ran GTPase
for providing energy [11].

The noncanonical miRNA biogenesis pathway bypasses the micro-
processor complex cleavage processing for another sort of pre-
miRNAs, known as mirtrons, which directly spliced out of introns by
spliceosome. The branched pre-mirtrons then undergo lariat-
mediated debranching to mimic the structural features of pre-miRNAs
[12,13]. Interestingly, mirtrons can not only be found in Caenorhabditis
elegans and Drosophila, but also reported in mammals [14].

The pre-miRNAs have further processing to yield mature miRNA in
the cytoplasm. The second member of the RNase III family named
Dicer interacts with both 5′ and 3′ ends of the pre-miRNA and cleaves
the hairpin loop, processing to a 19–25 nucleotides miRNA/miRNA* du-
plex [15,16]. The miRNA* was regarded as passenger strand since it is
less-stable, while the miRNA as guide strand. The miRNA/miRNA* du-
plex releases the helix structure after loaded into the argonaute (Ago)
proteins. The guide strand remains the interactionwith Ago to generate
the RNA-induced silencing complex (RISC), which facilitate miRNAs
binds to their targets [17]. The passenger strand as complementary
strand of the guide strand is degraded as a RISC complex substrate.
However recent study demonstrates that several miRNA* are stably
expressed and may play an important role, as well [18].

The mature miRNA interacts with the 3′-UTR of specific messenger
RNA (mRNA) to regulate gene expression. Target mRNA is recognized
by the 2–7 nucleotides of the ‘seed’ region of the miRNA [19]. The com-
plementary degree of the base pairing between the miRNA seed region
and mRNA defines the mechanism of gene regulation [20]. When the
complementary base pairing is perfect or near-perfect, Ago protein of
the RISC complex induces the endonucleotic cleavage of the target
mRNA resulting in deadenylation and degradation of mRNA fragments.
Please cite this article as: Chen J-Q, et al, The role of microRNAs in the pa
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When the base pairing is incomplete, the formation of double-stranded
RNA, resulting from the binding of miRNA, leads to translational
repression [2,21,22]. Repressed mRNAs aggregate in cytoplasmic foci
called P-bodies, which are known sites of mRNA destabilization [23,24].

3. miRNAs in immune system

The miRNAs play critical roles not only in the development of im-
mune system but also the regulation of both innate and adaptive immu-
nity [5,25]. MiRNAs function as translational repressors during stem cell
fate and differentiation [26]. MiR-181, miR-223 and miR-142s are
strongly expressed in hematopoietic cells and shown regulatory roles
during hematopoietic lineage differentiation [27,28].

3.1. Innate immunity

The innate immune system is the first line of host defense and im-
portant in mechanisms against invading microorganisms; moreover, it
forms the basis of the development of adaptive immunity. Host cells ex-
press diverse pattern recognition receptors (PRRs), including toll-like
receptors (TLRs), C-type lectin-like receptors (CLRs), retinoic acid-
inducible gene (RIG)-I-like-receptors (RLRs) and nucleotide-binding
oligomerization domain (NOD)-like receptors (NLRs). These can recog-
nize a wide range of pathogen-associated molecular patterns (PAMPs).
These mechanisms trigger the intracellular signaling pathways, which
results in releasing of proinflammatory cytokines, chemokines, and in-
terferons (IFNs), aswell as lead to the expression of co-stimulatorymol-
ecules [29]. TLRs are the most characterized PRRs, which are capable of
potently activating different cell types, which could be highly expressed
on most immune cells [30]. Their downstream signaling pathways lead
to the production of a wide range of immune-stimulatory cytokines and
chemokines. Aberrant activation of TLRs may result in unrestricted in-
flammatory responses therefore the family of TLRs may play a pivotal
role in the development of autoimmune diseases [31]. Among all ten
TLR subtypes, TLR1, TLR2, TLR4, TLR5, TLR6 and TLR10 are generally
regarded as extracellular receptors, while the family of TLR3, TLR7,
TLR8 and TLR9 are intracellular receptors located in endosomal com-
partments and responsible for the recognition of nucleic acids derived
from viruses, bacteria and the host [32–35]. TLR4 can recognize lipo-
polysaccharides (LPSs), which is the typical endotoxin for gram-
negative bacteria. The LPS-mediated inflammatory responses conse-
quently induce overexpression of miR-146a/b, miR-132 and miR-155.
Upregulation of miR-146 leads to translational repression of its target
genes interleukin-1 receptor-associated kinase (IRAK) 1 and tumor ne-
crosis factors receptor associated factor (TRAF) 6 [36]. miR-146was rec-
ognized as a negative regulator of RLRs in the in vitro model of mouse
macrophages through targeting IRAK1, IRAK2 and TRAF6 [37]. Exposure
to LPS stimulates tumor necrosis factors (TNF)-α secretion. Overexpres-
sion of miR-155 and lower expression of miR-125b may relate with el-
evated level of TNF-α. It was indicated that miR-155 targets transcript
coding gene for several proteins enhancing TNF-α translation, including
Fas-associated death domain protein (FADD), IkappaB kinase epsilon
(IKKepsilon) and TNFR superfamily-interacting serine–threonine ki-
nase 1 (Ripk1), while miR-125b targets the 3′-UTR of TNF-α transcripts
[38]. In miR-147 knockout mice, increased inflammatory cytokine ex-
pression found in macrophages upon TLR stimulation such as ligands
to TLR2, TLR3 and TLR4. Thus miR-147 was regarded as a negative reg-
ulator in TLR-activated inflammatory responses [39]. The miR-1303
production is also regulated by the NF-κB pathway. A recent study re-
vealed negative regulation of mycobacteria-induced Atg2B protein pro-
duction related with autophagy process [40].

The miR-146a and miR-155 influence IFN-type I synthesis in
plasmacytoid dendritic cells mediated by TLR-7 and TLR-9, while in T
and B cells, group of miRNAs including miR-21, miR-126, miR-146a,
miR-155, miR-1246 and others might correlate with epigenetic
thogenesis of autoimmune diseases, Autoimmun Rev (2016), http://
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Fig. 1. microRNA biogenesis and mechanisms of action. Most miRNA are transcribed from genomic DNA by RNA polymerase II to generate typical hairpin structured primary miRNA
transcripts (pri-miRNAs). These pri-miRNAs are recognized by the microprocessor complex (Drosha and DGCR8) and further cleaved into precursor miRNA (pre-miRNA). The
noncanonical miRNA biogenesis pathway starts from mirtrons, which directly spliced out of introns by spliceosome. The branched pre-mirtrons then undergo lariat-mediated
debranching to mimic the structural features of pre-miRNAs. The pre-miRNA then exported to cytoplasm through exportin 5. The pre-miRNA is further cleaved by Dicer into miRNA/
miRNA* duplex. The guide strand loaded into the argonaute (Ago) proteins to generate the RNA-induced silencing complex (RISC), while the passenger strand (miRNA*) would
eventually degrade. The perfect complementary base pairing match between miRNA and target messenger RNA (mRNA) induces target mRNA degradation, while the imperfect match
results in the repression of the mRNA translation.
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Umodifications, support abnormal cytosine release, differentiation of cell
subsets, B cell hyperactivity and autoantibody production [41].

3.2. Adaptive immunity

The adaptive immune system involved both T and B lymphocytes as
major cellular components. One of the RNase III family enzymes, Dicer
as mentioned previously is important in the biogenesis of miRNA. In
the early stage of T cell development, depletion of Dicer leads to reduc-
tion of T cell numbers both in the thymus and peripheral lymphoid or-
gans [42]. Dicer-deficient T helper (Th) cells show aberrant cytokine
secretion, such as increased expression of IFN-γ in the absence of exog-
enous cytokines and blocking antibodies [43]. In early B cell progenitors,
Please cite this article as: Chen J-Q, et al, The role of microRNAs in the pa
dx.doi.org/10.1016/j.autrev.2016.09.003
depletion of Dicer results in blocking at the pro- to pre-B cell transition
since miR-17 mostly target the genes that upregulated in Dicer-
deficient pro-B cells [44].

Interleukin (IL)-17 produced by Th17 cells are closely related to
miR-326 and miR-155. It is shown that overexpression of miR-326 re-
sults in increased number of Th17 cells through targeting Ets-1 in mul-
tiple sclerosis patients and severe experimental autoimmune
encephalomyelitis (EAE)mice [45].MiR-155 on the other hand is essen-
tial for dendritic cell production of cytokineswhich induce Th17 cell for-
mation. Mir-155 knockout mice are recognized resistant to EAE [46].
MiR-155 is down-regulated in human monocyte-derived dendritic
cells in response to LPS-induced inflammatory processes [47]. MiR-
155 expression is necessary for maintaining regulatory T (Treg) cell
thogenesis of autoimmune diseases, Autoimmun Rev (2016), http://
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t1:1 Table 1
t1:2 Differential expression of miRNAs in autoimmune diseases.

t1:3 Disease Sample miRNA expression

t1:4 Up-regulated Down-regulated

t1:5 SLE PBMCs miR-516a-3p [54] miR-126 [53]
t1:6 miR-525-5p miR-17-5p [55]
t1:7 miR-629 miR-112
t1:8 miR-21 [55] miR-141
t1:9 miR-61 miR-184
t1:10 miR-78 miR-196a
t1:11 miR-142-3p miR-383
t1:12 miR-189 miR-409-3p
t1:13 miR-198 miR-146a [57]
t1:14 miR-298 miR-155 [59]
t1:15 miR-299-3p
t1:16 miR-342
t1:17 miR-410 [60]
t1:18 T cells miR-26a [61]
t1:19 Serum miR-148-3p [62]
t1:20 miR-130b-3p [63]
t1:21 Urinary

exosomes
miR-146a [65]

t1:22 APS Exosome miR-146a-3p [66]
t1:23 miR-146a-5p
t1:24 miR-155
t1:25 miR-210
t1:26 SS MSGs hsa-miR-768-3p [71] hsa-miR-574 [71]
t1:27 miR-16 [69]
t1:28 SGECs miR-200b-3p
t1:29 PBMCs miR-223 miR200b-5p [69]
t1:30 miR-483-5p
t1:31 miR-146a/b [72]
t1:32 miR-155 [74] miR-155 [76]
t1:33 miR-181a [77]
t1:34 Monocytes miR-34b-3p [78]
t1:35 miR-300
t1:36 miR-609
t1:37 miR-877-3p
t1:38 miR-3162-3p
t1:39 miR-4701-5p
t1:40 RA PBMCs miR-146a [80]
t1:41 miR-155
t1:42 miR-301a-3p [81]
t1:43 Serum miR-223 [82] miR-16 [82]
t1:44 miR-146a
t1:45 miR-155
t1:46 Synovial

tissue
miR-16 [83] miR-188-5p [85]

t1:47 miR-132
t1:48 miR-146a
t1:49 miR-223
t1:50 FFPE miR-146a [84]
t1:51 miR-155
t1:52 miR-223
t1:53 CD4+ T cells miR-146a [87] miR-363 [87]
t1:54 miR-498
t1:55 Macrophages miR-223 [88] miR-99a [88]
t1:56 miR-100
t1:57 miR-125b
t1:58 miR-199-3p
t1:59 miR-199-5p
t1:60 miR-152
t1:61 miR-214
t1:62 SSc Serum miR-21 [99–105] miR-15b [91–98]
t1:63 miR-92a miR-16
t1:64 miR-133 miR-27a/b
t1:65 miR-142-3p miR-132
t1:66 miR-200a/b miR-150
t1:67 miR-590 miR-335
t1:68 Fibroblasts miR-29a [106,107]
t1:69 miR-135b [108]
t1:70 miR-193b [109]
t1:71 MS PBMCs miR-21 [111,112] miR-214 [114]
t1:72 miR-146a/b miR-140-5p [115]
t1:73 miR-155 miR-572 [116]
t1:74 miR-326 [113]
t1:75 miR-27a [114]
t1:76 CSF miR-150 [117]

Table 1 (continued)

Disease Sample miRNA expression

Up-regulated Down-regulated

t1:77Psoriasis PBMCs miR-142-3p [119] miR-99a [119]
t1:78miR-146a miR-125b
t1:79miR-155 miR-181a
t1:80miR-224
t1:81miR-378
t1:82Serum miR-146a [120]
t1:83Th17 miR-223 [119] miR-193b [119]
t1:84Hair shaft miR-424 [121]
t1:85Lesional skin miR-26b-5p [122]

t1:86Abbreviations
t1:87SLE: systemic lupus erythematosus.
t1:88APS: antiphospholipid syndrome.
t1:89SS: Sjögren's syndrome.
t1:90RA: rheumatoid arthritis.
t1:91SSc: systemic sclerosis.
t1:92MS: multiple sclerosis.
t1:93PBMCs: peripheral blood mononuclear cells.
t1:94MSGs: minor salivary glands.
t1:95SGECs: salivary gland epithelial cells.
t1:96FFPE: formalin-fixed paraffin-embedded synovial tissue.
t1:97CSF: cerebral spinal fluid.
t1:98Th: T helper cell.
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proliferative activity under Foxp3 regulation in controlling the IL-2 sig-
naling pathway by targeting the suppressor of cytokine signaling
(SOCS) 1 [48]. LikemiR-155, miR-146a is not only relevant to the innate
immune system but also critical in the adaptive immune system. Over-
expression of miR-146a was found in Treg cells as a response to
activation of signal transducer and activator transcription (STAT) 1.
The negative regulator of STAT1 phosphorylation downstream
of the IFN-γ receptor is SOCS1, which additionally associated with
Th1-mediated autoimmunity [49]. In activated B cells, miR-181b results
in the down-regulation of activation-induced cytidine deaminase (AID)
mRNA and protein levels. By restricting AID activity,miR-181bmay pre-
vent B cell malignant transformation [50].

The overexpression of miR-148a results in impaired B cell tolerance,
which accelerates the development of autoimmune diseases. Moreover,
miR-148a inhibits the expression of the autoimmune suppressor
Gadd45α, the tumor suppressor phosphatase and tensin homolog
(PTEN) and the pro-apoptotic protein Bim and protects immature B
cells from apoptosis induced by engagement of B cell antigen receptor
[51].

4. MiRNAs in autoimmune diseases

Alterations in miRNA regulation seem to be highly related to the de-
velopment of immune dysfunctions and autoimmunity. Recently sever-
al studies have focused on the role of miRNAs in autoimmune diseases
and different expression profiles have been identified as biomarkers of
certain autoimmune conditions, such as SLE, RA and SS. Table 1 summa-
rized the differential expression of miRNAs in autoimmune diseases.

4.1. Systemic lupus erythematosus

SLE is one of the most prevalent systemic autoimmune disorders.
SLE has a large spectrum of clinical presentations since the disease can
affect multiple organs, including skin, joints, kidneys, lungs, nervous
system, and serous membranes. The diversity of its clinical features is
matched by the complexity of pathogenic factors including genetic,
hormonal, and environmental factors [52].

A recent study demonstrated that blood plasma level of miRNA-126
was significantly lower in SLE patients compared to that in normal con-
trols. In addition, both plasma levels of IFN-α and interferon-inducible
gene ISG56 mRNA in peripheral blood mononuclear cells (PBMCs)
showed higher levels in SLE patients compared to controls. Based on
thogenesis of autoimmune diseases, Autoimmun Rev (2016), http://
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these observations, miRNA-126 may inhibit the production of IFN-α
and decrease in its expression level is possibly involved in the
pathogenesis of SLE [53].

Zhu et al. reported high expression levels of miRNA-516a-3p,
miRNA-629 and miRNA-525-5p in the PBMCs of paediatric SLE (pSLE)
patients compared to healthy children. In addition, the increased
expression levels of these three miRNAs were positively correlated
with the SLEDAI scores and CRP levels. The target genes of these three
miRNAs, namely Yinyang1 (YY1), Kruppel-like factor 13 (KLF13) and
interferon regulatory factor 5 (IRF5), were found to be important in
the pathogenesis of pSLE [54]. Dai et al. indicated 16 miRNAs with
altered expression pattern in PBMCs, based on amicroarray analysis in-
volving 23 SLE patients from Han population, as following: seven
miRNAs are decreased expression in SLE: miR-17-5p, miR-112, miR-
141, miR-184, miR-196a, miR-383, and miR-409-3p; the other nine
miRNAs are overexpressed in SLE: miR-21, miR-61, miR-78, miR-142-
3p, miR-189, miR-198, miR-298, miR-299-3p, and miR-342 [55]. Two
years later, they analyzed miRNAs in kidney biopsy samples of class II
lupus nephritis (LN) patients, compared to renal tumor patients' kidney
resection samples. They reported 66 miRNAs differentially regulated in
lupus nephritis patients. Among them, 36 are up-regulated and the rest
30 are down-regulated [56].

The downregulation of miR-146a also contributes to the develop-
ment of SLE. It was revealed that miR-146a is a negative regulator of
type I IFN pathway by targeting IFN regulatory factor 5, STAT 1, IRAK1
and TRAF6 [57]. Two recent studies focused on miR-155; the miR-155
expression level correlated negatively with the expression of CD1d in
B cells of SLE mice. Additionally, it was found that lower expression
level of CD1d on B cells was decreased by targeting Ets-1 through acti-
vation of TLR9. Moreover, in juvenile SLE patients, miR-155 is downreg-
ulated in PBMCs compared to that of healthy controls. It was reported
that miR-155 expression level was negatively correlated with Systemic
Lupus Erythematosus Disease Activity Index (SLEDAI) score [58,59].

It is observed that up-regulation of miR-410 significantly reduced
the expression levels of fibrosis factors such as transforming growth
factor-β1 (TGF-β1) by inhibiting secretion of IL-6 in the pathogenesis
of LN [60]. The epigenetic modulator EZH2 might shift implicating
effector in lupus naïve CD4+ T cells and opposes inhibitory TGF-β sig-
naling. The expression level of miR-26a, which is sensitive to glucose
availability and targets EZH2, correlated negatively with SLEDAI [61].

A current study indicated that miR-148a-3p expression level was
significantly higher in blood serum and glomerular cells in SLE with
active LN. Up-regulation of miR-148a-3p accelerated glomerular cell
proliferation and proliferating cell nuclear antigen (PCNA) expression,
consequently reducing the PTEN expression level [62]. The significant
overexpression of miR-130b-3p was demonstrated in serum of SLE pa-
tientswith early stage LN, comparedwith thatmeasured in healthy con-
trols. Serum miR-130b-3p did not affect SLE disease activity (SLEDAI,
ds-DNA, and complements levels) but correlated with renal damage
since the expression of serum miR-130b-3p correlated positively with
24-h proteinuria and chronicity index (histological chronicity index
and glomerular sclerosis) [63]. On the other hand, miR-29c expression
in urinary exosomes showed a strong negative correlation with the
chronicity but not with renal function (eGFR and creatinine levels). Uri-
nary exosomes are micro-vesicles released by the epithelial cell facing
the urinary space and proposed a novel and ideal source of markers
for evaluating stage of LN [64]. Furthermore, expressions of several
miRNAs were elevated in the urinary exosome fraction compared to
the cell-free and exosome-depleted supernatant fraction, especially
with LN. Among the exosomal miRNAs, miR-146a was the most over-
expressed in SLE patients with active LN compared to the control
group or to the SLE patients in the absence of LN [65].

Circulating antiphospholipid antibodies (aPLs) increase the risk of
pregnancy complications, which leads to an autoimmune disorder
named antiphospholipid syndrome (APS). APS patients with adverse
pregnancy outcomes showed significantly higher levels of circulating
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exosomal-associated miR-146a-3p compared to healthy pregnant con-
trols. The specific aPL significantly induced trophoblasts to express
higher level of miR-146a-5p, miR-146a-3p, miR-155 and miR-210. Ex-
ceptmiR-155, the other miRNAs were inhibited by the TLR4 antagonist.
The suppression of miR-146a-3p significantly reduced aPL-induced tro-
phoblast IL-8 secretion regulated by the TLR8 [66].

4.2. Primary Sjögren's syndrome

Primary SS is a slowly progressive systemic autoimmune inflamma-
tory disease that primarily affects middle-aged women (female to male
ratio: 9:1), although itmay be found in all ages including childhood. The
target organs are primarily exocrine glands, such as salivary and lachry-
mal glands. Therefore, patients show typically symptoms of dry mouth
and dry eyes [67]. Besides the pathognomonic glandular symptoms
(GS), other systemic symptoms, denoted as extraglandular manifesta-
tions (EGMs) (e.g. polyarthritis, myositis, vasculitis, polyneuropathy
etc.) can also develop during the disease course in approximately one
third of the patients [68].

The increase of Ro/SSA and La/SSB autoantigens is a common feature
in SS patients. The miRNAs which are suspected to target Ro/SSA and
La/SSB mRNAs in primary SS are as follows: let-7b, miR-16, miR-181a,
miR-200b-3p, miR-200b-5p, miR-223 and miR483-5p. The overexpres-
sion of miR-16 in minor salivary glands (MSGs), miR-200b-3p in
salivary gland epithelial cells (SGECs) and miR-223 together with
miR-483-5p in PBMCs of 29 SS patients compared to 24 sicca-
complaining controls has been shown previously. Significant lower-
expression of miR200b-5p levels was reported in SS patients with
mucosa-associated lymphoid tissue (MALT) lymphoma compared to
primary SS patients [69]. Another study demonstrated the positive cor-
relation between the expression levels of La/SSB and the Dicer enzyme
in connection with cancer prognosis. La/SSB promotes global microRNA
expression and identifies stem-loop [70]. Alevizos et al. generated
microRNA microarray profiles from the minor salivary glands of pa-
tients with SS who had low-grade or high-grade inflammation and im-
paired or normal saliva production, and compared the results with that
observed in healthy control subjects. They found hsa-miR-768-3p over-
expression, while hsa-miR-574 was underexpressed in patients' biop-
sies; additionally, their inverse correlations to focus scores were also
demonstrated [71]. Previously, our workgroup not only confirmed the
over-expression of miR-146a/b in PBMCs of SS but also demonstrated
the unanticipated over-expression of its functionally targeted gene,
TRAF 6. Furthermore, we also reported decreased gene expression of
IRAK 1 [72]. The over-expression of TRAF6 is surprising since miR-
146a could inhibit the expression of TRAF6 [73]. Recently, enhanced ex-
pression of miRNA-155 was reported in untreated Sjögren's syndrome
[74]. Of note, SS patients treated with immunosuppressants also
showed the over expression of miR-155. On the contrary, in Asian pop-
ulation the relative expression ofmiR-155was lower in PBMCs of SS pa-
tients not receiving any immunosuppressive treatment than the
controls, which may emphasize the importance of the diverse genetic
background of different ethnicities [75,76]. A recent study demonstrat-
ed the over-expression ofmiR-181a in the PBMCs of pSS patients, which
was associatedwith the up-regulation of several virus-derivedmiRNAs,
suggesting that viral infection of PBMC plays a role in the disease [77].

Up-regulated expression of miR-34b-3p, miR-4701-5p, miR-609,
miR-300, miR-3162-3p, and miR-877-3p in SS monocytes compared
to controls may relate with opposing of TGF-β signaling pathway and
TLR/NF-κB pathways induced pro-inflammatory IL-12 secretion [78].

4.3. Rheumatoid arthritis

RA is a frequent autoimmune disorderwith prevalence rates approx-
imately 1% of the adults worldwide. The disease primarily affects the
synovial joints, and the chronic inflammatory process consequently
causes the destruction of the articular tissue [79].
thogenesis of autoimmune diseases, Autoimmun Rev (2016), http://
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Associations between the alterations in miRNA expressions and the
pathomechanisms of the disease have been shown previously. Elevated
expression of miR-146a and miR-155 was determined both in whole
blood samples and PBMCs of RA in Canadian cohort in comparison
with healthy individuals [80]. The expression of the transcription factors
(RORγt and STAT3) of Th17 cells was significantly increased in
the PBMCs of RA patients while miR-301a-3p was also found
overexpressed. Levels of miR-301a-3p showed positive correlation
with the frequency of Th17 cells in RA patients [81]. MiR-146a, miR-
155 and miR-16 were found to have lower expression levels in the
serum of early stage of RA patients who were prior to and after 3 and
12 months of antirheumatic drugs therapy compared to established
RA. Based on a recent observation, miR-223 may be a potential marker
of disease activity since decreased serum level of miR-223 was found
after therapy in early RA [82].

MiR-16, miR-132, miR-146a, and miR-223 were found to be over-
expressed in synovial fluid and blood plasma of patients compared to
healthy controls. No correlation was identified between plasma and sy-
novial fluid miRNAs although concentrations of miRNAs in synovial
fluid were significantly lower compared to that of plasma levels [83].
A very recent study showed altered expression levels of certainmiRNAs
in formalin-fixed paraffin-embedded synovial tissue (FFPE) samples of
patients with RA compared to osteoarthritis (OA) patients. It was
reported that miR-146a, miR-155, and miR-223 were upregulated sig-
nificantly in FFPE samples of established RA patients [84].

It was also shown that miR-188-5p is downregulated in synovial tis-
sue samples of RA patients as well as in RA synovial fibroblasts (RASF).
Moreover, it was revealed, that miR-188-5p is directly and indirectly
regulating the expression of genes confirmed by gene expression profil-
ing in RASF, including hyaluronan binding protein KIAA1199 as well as
collagens COL1A1 and COL12A1, whichmay correlate with extracellular
matrix formation and destruction in RA [85].

MiR-573 might be a negative regulator in RA since miR-573 could
suppress the activation of mitogen-activated protein kinase (MAPK)
which is regarded as one of the potential targets for RA treatment [86].

Regarding CD4+ T cells of RA patients, miRNA expression analysis
indicated significant upregulation of miR-146a expression, while miR-
363 and miR-498 were downregulated [87].

ThemiRNA expression in macrophages from patients with active RA
and OA was recently determined. Seven miRs, namely miR-99a, miR-
100, miR-125b, miR-199-3p, miR-199-5p, miR-152 and miR-214 were
downregulated and only miR-223 was upregulated in macrophages in
RA, compared to the results from OA samples. It was also implied that
high miR-223 levels functionally impair the AHR (aryl hydrocarbon re-
ceptor)/ARNT (AHR nuclear translocator) pathway in myeloid cells by
reducing ARNT protein levels. The AHR activation may be linked to the
pathogenesis of RA, since AHR agonists inhibit pro-inflammatory cyto-
kine expression in macrophages [88].

A recent study investigated single nucleotide polymorphisms (SNP)
rs22928323 of miR-149 in 200 RA patients and 120 healthy controls.
Rs22928323 showed correlation with RA development but was not as-
sociated with further clinical characteristics [89].
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4.4. Systemic sclerosis

SSc is characterized by acceleratedfibrosis and tissue damages in the
skin and visceral organs such as heart, lungs and kidneys. SSc can be
classified into two sub-groups based on the extent of skin thickening:
limited SSc and diffuse SSc. Patients with the limited form are at lower
risk of having visceral involvement, while the diffuse form involves sev-
eral systems of internal organs [90].

Different study groups reported how miRNAs regulate fibrogenesis.
The miR-15b, miR-16, miR-27a, miR-27b, miR-132, miR-150, and miR-
335 seem to play an important role in the induction of myofibroblast
proliferation and resistance to apoptosis [91–98]. On the contrary,
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miR-21, miR-92a, miR-133, miR-142-3p, miR-200a/b, and miR-590
have been shown to suppress fibrotic processes [99–105].

Regarding othermiRNAs,miR-29awas considered as themost direct
regulator of extracellular matrix (ECM) synthesis. It targets the gene
TAB1 and may lead to apoptosis of the dermal fibroblasts resulting to
lower TIMP-1 production and promote collagen degradation by increas-
ing MMP-1 production, suggesting that miR-29a may be a potential
therapeutic target for SSc [106]. The restoration of miR-29a decreased
TNF-α production in dermal fibroblasts of SSc patients. Moreover, Bcl-2
expression was upregulated in SSc fibroblasts and the ratio of Bax:Bcl-2
infibroblastswas significantly lower compared to normal controls. How-
ever, miR-29a disrupted the expression profiling of Bcl-2 family proteins
(Bax, Bcl-2 and Bcl-XL), which proved that miR-29a is an anti-fibrotic
factor induce apoptosis and an attenuator cause ECM production in SSc
fibroblasts [107].

Additionally, miR-135b expression is significantly lower both in
serum and isolated CD14+ monocytes from patients compared to
controls. T cell-derived IL-13 increased collagen expression in dermal
fibroblasts which was dependent on STAT6 and miR-135b. Besides,
miR-135b is repressed bymethylation and could bemediated by the re-
pressive protein methyl cap binding protein 2 (MeCP2), which is signif-
icantly enhanced in SSc dermal fibroblasts compared to controls [108].

Iwamoto et al. reported the downregulation of miR-193b in SSc fi-
broblasts and skin sections. Knockdown of miR-193b induced the ex-
pression of mRNA and urokinase-type plasminogen activator (uPA)
enzyme, which was strongly expressed in vascular smooth muscle
cells in SSc skin section and contributed to the proliferative vasculopa-
thy with intimal hyperplasia characteristic for SSc [109].

4.5. Multiple sclerosis

Multiple sclerosis is an autoimmune neurological disease which af-
fects the brain and the spinal cord thus leading to the main triad symp-
toms of inflammation, demyelination and gliosis. The damage of the
protective covering of themyelin sheath surrounding the nerve cells re-
sult in single or multiple symptoms including motoric, speech,
swallowing, and visual disabilities and other neuronal problems [110].

MiR expression profile analysis indicated significant overexpression
of miR-21, miR-146a, miR-146b and miR-155 in PBMCs of relapsing re-
mittingMS patients compared to controls [111,112]. MiR-326 promotes
differentiation by targeting Ets-1, furthermore, its overexpression leads
to Th17 cell proliferation and disease aggravation in experimental
autoimmune encephalomyelitis [113]. Upregulation of miR-27a was
observed in relapsing phase of MS compared to remitting phase and
healthy controls; on the contrary, miR-214 was underexpressed in
relapsing phase of MS, which implied that miR-27a may inhibit
Th17 cell differentiation, while miR-214 may promote Th17 cell
differentiation [114].

The expression of miR-140-5p was found to be significantly de-
creased in the PBMCs of MS patients compared to those in controls,
and miR-140-5p level was inversely correlated with disease severity.
Transfection of synthetic miR-140-5p in PBMCs inhibited activation of
STAT1 and consequently suppressed the encephalitogenic Th1 differen-
tiation, which suggests that miR-140-5p may be a novel marker in-
volved in the pathogenesis of MS [115].

Another group recently reported significantly lower expression of
miR-572 in overall MS patients, compared to healthy controls. MiR-
572 was found to be significantly upregulated in secondary progressive
and relapsing remittingMS,while itwas downregulated in primary pro-
gressive MS. Consequently, with the different potential, this miRNA
could be regarded as a non-invasive biomarker for remyelination [116].

The expression level ofmiR-150was elevated in cerebral spinal fluid
(CSF) frompatientswith clinically isolated syndrome (CIS)who convert
to MS later, compared to those CIS who did not convert during follow-
up (median period of 52 months). The miR-150 may be regarded as a
marker of CNS inflammation, since higher levels of miR-150 correlate
thogenesis of autoimmune diseases, Autoimmun Rev (2016), http://
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with higher levels of CSF biomarkers, involving C-X-C motif chemokine
13 (CXCL13), matrixmetallopeptidase 9 (MMP-9) and osteopontin. Ad-
ditionally, the level of miR-150 in CSF decreased after treating with
natalizumab for one year and remains unchanged with fingolimod,
while level of miR-150 in plasma increased after the treatment with
natalizumab and decreased after fingolimod therapy [117].

4.6. Psoriasis

Psoriasis is a chronic and frequently relapsing inflammatory skin
disease characterized by pathologic features such as accelerated
epidermopoiesis, marked hyperkeratosis with parakeratosis, vascular
dilatation, and inflammatory cell infiltration. The most common form
of the disorder is the chronic plaque psoriasis with rounded erythema-
tous, dry, scaling patches. The lesions have a predilection site as nails,
scalp, genitalia, extensor surfaces, and the lumbosacral region [118].

Recently, a study group discovered 24 dysregulated miRNAs in the
epidermis of psoriatic skin and 37 dysregulated miRNAs in the dermal
inflammatory infiltrates of patients. Among those, miR-99a, miR-125b
and miR-181a were significantly lower expressed in PBMCs while
miR-142-3p, miR-146a, miR-155, miR-224 and miR-378 were upregu-
lated. Moreover, miR-193b was downregulated and miR-223 was up-
regulated in Th17 cells, while miR-125b was downregulated in T
regulatory cells [119]. MiR-146a level was up-regulated in blood sam-
ples from patients of psoriasis in comparison with healthy controls,
but no significant positive relation was revealed with PASI scores in pa-
tients. However after 12weeks of treatmentwith Narrow-Band Ultravi-
olet B phototherapy or treatment with methotrexate, expression of
miR-146a decreased dramatically, which suggests that miR-146a may
be useful in evaluating and screening the effect of treatment of psoriasis
objectively [120].

Even though miR-424 levels were not correlated with disease activ-
ity markers, such as PASI (psoriasis area and severity index), hair shaft;
miR-424 levels were significantly upregulated in psoriasis patients
compared with normal controls and those with atopic dermatitis [121].

A recent study reported increased level ofmiR-26b-5p in subcutane-
ous adipose tissue under lesional psoriasis skin compared to nonlesional
psoriatic skin. miR-26b-5p down-regulates neutral cholesterol ester
hydrolase 1 enzyme, which is essential for cholesterol efflux, in
monocytes/macrophages, adipocytes, vascular endothelial cells and
fibroblasts [122].

Additionally, the G allele of SNP rs2910164 in miR-146a regarded as
a risk factor, which would impair its suppression on the proliferation of
keratinocytes through the decreased inhibition of the target gene [123].

5. Conclusions and future perspectives

The discovery of miRNAs and the recognition of their critical role in
modulating gene expression changed the way we think about genetic
control. The intensive research over the last decade shed light onmulti-
ple pathways and modes how miRNAs regulate cell development and
differentiation. The central role of miRNAs in modulating immune
system responses was also recognized, although, there are numerous
questions about miRNAs, yet to be answered.

In the last years much attention was drawn to the function of
miRNAs in autoimmunity. Changes in the expression levels of certain
miRNAs in the circulation or in different cells and tissues are character-
istics for various autoimmune conditions and presumably contribute to
disease development. Consequently, some of these molecules may be
regarded as novel and attractive biomarkers specific for different auto-
immune disorders. However, functional experimental studies are re-
quired to verify and establish the causal association between the
aberrantly expressed miRNAs and the development of disease.
Additionally, the mechanisms underlying the aberrant expression of
miRNAs, as well as the influence of other factors that regulate miRNAs,
also remained to be investigated.
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Genome-wide surveys identified many single nucleotide polymor-
phisms (SNPs) in the predictedmiRNA target sites, as well as inmiRNAs
themselves. In some instances, SNPs have been shown to alter miRNA
function, thus possibly contributing to disease development. The better
understanding of the immune regulatory mechanisms of miRNAs by
pathway-based exploratory analyses and the mapping and characteri-
zation of miRNA SNPs may help not only to elucidate the pathogenesis
of autoimmune conditions but also can lead to the development of com-
plex therapeutic approaches in patients with immunological disorders.

Take-home messages
• Alterations of miRNAs expression are involved in the development of
autoimmune conditions.

• Certain miRNAs could be regarded as novel and specific biomarkers
for different autoimmune diseases.

• Exploration ofmiRNA target geneswill define their role in autoimmu-
nity and reveal novel targets and therapeutic approaches.
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