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Abstract 

Free-radical hydrothiolation of O-peracylated 1-C-(carbamoyl-, methoxycarbonyl- and cyano) 

substituted glycals with a range of sugar derived thiols gave the corresponding β-manno type 

3-deoxy-S-disaccharides with full regio- and stereoselectivity. The configuration of the 

glycals (arabino vs lyxo) and the size of the protecting groups had no significant effect on the 

outcome of the transformations. Formation of by-products was tracked down by LCMS 

studies and correlated with the electron density of the double bonds to show that the reactions 

were synthetically useful with a COOMe and especially with a CONH2 group as the 1-C-

substituent.  
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Introduction 

Although radical-mediated addition of thiols to alkenes has been known for a long time1 this 

transformation has its renaissance with the advent of click chemistries2 in various fields such 

as drug discovery,3 material science,4 bioconjugation,5, 6 and polymer functionalization,7 just 

to mention a few. The use of various thiyl radical additions to alkenes and alkynes in 

carbohydrate chemistry to obtain thiosugars, glycoconjugates, and glycodendrimers has also 

been reviewed recently.8 In these reactions the sugar unit may play the role of both the thiol 

and the unsaturated component. 

 

An especially favourable case of radical additions to alkenes occurs with the so-called capto-

dative olefins,9 i. e. double bonds substituted geminally by an electron withdrawing and an 

electron releasing substituent. Due to the highly radicophilic nature of the resulting adduct 

radicals10 dimerization is facilitated and the final double adducts can be obtained in 

synthetically useful yields. This was demonstrated with thiyl additions to 2-alkylsulfanyl 

acrylonitriles and 2-methoxy-acrylic acid methyl ester.11 

 

In recent years we and others have studied the photoinitiated thiol-ene additions with sugar 

derived alkenes with the double bond in endo-12-14 or exocyclic14-19 positions. These reactions 

exhibited very high or even exclusive regio- and stereoselectivities in most cases and offer 

thereby possibilities to design glycomimetic compounds with hydrolytically stable C-S 

linkages between the sugar and the attached moiety. Herein we disclose our comparative 

studies on additions of various thiyl radicals to capto-datively substituted sugar alkenes, i. e. 

1-C-acceptor (CONH2, COOMe, and CN) substituted glycals (2,6-anhydro-hept-2-enonic acid 
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derivatives). The aim of these investigations has been to reveal the reactivity of the above 

substrates to select the most promising starting compounds towards the synthesis of novel, 

complex carbohydrate structures. 

 

Results and discussion 

The hydrothiolation reactions of 1-C-substituted glycals were carried out in a mixture of 

toluene and MeOH (5:1) at ambient temperature with a 2:1 thiol:alkene molar ratio by 

irradiation at max 365 nm for 3 x 15 min in the presence of the cleavable photoinitiator 2,2-

dimethoxy-2-phenylacetophenone (DPAP, 3 x 0.1 equiv).  

 

We were pleased to find that free radical addition of thiols 2-9 to amide-substituted galactal 

120 took place with full regio- and stereoselectivity affording the corresponding 4,5,7-tri-O-

acetyl-2,6-anhydro-3-deoxy-3-S-substituted-3-thio-D-glycero-L-altro-heptonamides 10-17, 

respectively (Table 1). The position of the S-linkage (regioselectivity) could easily be 

determined by the low chemical shift obtained for C-3 (43.5 ppm for compound 10). The 

complete assignment of the 1H and 13C NMR spectra of 10 was performed by using COSY 

and HSQC measurements. The configuration of the new stereogenic centers (C-2 and C-3) 

was evidenced by crosspeaks between H-3 and both H-2 and H-4 hydrogens that appeared in 

the ROESY spectrum of compound 10 (see supporting information). For compounds 11-17 

the analogous structure was deduced from the similarities of their 1H and 13C NMR spectra to 

those of 10. The formation of the 3-S-substituted-D-glycero-L-altro-heptonamides (10-17) 

with axial 3-S-linkages as the sole isolable products can be explained by the preferred β-side 

attack on the less substituted ene-carbon in the thiyl radical addition step and the more 

favourable α-side attack on the C-2 radical in the hydrogen abstraction step.15, 21-23 

                                                 
 According to the carbohydrate nomenclature this is the systematic name of the starting materials, and also the 

addition products are named and numbered following these rules.  
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In all of the above addition reactions incomplete conversion of the starting galactal 1 was 

indicated by TLC. Our attempts to promote the progress of the reaction by applying higher 

excess of thiol (3 equiv), increasing the amount of DPAP (1 equiv), and prolongation of the 

irradiation time (5 x 15 min) were unsuccessful. The resulting yields ranged between 16 and 

64 %. We observed earlier that electron-donating substituents on the thiol partner reduced its 

reactivity in the reversible thioladdition reaction.14, 18 Thus, the low yields obtained for 

compounds 16 and 17 (16% and 19% respectively) are assumedly due to the electron-

releasing substituents of the thiols 8 and 9, respectively. 
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Table 1. Addition of thiols 2-9 to amide-substituted galactal 1. 
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Next, the O-perbenzoylated amide-substituted glucal 1824 was subjected to coupling with 

2,3,4,6-tetra-O-acetyl-1-thio--D-galactopyranose (4, Scheme 1). The reaction conditions 

were the same as those used in the case of the hydrothiolation of amide-substituted galactal 1. 

Pleasingly, selective addition occurred with the thiyl radical adding from the β-side to C-3 of 

the substrate and the subsequent hydrogen abstraction by the C-2 radical took place from the 

α-side, thus resulting in the 3-deoxy-3-thiodisaccharide 19. Reactions of galactal 1 and glucal 

18 with the thiol 4 revealed that neither the orientation nor the nature of the 5-O-substituent 

affected the stereochemical outcome of the hydrothiolation. It is known that the overall 

reaction rate of the thiol-ene reaction is directly related to the electron density of the ene 

partner for a given thiol, electron-rich enes react much more rapidly than electron-poor 

ones.25, 26 Compound 18, possessing a more electron-rich double bond than 1 owing to the O-

benzoyl groups, was expected to show higher conversions with the thiol 4. Accordingly, in 

this case a significantly enhanced yield (72%) could be reached in comparison to that 

obtained for 1 (62%).  

 

 

 

Scheme 1. Addition of thiol 4 to amide-substituted glucal 18. 

 

Reactions of the methoxycarbonyl-substituted galactal 2027 with thiols 2-4 under the above 

mentioned conditions gave exclusively the corresponding methyl 4,5,7-tri-O-acetyl-2,6-

anhydro-3-deoxy-3-S-substituted-3-thio-D-glycero-L-altro-heptonates (21-23, Table 2). 
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Nevertheless, notable decrease of the isolated yields (19-28%) was observed in comparison to 

those of the adducts derived from the amide-substituted galactal 1 (62-64%).  

 

Table 2. Addition of thiols 2-4 to methoxycarbonyl-substituted galactal (20). 

 

 

 

Like in the case of the amide-substituted galactal 1, the conversion of the starting material 20 

was incomplete, and applying a higher excess of the thiol, increasing the amount of DPAP, or 

prolongation of the irradiation time did not promote the reaction further. Therefore, the 

reaction of 20 with thiol 4 was studied under different conditions in order to facilitate the 

progress of the transformation (Table 3). Unfortunately the efforts to improve the yield by 

applying a range of photoinitiators/sensitizers (Entries 4-8) and other solvents (Entries 3, 7 

and 8) did not give rise to a noticeable increase of the conversion. We could only obtain a 

slightly better yield in comparison to the original reaction conditions (Entry 1) when the thiol 

4 was added in four portions (Entry 2). 
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Table 3. Additions of 2,3,4,6-tetra-O-acetyl-1-thio--D-galactopyranose (4) to the 

methoxycarbonyl-substituted galactal 20 under varied reaction conditions. 

 

Entry Radical initiator / 

photosensitizer 

Thiol 

(4) 

Reaction 

time 

UV 

light 

Solvent Temperature 

(oC) 

Yield (%, 

for 23) 

1 DPAP (3 x 0.2 eq.) 2 eq. 3 x 15 min yes Toluene : 

MeOH (5 : 1) 

rt 26 

2 DPAP (4 x 0.2 eq.) 4 x 0.5 

eq. 

4 x 15 min yes Toluene : 

MeOH (5 : 1) 

rt 33 

3 DPAP (3 x 0.2 eq.) 2 eq. 3 x 15 min yes 2-propanol rt 28 

4 Benzophenone (1 

eq. + 2 x 0.5 eq.) 

2 eq. 3 x 15 min yes Toluene : 

MeOH (5 : 1) 

rt 16 

5 Benzil (1 eq. + 2 x 

0.5 eq.) 

2 eq. 3 x 15 min yes Toluene : 

MeOH (5 : 1) 

rt 24 

6 AIBN (3 x 0.1 eq.) 2 eq. 48 h yes Toluene : 

MeOH (5 : 1) 

65 27 

7 BEt3 2 eq. 30 h no CH2Cl2 rt 6 

8 Benzoyl-peroxide 2 eq. 30 h no Toluene 70 13 

 

Thereafter, the reaction of the cyano-substituted galactal 2428 with thiol 4 was studied under 

the original reaction conditions (Scheme 2). In this case, the formation of a complex reaction 

mixture was observed, which made the isolation of the desired product very difficult. From 

the several components of the mixture detected by TLC the expected thiol-ene addition 

product could be isolated in very low yield (3%). 2D NMR data revealed that the reaction 

took place with the same regio- and stereochemical outcome as seen before, affording 4,5,7-

tri-O-acetyl-2,6-anhydro-3-deoxy-3-S-(2,3,4,6-tetra-O-acetyl--D-galactopyranosyl)-3-thio-D-

glycero-L-altro-heptononitrile (25).  

 

 

 

Scheme 2. Addition of thiol 4 to cyano-substituted galactal 24. 
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In general, the isolated yields in all hydrothiolation reactions of the 1-C-substituted glycals (1, 

18, 20 and 24) were affected to some extent by the formation of side products, which could be 

detected by LC–MS measurements. The main by-product in all addition reactions was the 

corresponding disulfide, which formed from the applied thiol. In addition, practically each 

possible dimerization or combination product of the radicals present in the mixtures could be 

observed. 

 

In the reaction of thiol 7 with galactal 1 the addition of thiyl-radical 7a to compound 1 

resulted in the formation of the C-2 radical 1a (Scheme 3), which was transformed into the 

aimed addition product 15 by abstraction of a hydrogen from the thiol 7. The dimerization of 

radical 7a afforded the disulfide 26. Dimerization of the radicophilic capto-dative C-2 radical 

1a to 27 could also be observed. The side product 28 could be formed by free radical 

combination of radical 1a and benzyl radical presumedly present in the mixture as the result 

of a hydrogen abstraction from the solvent toluene. 
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Scheme 3. Side products 26-28 detected in the addition reaction of 2,3,4-tri-O-acetyl-1-thio-

-D-xylopyranose (7) to the amide-substituted galactal 1. 

 

 

Analogously, the reaction between thiol 3 and the methoxycarbonyl-substituted galactal 20 

furnished not only the aimed addition product 22 but the side products 29, 30 and 31 could 

also be detected by LC-MS as depicted in Scheme 4. Moreover, the formation of a further 

side product 32 was also observed, which could be produced by the combination of radicals 

3a and 20a. 
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Scheme 4. Side products (29-32) detected in the addition reaction of 2,3,4,6-tetra-O-acetyl-1-

thio--D-mannopyranose (3) to the methoxycarbonyl-substituted galactal (20). 

 

The comparison of the free radical addition of thiol 4 to amide-, methoxycarbonyl- and 

cyano-substituted galactals (1, 20 and 24 respectively) evidenced that the overall conversion 

in these reactions was greatly influenced by the nature of the 1-C-substituent. In addition, the 

appearance and the amount of the by-products, especially that of the disulfides, showed a 

similar correlation. As previously mentioned, in thiol-ene reactions electron-rich enes react 

much more rapidly than electron-poor ones. The Hammett σ substituent constants29 (Table 4) 

reflect the electron-withdrawing effect of the 1-C-substituents of glycals 1, 20 and 24 

(CONH2, COOMe and CN groups, respectively: the higher the positive value the more 

electron-withdrawing the substituent). The influence of the substituents on the electronic 

nature of the double bond of these glycal derivatives was also characterized by cyclic 
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voltammetry and the HOMO energy levels were calculated by semiempirical methods (Table 

4).30 Thus, the low reactivity observed in the hydrothiolation of glycals 20 and 24 (especially 

in the latter case), could be a result of the lower electron density/lower HOMO energy of the 

endocyclic double bond, which favours rather the backward than the forward reaction in the 

reversible thiyl addition step.31 

 

Table 4. Data for the characterization of the electronic properties of the double bond in 1-C-

substituted glycals  

Glycal 1-C-Substituent m
a P

a Eox
b (V) HOMO energyc (eV) 

1 CONH2
 0.28 0.36 1.96 -9.80 

20 COOMe  0.37 0.45 >2.2 -10.03 

24 CN 0.56 0.66 >2.2 -10.41 
aHammett constans obtained from the ionization of organic acids in solution.29 
bOxidation potentials vs ferrocene obtained from cyclic voltammograms.30 
cComputed by the semiempirical PM3 method implemented in MOPAC from Sybyl 8.0.30 

 

Conclusion 

Photoinitiated, radical-mediated hydrothiolation of O-peracylated amide-, methoxycarbonyl- 

and cyano-substituted glycals with a range of thiols was studied. In all cases, the thiol-ene 

coupling reactions took place with full regio- and stereoselectivities, whereby the thiyl radical 

added from the β-side to C-3 of the glycal and the subsequent hydrogen abstraction step took 

place from the α-side of the C-2 radical. Neither the orientation (galacto vs gluco) nor the size 

(Ac vs Bz) of the 5-O-substituent affected the stereochemical outcome of the hydrothiolation. 

The conversions of the starting materials and the isolated yields of the products were highly 

variable and could not be improved by applying a range of photoinitiators/sensitizers and 

solvents. This was attributed to the different electron-withdrawing capabilities of the 1-C 

substituents (CN > COOMe > CONH2) affecting the electron density of the double bonds. O-

Perbenzoylated derivatives gave higher yields of the products than O-peracetylated ones, and 

this can also be explained by the electron density of the double bonds. Based on these results, 
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preparation of -D-configured talo- or manno thiodisaccharides became feasible. The best 

results were achieved with the 1-carbamoyl-substituted glycals in which the CONH2 

substituent offers further possibilities for conjugation and other transformations (e. g. cross 

coupling via the NH2 moiety or conversion to CN and CO2Me and several further carboxylic 

acid as well as heterocyclic derivatives). Such compounds may give access to not readily 

available glycomimetics with hydrolytically stable C-S and C-C bonds. Extension of the 

approach to other 1-C-substituted glycals, transformations of the 1-C-substituents, as well as 

the study of these reactions by computational methods are in progress in our laboratory. 

 

Experimental section 

 

General Information 

Optical rotations were measured at room temperature with a Perkin-Elmer 241 automatic 

polarimeter. TLC was performed on Kieselgel 60 F254 (Merck) with detection by immersing 

into 5 % ethanolic sulfuric acid soln. followed by heating. Column chromatography was 

performed on Silica gel 60 (Merck 0.063-0.200 mm). Organic solutions were dried over 

MgSO4, and concentrated in vacuum. The 1H (360, 400 and 500 MHz) and 13C NMR (90.54, 

100.28 and 125.76 MHz) NMR spectra were recorded with Bruker DRX-360, Bruker DRX-

400 and Bruker Avance II 500 spectrometers. Chemical shifts are referenced to Me4Si (0.00 

ppm for 1H) and to the residual solvent signals (CDCl3: 77.16 ppm for 13C). The coupling 

constant values (J) are given in Hz. To aid spectral assignment and measure spatial 

connectivities new, zero quantum filtered 1H-ROESY experiments32 were applied at 500 

MHz. Mass spectra were recorded with a Thermo LTQ XL mass spectrometer (Thermo 

Electron Corp., San Jose, CA, USA) operated in a full scan positive ion ESI mode. Elemental 

analyses (C, H, N, S) were performed using an Elementar Vario Micro Cube instrument. The 
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photocatalytic reactions were carried out at room temperature by irradiation with a Hg-lamp 

with a borosilicate vessel giving maximum emission at 365 nm.  

 

General method A for the photoinitiated addition of thiols to 1-C-Substituted galactal 

derivatives 

To a solution of the starting 1-C-substituted galactal (158 mg, 0.50 mmol) in a mixture of dry 

toluene : dry MeOH (5:1, 6 mL) thiol (2 equiv, 1.00 mmol) and 2,2-dimethoxy-2-

phenylacetophenone (DPAP, 13 mg, 0.05 mmol) were added. The solution was deoxygenated 

and irradiated at room temperature for 15 min. Addition of DPAP and irradiation were 

repeated twice more. Then the solution was concentrated and the residue was purified by 

column chromatography. 

 

4,5,7-Tri-O-acetyl-2,6-anhydro-3-deoxy-3-S-(2,3,4,6-tetra-O-acetyl--D-glucopyranosyl)-

3-thio-D-glycero-L-altro-heptonamide (10) 

Compound 1 (158 mg, 0.50 mmol) and 2,3,4,6-tetra-O-acetyl-1-thio--D-glucopyranose (2,33 

364 mg, 1.00 mmol) were reacted according to general method A. The crude product was 

purified by column chromatography (2:8 CH2Cl2−EtOAc) to give 10 (216 mg, 64%) as a 

white foam. []D
25 −56.7 (c 0.15 in CHCl3); Rf 0.30 (2:8 CH2Cl2−EtOAc); Elemental 

analysis: found: C, 47.8; H, 5.5; N, 2.1; S, 4.75. Calc. for C27H37NO17S: C, 47.7; H, 5.5; N, 

2.1; S, 4.7%; 1H NMR (400 MHz, CDCl3, Me4Si): δ (ppm) 1.93, 1.94, 1.98, 2.00, 2.01, 2.07 

(21 H, 5 x s,7 x CH3), 3.62−3.64 (1 H, m, 5’-H), 3.83 (1 H, br s, 3-H), 3.89−3.95 (2 H, m, 6B’-

H, 6-H), 4.00 (1 H, dd, J7A,7B 11.1, J7B,6 5.9, 7B-H), 4.18 (1 H, dd, J7A,7B 10.8, J7A,6 6.3, 7A-H), 

4.25 (1 H, dd, J6A’,6B’ 8.4, J6A’,5’ 3.9, 6A’-H), 4.31 (1 H, s, 2-H), 4.66 (1 H, d, J1’,2’ 10.2, 1’-H), 

4.83 (1 H, t, J 9.6, 2’-H), 4.98 (1 H, t, J 9.6, 4’-H), 5.05−5.10 (2 H, m, 3’-H, 4-H), 5.21 (1 H, 
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br s, 5-H), 6.66 (1 H, d, JNH2A,NH2B 2.6, NH2B), 6.77 (1 H, br s, NH2A); 13C NMR (101 MHz, 

CDCl3) δ (ppm) 20.5, 20.5, 20.6, 20.7, 20.9 (7C, 7 x CH3), 43.5 (C-3), 61.7, 61.9 (C-6’, C-7), 

65.8 (C-5), 67.9 (C-4’), 69.2 (C-4), 70.5 (C-2’), 73.8 (C-3’), 75.6 (C-6), 75.8 (C-5’), 78.8 (C-

2), 85.3 (C-1’), 169.4, 169.4, 169.7, 169.8, 170.2, 170.3, 170.4, 170.6 (8C, 8 x CO); MS: m/z 

calc. for [M+Na]+: 702.17. Found: 702.50. 

 

4,5,7-Tri-O-acetyl-2,6-anhydro-3-deoxy-3-S-(2,3,4,6-tetra-O-acetyl--D-

mannopyranosyl)-3-thio-D-glycero-L-altro-heptonamide (11) 

Compound 1 (158 mg, 0.50 mmol) and 2,3,4,6-tetra-O-acetyl-1-thio--D-mannopyranose 

(3,34 364 mg, 1.00 mmol) were reacted according to general method A. The crude product 

was purified by column chromatography (2:8 CH2Cl2−EtOAc) to give 11 (214 mg, 63%) as a 

white foam. []D
25 +40.7 (c 0.31 in CHCl3); Rf 0.32 (2:8 CH2Cl2−EtOAc); Elemental 

analysis: found: C, 47.6; H, 5.45; N, 2.05; S, 4.65. Calc. for C27H37NO17S: C, 47.7; H, 5.5; N, 

2.1; S, 4.7%; 1H NMR (400 MHz, CDCl3, Me4Si) δ (ppm) 2.01, 2.03, 2.06, 2.07, 2.11, 2.16, 

2.18 (21 H, 7 x s, 7 x CH3), 3.72 (1 H, br s), 3.97 (1 H, t, J 5.8), 4.08−4.30 (5 H, m), 4.42 (1 

H, dd, J 12.6, 3.3), 5.18 (1 H, dd, J 10.1, 3.3), 5.26−5.28 (2 H, m), 5.34−5.39 (2 H, m), 5.42 

(1 H, s), 5.96 (1 H, s), 6.58 (1 H, d, J 2.4); 13C NMR (101 MHz, CDCl3) δ (ppm) 20.5, 20.7, 

20.8, 20.8, 20.9, 21.0 (7C, 7 x CH3), 43.9 (C-3), 61.9, 62.1 (C-6’, C-7), 65.8, 69.4, 69.4, 70.4, 

71.5, 76.1, 79.1 (8C, skeleton carbons), 83.4 (C-1’), 169.5, 169.7, 169.9, 170.0, 170.2, 170.4, 

170.6, 170.9 (8C, 8 x CO); MS: m/z calc. for [M+Na]+: 702.17. Found: 702.50. 

 

4,5,7-Tri-O-acetyl-2,6-anhydro-3-deoxy-3-S-(2,3,4,6-tetra-O-acetyl--D-

galactopyranosyl)-3-thio-D-glycero-L-altro-heptonamide (12) 
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Compound 1 (158 mg, 0.50 mmol) and 2,3,4,6-tetra-O-acetyl-1-thio--D-galactopyranose 

(4,35 364 mg, 1.00 mmol) were reacted according to general method A. The crude product 

was purified by column chromatography (2:8 CH2Cl2−EtOAc) to give 12 (210 mg, 62%) as a 

white foam. []D
25 −33.7 (c 0.19 in CHCl3); Rf 0.32 (2:8 CH2Cl2−EtOAc); Elemental 

analysis: found: C, 47.5; H, 5.4; N, 2.05; S, 4.6. Calc. for C27H37NO17S: C, 47.7; H, 5.5; N, 

2.1; S, 4.7%; 1H NMR (400 MHz, CDCl3, Me4Si) δ (ppm) 1.97, 2.05, 2.07, 2.16, 2.17 (21 H, 

5 x s, 7 x CH3), 3.88 (1 H, d, J 4.1), 3.95 (2 H, t, J 6.1), 4.02−4.15 (3 H, m), 4.24 (1 H, dd, J 

11.3, 6.9), 4.36 (1 H, s), 4.69−4.74 (1 H, m), 5.07−5.08 (2 H, m), 5.18−5.20 (1 H, m), 5.27 (1 

H, s), 5.38 (1 H, s), 6.55 (1 H, d, J 2.3), 6.67 (1 H, br s); 13C NMR (101 MHz, CDCl3) δ 

(ppm) 20.5, 20.6, 20.7, 20.7, 20.8, 20.9, 21.0 (7C, 7 x CH3), 43.8 (C-3), 61.4, 61.8 (C-6’, C-

7), 65.9, 67.6, 67.8, 69.2, 71.6, 74.1, 75.9, 78.9 (8C, skeleton carbons), 86.0 (C-1’), 169.6, 

169.8, 169.9, 170.1, 170.2, 170.5, 170.6 (8C, 8 x CO); MS: m/z calc. for [M+Na]+: 702.17. 

Found: 702.50. 

 

4,5,7-Tri-O-acetyl-2,6-anhydro-3-deoxy-3-S-(2,2’,3,3’,4’,6,6’-hepta-O-acetyl--D-

maltopyranosyl)-3-thio-D-glycero-L-altro-heptonamide (13) 

Compound 1 (158 mg, 0.50 mmol) and 2,2’,3,3’,4’,6,6’-hepta-O-acetyl-1-thio--D-

maltopyranose (5,36 653 mg, 1.00 mmol) were reacted according to general method A. The 

crude product was purified by column chromatography (2:8 CH2Cl2−EtOAc) to give 13 (197 

mg, 41%) as white crystals. Mp 113−115 oC; []D
25 +13.2 (c 0.28 in CHCl3); Rf 0.23 (2:8 

CH2Cl2−EtOAc); Elemental analysis: found: C, 48.2; H, 5.45; N, 1.45; S, 3.3. Calc. for 

C39H53NO25S: C, 48.4; H, 5.5; N, 1.45; S, 3.3%; 1H NMR (400 MHz, CDCl3, Me4Si) δ (ppm) 

2.00, 2.02, 2.03, 2.05, 2.06, 2.10, 2.13, 2.15 (30 H, 8 x s, 10 x CH3), 3.66−3.68 (1 H, m), 

3.88−3.96 (4 H, m), 4.01−4.08 (2 H, m), 4.21−4.36 (5 H, m), 4.72−4.81 (2 H, m), 4.85 (1 H, 
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dd, J 10.4, 3.9), 5.05 (1 H, t, J 9.8), 5.14−5.16 (1 H, m), 5.22 (1 H, t, J 8.6), 5.26 (1 H, br s), 

5.30−5.36 (2 H, m), 6.32 (1 H, d, J 2.1), 6.67 (1 H, d, J 2.7); 13C NMR (101 MHz, CDCl3) δ 

(ppm) 20.7, 20.7, 20.7, 20.8, 20.8, 20.9, 21.0, 21.0 (10C, 10 x CH3), 43.5 (C-3), 61.6, 61.8, 

63.3 (C-6’, C-6”, C-7), 65.9, 68.0, 68.6, 69.3, 69.4, 70.1, 71.3, 73.2, 76.0, 76.5, 79.0 (12C, 

skeleton carbons), 84.8 (C-1’), 95.8 (C-1”), 169.6, 169.6, 169.7, 169.9, 170.1, 170.2, 170.6, 

170.6, 170.6 (11C, 11 x CO); MS: m/z calc. for [M+Na]+: 990.25. Found: 990.67. 

 

4,5,7-Tri-O-acetyl-2,6-anhydro-3-deoxy-3-S-(2,3,4-tri-O-acetyl--D-arabinopyranosyl)-3-

thio-D-glycero-L-altro-heptonamide (14) 

Compound 1 (158 mg, 0.50 mmol) and 2,3,4-tri-O-acetyl-1-thio--D-arabinopyranose (6,37 

292 mg, 1.00 mmol) were reacted according to general method A. The crude product was 

purified by column chromatography (2:8 CH2Cl2−EtOAc) to give 14 (126 mg, 41%) as a 

white foam. []D
25 −114.1 (c 0.17 in CHCl3); Rf 0.29 (2:8 CH2Cl2−EtOAc); Elemental 

analysis: found: C, 47.5; H, 5.45; N, 2.3; S, 5.3. Calc. for C24H33NO15S: C, 47.4; H, 5.5; N, 

2.3; S, 5.3%; 1H NMR (360 MHz, CDCl3, Me4Si) δ (ppm) 2.03, 2.05, 2.07, 2.11, 2.13, 2.20 

(18 H, 6 x s, 6 x CH3), 3.64 (1 H, dd, J 12.8, 2.8), 3.67−3.71 (1 H, m), 3.93−3.97 (1 H, m), 

4.11 (1 H, dd, J 11.5, 5.5), 4.26−4.31 (2 H, m), 4.40 (1 H, d, J 12.7), 5.18 (1 H, dd, J 10.2, 

3.4), 5.23 (1 H, dd, J 5.0, 3.0), 5.26−5.31 (3 H, m), 5.63 (1 H, d, J 5.1), 6.23 (1 H, d, J 3.1), 

6.59 (1 H, d, J 3.3); 13C NMR (91 MHz, CDCl3) δ (ppm) 20.8, 20.9, 20.9 (6C, 6 x CH3), 43.1 

(C-3), 60.9, 62.0 (C-5’, C-7), 66.0, 67.5, 68.3, 68.6, 69.8, 75.9, 79.5 (7C, skeleton carbons), 

84.3 (C-1’), 169.7, 169.8, 170.1 (7C, 7 x CO); MS: m/z calc. for [M+Na]+: 630.15. Found: 

630.50. 
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4,5,7-Tri-O-acetyl-2,6-anhydro-3-deoxy-3-S-(2,3,4-tri-O-acetyl--D-xylopyranosyl)-3-

thio-D-glycero-L-altro-heptonamide (15) 

Compound 1 (158 mg, 0.50 mmol) and 2,3,4-tri-O-acetyl-1-thio--D-xylopyranose (7,36 292 

mg, 1.00 mmol) were reacted according to general method A. The crude product was purified 

by column chromatography (2:8 CH2Cl2−EtOAc) to give 15 (130 mg, 43%) as white crystals. 

Mp 94−98 oC; []D
25 −77.8 (c 0.18 in CHCl3); Rf 0.24 (2:8 CH2Cl2−EtOAc); Elemental 

analysis: found: C, 47.32; H, 5.4; N, 2.3; S, 5.2. Calc. for C24H33NO15S: C, 47.4; H, 5.5; N, 

2.3; S, 5.3%; 1H NMR (360 MHz, CDCl3, Me4Si) δ (ppm) 2.03, 2.04, 2.07, 2.16 (18 H, 4 x s, 

6 x CH3), 3.34 (1 H, dd, J 11.3, 9.2), 3.80 (1 H, d, J 3.3), 3.93 (1 H, t, J 6.0), 4.06−4.17 (2 H, 

m), 4.22−4.35 (2 H, m), 4.68 (1 H, d, J 8.6), 4.85 (1 H, t, J 8.4), 4.88−4.94 (1 H, m), 

5.10−5.16 (2 H, m), 5.28 (1 H, s), 6.35 (1 H, s), 6.62 (1 H, s); 13C NMR (91 MHz, CDCl3) δ 

(ppm) 20.7, 20.9 (6C, 6 x CH3), 44.4 (C-3), 61.9, 64.9 (C-5’, C-7), 65.9, 68.8, 69.5, 70.3, 

72.1, 76.0, 79.1 (7C, skeleton carbons), 85.8 (C-1’), 169.5, 169.8, 169.9, 169.9, 170.1, 170.1, 

170.6 (7C, 7 x CO); MS: m/z calc. for [M+Na]+: 630.15. Found: 630.17. 

 

4,5,7-Tri-O-acetyl-2,6-anhydro-3-deoxy-3-S-(1,2:3,4-di-O-isopropylidene-6-deoxy--D-

glucopyranos-6-yl)-3-thio-D-glycero-L-altro-heptonamide (16) 

Compound 1 (158 mg, 0.50 mmol) and 1,2:3,4-di-O-isopropylidene-6-thio--D-

galactopyranose (8,38 276 mg, 1.00 mmol) were reacted according to general method A. The 

crude product was purified by column chromatography (2:8 CH2Cl2−EtOAc) to give 16 (48 

mg, 16%) as a colourless syrup. []D
25 −5.0 (c 0.06 in CHCl3); Rf 0.40 (2:8 CH2Cl2−EtOAc); 

Elemental analysis: found: C, 50.8 H, 6.25; N, 2.4; S, 5.45. Calc. for C25H37NO13S: C, 50.75; 

H, 6.3; N, 2.4; S, 5.4%; 1H NMR (400 MHz, CDCl3, Me4Si) δ (ppm) 1.32 (6 H, 2 x s, 2 x 

CH3), 1.45 (6 H, 2 x s, 2 x CH3), 2.06, 2.10, 2.16 (9 H, 3 x s, 3 x COCH3), 2.71 (1 H, dd, J 

13.8, 9.0), 2.85 (1 H, dd, J 13.8, 5.8), 3.46−3.49 (1 H, m), 3.78 (1 H, dd, J 8.1, 6.4), 3.90 (1 H, 
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t, J 6.3), 4.07−4.10 (1 H, m), 4.24−4.29 (3 H, m), 4.51 (1 H, dd, J 7.9, 1.5), 4.59 (1 H, dd, J 

7.9, 2.2), 5.16 (1 H, dd, J 4.8, 3.0), 5.28 (1 H, s), 5.48 (1 H, d, J 4.9), 5.74 (1 H, s), 6.57 (1 H, 

s); 13C NMR (101 MHz, CDCl3) δ (ppm) 20.8, 20.9, 21.0 (3C, 3 x COCH3), 24.6, 25.0, 26.1, 

26.2 (4C, 4 x CH3), 34.7 (C-6’), 47.0 (C-3), 62.2 (C-7), 66.1, 67.6, 70.2, 70.7, 71.0, 71.1, 

75.7, 79.9 (8C, skeleton carbons), 96.8 (C-1’), 108.5, 109.3 (2C, 2 x Cq), 169.9, 170.3, 170.5, 

171.3 (4C, 4 x CO); MS: m/z calc. for [M+Na]+: 614.19. Found: 614.58. 

 

4,5,7-Tri-O-acetyl-2,6-anhydro-3-deoxy-3-S-butyl-3-thio-D-glycero-L-altro-heptonamide 

(17) 

Compound 1 (158 mg, 0.50 mmol) and 1-butanethiol (9, 107 L, 1.00 mmol) were reacted 

according to general method A. The crude product was purified by column chromatography 

(2:8 CH2Cl2−EtOAc) to give 17 (38 mg, 19%) as white crystals. Mp 138−139 oC; []D
25 

−34.6 (c 0.11 in CHCl3); Rf 0.43 (2:8 CH2Cl2−EtOAc); Elemental analysis: found: C, 50.3; H, 

6.6; N, 3.4; S, 7.8. Calc. for C17H27NO8S: C, 50.4; H, 6.7; N, 3.45; S, 7.9%; 1H NMR (400 

MHz, CDCl3, Me4Si) δ (ppm) 0.89 (3 H, t, J 7.2, CH3), 1.32−1.53 (4 H, m), 2.06, 2.08, 2.16 

(9 H, 3 x s, 3 x COCH3), 2.44−2.51 (1 H, m), 2.56−2.62 (1 H, m), 3.50 (1 H, dd, J 4.9, 1.8), 

3.89−3.92 (1 H, m), 4.11 (1 H, dd, J 11.5, 5.6), 4.23−4.28 (2 H, m), 5.14 (1 H, dd, J 5.1, 3.1), 

5.26−5.31 (1 H, m), 5.91 (1 H, d, J 2.2), 6.60 (1 H, d, J 2.4); 13C NMR (101 MHz, CDCl3) δ 

(ppm) 13.8 (CH3), 20.8, 20.9 (3C, 3 x COCH3), 21.8, 32.0, 35.1 (3C, 3 x CH2), 45.8 (C-3), 

62.1 (C-7), 66.1, 70.3, 75.9, 79.7 (4C, skeleton carbons), 170.2, 170.3, 170.6 (4C, 4 x CO); 

MS: m/z calc. for [M+Na]+: 428.13. Found: 428.42. 
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4,5,7-Tri-O-benzoyl-2,6-anhydro-3-deoxy-3-S-(2,3,4,6-tetra-O-acetyl--D-

galactopyranosyl)-3-thio-D-glycero-D-galacto-heptonamide (19) 

Compound 18 (251 mg, 0.50 mmol) and 2,3,4,6-tetra-O-acetyl-1-thio--D-galactopyranose (4, 

364 mg, 1.00 mmol) were reacted according to general method A. The crude product was 

purified by column chromatography (97:3 CH2Cl2−MeOH) to give 19 (310 mg, 72%) as 

white crystals. Mp 136−140 oC; []D
25 −24.3 (c 0.14 in CHCl3); Rf 0.35 (96:4 

CH2Cl2−MeOH); Elemental analysis: found: C, 58.15; H, 5.0; N, 1.6; S, 3.65. Calc. for 

C42H43NO17S: C, 58.3; H, 5.0; N, 1.6; S, 3.7%; 1H NMR (400 MHz, CDCl3, Me4Si) δ (ppm) 

1.92, 1.92, 1.95, 1.96 (12 H, 4 x s, 4 x CH3), 3.17 (1 H, dd, J6A’,6B’ 11.2, J6B’,5’ 6.4, H-6’b), 

3.28 (1 H, dd, J6A’,6B’ 11.2, J6A’,5’ 7.3, H-6A’), 3.73 (1 H, t, J 6.7, 5’-H), 3.97−4.08 (1 H, m, 6-

H), 4.21 (1 H, d, J 4.1, 3-H), 4.41 (1 H, dd, J7A,7B 12.3, J6,7B 4.2, 7B-H), 4.53 (1 H, s, 2-H), 

4.68 (2 H, d, J 10.1, H-1’, H-7A), 4.93 (1 H, dd, J2’,3’ 10.0, J3’,4’ 3.3, 3’-H), 5.10 (1 H, t, J 10.0, 

2’-H), 5.19 (1 H, d, J3’,4’ 3.0, 4’-H), 5.58 (1 H, dd, J4,5 10.1, J3,4 4.4, 4-H), 5.68 (1 H, t, J 9.9, 

5-H), 5.73 (1 H, d, J 3.2, NH2B), 6.63 (1 H, d, JNH2A,NH2B 3.2, 1H, NH2A), 7.34−7.40 (4 H, m, 

arom), 7.48−7.51 (4 H, m, arom), 7.60 (1 H, t, J 7.3, arom), 7.94 (2 H, d, J 7.4, arom), 

8.06−8.08 (4 H, m, arom); 13C NMR (101 MHz, CDCl3) δ (ppm) 20.6, 20.6, 20.7, 20.7 (4C, 4 

x CH3), 47.7 (C-3), 60.7 (C-6’), 62.6 (C-7), 67.0 (C-5), 67.1 (C-4’), 68.1 (C-2’), 71.7 (C-3’), 

73.1 (C-4), 74.0 (C-5’), 76.8 (C-6), 78.3 (C-2), 85.5 (C-1’), 128.4, 128.6, 128.7, 128.9, 129.4, 

129.6, 129.9, 129.9, 130.4, 133.3, 133.5, 133.6 (18C, arom), 165.2, 165.8, 166.6, 169.6, 

169.6, 170.0, 170.1, 170.2 (8C, 8 x CO); MS: m/z calc. for [M+Na]+: 888.21. Found: 888.58. 

 

Methyl 4,5,7-tri-O-acetyl-2,6-anhydro-3-deoxy-3-S-(2,3,4,6-tetra-O-acetyl--D-

glucopyranosyl)-3-thio-D-glycero-L-altro-heptonate (21) 
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Compound 20 (165 mg, 0.50 mmol) and 2,3,4,6-tetra-O-acetyl-1-thio--D-glucopyranose (2, 

364 mg, 1.00 mmol) were reacted according to general method A. The crude product was 

purified by column chromatography (2:3 n-hexane−EtOAc) to give 21 (97 mg, 28%) as white 

crystals. Mp 75−78 oC; []D
25 −85.3 (c 0.32 in CHCl3); Rf 0.24 (2:3 n-hexane−EtOAc); 

Elemental analysis: found: C, 48.5; H, 5.5; S, 4.55. Calc. for C28H38O18S: C, 48.4; H, 5.5; S, 

4.6%; 1H NMR (500 MHz, CDCl3, Me4Si) δ (ppm) 1.99, 2.01, 2.04, 2.05, 2.06, 2.09, 2.15 (21 

H, 7 x s, 7 x CH3), 3.60−3.63 (1 H, m, 5’-H), 3.78 (1 H, dd, J3,4 5.3, J2,3 2.1, 3-H), 3.83−3.89 

(4 H, m, 6-H, OCH3), 4.03 (1 H, dd, J6A’,6B’12.5, J6B’,5’1.8, 6B-H), 4.16−4.19 (2 H, m, 7A,B-H), 

4.32 (1 H, dd, J6A’,6B’ 12.5, J6A’,5’ 4.6, H-6a’), 4.40 (1 H, d, J1’,2’ 10.3, H-1’), 4.48 (1 H, d, J2,3 

2.2, 2-H), 4.92 (1 H, dd, J1’,2’ 10.1, J2’,3’ 9.2, 2’-H), 5.06 (1 H, t, J 9.7, 4’-H), 5.10−5.15 (2 H, 

m, 3’-H, 4-H), 5.26 (1 H, d, J 2.6, 5-H); 13C NMR (126 MHz, CDCl3) δ (ppm) 20.6, 20.7, 

20.8, 20.8, 20.8 (7C, 7 x CH3), 45.3 (C-3), 52.5 (OCH3), 61.9 (2C, C-6’, C-7), 65.5 (C-5), 

67.9 (C-4’), 69.1 (C-4), 70.2 (C-2’), 74.9 (C-3’), 75.6 (C-6), 76.1 (C-5’), 78.4 (C-2), 86.4 (C-

1’), 167.6, 169.3, 169.5, 170.0, 170.0, 170.3, 170.5, 170.7 (8C, 8 x CO); MS: m/z calc. for 

[M+Na]+: 717.17. Found: 717.50. 

 

Methyl 4,5,7-tri-O-acetyl-2,6-anhydro-3-deoxy-3-S-(2,3,4,6-tetra-O-acetyl--D-

mannopyranosyl)-3-thio-D-glycero-L-altro-heptonate (22) 

Compound 20 (165 mg, 0.50 mmol) and 2,3,4,6-tetra-O-acetyl-1-thio--D-mannopyranose (3, 

364 mg, 1.00 mmol) were reacted according to general method A. The crude product was 

purified by column chromatography (2:3 n-hexane−EtOAc) to give 22 (66 mg, 19%) as a 

colourless syrup. []D
25 +30.7 (c 0.45 in CHCl3); Rf 0.27 (2:3 n-hexane−EtOAc); Elemental 

analysis: found: C, 48.3; H, 5.55; S, 4.6. Calc. for C28H38O18S: C, 48.4; H, 5.5; S, 4.6%; 1H 

NMR (400 MHz, CDCl3, Me4Si) δ (ppm) 2.00, 2.05, 2.05, 2.06, 2.12, 2.16, 2.19 (21 H, 7 x s, 

7 x CH3), 3.68 (1 H, dd, J 4.1, 1.9), 3.84−3.88 (4 H, m), 3.92 (1 H, t, J 6.5), 4.07−4.24 (4 H, 
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m), 4.32 (1 H, dd, J 12.6, 4.0), 4.47 (1 H, d, J 2.2), 5.18 (1 H, dd, J 10.1, 3.3), 5.25−5.27 (2 H, 

m), 5.31 (1 H, dd, J 3.1, 1.5), 5.34 (1 H, br s); 13C NMR (101 MHz, CDCl3) δ (ppm) 20.5, 

20.7, 20.8, 20.8, 20.8, 21.0 (7C, 7 x CH3), 46.8 (C-3), 52.8 (OCH3), 61.8, 61.9 (C-6’, C-7), 

65.4, 65.6, 69.2, 70.0, 70.2, 71.8, 75.7, 78.7 (8C, skeleton carbons), 84.9 (C-1’), 167.7, 169.6, 

169.8, 170.0, 170.1, 170.4, 170.5, 170.7 (8C, 8 x CO); MS: m/z calc. for [M+Na]+: 717.17. 

Found: 717.33. 

 

Methyl 4,5,7-tri-O-acetyl-2,6-anhydro-3-deoxy-3-S-(2,3,4,6-tetra-O-acetyl--D-

galactopyranosyl)-3-thio-D-glycero-L-altro-heptonate (23) 

Compound 20 (165 mg, 0.50 mmol) and 2,3,4,6-tetra-O-acetyl-1-thio--D-galactopyranose (4, 

364 mg, 1.00 mmol) were reacted according to general method A. The crude product was 

purified by column chromatography (2:3 n-hexane−EtOAc) to give 23 (90 mg, 26%) as a 

white foam. []D
25 −24.3 (c 0.14 in CHCl3); Rf 0.25 (2:3 n-hexane−EtOAc); Elemental 

analysis: found: C, 48.4; H, 5.4; S, 4.5. Calc. for C28H38O18S: C, 48.4; H, 5.5; S, 4.6%; 1H 

NMR (400 MHz, CDCl3, Me4Si) δ (ppm) 1.97, 2.04, 2.08, 2.16, 2.17 (21 H, 5 x s, 7 x CH3), 

3.74−3.76 (1 H, m), 3.83−3.89 (4 H, m), 4.02−4.21 (5 H, m), 4.37 (1 H, d, J 10.1), 4.48 (1 H, 

d, J 2.0), 4.95 (1 H, dd, J 10.0, 3.4), 5.07−5.14 (2 H, m), 5.26 (1 H, d, J 2.3), 5.40 (1 H, d, J 

3.0); 13C NMR (101 MHz, CDCl3) δ (ppm) 20.5, 20.6, 20.7, 20.9, 20.9 (7C, 7 x CH3), 45.6 

(C-3), 52.3 (OCH3), 61.4, 61.8 (C-6’, C-7), 65.5, 67.3, 67.4, 69.1, 71.9, 74.6, 75.6, 78.4 (8C, 

skeleton carbons), 87.0 (C-1’), 167.5, 169.4, 169.7, 169.9, 170.0, 170.2, 170.4, 170.6 (8C, 8 x 

CO); MS: m/z calc. for [M+Na]+: 717.17. Found: 717.50. 
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4,5,7-Tri-O-acetyl-2,6-anhydro-3-deoxy-3-S-(2,3,4,6-tetra-O-acetyl--D-

galactopyranosyl)-3-thio-D-glycero-L-altro-heptononitrile (25) 

Compound 24 (149 mg, 0.50 mmol) and 2,3,4,6-tetra-O-acetyl-1-thio--D-galactopyranose (4, 

364 mg, 1.00 mmol) were reacted according to general method A. The crude product was 

purified by column chromatography (first in 9:1 CH2Cl2−acetone, and then in 6:4 n-

hexane−acetone) to give 25 (22 mg, 3%) as a white foam. []D
25 −24.6 (c 0.11 in CHCl3); Rf 

0.30 (6:4 n-hexane−acetone); Elemental analysis: found: C, 48.9; H, 5.3; N, 2.1; S, 4.8. Calc. 

for C27H35NO16S: C, 49.0; H, 5.3; N, 2.1; S, 4.85%; 1H NMR (400 MHz, CDCl3, Me4Si) δ 

(ppm) 1.98, 2.06, 2.08, 2.09, 2.13, 2.17, 2.19 (21 H, 7 x s, 7 x CH3), 3.61 (1 H, dd, J3,4 4.8, 

J2,3 2.1, 3-H), 3.89−3.92 (2 H, m, 5’-H, 6-H), 4.02−4.19 (4 H, m, 6A,B’-H, 7A,B-H), 4.58 (1 H, 

d, J1’,2’ 9.9, 1’-H), 4.72 (1 H, d, J2,3 2.2, 2-H), 5.04−5.07 (2 H, m, 3’-H, 4-H), 5.18 (1 H, t, J 

9.9, 2’-H), 5.25 (1 H, s, 5-H), 5.43 (1 H, d, J3’,4’ 3.0, 4’-H); 13C NMR (101 MHz, CDCl3) δ 

(ppm) 20.7, 20.8, 20.8, 20.9, 21.0 (7C, 7 x CH3), 44.6 (C-3), 61.6, 61.7 (C-6’, C-7), 65.4 (C-

5), 67.3 (C-4’), 67.5 (C-2’), 68.3 (C-4), 69.3 (C-2), 71.8 (C-3’), 74.7 (C-5’), 76.4 (C-6), 85.7 

(C-1’), 114.8, 169.7, 169.8, 170.0, 170.2, 170.3, 170.5, 170.7 (8C, 8 x CO); MS: m/z calc. for 

[M+Na]+: 684.16. Found: 684.50. 
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