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Abstract 

Chemical investigation of a methanolic extract of leaves from Araucaria bidwillii  

(Araucariaceae) from Egypt afforded four new labdane diterpenoidal metabolites (1-4) together 

with one known diterpene, 7-oxocallitrisic acid (5), two triterpenoidal metabolites, 2-O-acetyl-

11-keto-boswellic acid (6) and β-sitosterol-3-O-glucopyranoside (7), phloretic acid (8), and two 

methylated bisflavonoids, agathisflavone-4’,7,7”-trimethyl ether (9) and cupressuflavone-

4’,7,7”-trimethyl ether (10). The new metabolites 1–4 were unambiguously identified by 

applying extensive 1D and 2D NMR spectroscopic studies as well as HRESIMS. The relative 

and absolute configurations of 1–4 were determined using ROESY and the modified Mosher’s 

method, respectively. All isolated compounds were assessed for their antimicrobial, 

antitubercular and cytotoxic activities. Among the tested compounds, the new labdane diterpenes 

1–4 revealed significant cytotoxic activity against mouse lymphoma L5178Y cell line with IC50 

values ranging from 1.4 to 12.9 µM, respectively. 

 

 

Keywords: Araucaria bidwillii, labdane diterpene, antibacterial, cytotoxicity, TDDFT-ECD 
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1. Introduction: 

Medicinal plants have been used in almost all cultures as a pivotal source of medicine for 

treatment and management of various human diseases. The traditional use of medicinal plants in 

developing countries, as a normative basis for the maintenance of good health, is widely 

observed. However, an increasing reliance on medicinal plants in the industrialized societies has 

been traced as well to develop several new drugs and chemotherapeutics in addition to the 

treatment of minor ailments. 

Araucaria bidwillii is a plant belonging to family Araucariaceae with so diverse 

economical and agricultural uses in addition to be a traditional remedy for the treatment of 

amenorrhea (Aslam et al., 2013; Chen et al., 2011). The genus Araucaria has been distinguished 

by several reports in literature as a rich source of labdane diterpenes (Aslam et al., 2013; Chen et 

al., 2011; Noma et al., 1982; Caputo et al., 1976; Caputo et al., 1974) and bisflavonoids such as 

7-O-methylcupressuflavone, 7,7''-di-O-methylagathisflavone, 7-O-methylagathisflavone, 4,7'''-

di-O-methylagathisflavone and 7,7''di-O-methylcupressuflavone (Rahman et al., 1968). Labdane 

diterpenes are known to possess antialgal, antimicrobial and antiproliferative activities (Chen et 

al., 2011; Tanaka et al., 2000; Dimas et al., 1998; Jung et al., 1998). 

In the current study, we report four new labdane diterpenoidal metabolites (1-4) (Figure 1) 

together with six known compounds including 7-oxocallitrisic acid (5) (Lee et al., 1994), two 

triterpenoidal metabolites namely, 2-O-acetyl-11-keto-boswellic acid (6) (Belsner et al., 2003; 

Csuk et al., 2015) and β-sitosterol-3-O-glucopyranoside (7) (Seo et al., 1978), in addition to 

phloretic acid (8) (Tanagornmeatar et al., 2014), two methylated bisflavonoids, agathisflavone-

4’,7,7”-trimethyl ether (9) (Ofman et al., 1995) and cupressuflavone-4’,7,7”-trimethyl ether (10) 

(Inatomi et al., 2005; Ofman et al., 1995). 
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Figure 1. Chemical structures of the isolated compounds of Araucaria bidwillii 

 

2. Results and Discussion 

Compound 1 was isolated as an amorphous yellowish white solid. HRESIMS of 1 revealed a 

pseudomolecular ion peak at m/z 473.2662 [M+Na]+ (calcd for 473.2668 C29H38NaO4) indicating 

the existence of eleven degrees of unsaturation whereas its UV spectrum revealed absorption 
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maxima at 232 and 309 nm. 13C NMR of 1 (Table 1) exhibited 29 different carbons divided into 

seven quaternary carbons including one carbonyl at δC 169.4; four olefinic quaternary carbons at 

δC 161.3, 151.4, 148.5 and 127.2 together with two aliphatic quaternary carbons at δC 40.0 and 

38.5 ppm. Additionally, 13C NMR spectrum of compound 1 showed 22 carbon resonances 

including aliphatic primary, secondary and tertiary carbons, olefinic tertiary and aromatic 

carbons. Based on 1H and 13C NMR of 1 (Table 1), compound 1 was suggested to be an ester 

derivative of labda-13(16),14-diene-19-ol diterpene as revealed by close similarity of its spectral 

data with labdane diterpenoidal esters isolated from Juniperus thurifera (San Feliciano et al., 

1988) and Chamaecyparis formosensis (Lin et al., 1999). 1H NMR, 1H–1H COSY and HMQC 

spectra of 1 (Table 1, see supplementary data) revealed proton resonances at δH 6.32 (1H, d, J= 

16.0 Hz), 7.59 (1H, d, J= 16.0 Hz), 6.81 (2H, d, J= 8.7 Hz) and 7.47 (2H, d, J= 8.7 Hz) ppm 

ascribed for olefinic carbons at δC 115.2 (C-2’), 146.5 (C-3’), 116.8 (C-6’ and C-8’) and 131.2 

(C5’ and C-9’) ppm, respectively, indicative for an (E)-p-hydroxycinnamoyl (= coumaroyl) 

moiety together with UV absorption maxima (λmax) at 232 and 309 nm (Lin et al., 1999). 

In addition, compound (1) displayed a hydroxy group at C-7 and an exocyclic methylene 

moiety at C-8 which was previously reported in labdane diterpenoids isolated from A. 

cunninghamii (Chen et al., 2011) and from Nicotiana raimondii (Noma et al, 1982). The 

exocyclic methylene moiety displayed proton resonances at δH 4.75 (1H, br s) and 5.27 (1H, br s) 

ppm which were correlated to the same carbon resonating at δC 104.1 ppm as shown through the 

HMQC experiment (see supplementary data). The position of the exocylic methylene moiety was 

unambiguously confirmed through further 2D NMR experiments such as HMBC (Figure 2a) 

which disclosed long range correlations with two tertiary aliphatic carbons at δC 74.8 and 55.0 
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assigned for C-7 and C-9, respectively, together with a correlation to an olefinic quaternary 

carbon at δC 151.4 ascribed to C-8. 
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Table 1. NMR Data of compounds (1-4). 

# 1 2 3 4 

δH
a
 (multi, J value in Hz) δC

b
 δH

a
 (multi, J value in Hz) δC

b
 δH

c
 (multi, J value in Hz) δC

d
 δH

e
 (multi, J value in Hz) δC

f
 

1 1.07 (1H, m) 

1.76 (1H, m) 

39.9, CH2 1.09 (1H, m) 

1.77 (1H, m) 

40.0, CH2 1.00 (1H, m) 

1.77 (1H, m) 

38.9, CH2 1.02 (1H, m) 

1.72 (1H, m) 

38.5, CH2 

2 0.88 (1H, m) 

1.53 (1H, m) 

20.0, CH2 0.85 (1H, m) 

1.52 (1H, m) 

20.0, CH2 1.52 (1H, m) 

1.60 (1H, m) 

19.1, CH2 0.87 (1H, m) 

1.52 (1H, m) 

19.4, CH2 

3 1.12 (1H, m) 

1.78 (1H, m) 

37.7, CH2 1.04 (1H, m) 

1.67 (1H, m) 

37.4, CH2 1.06 (1H, m) 

1.78 (1H, m) 

36.7, CH2 1.00 (1H, m) 

1.52 (1H, m) 

36.7, CH2 

4  38.5, C  38.3, C  37.6, C  36.4, C 

5 1.63 (1H, m) 55.8, CH 1.60 (1H, m) 55.9, CH 1.60 (1H, m) 54.8, CH 1.56 (1H, m) 53.6, CH 

6 1.39 (1H, m) 

2.21 (1H, dd, 9.8, 5.2) 

35.0, CH2 1.34 (1H, m) 

2.14 (1H, dd, 9.8, 5.2) 

34.8, CH2 1.37 (1H, m) 

2.27 (1H, dd, 9.8, 5.2) 

34.4, CH2 1.28 (1H, m) 

2.20 (1H, m) 

34.1, CH2 

7 3.88 (1H, m) 74.8, CH 3.87 (1H, dd, 9.8, 5.2) 74.8, CH 3.96 (1H, dd, 9.8, 5.2) 74.3, CH 3.96 (1H, dd, 9.8, 5.2) 74.1, CH 

8  151.4, C  151.4, C  150.1, C  154.6, C 

9 1.39 (1H, m) 55.0, CH 1.32 (1H, m) 55.0, CH 1.33 (1H, m) 53.9, CH 1.28 (1H, m) 54.4, CH 

10  40.0, C  40.0, C  39.3, C  38.9, C 

11 1.63 (1H, m) 

1.77 (1H, m) 

23.4, CH2 1.59 (1H, m) 

1.69 (1H, m) 

23.4, CH2 1.60 (1H, m) 

1.73 (1H, m) 

22.2, CH2 1.60 (1H, m) 

1.73 (1H, m) 

21.8, CH2 

12 2.05 (1H, m) 

2.40 (1H, m) 

31.0, CH2 2.03 (1H, m) 

2.37 (1H, m) 

31.0, CH2 2.00 (1H, m) 

2.38 (1H, m) 

30.0, CH2 1.99 (1H, dd, 15.1, 9.1) 

2.36 (1H, m) 

30.0, CH2 

13  148.5, C  148.5, C  148.0, C  147.3, C 

14 6.38 (1H, dd, 17.6, 11.0) 140.2, CH 6.39 (1H, dd, 17.6, 10.9) 140.2, CH 6.37 (1H, dd, 17.6, 11.0) 139.1, CH 6.36 (1H, dd, 17.6, 10.9) 139.7, CH 

15 5.05 (1H, d, 11.0) 

5.22 (1H, d, 17.6) 

113.6, 

CH2 

5.06 (1H, d, 10.9) 

5.23 (1H, d, 17.6) 

113.6, CH2 5.05 (1H, d, 11.0) 

5.21 (1H, d, 17.6) 

113.4, CH2 5.05 (1H, d, 10.9) 

5.20 (1H, d, 17.6) 

113.2. CH2 

16 4.97 (1H, br s) 116.2, 4.98 (1H, br s) 116.1, CH2 4.97 (1H, br s) 115.8, CH2 4.96 (1H, br s) 115.6, CH2 
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5.00 (1H, br s) CH2 5.02 (1H, br s) 5.01 (1H, br s) 5.00 (1H, br s) 

17 4.75 (1H, br s) 

5.27 (1H, br s) 

104.1, 

CH2 

4.74 (1H, br s) 

5.27 (1H, br s) 

104.1, CH2 4.97 (1H, br s) 

5.23 (1H, br s) 

103.5, CH2 4.75 (1H, br s) 

5.20 (1H, br s) 

103.1, CH2 

18 1.07 (3H, s) 28.1, CH3 0.98 (3H, s) 28.0, CH3 1.06 (3H, s) 27.9, CH3 0.96 (3H, s) 27.6, CH3 

19 3.99 (1H, d, 11.0) 

4.38 (1H, d, 11.0) 

67.9, CH2 3.92 (1H, d, 11.0) 

4.33 (1H, d, 11.0) 

67.6, CH2 3.96 (1H, d, 11.4) 

4.36 (1H, d, 11.4) 

66.8, CH2 3.89 (1H, d, 11.2) 

4.27 (1H, d, 11.2) 

66.6, CH2 

20 0.73 (3H, s) 15.7, CH3 0.74 (3H, s) 15.7, CH3 0.72 (3H, s) 15.4, CH3 0.69 (3H, s) 15.4, CH3 

1’  169.4, C  168.7, C  167.6, C  167.6, C 

2’ 6.32 (1H, d, 16.0) 115.2, CH 5.79 (1H, d, 12.7) 117.0, CH 6.29 (1H, d, 16.0) 115.9, CH 5.82 (1H, d, 12.7) 116.8, CH 

3’ 7.59 (1H, d, 16.0) 146.5, CH 6.88 (1H, d, 12.7) 144.6, CH 7.61 (1H, d, 16.0) 144.9, CH 6.84 (1H, d, 12.7) 143.2, CH 

4’  127.2, C  127.3, C  127.3, C  127.6, C 

5’,9’ 7.47 (2H, d, 8.7) 131.2, CH 7.59 (2H, d, 8.7) 133.3, CH 7.48 (2H, d, 8.7) 130.0, CH 7.66 (2H, d, 8.7) 132.0, CH 

6’,8’ 6.81 (2H, d, 8.7) 116.8, CH 6.76 (2H, d, 8.7) 115.9, CH 6.90 (2H, d, 8.7) 114.5, CH 6.87 (2H, d, 8.7) 113.5, CH 

7’  161.3, C  160.0, C  161.5, C  160.5, C 

7’-OCH3     3.84 (3H, s) 55.5, CH3 3.82 (3H, s) 56.6, CH3 

a 1H NMR measured in MeOH-d4 at 600 MHz. b 13C NMR measured in MeOH-d4 at 150 MHz. c 1H NMR measured in CHCl3-d at 400 

MHz. d 13C NMR measured in CHCl3-d at 100 MHz. e 1H NMR measured in CHCl3-d at 600 MHz. f 1H NMR measured in CHCl3-d at 

150 MHz. 
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The hydroxyl group at C-7 revealed proton resonance at δH 3.88 (1H, m) and carbon 

resonance at δC 74.8 ppm as confirmed by HMQC experiment. The exact linkage of this 

hydroxyl group at C-7 was proven based upon HMBC experiments (Figure 2a) which revealed 

key long range correlations between the exocyclic methylene protons at δH 4.75 (1H, br s) and 

5.27 (1H, br s) attached at C-8 and methylene protons at δH 1.39 (1H, m) and 2.21 (1H, dd, J= 

9.8, 5.2 Hz) ppm assigned for C-6 to C-7 at δC 74.8 ppm. Moreover, a long range HMBC 

correlation was found between proton resonance at δH 3.88 (1H, m) at C-7 and carbon resonance 

at δC 35.0 ppm assigned for C-6. Based upon the aforementioned data, compound (1) was 

confirmed to be the new 7-hydroxy-labda-8(17),13(16),14-trien-19-yl-(E)-coumarate. 

For establishing the relative and absolute configurations of 1, a ROESY experiment 

(Figure 2b) and the modified Mosher’s reaction (Table 2) were conducted, respectively. Results 

of Mosher’s reactions of the hydroxyl group at C-7 unambiguously determined its absolute 

configuration as S, whereas the ROESY experiment (Figure 2b) revealed clear correlations 

between H-7 at δH 3.88 (1H, m) with two multiplet proton resonances at δH 1.39 and δH 1.63 ppm 

assigned for H-9 and H-5 in addition to a singlet methyl group at δH 1.07 ppm assigned for 

methyl group at C-4, respectively. ROESY experiment of 1 also revealed clear correlations 

between hydroxymethylene protons at δH 3.99 (1H, d, J = 11.0 Hz) and 4.38 (1H, d, J = 11.0 Hz) 

ppm, a singlet methyl group at δH 0.73 ppm and a methylene group at δH 1.63 (1H, m) and 1.77 

(1H, m) ppm assigned for C-19, Me-20 and C-11, respectively. Based on the results obtained 

from Mosher’s reaction and ROESY experiment, the absolute configuration of compound 1 was 

unambiguously determined to be 4S,5R,7S,9R,10S in accordance with the previously reported 

absolute configurations of chiral centers at C-5, C-9 and C-10 (Maldonado et al., 2015). 
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Table 2. Chemical shift differences between the (S)-MTPA and (R)-MTPA esters of compound 
(1). 

position 
Chemical shift (δH, in C5D5N, 600 MHz) in ∆ 

∆(S) – δ(R) 1 (S)-MTPA ester (R)-MTPA ester 

6a 2.5435 2.5524 2.5379 +0.0145 

6b 1.7721 1.8583 1.7144 +0.1439 

17a 5.8916 5.7080 5.7304 -0.0224 

17b 4.9525 4.6990 4.7082 -0.0092 

 

 

Figure 2.  Key 1H-1H COSY, HMBC and ROESY correlations in compound (1). 

 

Compound 2, isolated as a yellowish white amorphous powder, revealed a 

pseudomolecular ion peak at m/z 473.2662 [M+Na]+ (calcd for 473.2668 C29H38NaO4) and UV 

absorption maxima (λmax) at 231 and 307 nm similar to compound (1). In spite of the close 

similarity in spectral data of compounds 1 and 2 (Table 1), the latter displayed proton resonances 
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at δH 5.79 (1H, d, J = 12.7 Hz), 6.88 (1H, d, J = 12.7 Hz), 6.76 (2H, d, J = 8.7 Hz) and 7.59 (2H, 

d, J = 8.7 Hz) ppm attributable to (Z)-coumarate (Lin et al., 1999). The coupling constant of 12.7 

Hz for the two olefinic protons in 2 was smaller than that in the E-isomer 1 where the coupling 

constant is 16.0 Hz. Apart from this difference between 1 and 2, both revealed a close 

resemblance with regard to their 1D and 2D NMR spectral data including 1H–1H COSY, HMQC 

and HMBC experiments (Table 1, see supplementary data). Based on the biosynthetic 

relationship and having comparable optical rotation values, it was deduced that 1 and 2 share the 

same relative and absolute configurations which were supported by similar optical rotation 

values. In conclusion, compound 2 was unambiguously confirmed to be the new 7-hydroxy-

labda-8(17),13(16),14-trien-19-yl-(Z)-coumarate which featured the absolute configuration 

4S,5R,7S,9R,10S. 

The molecular formula of compound 3 was established to be C30H40O4 based on the 

existence of a pseudomolecular ion peak at m/z 482.3265 [M+NH4]
+ (calcd for 482.3270 

C30H44NO4) indicating a difference of 14 amu compared to compounds 1 and 2. 1H NMR, 1H–1H 

COSY and HMQC spectra of 3 were similar to those of 1 (Table 1, see supplementary data) 

revealing proton resonances at δH 6.29 (1H, d, J = 16.0 Hz), 7.61 (1H, d, J = 16.0 Hz), 6.90 (2H, 

d, J = 8.7 Hz) and 7.48 (2H, d, J = 8.7 Hz) ppm ascribed for aromatic carbons at δC 115.9 (C-2’), 

144.9 (C-3’), 114.5 (C-6’ and C-8’) and 130.0 (C5’ and C-9’) ppm, respectively, thus confirming 

the existence of an (E)-coumaroyl moiety in compound 3. This was confirmed through the UV 

spectrum displaying maximal absorption peaks (λmax) at 231 and 308 nm (Lin et al., 1999).  1H 

and 13C NMR spectral data of 3 (Table 1) disclosed that it comprises an additional singlet 

oxygenated methyl group at δH 3.84 ppm which was correlated to a primary oxygenated carbon 

resonance at δC 55.5 ppm as revealed by HMQC spectrum. In addition, HMBC spectrum of 3 
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revealed a clear long range correlation between the methoxy group at δH 3.84 ppm and a 

quaternary aromatic carbon at δC 161.5 ppm indicating that the 14 amu difference is due to the 

methylation of phenolic hydroxyl group in the coumarate moiety. Apart from this difference, 1D 

and 2D NMR spectra including HMQC, HMBC and ROESY experiments of 3 closely resembled 

those of 1 in addition to 3 exhibiting a similar optical rotation value compared to that of 1. Based 

on this close similarity in relative configuration and biosynthetic relationship between 

compounds 1 and 3, the latter was unambiguously concluded to be 7-hydroxy-labda-

8(17),13(16),14-trien-19-yl-7’-O-methyl-(E)-coumarate exhibiting probably the same absolute 

configuration 4S,5R,7S,9R,10S as elucidated for 1. 

The HRESIMS of compound 4 revealed pseudomolecular ion peaks at m/z 482.3265 

[M+NH4]
+ (calcd for 482.3270 C30H44NO4) and 487.2819 [M+Na]+ (calcd for 487.2824 

C30H40NaO4) indicating the molecular formula C30H40O4 which is identical to that of 3. 1H NMR 

spectral data of 4 exhibited proton resonances similar to 2 in particular with regard to the two 

olefinic protons at δH 5.82 (1H, d, J = 12.7 Hz), 6.84 (1H, d, J = 12.7 Hz), 6.87 (2H, d, J = 8.7 

Hz) and 7.66 (2H, d, J = 8.7 Hz) ppm which correlated to carbon resonances at δC 116.8 (C-2’), 

143.2 (C-3’), 113.5 (C-6’ and C-8’) and 132.0 (C5’ and C-9’) ppm, respectively, as 

unambiguously disclosed by the HMQC experiment. In addition, the UV spectrum of 4 displayed 

absorption maxima (λmax) at 232 and 305 nm which together with NMR spectral data indicated 

the presence of (Z)-coumarate moiety as a part of the structure (Lin et al., 1999). The coupling 

constant (J value) of 12.7 Hz for the two olefinic protons in 4 was smaller than that for the E-

isomers 1 and 3 where the coupling constants amounted to 16.0 Hz. 1H NMR spectral data of 4 

(Table 1) revealed an additional singlet oxygenated methyl group at δH 3.82 ppm in comparison 

to 2 which was correlated to a primary oxygenated carbon resonance at δC 56.6 ppm as revealed 
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by the HMQC spectrum. In addition, the HMBC spectrum of 4 revealed a clear long range 

correlation between the methoxy group at δH 3.82 ppm and a quaternary aromatic carbon at δC 

160.5 ppm indicating that the 14 amu difference is due to the methylation of phenolic hydroxyl 

group in the (Z)-coumarate moiety. Apart from this structural difference, 1D and 2D NMR 

spectra including HMQC, HMBC and ROESY experiments of 4 (Table 1, see supplementary 

data) closely resembled those of 2 in addition to similar optical rotation values that were 

observed for both compounds. Based on this close similarity in relative configuration and 

biosynthetic relationship compound 4 was unambiguously identified as 7-hydroxy-labda-

8(17),13(16),14-trien-19-yl-7’-O-methyl-(Z)-coumarate for which the same absolute 

configuration 4S,5R,7S,9R,10S is proposed. 

Compound 9 and 10 are heterodimeric biaryl natural products with 6,8’- and 8,8-linked 

flavone residues. Due to the substitution pattern and the position of the linkage, the biaryl 

systems of 9 and 10 have a high rotational energy barrier, which gives rise to atropisomerism 

(Bringmann et al., 2005). The specific rotation value and ECD spectra clearly indicated the 

presence of axial chirality, since both compounds contain no further chirality elements. The 

solution TDDFT-ECD calculation protocol has been efficiently utilized for the determination of 

axial chirality in biaryl natural products having hindered rotation (Rönsberg et al, 2013; Bara et 

al., 2013; Ola et al., 2014; Wu et al., 2015). Compound 9 is the 4’,7,7”-trimethyl ether derivative 

of agathisflavone, the natural biaryl component of Schinus terebinthifolius Raddi 

(Anacardiaceae), the absolute configuration of which was studied by the combination of various 

chiroptical methods (ECD, VCD and ORD) and (aS) absolute configuration (positive ωC5-C6-C8''-

C8a'' torsional angle) was assigned to the (−)-enantiomer (Covington et al., 2016). The ECD 

spectrum of compound 9  (Figure 3) had an oppositely signed pattern of Cotton effects (CEs) 
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compared to those of (−)-agathisflavone and an approximately 30 nm red shift of the 

corresponding CEs was also observed in acetonitrile.  

 

Figure 3. Experimental ECD spectrum of (+)-9 in MeCN compared with the Boltzmann-

weighted PBE0/TZVP ECD spectrum of (aS)-9 computed for the B97D/TZVP PCM/MeCN 

conformers. Bars represent the rotational strength values of the lowest-energy conformer. 

 

These data suggested that compound 9 had negative ωC5-C6-C8''-C8a'' torsional angle, opposite 

to that of (−)-agathisflavone, which however is also denoted by (aS) axial chirality, since the 

different substitution pattern alters the priority order. In order to test the applicability of our 

solution TDDFT-ECD protocol for biaryl natural products on the axial chirality of 9 and confirm 

its absolute configuration, ECD calculations of 9 were carried out (Pescitelli and Bruhn, 2016; 

Mándi et al., 2015). MMFF conformational search resulted in 136 conformers [with (aR) and 

(aS) axial chirality] in a 21 kJ/mol energy window. Conformers with negative ωC5-C6-C8''-C8a'' 

torsional angles [(aS) axial chirality] (Figure 4) were selected and reoptimized at the B3LYP/6-
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31G(d) in vacuo and the B97D/TZVP (Grimme, 2006; Sun et al., 2013) PCM/MeCN levels of 

theory.  

 

Figure 4. Structures and populations of the low-energy B97D/TZVP PCM/MeCN conformers 

(≥1%) of (aS)-9. 

 

ECD spectra computed for the low-energy (≥ 1%) conformers at various levels gave 

moderate to good agreement with the experimental spectrum of 9 allowing elucidation of the 

absolute configuration as (aS). By analyzing the compouted ECD spectra of the individual 

conformers, it turned out that the 340 and 260 nm ECD transitions are sensitive to both the biaryl 
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and the flavone (ωC3,C2,C1’,C2’) torsional angles. For the (aS) enantiomer, the low-energy 

conformers of 9 have an ωC5-C6-C8''-C8a'' torsional angle of either ca. −67° or ca. −107° 

(B97D/TZVP PCM/MeCN values). Furthermore, among the low-energy conformers, there were 

geometries with both positive and negative ωC3,C2,C1’,C2’ flavone torsional angles, which resulted 

in inversion of 340 and 260 nm CE (conformers E and H in Figure 5). Since substitution pattern 

of related molecules can alter both torsional angles, these transitions are not recommended for 

comparison to elucidate absolute configuration of agathisflavone derivatives when simple ECD 

correlation is applied. (−)-Agathisflavone and (+)-9 represent an example for chiral switching 

(Ebrahim et al., 2012; Zhang et al., 2015) of natural products when related natural derivatives are 

produced with opposite absolute configuration in different organisms. 

 

Figure 5. Experimental ECD spectrum of 9 in MeCN compared with the PBE0/TZVP ECD 

spectrum of conformers A, E and H of (aS)-9. Level of optimization: B97D/TZVP PCM/MeCN 
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Compound 10, the 8,8’-linked heterodimeric flavone biaryl derivative, had positive CE at 

357 nm and negative one at 322 nm in the ECD spectrum, which allowed the assignment of axial 

chirality as (aR) on the basis of the ECD spectrum of the related cupressuflavone 4’-O-β-D-

glucopyranosides (Inatomi et al., 2005). 

All isolated compounds were assessed for their antiproliferative activity(ies) against the 

mouse lymphoma (L5178Y) cell line using the in vitro cytotoxicity (MTT) assay and kahalalide 

F as a standard antiproliferative agent. Results (Table 3) revealed that among the four new 

labdane derivatives (1–4), compounds 1 and 2 revealed IC50 values of 2.22 and 1.42 µM, 

respectively. Both compounds are thus more potent than the standard drug kahalalide F with an 

IC50 value of 4.30 µM. 

 

Table 3. Cytotoxic activity of isolated compounds against mouse lymphoma L5178Y cell line. 

Compound L5178Y % Growth inhibition 
(10 µg/mL) 

EC50 in µM 

1 100 2.22 

2 100 1.42 

3 65 n.a. 

4 22 12.9 

5 94 >30 

Kahalalide F  4.30 

n.a.: not active. 

 

However, their respective methylated derivatives (3 and 4) exhibited moderate to no 

activity. These results suggest preliminary structure activity relationships (SAR) such as i) the 

configuration of the olefinic double bond of coumarate moiety does not significantly affect the 

cytotoxicity, ii) although methylation of the phenolic hydroxyl group does increase the 

lipophilicity which in turn increases its cellular uptake and bioactivity, compounds (3 and 4) 
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showed moderate or no activity compared to the non-methylated metabolites (1 and 2) 

presumably being due to steric hindrance leading to decreased binding to the yet unknown target 

receptors. 

Experimental section 

2.1. General experimental procedures 

Optical rotation was determined using a Perkin-Elmer-241 MC polarimeter. Mass spectrometry 

was measured on a LC-MS HP1100 Agilent Finnigan LCQ Deca XP Thermoquest whereas high-

resolution mass spectra (HRESIMS) were recorded on FTHRMS-Orbitrap (Thermo Finnigan) 

mass spectrometer. Analytical HPLC measurements were conducted on Dionex Ultimate 3000 

LC system coupled with a photodiode array detector (UVD340S), using detection channels at 

235, 254, 280 and 340 nm wavelengths. Ready-made separation columns (125 × 4 mm, L × ID), 

prefilled with Eurospher-10C18 (Knauer, Germany), were used implementing a gradient elution 

as follows, (MeOH, 0.01% HCOOH in H2O): 0 min, 10% MeOH; 5 min, 10% MeOH; 35 min, 

100% MeOH; 45 min, 100% MeOH, with a flow rate of 1 mL/min. Preparative HPLC separation 

was accomplished using a RP-HPLC system of LaChrom-Merk Hitachi (pump: L7100 and UV 

detector L7400; column: Eurospher 100C18, 300 × 8 mm, Knauer, Germany) with a flow rate of 

5.0 mL/min. Routine normal phase column chromatography was performed using Merck MN 

silica gel 60 M (0.04-0.063 mm) or Sephadex LH-20 as stationary phases. 1D (1H and 13C NMR) 

and 2D NMR (chemical shifts in ppm) spectra were measured by Bruker AVANCE DMX 600 

and AVANCE HD III 400 MHz NMR spectrometer (Switzerland) using methanol-d4 and 

chloroform-d solvents (Sigma Aldrich, Germany). ECD spectra were recorded on a J-810 

spectropolarimeter. Ready-made TLC plates precoated with silica gel 60 F254 (Merck, Darmstadt, 

Germany) were used for analytical purposes followed by detection under UV light at 254 and 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

19 

 

365 nm wavelengths or after spraying with anisaldehyde and vanillin sulfuric acid spray 

reagents. Solvents used during the experiments were distilled before being used. Spectroscopic 

and deuterated grade solvents were used for spectroscopic and NMR measurements, 

respectively. 

2.2. Plant material 

Fresh leaves (7 kg) of A. bidwillii were collected at the Zoo Garden, Giza, Egypt, in January 

2015 and authenticated by Mrs. Therease Labib, consultant at Orman Botanical Garden and 

National Gene Bank, Giza, Egypt. A voucher specimen was deposited at Department of 

Pharmacognosy, Faculty of Pharmacy, Ain-Shams University given a code PHG-P-AB192. 

2.3. Extraction, isolation and purification 

Air-dried grounded leaves were extracted with methanol then evaporated till dryness yielding a 

solid residue of 313 g which was subjected to liquid-liquid fractionation between its aqueous 

dispersion (1.0 L) and petroleum ether (Pet. Ether, 3.0 L), ethyl acetate (EtOAc, 8.0 L), and 

butanol (n-BuOH, 8.0 L), each at room temperature to afford different fractions weighing 0.71, 

21.0 g and 56.0 g, respectively. From EtOAc extract about 10 g were fractionated over an open 

column packed with silica gel (250 g) as adsorbent. The elution process started with petroleum 

ether and then ethyl acetate was added gradually to increase the polarity of the eluent till 

reaching 100% ethyl acetate. Next dichloromethane and methanol in different ratios till reaching 

100% methanol were used to elute the column. Finally, the column was washed with acetone 

(100%). The elution process was inspected under UV light. Thirty fractions (500 mL each) were 

collected and monitored by TLC on silica gel plates. The TLC was examined under UV light and 

sprayed with vanillin sulphuric reagent. Similar fractions were pooled together and dried to give 

24 subfractions (A–X). 
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Fraction D (330 mg) eluted by Pet. Ether:EtOAc (8:2) was further purified by preparative 

HPLC resulting in the isolation and identification of compounds 3 (0.7 mg) and 4 (1.0 mg). 

Fraction F (350 mg) eluted with Pet. Ether:EtOAc (8:2) was further purified by preparative 

HPLC resulting in the isolation and identification of compounds 1 (6.6 mg) and 2 (6.9 mg), 

whereas fraction G (240 mg) eluted by Pet. Ether:EtOAc (3:2) was subjected to preparative 

HPLC for further purification yielding compounds 5 (2.8 mg) and 6 (5.6 mg). Fractions I and J 

(390 mg) also eluted by Pet. Ether:EtOAc (3:2) were also purified using preparative HPLC 

yielding compounds 8 (6.1 mg), 9 (2.3 mg) and 10 (8.3 mg). Fraction N (300 mg) eluted by 

100% EtOAc yielded compound 7 (1.2 mg) by crystallization. 

2.3.1. 7-Hydroxy-labda-8(17),13(16),14-trien-19-yl-(E)-coumarate (1). Yellowish white solid; 

	[α]�
�� +4.0 (c 0.70, MeOH); UV (MeOH) λmax: 232 and 309 nm; 1H and 13C NNR data see Table 

1; HRESIMS [M+Na]+ m/z 473.2662 (calcd for 473.2668 C29H38NaO4). 

2.3.2. 7-Hydroxy-labda-8(17),13(16),14-trien-19-yl-(Z)-coumarate (2). Yellowish white 

amorphous powder; 	[α]�
�� +17.5 (c 0.70, MeOH); UV (MeOH) λmax: 231 and 307 nm; 1H and 

13C NNR data see Table 1; HRESIMS [M+Na]+ m/z 473.2662 (calcd for 473.2668 C29H38NaO4). 

2.3.3. 7-Hydroxy-labda-8(17),13(16),14-trien-19-yl-7’-O-methyl-(E)-coumarate (3). 

Amorphous off-white solid;  [α]�
�� +7.5 (c 0.70, MeOH); UV (MeOH) λmax: 231 and 308 nm; 1H 

and 13C NNR data see Table 1; HRESIMS [M+NH4]
+ m/z 482.3265 (calcd for 482.3270 

C30H44NO4). 

2.3.4. 7-Hydroxy-labda-8(17),13(16),14-trien-19-yl-7’-O-methyl-(Z)-coumarate (4). Off-white 

amorphous powder;  [α]�
�� +25.5 (c 0.70, MeOH); UV (MeOH) λmax: 232 and 305 nm; 1H and 

13C NNR data see Table 1; HRESIMS [M+NH4]
+ m/z 482.3265 (calcd for 482.3270 C30H44NO4) 

and [M+Na]+ m/z 487.2819 (calcd for 487.2824 C30H40NaO4). 
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2.3.5. Agathisflavone-4’,7,7”-trimethyl ether (9). Yellow amorphous powder;  [α]�
�� +33.0 (c 

0.60, MeOH); UV (MeOH) λmax: 206, 220, 272 and 328 nm; ECD (MeCN, λ [nm] (∆ε), c 0.172 

mM): 344 (+0.76), 306 (-1.96), 292 (-1.94), 262 (+2.01), 246sh (+0.77), 233 (–1.19), 217sh 

(+0.72), 205 (+2.13); 1H NMR data (Ofman et al., 1995); HRESIMS [M+H]+ m/z 581.1442 

(calcd for 581.1448 C33H25NO10). 

2.3.6. Cupressuflavone-4’,7,7”-trimethyl ether (10). Yellow amorphous powder;  [α]�
�� -63.4 (c 

0.30, MeOH); UV (MeOH) λmax: 206, 225, 272 and 340 nm; ECD (MeCN, λ [nm] (∆ε), c 0.172 

mM): 357 (+4.07), 322 (-9.55), 305sh (-4.45), 267 (+3.60), 243 (+0.62), 226 (+1.58), 215 (-

0.37), 207 (+2.11); 1H NNR data (Inatomi et al., 2005; Ofman et al., 1995); HRESIMS [M+H]+ 

m/z 581.1442 (calcd for 581.1448 C33H25NO10). 

2.4. Mosher’s reaction 

Chiral derivatization was conducted following the convenient Mosher ester method as previously 

described in the literature (Su et al., 2002). The tested compounds (2 × 1 mg each) were 

transferred into clean dry NMR tubes under a N2 gas stream. The samples (1 mg) were dissolved 

in deuterated pyridine (0.5 mL), and both (R)- and (S)-α-methoxy-α-

(trifluoromethyl)phenylacetic (MTPA) acid chloride were added separately into the NMR tubes, 

immediately under a N2 gas stream. The reagent was added in the ration of 0.14 mM reagent to 

0.10 mM of the compound (Dale and Mosher, 1973). Careful shaking of the NMR tubes was 

performed to assure thorough mixing of the samples and MTPA chloride. The reaction NMR 

tubes were kept at room temperature and monitored by 1H NMR spectroscopy until the reaction 

was complete. 1H–1H COSY spectra were measured to confirm the assignment of the signals. 

2.5. Cytotoxicity (MTT) assay 
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Antiproliferative activity was assessed against mouse lymphoma (L5178Y) cell line, using a 

microplate 3-(4,5-dimethythiazole-2yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay as 

previously described (Ashour et al., 2006). All experiments were carried out in triplicate and 

repeated thrice. The cytotoxic depsipeptide kahalalide F (IC50 = 4.3 µM) was used as a positive 

control and a medium containing 0.1% EGMME-DMSO was used as a negative control. 

2.6. Computational Section 

Mixed torsional/low mode conformational searches were carried out by means of the 

Macromodel 9.9.223 (MarcoModel, 2012) software using Merck Molecular Force Field (MMFF) 

with implicit solvent model for CHCl3 applying a 21 kJ/mol energy window. Geometry 

optimizations [B3LYP/6-31G(d) in vacuo and B97D/TZVP (Grimme, 2006; Sun et al., 2013) 

with PCM solvent model for MeCN] and TDDFT calculations were performed with Gaussian 09 

using various functionals (B3LYP, BH&HLYP and PBE0) and TZVP basis set (Frisch et al., 

2010). ECD spectra were generated as the sum of Gaussians with 3000 cm–1 half-height width 

(corresponding to c.a. 20 nm at 260 nm), using dipole-velocity computed rotational strengths 

(Stephens and Harada, 2010). Boltzmann distributions were estimated from the ZPVE-corrected 

B3LYP/6-31G(d) energies in the gas-phase calculations and from the B97D/TZVP energies in 

the solvated ones. The MOLEKEL software package was used for visualization of the results 

(Marcomodel, 2012). 
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