The functional role of Ca$^{2+}$-and voltage-gated potassium channels in activated human T cells and fibroblast-like synoviocytes

by Zoltán Dénes Pethő

Supervisor: Zoltán Varga, PhD

UNIVERSITY OF DEBRECEN
DOCTORAL SCHOOL OF MOLECULAR MEDICINE
Debrecen, 2017
TABLE OF CONTENTS

LIST OF ABBREVIATIONS .. 3
1. PREFACE .. 5
2. SCIENTIFIC BACKGROUND ... 6
 2.1. General characteristics of ion channels ... 6
 2.1.1. Overview of potassium channels .. 6
 2.1.2. The Ca 2+ release- activated Ca 2+ channel ... 8
 2.1.3. Specific regulatory subunits of ion channels .. 9
 2.1.4. Modes of ion channel inhibition .. 12
 2.2. Ion channels as key regulators of the immune system ... 16
 2.2.1. Ion channels regulate the T cell mediated immune response 18
 2.2.2. Role of potassium channels in autoimmunity .. 20
 2.3. Modes of physiological and in vitro T lymphocyte activation ... 22
 2.3.1. Ion channel inhibitors and rapamycin impair the T cell-mediated immune response .. 24
 2.4. Fibroblast-like synoviocytes are key effectors in rheumatoid arthritis 27
 2.4.1. Ion channels influence the phenotype of RA-FLS ... 28
 2.4.2. KCa1.1 as a possible therapeutic target ... 30
3. AIMS OF THE STUDY .. 32
4. MATERIALS AND METHODS ... 33
 4.1. Reagents ... 33
 4.2. Isolation and culture of peripheral blood mononuclear cells ... 33
 4.2.1. Selective stimulation of T lymphocytes ... 33
 4.2.2. Applying pharmacological inhibitors of T lymphocyte ion channels 34
 4.3. CFSE dilution assay and PI staining .. 35
 4.4. Flow cytometry experiments ... 35
 4.5. Measurement of secreted cytokine concentration .. 38
 4.6. Culturing RA-FLS .. 38
 4.7. Reverse transcription (RT) and quantitative polymerase chain reaction (qPCR) 40
 4.8. SDS-PAGE and Western blotting ... 41
 4.9. Transfection of small interfering RNA (siRNA) .. 41
 4.10. Transwell invasion assay ... 41
 4.11. Electrophysiology ... 42
 4.11.1. Whole-cell patch-clamp ... 42
 4.11.2. Activation and inactivation kinetics of the K+ current 43
4.11.3. Test substances ... 43

4.12. Statistical evaluation and plotting the results .. 44

5. RESULTS ... 45

5.1. The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation .. 45

5.1.1. Dose-dependence of mitogen-induced proliferation .. 45

5.1.2. Ion channel blockers and rapamycin alone and in combination inhibit lymphocyte proliferation... 47

5.1.3. Cell viability is not affected by the inhibitors of T cell proliferation .. 50

5.1.4. Cytokine production of T cells can be reduced by ion channel blockers .. 52

5.2. Different Expression of β Subunits of the KCa1.1 Channel by Invasive and Non-Invasive Human Fibroblast-Like Synoviocytes .. 53

5.2.1. RA-FLS express multiple β subunits at the mRNA and protein levels .. 53

5.2.2. RA-FLS express either β1 or β3b subunits at their plasma membrane ... 54

5.2.3. Expression of KCa1.1 β3b is associated with higher levels of KCa1.1 α and CD44 57

5.2.4. Knocking down the β3 subunit of KCa1.1 decreases cell surface expression of the pore-forming α subunit of KCa1.1 .. 60

5.2.5. Knocking down the β3, but not the β1, subunit of KCa1.1 attenuates the ex vivo invasiveness of RA-FLS .. 61

6. DISCUSSION ... 62

6.1 The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation .. 62

6.2 Different Expression of β Subunits of the KCa1.1 Channel by Invasive and Non-Invasive Human Fibroblast-Like Synoviocytes .. 65

7. SUMMARY .. 68

8. ÖSSZEFOGLALÁS ... 69

9. REFERENCES .. 70

10. LIST OF PUBLICATIONS ... 82

11. ORAL AND POSTER PRESENTATIONS .. 84

12. KEYWORDS ... 92

13. ACKNOWLEDGEMENTS ... 93
LIST OF ABBREVIATIONS

- **[Ca]⁺:** Intracellular calcium concentration
- **2-Apb:** 2-Aminoethoxydiphenyl borate
- **AA:** Arachidonic acid
- **ANOVA:** Analysis of variance
- **AnTx:** Anuroctoxin
- **ASIC:** Acid-sensing ion channel
- **CD:** Cluster of differentiation
- **CFSE:** Carboxyfluorescein succinimidyl ester
- **ChTx:** Charybdotoxin
- **CRAC:** Calcium release-activated calcium channel
- **cT:** Cycle threshold
- **DAG:** Diacyl glycerol
- **DI:** Division index
- **DMARD:** Disease-modifying anti-rheumatic drug
- **ELISA:** Enzyme-linked immunosorbent assay
- **ER:** Endoplasmic reticulum
- **FKBP:** FK506 binding protein
- **FLS:** Fibroblast-like synoviocyte(s)
- **GAPDH:** Glyceraldehyde 3-phosphate dehydrogenase
- **IP₃:** Inositol 1,4,5-trisphosphate
- **KCa:** Calcium-activated potassium channel
- **Kv:** Voltage-gated potassium channel
- **LCA:** Lithocholic acid
- **MMP:** Matrix metalloprotease
- **MS:** Multiple sclerosis
- **mTOR:** Mammalian target of rapamycin
- **NSAID:** Non-steroidal anti-inflammatory drug
- **OA:** Osteoarthritis
- **PBMC:** Peripheral blood mononuclear cell
- **PBS:** Phosphate buffer solution
- **PI:** Propidium iodide
- **PIP₂:** Phosphatidylinositol 4,5-bisphosphate
PLC-γ: Phospholipase C gamma
PMA: Phorbol 12-myristate 13-acetate
RA: Rheumatoid arthritis
RA-FLS: FLS from patients with RA
RCK: Regulator of potassium conductance
RF: Rheumatoid factor
STIM: Stromal interaction molecule
TC: Cytotoxic T cell
T_CM: Central memory T cell
T_EM: Effector memory T cell
T_H: Helper T cells
T_reg: Regulatory T cell
τ_act: Activation time constant
τ_in: Inactivation time constant
VGKC: Voltage-gated potassium channel
VGSC: Voltage-gated sodium channel
1. PREFACE

Ion channels play a pivotal role in evoking and maintaining the physiological and pathological immune response and thus inflammation and autoimmunity. They affect multiple cellular functions, such as cell division or cell migration mainly through regulation of the membrane potential as well as through interaction with various intracellular molecular partners. In a healthy immune system, voltage- and Ca2+-gated potassium channels are crucially important for the activation and proliferation of T lymphocytes, and thus, for the function of the immune system. These ion channels can also contribute to the development of autoimmune diseases such as rheumatoid arthritis, through their pathological overexpression in lymphocytes along with propagating tissue destruction mediated by effector cells.

The work presented here aims to provide insight into the involvement of K+ channels in physiological T cell proliferation as well as into their contribution to the pathological activation of fibroblast-like synoviocytes in rheumatoid arthritis. The thesis is based on two international publications, but is greatly amended by previously unpublished and undiscussed insights.

Firstly, considering the previous studies focused on the effects of channel blockers on T cell proliferation, we noted variable effectiveness due to differing experimental systems. We approached this issue by investigating how the strength of the mitogenic stimulation influences the efficiency of cation channel blockers in inhibiting activation, cytokine secretion and proliferation of T cells under standardized conditions. In practice, this meant measuring the anti-proliferative effects of ion channel blockers and rapamycin on lymphocytes cultured under the same experimental circumstances at multiple levels of lymphocyte stimulation using carboxyfluorescein succinimidyl ester (CFSE) and propidium iodide (PI)-staining. Flow cytometry measurements were performed to determine the extent of cellular viability and proliferation, and ELISA experiments measured secreted levels of interferon-\textgamma (IFN-\textgamma) and interleukin 10 (IL-10).

To investigate the involvement of ion channels in autoimmune diseases, we turned our attention to fibroblast-like synoviocytes in rheumatoid arthritis (RA), which are responsible for damage to the cartilage and the surrounding tissue. These effector cells express KCa1.1 as their major plasma membrane K+ channel. Blocking KCa1.1 reduces the invasive phenotype of fibroblast-like synoviocytes and attenuates disease severity in animal models of RA. As the pore-forming \(\alpha\) subunit of KCa1.1 is widely distributed in the body and blocking it induces severe side effects, we aimed to characterize the tissue-specific accessory subunits of KCa1.1 channels to provide an opportunity for selective RA treatment.
2. SCIENTIFIC BACKGROUND

2.1. General characteristics of ion channels

The ion selective conductance of the cell membrane is mediated by ion channels and various carrier proteins. Ion channels are pore-forming transmembrane proteins that allow passive passage of ions through the cell membrane. Two key features distinguish ion channels from other transporters: the ion transport always follows the electrochemical gradient and the ion transport through the pore has a particularly high rate (3). Ion channels can be categorized based on the ions they conduct (e.g. H+, K+, Ca2+, Cl-), their selectivity (highly-, partially- or non-selective), their gating (voltage-gated, ligand-gated, light-gated, mechanosensitive, etc.), the direction of ionic current (inward-, outward-, or non-rectifier) and their structural similarities (e.g. Shaker-type K+ channels, TRP channels) (4). This work mainly focuses on voltage- and Ca2+-gated K+ channels and the Ca2+ release-activated Ca2+ channel (CRAC), as well as accessory subunits of ion channels, hence these will be introduced below.

2.1.1. Overview of potassium channels

K+ channels have been classified into several families according to their amino acid sequences, including those with six (6TM), four (4TM), or two (2TM) putative transmembrane segments per subunit. The main families of K+ channels are represented in Fig. 2.1. Every K+ channel subunit contains one or more pore (P-) loops that comprise a selectivity filter responsible for selective K+ permeation. The 6TM channels include the voltage-gated K+ channels (VGKC or Kv) as well as the Ca2+-activated K+ channels (KCa). Among KCa, KCa1.1 contains an extra S0 helix as shown in Fig. 2.1. Moreover, inward rectifier K+ channels (Kir) allow flow of K+ into the cell and consist of tetramers containing two transmembrane segments (M1 and M2) and a pore loop. The K2P family of channels (leak or background channels) contain four transmembrane segments and two pore domains.

VGKC assemble from four distinct, approximately 60-60 kDa polypeptide chains, arranged around the central ion conducting pore in a fourfold symmetrical manner as indicated by Fig. 2.1. This complex is also known as the α subunit of the channel, which can be associated to one or more ancillary β subunits. The polypeptide chains of the α-subunit contain typically six alpha transmembrane helices S1 through S6 with a membrane re-entrant pore loop intervening the S5 and S6 helices. The voltage-sensing domain is formed by the S1-S4 helices, with the S4 segment being highly conserved and containing multiple gating charges in a
repeating RXXR motif. The ion conducting pore domain consists of the S5 and S6 segments of the four peptides and the pore loop between them. As membrane potential changes, the arginines on the S4 interact with negative charge clusters on the S1-S3 helices, facilitating S4 movement in response to the electric field. Thus, the S4 exerts force on the S4-S5 linker and this sophisticated electromechanical coupling propagates to the subsequent segments of the channel ultimately leading to channel opening. In VGKC, the pore loop between the S5 and S6 segments contains an emblematic selectivity filter, consisting of four amino acids (almost exclusively GYGD) that is responsible for K^+ selectivity (1).

![Diagram](image)

Figure 2.1.: General structure of the four major K^+ channel families (2)

Columns S0-S6 and M1-M2 represent transmembrane domains of respective channels, the blue column indicates the positive charge centers in the S4 domain, the red lines imply the pore (P-) loop. The green circles β and A represent the accessory β subunit- and ankyrin binding sites, respectively.

VGKC can be categorized based on sequence homology, ranging from $Kv1.x$ to $Kv12.x$ channels. The so-called Shaker-type channels are homologous to the Shaker channel of the *Drosophila melanogaster*, and are termed $Kv1.1$-$Kv1.8$. According to the classical nomenclature, Shaker type channels are termed delayed rectifying channels as they open slowly compared to sodium or calcium channels and show little time-dependent inactivation, similar to other Kv channels such as the $Kv2$ or $Kv7$ families (5).
Ca2+-gated K+ channels are structurally homologous to VGKC in their transmembrane domains and the selectivity filter, however they contain intracellular Ca2+-sensing segments. In contrast to Kv channels, KCa channels are voltage-independent except for the KCa1.1. The members of this family can be distinguished by their different unitary K+ conductance, with KCa1.1 (MaxiK, Slo1, BK, BK\textsubscript{Ca}) having an impressive single channel conductance of 100-300 pS, KCa3.1 (IKCa1) having a 20-60 pS conductance, and the KCa2.x channels (SK1-4) having a conductance of 10 pS (1, 6). These channels also differ in their site of expression. KCa1.1 is quite ubiquitously expressed, and its tissue-specific expression mainly relies on the regulatory subunits it is associated with. The KCa2 family channels almost exclusively reside in the nervous system, whereas the KCa3.1 is expressed in peripheral tissues such as the pancreas, lung, placenta, erythrocytes and lymphocytes (7). These channels also differ in the way they sense calcium. Each KCa1.1 \(\alpha \) subunit contains two regulators of K+ conductance (RCK1 and RCK2) domains, which are accountable for calcium binding, and altogether eight RCK domains from the four subunits assemble as a ring-like structure known as the gating ring (1). The Ca2+-sensitivity of KCa3.1 is conferred by the Ca2+-binding protein calmodulin (CaM), with constitutively binding the CaM C-lobe to the intracellular C-terminal domain of the channel (8). In case of the KCa2 channels, calcium does not directly bind to the channel, but through a calmodulin binding site that can recognize Ca2+-bound calmodulin with high affinity. Among the KCa channels, the KCa1.1 is structurally unique as it contains an extra transmembrane domain S0, rendering the N terminus of the channel to be localized extracellularly (6). Also, this channel is gated by both voltage and Ca2+. Voltage can activate KCa1.1 channels in the absence of Ca2+ binding, and likewise, Ca2+ can also activate KCa1.1 channels when the voltage sensors are at the resting state (1, 9).

2.1.2. The Ca2+ release-activated Ca2+ channel

CRAC channels are formed by a complex of a plasma membrane-spanning ORAI and endoplasmic reticulum (ER) membrane-resident STIM proteins. The first step of CRAC channel activation is mediated by the stromal interaction molecules (STIM) 1 and its homolog, STIM2. Upon depletion of Ca2+ from the smooth ER, Ca2+ dissociates from STIM, namely from its paired EF-hand domain in the lumen. This results in conformational changes, first in the N-terminus and ultimately in the cytoplasmic C-terminus of STIM (10, 11). These changes expose the so-called oligomerization domains allowing STIM1 and STIM2 to oligomerize and migrate to the ER-plasma membrane junctions, where they form large clusters, or puncta. The calcium channel ORAI consists of six subunits and is recruited by STIM to these junctions, resulting in
localized Ca2+-influx. ORAI1 has two known homologs, ORAI2 and ORAI3. The first transmembrane domain of ORAI1 is critical in terms of pore lining and contains several amino acid residues, including a crucial glutamate, E106, that is responsible for Ca2+-binding and the high Ca2+-selectivity of the CRAC channel (11). Thus, the S1 domain of ORAI1 defines the key biophysical properties of the channel, and S2-S4 are hypothesized to shield S1 from the surrounding phospholipid bilayer and provide structural support for the channel (12).

2.1.3. Specific regulatory subunits of ion channels

The human genome encodes over 230 pore-forming subunits of ion channels, from which at least 70 are mainly voltage-dependent that have unique unitary conductances, voltage sensitivities, and activation/deactivation/inactivation gating kinetics (5, 13-18). Despite this diverse range of ion channels, most need to co-assemble with intracellular, extracellular or membrane-spanning accessory subunits to be functional in different tissues. This section will only cover ion-channel-exclusive auxiliary subunits, disregarding non-specific interaction partners that modify ion channel function, such as calmodulin, ankyrin or caveolin (19). The accessory subunits, traditionally labeled in the literature as Greek letters β, γ or δ are essential for proper physiological function, and their mutations cause severe human diseases (1). In total, there are more than 50 ion channel-specific regulatory subunits of ion channels known in the literature, and taking their numerous transcript variants into account they are the reason for the remarkable functional heterogeneity of ion channels (14-18). Considering the astonishing diversity of ion channel accessory subunits, after a brief overview this chapter will mainly focus on the regulatory subunits of voltage-gated potassium channels.

Structurally, regulatory subunits are usually profoundly smaller than their corresponding channels, but apart from that they are surprisingly diverse. Some membrane-spanning auxiliary subunits bind to the voltage sensor domain of their channels with non-covalent bonds. Other regulatory subunits interact directly with the pore of the channel e.g. through a ball-on-chain mechanism. Moreover, intracellular accessory subunits, such as the Kvβ on Shaker-type potassium channels, can bind to cytoplasmic domains of the channels (18).

Functionally, regulatory subunits can be interpreted as metaphoric reins on the neck of the channel horses. Through selective interaction with the channels, accessory subunits may modify the single channel conductance of the respective channels, and impair or enhance their voltage sensing, enabling a voltage-gated channel to function in both excitable and non-
excitable cells (1). They can also influence the membrane expression of the channel, and can have a significant impact on channel kinetics. It is also known that accessory subunits may bind to cytoplasmic interaction partners such as anchoring proteins of secondary messengers. For example, Kvβ extends Shaker-type Kv channels by an impressive 10 nm towards the intracellular space thus possibly forming a large area for interaction partners (18). To make the picture even more complex, it has been shown that Navβ, which has originally been known as an accessory subunit of sodium channels, can alter neuronal voltage-gated potassium channels as well (20).

It is also worth mentioning that as ion channels are usually multimeric proteins, multiple regulatory subunits can bind to a single ion channel. In case of the homotetrameric KCa1.1 for example, the β2 subunit can alter the inactivation kinetics of the channel through a ball-on-chain mechanism in a manner that depends on how many monomers of the channel are coupled to β2. If the β2 to KCa1.1 ratio is 1:4, only slight inactivation of the KCa1.1 can be observed, however, if the ratio of β2 to KCa1.1 increases, the rate of inactivation becomes significantly faster and ultimately complete inactivation can be observed (21, 22).

The ancillary subunits of voltage-gated potassium channels have been extensively reviewed by Pongs et al. (18). Kv channels have altogether nearly 20 auxiliary subunits. The first Kvβ, now known as Kvβ2 was originally described by pull down assays and was subsequently cloned (23-25). Since then, the literature acknowledges Kvβ1 and Kvβ3 as additional members of the Kvβ family. All members of this family are coupled to Shaker-type potassium channels, and have a conserved C-terminal domain. In contrast, the N-terminus is highly variable amongst the Kvβs: Kvβ1 and Kvβ3, but not Kvβ2 have an N-terminal ball-on-chain domain. These structural variances at the N-terminus lead to substantial functional differences regarding the different Kvβ isoforms. Most prominently, Kvβ1 and Kvβ3 lead to inactivation of the Kv currents whereas Kvβ2 does not induce inactivation (26-28).

The minK (KCNE1-5) family are small, single transmembrane domain-containing proteins of utmost physiological relevance that mostly interact with members of the KCNQ family. The most prominent member of the family, KCNE1 is known to assemble with KCNQ1 to give rise to the cardiac IKs current that is responsible for cardiac repolarization. Mutations in the KCNE1 gene can lead to hereditary cardiac diseases, mainly long QT syndrome (29). Interestingly, the typical stoichiometry between KCNE and KCNQ is 1:2, and each KCNE family member has only one functional splice variant in the human tissues (18).
Lastly, other K⁺ channel interacting proteins known as KChIP and DPPL can interact with the intracellular and extracellular domains of Kv4 channels, respectively, thereby forming gigantic molecular complexes. Alternative splicing of KChIPs lead to altogether 18 functional isoforms with highly variable N-terminal regions (18). KChIPs are crucial as they can ultimately modify cardiac and neuronal Kv4 channels and knock-out animals lacking KChIP1 and KChIP2 exhibit higher susceptibility to seizures and arrhythmias. DPPL subunits associate to Kv4 channels in the brain and silencing DPPL results in a reduction of subthreshold excitability of CA1 pyramidal neurons (18).

KCa1.1 channel accessory subunits are important for the association of the KCa1.1 channel with the L-type Ca²⁺ channel in a multi-ion-channel protein complex. Also, the presence of β or γ subunits affects the kinetics of the channel as well as the selectivity and affinity of various KCa1.1 channel modulators (Fig. 2.2).

![KCa1.1 Channel Accessory Subunits](image)

Figure 2.2.: Auxiliary subunits alter KCa1.1 currents

The diagram above shows activation and inactivation kinetics in KCa1.1 alone and associated to diverse β subunits. As the schematic diagram on the top left shows, up to 4 β subunits can accompany a channel. β1 and β4 slow activation kinetics, whereas β2 and β3 cause inactivation. The table on the top right shows that the γ, β1 and β2 subunits cause a left shift whereas β4 causes a right shift in the voltage-dependence of the channel.
In KCa1.1, four β subunits with distinct amino acid sequences have been described: β1 (KCMB1) is found in smooth muscles, β2 (KCMB2) is prevalent in the adrenal gland and brain, β3 (KCMB3) is expressed mainly in the testis, and β4 (KCMB4) is specifically expressed in the central nervous system (30-35). These β subunits display similar topology containing short N- and C-termini both on the intracellular side, two TM helices, and a large extracellular loop. Also, KCa1.1 can be associated to four types of γ auxiliary subunits (γ1–γ4, encoded by the LRRC26, LRRC52, LRRC55, and LRRC38 genes, respectively). The four γ subunits have similar molecular weights of about 35 kDa. They are type I single-span membrane proteins containing a classic N-terminal cleavable signal peptide for extracellular localization of the N-terminal LRR domain in the mature proteins (35-37). They have unique expression profiles, as the γ1 subunit is highly expressed in the salivary glands, prostate, and trachea, whereas γ2 is localized mainly in the testes, and γ3 is found mostly in the nervous system (35). Also, the γ1 subunit can inhibit the effect of some KCa1.1 activators, such as mallotoxin (38).

The changes induced by auxiliary subunits on KCa1.1 currents are summarized on Fig.2.2. The β1 and β4 subunits overall induce slowing of the macroscopic current kinetics and an increase in apparent calcium and voltage sensitivity. In addition, the β1, β2, and β4 subunits modulate membrane expression of the KCa1.1 conducting α subunit (33, 34, 39). The β2 and some splice variants of β3 subunits also cause rapid inactivation through their intracellular N-termini. Steroid compounds, such as lithocholic acid (LCA), selectively enhance KCa1.1 currents only if the channel contains the β1 subunit (40, 41). In contrast, arachidonic acid (AA) amplifies currents in presence of β2 or β3, but not β1 or β4 subunits whereas the scorpion toxins iberiotoxin and ChTx fail to inhibit KCa1.1 in presence of the β4 subunit (31, 42).

2.1.4. Modes of ion channel inhibition

Ion channel inhibitors or blockers are molecules that interact with ion channels in a manner that results in a net decrease of ionic current. Channel inhibitors can be used to assess the physiological function of ion channels, and due to their specific binding to the channel, they are also suitable for testing the structural properties of the binding site. Using ion channel inhibitors, it became possible to accomplish significant advances in understanding channel function and gating mechanisms. The two major mechanisms of ion channel inhibition are pore block, where the inhibitor directly occludes the ion conduction pathway, and allosteric inhibition (1, 3) (Fig. 2.3.).
Pore blockers occlude the passage of permeant ions through the channel and are the most commonly applied type of inhibitors. Chemically, they can be either competing ions, such as Cd$^{2+}$, Ba$^{2+}$, Cs$^+$, or small molecule inhibitors usually ranging from 200-1000 Da, or peptide toxins, that are usually composed of 20-70 amino acids. As the pore of an ion channel connects to the extracellular side as well as to the intracellular vestibule of the channel, it is plausible that many pore blockers usually only act from one side of the cell membrane (1, 43-45).

The fundamental idea of allosteric inhibition is that a modulatory chemical can selectively stabilize protein conformation by shifting the equilibrium between functional states (1, 37, 46). Translating this phenomenon to ion channels, allosteric inhibitors (or negative allosteric modulators) act by closing channels as they induce channel proteins to assume nonconducting conformations, such as an inactivated or closed state. By shifting the equilibrium of a channel to a nonconducting state, the channel will open less frequently and more likely be inhibited. Allosteric inhibitors can act by various mechanisms, such as surface charge screening, membrane perturbation, or direct binding to the ion channel. Due to this fact, the exact mechanisms of action of many allosteric inhibitors remains a mystery. One fitting example of such a poorly understood allosteric blocking mechanism is paxilline, a fungal alkaloid, which has been known to inhibit KCa1.1 channel for more than 20 years (47, 48). Recently, it has been shown that it acts almost exclusively on closed channels, but the exact location of the channel-blocker interaction still remains to be elucidated (49).

Figure 2.3.: Types of ion channel blockers

Pore block results from inhibitors binding in the pore to occlude ion permeation. Allosteric inhibition results from inverse agonists that cause an open channel to close (1).
Quantification of ion channel inhibition is necessary to precisely describe the dose-response relationship. As binding of a molecule to the channel can be understood as a chemical equilibrium in a system, it can be described as follows:

\[
L + R \xrightleftharpoons[k_{OFF}]{k_{ON}} LR
\]

where \(L\) is the ligand, \(R\) is the receptor and \(k_{on}\) and \(k_{off}\) are the association and dissociation rate constants, respectively (3, 44). Based on Eq. 1., it is possible to calculate the ratio of the dissociation and association rate constants, that ultimately yields the dissociation constant, \(K_d\):

\[
\frac{[L][R]}{[LR]} \times \frac{k_{off}}{k_{on}} = K_d
\]

where \([L]\) is the concentration of the free ligand, \([R]\) is the concentration of the receptor, and \([LR]\) is the concentration of the ligand-receptor complex. Eq. 2. implicates that \(K_d\) can be determined by two means, thermodynamically, by studying concentrations of \([L]\), \([R]\) and \([LR]\), and kinetically, by determining the two kinetic parameters. The \(K_d\) has units of concentration and is suitable to obtain intuition about dose dependence of a molecule. If an ion channel blocker that binds the channel in a 1:1 stoichiometry, the \(K_d\) can be practically understood as the concentration where 50% of channels are blocked, making it a straightforward measurable quantity. The \(K_d\) is sufficient to describe the dose-response of a system at equilibrium (3, 44). Fractional inhibition of ion currents depending on the concentration of the blocker can be fit by a sigmoidal Hill equation that reaches saturating effect at very high concentrations. This means that if \(10 \times K_d\) concentration is applied, about 90% of the channels are blocked, whereas at \(100 \times K_d\) concentration more than 99% of the channels are inhibited. However, applying ion channel inhibitors in increasing concentration one must take care that the interaction between inhibitor and channel remains specific and no additional targets are affected by the blocker.

For the peptide-channel interaction it is typical that the toxins bind to the extracellular region of the channels, consequently inhibiting ionic flux through the pore (50). Since the voltage-gated potassium channels exhibit high sequence similarity, natural venoms that contain multiple toxins generally block more channel types thus they have low selectivity for a given channel. In the last decades an abundance of peptide toxins has been isolated from animal venoms, which
selectively inhibit diverse K\(^+\) channels including Kv1.3 or KCa1.1 with high affinity. Their striking potency and specificity can lead to the fact that the most potent peptide blockers work in an impressive pM (10\(^{-12}\) M) concentration range. Through mutation studies of both ion channels and their respective toxins with a known structure (e.g. ChTx), it was possible to clarify the channel pore topology and identify the residues that play a role in the interaction between the toxin and the channel (51-53). Also, in recent years, cyro-EM studies have revealed 3D structures of numerous ion channels, further confirming previous topological results (54-58). For example, by 2017 we know the atomic structure of Kv1.2 alone, with accessory subunit Kvβ and with the inhibitor ChTx, as well as the full atomic structure of the *Aplysia* KCa1.1 (54, 59-61). ChTx, discovered in scorpion venom was the first polypeptide blocker of Kv1.3 with nanomolar affinity. Our workgroup is actively involved in characterizing and modifying polypeptide inhibitors isolated from various scorpion venoms (e.g. Vm24, Tst26, anuroctoxin) that have low-nanomolar and picomolar affinities for the Kv channels (62-66). Anuroctoxin (AnTx) was characterized and subsequently synthesized by our workgroup in 2014 using recombinant technique and solid phase chemical synthesis (62, 63). With site directed mutations our workgroup could design and synthesize a variant of AnTx, which is a high affinity and selective inhibitor of the Kv1.3 channel (62).

Small molecule inhibitors have a simpler structure, and are quite heterogeneous in their blocking mechanisms as well as in their binding sites. Small molecule blockers are usually far less potent than peptide inhibitors due to their smaller interaction surface, blocking ion channels in the nM or µM range (10\(^{-9}\) -10\(^{-6}\) M). These inhibitors are mainly hydrophobic or at least amphipathic, so they can diffuse through the cell membrane, and target the channels from every imaginable site, extra- and intracellularly, or even from inside the phospholipid bilayer. As some of these compounds can reside in the membrane itself, even washing out the inhibitor using perfusion in patch-clamp may not reverse the channel inhibition (e.g. in case of paxilline inhibition of KCa1.1) (1).

One of the best characterized small molecule inhibitors of K\(^+\) channels is tetraethylammonium (TEA), active in mM (10\(^{-3}\) M) concentration range, which has both an extra- and intracellular binding site in Shaker channels (67, 68). When bound to the extracellular binding site, TEA slows down inactivation because the TEA-bound ion channel cannot become inactivated. TEA locks a K\(^+\) ion in the selectivity filter at a site that controls inactivation. Therefore, the channel first needs to release TEA and the K\(^+\) ion before it can inactivate. This mechanism of action is metaphorically described as a “foot-in-the-door” mechanism.
Intracellularly, when approaching from the inner vestibule of the channel, it binds to specific amino acids near the pore. When bound to the intracellular binding site, TEA competes with a ball-on-chain mechanism responsible for the so-called N-type inactivation, thus slowing inactivation kinetics. As noted above, most small molecule inhibitors have a far less clearly described mechanism of action than TEA, but nevertheless, several are used routinely in the clinical practice. Local anesthetics, such as lidocaine are small molecule inhibitors used clinically to block sodium channel pores. The vasodilator verapamil is a calcium channel pore blocker and is applied in a variety of cardiovascular diseases (1).

2.2. Ion channels as key regulators of the immune system

Sustaining a proper immune response requires a coordinated interaction between several types of immune cells, including lymphocytes and antigen presenting cells (APCs). Cells of the innate and adaptive immune systems need to be activated precisely at the right moment to strike effectively against internal or external threats, as well as to avoid unnecessary activation of these cells possibly leading to autoimmunity. Like all other excitable and non-excitable cells, immune cells express ion channels to control their membrane potential (V_m) and regulate Ca^{2+} signaling as well as physiological cell functions, such as gene expression, proliferation, migration and differentiation. The following section aims to provide a brief introduction about ion channels that play key physiological roles in various immune cells focusing on T cells, which were the primary subjects of our studies.

To date numerous ion channels have been discovered in T lymphocytes (summarized in (69, 70)): the Ca^{2+}-release- activated Ca^{2+} channel (CRAC) (71); the Shaker-type voltage-gated K^+ channel Kv1.3 (72), the Ca^{2+}-activated K^+ channel KCa3.1, also known as IKCa1 or KCNN4 (73, 74); the non-selective TRPM7, that is proposed to be involved in the magnesium homeostasis of the cell; TRPM2, which is reported to play a role in T cell activation and proliferation (75), TRPV2, that has been implicated in T cell development, the two-pore potassium leak channels K2P3.1 (TASK1), K2P5.1 (TASK 2), and K2P9.1 (TASK3), that are involved in setting the resting V_m, and finally the swelling-activated chloride channel Cl_{swell}, encoded by the SWELL1 gene, which plays a role in volume regulation (76, 77). As CRAC, Kv1.3 and KCa3.1 channels co-localize in the immune synapse and are up-regulated in different T-cell subtypes (78, 79), it is widely accepted that these channels are indispensable early factors in the Ca^{2+}-dependent activation pathways of the T cell (80). Moreover, pharmacological
inhibition of Kv1.3 and KCa3.1 channels or genetic silencing of KCa3.1 also reduces calcium entry from CRAC channels.

During B lymphocyte activation, CRAC mediates calcium influx from the extracellular environment upon emptying of ER calcium stores. As in T cells, calcium influx by TRPV2 mediates B cell development, activation and proliferation (81). TRPM6 and TRPM7 are also present in B cells, and are accountable for maintaining Mg$^{2+}$ homeostasis and activation of B cells (82, 83). Kv1.3 and KCa3.1 in B lymphocytes are involved in the maintenance of the membrane potential and play a role in B cell proliferation and the so-called isotype switching of memory cells (84). Finally, influx of K$^+$ through VGKC such as Kv1.3 induces mitosis in B cells as well as DNA synthesis in S phase (85, 86).

The prominent professional APCs known as dendritic cells (DCs) are prevalent primarily in tissues that keep close contact with the environment, such as in external tissues like skin as well as in internal structures such as the lung and the gut. In these tissues, the DCs upon engulfing pathogens, migrate to lymphoid tissues to stimulate respective immune responses by presenting the antigen to naïve lymphocytes. During DC maturation, it has been shown that voltage-gated sodium channels, mainly Nav1.7 become down-regulated whereas VGKCs become markedly up-regulated (87, 88). It could thus be said that the sodium channels may account for the immature state and VGKC such as Kv1.3 may be overexpressed to regulate the secretion of cytokines and cell adhesion molecules of mature DC by modulating membrane potential and Ca$^{2+}$ signaling (89). Also, maturation can be suppressed by Kv1.3 inhibition as Kv1.3 blockers reduce the expression of maturation markers, cell surface MHC II molecules, chemotaxis and cytokine production (88). Also, DC functions such as migration and proliferation have been shown to be supplemented by other ion channels (90), such as TRMP2 (91), TRPM4 (92), TRPV1 (93), aquaporins (94, 95), P2X7 receptors (96), the calcium-activated chloride channel ANO6 (97), voltage-gated proton (Hv1) channels (98) as well as acid-sensing ion channels (ASICs) (99).

Typical phagocytic cells such as macrophages and the related microglia have marked voltage-gated sodium currents (e.g. Nav1.6), and inhibiting these channels ameliorates cell infiltration and phagocytic function in a model disease of multiple sclerosis (MS) (100). CRAC channel-induced Ca$^{2+}$ influx is essential for producing reactive oxygen species in macrophages (101, 102). Furthermore, KCa3.1 is responsible for the maintenance of hyperpolarization induced sustained calcium influx from CRAC in macrophages (86). Neutrophil granulocytes, the most prevalent phagocytic white blood cells in the blood rapidly respond to tissue damage
by degranulation, release of reactive oxygen species and subsequently phagocytosis of potential hazards. Upon tissue injury, activation of NADPH oxidase is followed by the production of superoxide anion and hydrogen peroxide, and subsequent degranulation and cell migration is regulated in a considerable extent by calcium. The intracellular calcium concentration \([\text{Ca}^{2+}]\), is mediated by TRPM2, TRPV channels and CRAC and dysfunction of these channels impairs effector functions of neutrophils (86). Besides the channels involved in \(\text{Ca}^{2+}\) signaling, other channels also influence neutrophil function. CFTR, a cAMP activated chloride channel is likely to be involved in the neutrophil bactericidal activity and consequently down-regulation of this channel affects neutrophil microbicidal function (103). The voltage-gated \(\text{H}^+\) channel Hv1 acts as a key regulator for cytosolic acid and superoxide anion production in neutrophils by regulating pH and so inhibition of this channel reduces phagocytic function (104).

2.2.1. Ion channels regulate the T cell mediated immune response

T cells express CRAC, Kv1.3 as well as KCa3.1 channels, which, during activation, co-localize in a structure that forms between an antigen-presenting cell (APC) and a lymphocyte, namely in the immune synapse (IS) (78, 79). In the IS, specific membrane proteins of APCs and T cells rearrange and segregate into the contact area between the two cells (105), creating the so called supramolecular activation cluster consisting of two concentric rings of molecule complexes. It is widely accepted that upon successful formation of the immune synapse, these channels are indispensable early factors in the \(\text{Ca}^{2+}\)-dependent activation pathways of the T cell (Fig. 2.4.) (80). In non-excitable cells, probably the most studied event involving ion channels is the \(\text{Ca}^{2+}\) signal occurring subsequently to the T cell receptor (TCR) activation. \(\text{Ca}^{2+}\) influx is associated with oscillations \([\text{Ca}^{2+}]\), that are generated by an intricate interplay of multiple channels, including \(\text{K}^+\), \(\text{Na}^+\), and \(\text{Cl}^-\) channels, that regulate \(V_m\) (85, 106). This initial signaling step of TCR activation results in the activation of phospholipase C-\(\gamma\) (PLC-\(\gamma\)). This enzyme catalyzes the cleavage of phosphatidylinositol 4,5-bisphosphate (PIP\(_2\)) into diacyl glycerol (DAG) and inositol 1,4,5-trisphosphate (IP\(_3\)). DAG is responsible for the activation of protein kinase C (PKC), which in turn phosphorylates several intracellular substrates. The other crucial component of this signaling cascade is the two-phase elevation of the intracellular \(\text{Ca}^{2+}\) concentration. IP\(_3\) is the key element in the initial \(\text{Ca}^{2+}\) influx: binding of IP\(_3\) to its receptors on the ER results in \(\text{Ca}^{2+}\) release from the endoplasmic stores. This in turn activates STIM1 on the membrane of the ER, which translocates to a region of the endoplasmic membrane where it can
activate Orai1 molecules. Orai1, as mentioned earlier forms the pore of CRAC channels, through which Ca\(^{2+}\) ions can flow into the cell, creating the second, prolonged increase in the cytosolic Ca\(^{2+}\) concentration (107, 108).

One of the consequences of the increased [Ca\(^{2+}\)], following TCR activation is membrane depolarization, which limits further Ca\(^{2+}\) influx by impairing the favorable electrochemical gradient to drive Ca\(^{2+}\) into the cytoplasm. Thus, lymphocytes as well as other immune cells require K\(^{+}\) channels that, by the efflux of K\(^{+}\), maintain a hyperpolarized membrane potential critical for sustaining the gradient for Ca\(^{2+}\) entry via Ca\(^{2+}\) release– activated Ca\(^{2+}\) (CRAC) channels. CRAC channels are responsible for the generation of Ca\(^{2+}\) currents in these cells (107, 109, 110), and the negative membrane potential is ensured by the two potassium channels.

Figure 2.4.: T cell activation is coupled to ion channel function

Upon antigen presentation from the APC, the orchestrated signaling cascade originating from the T cell receptor leads to opening ion channels as well as activation of secondary messengers. Ultimately, through calcium bursts, NFAT becomes active and gene transcription can be initiated (see details in text). TCR: T cell receptor; PTK: phosphotyrosin kinases; PLC: phospholipase C; IP3: inositol-1,3-triphosphate; CaM: calmodulin; Cn: calcineurin; NFAT: nuclear factor of activated T cell.

Interestingly, while the membrane potential of resting T cells is controlled primarily by Kv1.3 channels (~200-400 channels/cell), this function is partially taken over by KCa3.1 channels in activated cells (111).
Increase in $[\text{Ca}^{2+}]$ may activate intracellular pathways involving calmodulin as well as additional secondary messengers such as calcineurin. This phosphatase removes the inhibitor phosphates from the nuclear factor of activated T-cells (NFAT), allowing its dimerization and subsequently, nuclear translocation. This transcription factor can then bind to the promoter region of target genes (e.g. IL-2 gene) involved in cytokine production and proliferation of T lymphocytes (72, 80).

2.2.2. Role of potassium channels in autoimmunity

The first autoimmune disease that was described as being related to ion channels was myasthenia gravis (112, 113). Since then, as summarized recently by RamaKrishnan et al. (114), several other autoimmune syndromes have been credited to malfunction of ion channels. During autoimmune diseases, ion channels can become the targets of auto-antibodies (115, 116) that inhibit channel function. In contrast, in some disorders K^+ channels can become overexpressed on the surface of autoreactive effector cells. Taken together, ion channels may play a direct role in the autoimmune reaction itself, rather than only being the target molecules. Inhibitor auto-antibodies against ion channels have been observed in numerous diseases. It has been shown that in Guillain-Barré syndrome, antibodies against VGKC lead to prolonged action potential and ultimately disorders in neurotransmission in the peripheral nervous system (117). In MS, antibodies targeting the inward-rectifier channel Kir4.1 contribute to demyelination (118). In myasthenia gravis, antibodies are produced affecting the Kv1.4 channels in cardiomyocytes (119). Physiologically, these channels are regulators of the cardiac action potential and their prolonged inhibition leads to arrhythmia as well as heart failure. Lastly, auto-antibodies against both Kv1.3 and KCa3.1 have been described in primary biliary cirrhosis where they contribute to the abnormal B cell-mediated immune reaction (120).

Diseases traditionally considered autoimmune can also be triggered by mutations of certain ion channels. Probably the most notorious mutation of an ion channel in such context is the loss-of-function mutation of Kir6.2 in the neonatal form of type 1 diabetes mellitus. The regulatory SUR1 subunit of the channel is involved in the sensing of blood glucose levels in form of ATP, as ATP binding leads to closure of Kir6.2, which leads to depolarization, followed by opening of voltage-gated calcium channels and ultimately secretion of insulin. Mutations in the ATP-binding site of SUR1 lead to inability of closing the potassium channel, and thus ineffective insulin secretion (121, 122).
Upon stimulation of naïve T lymphocytes, they differentiate into central memory T cells (T_{CM}), and in case of prolonged antigen stimulation, into effector memory T cells (T_{EM}). Autoreactive effector T cells that display T_{EM} phenotype have been implicated in diseases such as rheumatoid arthritis (RA), type 1 diabetes mellitus and MS (114). As mentioned in section 2.1.1.2, Kv1.3 and KCa3.1 are the two potassium channels expressed in T cells. Both channels can be overexpressed in type 1 diabetes, leading to abnormal T cell activation patterns and eventually destruction of β cells of the Langerhans islets (123). Resting naïve, T_{CM} and T_{EM} cells independently of CD4⁺ or CD8⁺ phenotype express 200-300 Kv1.3 and 30 KCa3.1 channels per cell in average in their plasma membrane. Following activation, the number of Kv1.3 channels increases twofold while the number of KCa3.1 channels rises tenfold reaching an average of 500 channels per cell in naïve and T_{CM} cells. On the contrary, in T_{EM} cells the number of Kv1.3 reaches 1500 channels per cell after activation without any significant changes in the level of KCa3.1 (124). It was demonstrated that effector T_{EM} cells isolated from patients with autoimmune diseases show a K⁺ channel expression pattern can be regarded as Kv1.3-dominant compared to KCa3.1, whereas naïve or activated T_{CM} cells express slightly more KCa3.1 and less Kv1.3. (125, 126). Interestingly, the same Kv1.3 dominant channel phenotype has been shown in psoriasis and rheumatoid arthritis (127, 128). Because of this unique expression pattern, the activity of these autoreactive T_{EM} cells can be manipulated by the application of specific Kv1.3 channel blockers. Therefore, it is not surprising that selective targeting of Kv1.3 has attracted significant attention as a potential novel treatment strategy for autoimmune diseases (124).

KCa3.1 is postulated to play a substantial role in inflammatory bowel diseases as well, as KCa3.1^{−/−} as well as KCa3.1 inhibitor-treated mice exhibit more favorable disease conditions compared to wild-type mice (129, 130). However, human clinical trials involving KCa3.1 blocker Senicapoc® have failed in the recent years, as patients developed severe side effects such as exercise-induced asthma (130, 131).

Apart from Kv1.3 and KCa3.1, other potassium channels can also play a role in pathogenesis of autoimmune diseases. The two-pore potassium channels TASK1-3 are important for the activation and effector functions of T lymphocytes in vitro and in animal models of MS. Targeting this channel using inhibitors or knocking out the respective gene resulted in a significantly ameliorated course of disease, that was accompanied by a decreased activation of immune cells and less axonal damage compared to wild-type mice (114). KCa1.1 has been postulated to play a role in multiple diseases, which are collectively described in section 2.4.1.
2.3. Modes of physiological and in vitro T lymphocyte activation

The essential functions of adaptive immunity are to differentiate between the own antigens of the host and the foreign antigens through antigen presentation, to generate effective immune responses to counter pathogens and to create an effective immunological memory. T lymphocytes are highly potent cells of the adaptive immune system and are crucially important in the maintenance of immunological homeostasis. Rapid and specific activation through the TCR and its co-receptors CD4 and/or CD8 lead to the recruitment of numerous down-stream pathways, that ultimately result in T cell activation and proliferation, and subsequently lead to the differentiation into effector or memory cells (132, 133). Based on the TCR structure, it is possible to distinguish αβ T cells with α and β heterodimer TCR and γδ T cells with γ and δ subunits, that are considerably less common in the bloodstream than the αβ T cells. The αβ T cells can be further divided into subtypes based on their cell surface CD markers and their effector functions, the most important ones being CD4+ CD8- helper (T\textsubscript{H}) T cells, and CD4- CD8+ cytotoxic (T\textsubscript{C}) cells. In addition, there are regulatory or suppressor (T\textsubscript{reg}) T cells, which most commonly express a phenotype of CD4+ CD25+, but less prevalently CD8+CD25- T\textsubscript{reg} cells also exist. Depending on the cytokines produced, T\textsubscript{H} cells can be classified into further subpopulations. T\textsubscript{H1} type cells produce vital cytokines such as interferon-γ (IFN-γ) and tumor necrosis factor α (TNF-α) and augment mainly inflammatory and cytotoxic cell mediated immune processes. T\textsubscript{H2} cells mainly produce IL-4, IL-5, IL-6 and IL-10, which are essential for the activation of B lymphocytes, and thereby primarily facilitate humoral immune responses (134). Various other T cell subtypes, such as T\textsubscript{H3}, T\textsubscript{H9} and T\textsubscript{H17} cells have also been described. T\textsubscript{H3} cells include induced regulatory T cells, originating from naïve T cells, usually after oral consumption of antigens. They produce TGF-β that can inhibit activation of T\textsubscript{H1} and T\textsubscript{H2} cells (135). T\textsubscript{H9} effector cells produce IL-9 while T\textsubscript{H17} cells produce IL-17 physiologically, additionally they can play a significant role in autoimmune diseases (136-138).

Physiological T cell activation occurs upon contact with professional antigen presenting cells. The consequence of antigen presentation depends on the age and the stage of differentiation of the T cell, and also on the intensity and the duration of the stimulus (139). As mentioned above, it is well established that the co-localization of different signaling molecules forms an immunological synapase, which enhances the subsequent cellular response (79, 140). The molecules forming the immunological synapse on the T cell side include the TCR-CD3 complex together with co-activator molecules such as CD28 (141) and cell adhesion molecules such as CD40 ligand (142) or the CD-2 (143).
In concert with the Ca2+-dependent mechanisms detailed in section 2.2.1., signaling pathways not involving NFAT also induce the proliferation of T cells. The main signaling pathways involve secondary messenger molecules such as MAP kinase or Ras that can induce gene expression of transcription factors and messenger molecules that facilitate pathways resulting in cell proliferation (144, 145). Such pathways include the mammalian target of rapamycin (mTOR), which contributes to the activation of both translational and metabolic pathways, and also influences DNA synthesis (146, 147). The mTOR can be blocked indirectly using rapamycin, also known as sirolimus. Rapamycin, originally described as a macrolide type antibiotic, can effectively inhibit the FK506 binding protein (FKBP12), which in turn interacts with mTOR. Thus, rapamycin is a highly effective immunosuppressive drug, that is currently widely used in the treatment of kidney graft rejection and graft versus host disease (148).

![Figure 2.5: Mitogens are used to mimic physiological T cell activation](image)

The illustration shows the mechanism of action of mitogens detailed in this work: Antibodies against cell surface markers are indicated with α; PHA: phytohemagglutinin; PMA: phorbol-myristoil acetate; DAG: diacylglycerol; PKC: protein kinase C

For modeling of lymphocyte proliferation in vitro, scientists commonly apply polyclonal T-cell activators, mitogens, which are capable of activating T-lymphocytes independently of TCR specificity (Fig. 2.5.). These are applied to lymphocytes either from blood or from lymphoid tissues. The most commonly used mitogens include plant lectins, activating antibodies, phorbol esters, and lipopolysaccharides (149).
Although there are lectin-type carbohydrate binding molecules on the surface of animal cells, e.g. on liver cells, and a pathway leading to the activation of the complement system is also lectin-mediated, the mitogenic lectins used in laboratories originate from plants, mainly from *Fabaceae*. Phytohemagglutinin (PHA) is isolated from *Phaseolus vulgaris*, while concanavalin A (Con A) is found in *Canavalia ensiformis*. These lectins cross-link with the carbohydrate moieties of membrane glycoproteins (including the TCR and the CD3 molecule).

Another family of mitogens are T cell activating antibodies. T-cell activation signals can be evoked using antibodies designed primarily against TCR and CD3, but complete activation of the actual T cell pool is not achieved without additional stimulus, e.g. combination with antibodies against costimulatory receptors such as anti-CD2 or anti-CD28 (150). For optimal T cell activation, antibodies are to be immobilized or fixed to solid surfaces, secondary antibodies or even beads (151).

Other characteristic mitogens used in combination are phorbol 12-myristate 13-acetate (PMA) and the Ca\(^{2+}\) ionophore ionomycin. These substances can activate the T cell independently of the presence of antigen. PMA, which is an analog of DAG, can penetrate the cell membrane and then intracellularly leads to PKC activation. The ionophore permeabilizes the cell membrane and the ER for calcium, so its effect is on Ca\(^{2+}\) influx from the extracellular space and further intracellular Ca\(^{2+}\) increase through the CRAC channel activation through the store-operated calcium entry mechanism. The two routes together are sufficient for T cell proliferation (149).

Increased level of activation can be achieved using bacterial superantigens and lipopolysaccharides. It is characteristic of them that although they activate numerous T lymphocytes, far more than an average antigen, they do not affect every subtype directly as the other mitogens mentioned above. This group includes enterotoxins isolated from *Staphylococci* or TSST (toxic shock syndrome toxins) (149).

2.3.1. Ion channel inhibitors and rapamycin impair the T cell-mediated immune response

As discussed in chapter 2.2., ion channels including the CRAC, Kv1.3, KCa3.1, and KCa1.1 have been implicated to contribute to the differentiation and maturation of immune cells, recognition of foreign antigens, initiation of immune responses and even inducing apoptosis. Therefore, it is not surprising that both inhibitors of Kv1.3 and several KCa3.1 and CRAC inhibitors have been shown to have effects on T lymphocyte proliferation (details on Fig. 2.6.). Experimental results and observations have been found since 1984 that inhibitors of
ion channels reduce the degree of T cell proliferation (152). The first such results were non-selective K+$^+$ channel inhibitors, tetraethylammonium (TEA), 4-aminopyridine (4-AP) and quinidine. However, the use of selective modulators of these channels could open the way for novel treatment modalities to relieve the “plague” of millions with autoimmune disorders, which currently have no definitive treatment.

Kv1.3 is an excellent candidate for immunotherapy, as it is expressed predominantly in astrocytes, T lymphocytes and oligodendrocytes (153) in contrast to CRAC and KCa3.1 channels, that are widely distributed and thus their blockers may have more side effects. Successful experimental trials employing Kv1.3 blockers have already been performed in animal models of autoimmune diseases such as MS (78), type 1 diabetes mellitus or rheumatoid arthritis (124). Dalazatide, which is a synthetic peptide derivative of the ShK toxin isolated from sea anemone *Stichodactyla helianthus*, is a specific inhibitor of the voltage-gated Kv1.3 potassium channel (124, 154). *In vivo* studies using dalazatide have shown that drug treatment inhibited the delayed-type hypersensitivity response by suppression of T$^\text{EM}$ cells, but had no effect on naïve T cells or T$^\text{CM}$ cells (155). In the current phase 1B study, dalazatide improved psoriatic skin lesions by inhibiting cytokine secretion and propagation of inflammation. It is also worth noting that treatment reduced mediators of inflammation in the blood and decreased the expression of T cell activation markers, and even more notably, was not accompanied by any serious adverse effects (156).

T lymphocyte activation can also be inhibited without profoundly affecting the Ca$^{2+}$ signaling. Rapamycin, as mentioned in the previous chapter, binds to the mTOR (mammalian target of rapamycin) complex intracellularly through FKBP12 and inhibits its function (157). TOR is normally involved in cell growth, ribosomal synthesis, transcription and translation initiation processes, and is indispensable for the reorganization of actin cytoskeleton (158). Most of these processes are controlled by the activation of the S6- and the eIF-4E complexes. As opposed to tacrolimus (FK-506), a close structural homolog, rapamycin does not inhibit the function of calcineurin so Ca$^{2+}$-mediated cell activation processes can largely remain intact.
The anti-proliferative effects of different ion channel blockers on T cells have already been described in several experiments and reviews. However, there is an obvious variability in the results of previous studies related to this topic. For example, the average blocker concentration necessary for 50% inhibition of cell proliferation ranged from $1 \times K_d$ concentration to $1000 \times K_d$ in case of Kv1.3 channel blockers, or from $1.5 \times K_d$ to $275 \times K_d$ in the case of the KCa3.1-blocker TRAM-34, where K_d is the drug concentration required to block half of the relevant channels in electrophysiological experiments (78, 159-162). A more detailed comparison can be appreciated on Fig 2.6., summarizing the proliferation inhibiting ion channel inhibitor concentrations for Kv1.3, KCa3.1 and CRAC channels, obtained by an extensive PubMed literature search (78, 123, 159-161, 163-179). Moreover, TRAM-34 inhibition alone had no effect on the proliferation of mixed T cell populations (163). The underlying mechanism responsible for this variability has not been systematically addressed before, but must be largely due to the different methods of T cell stimulation and different doses of mitogens applied in these studies.

Figure 2.6.: Concentration of ion channel inhibitors needed for 50% inhibition of proliferation

The black dots show IC_{50} values from altogether 23 articles regarding ion channel inhibitors affecting T cell proliferation. The red dots show the mean concentration of Kv1.3, KCa3.1 and CRAC inhibitors, error bars indicate S.E.M. ($111.8 \times K_d \pm 63.38$; $54.3 \times K_d \pm 37.29$; $14.7 \times K_d \pm 13.07$, respectively).
2.4. Fibroblast-like synoviocytes are key effectors in rheumatoid arthritis

The previous sections have mainly covered ion channels in various immune cells under physiological and pathological conditions. However, ion channels of tissue effector cells can also be crucial for pathogenesis of certain autoimmune diseases. Normally, diarthrodial joints are characterized by the presence of a layer cartilage that lines the opposing bony surfaces, together with a lubricating synovial fluid within the synovial cavity. The capsule of a diarthrodial joint is divided into two main compartments: the supporting sub-intimal layer which contains vessels, nerves and a loose connective tissue as well as the superficial, thin intimal lining layer. The latter superficial layer is in contact with the intra-articular cavity and produces lubricious synovial fluid. The main cell types occupying the intimal lining are distributed in relatively equal proportions. Type A, or macrophage-like synovial cells are the main phagocytotic cells of this tissue and type B, or fibroblast-like synoviocytes (FLS) are involved in the secretion of extracellular matrix components such as hyaluronic acid, various collagens and aggrecan (Fig. 2.7.) (180-182).

Healthy FLS
- Compose the synovial lining
- Maintain the extracellular matrix (ECM)
- Secrete joint lubrication

FLS during RA (RA-FLS)
- Uncontrolled growth
- Release pro-inflammatory cytokines, chemokines
- Degrade the ECM
- Highly invasive
 - Level of invasiveness is correlated with joint damage

Figure 2.7.: Fibroblast-like synoviocytes develop a pathological phenotype during rheumatoid arthritis

The illustration above summarizes the properties of physiological FLS (left size) versus pathological “tumor-like” RA-FLS (right side).

Rheumatoid arthritis (RA) affects nearly 1% of the western population and is associated with reduced quality of living, disability, and reduced survival as it involves not only diarthrodial joints but can also target vital internal organs, including the heart and lungs (183-185). The hyperplastic synovial tissue in RA, also called pannus, has unique characteristics and like a
cancer invades and destroys cartilage and bone. While the RA synovial tissue degeneration is incompletely understood, the joint destruction mediated by it correlates with increased disease severity and unfavorable outcome. FLS that are normally nurturing the surrounding tissues and supporting the extracellular matrix can become highly invasive in RA. FLS in RA (RA-FLS) have been implicated in disease pathogenesis as they exhibit a transformed “tumor-like” phenotype (Fig. 2.7.) with increased invasiveness and production of proteases and of various pro-inflammatory and pro-angiogenic factors (180, 181, 186). FLS have a key role in the formation of the pannus from RA synovium (180), and the in vitro and ex vivo invasiveness of FLS correlate with the histological and radiographic damage in animal models of RA (187, 188).

In the last decades, management of RA has started to advance with the development of new treatments, however disease remission is rarely achieved and most patients only achieve mild to modest improvement (189). Furthermore, current therapies significantly impair immune responses rendering patients more susceptible to infections and cancer (190). Therefore, novel therapeutic options that lead to pronounced improvement or remission without inducing immunosuppression are needed.

2.4.1. Ion channels influence the phenotype of RA-FLS

RA-FLS and FLS from arthritic rats express functional KCa1.1 (detailed in section 2.1.1.) as the major K+ channel in their plasma membrane (191, 192). Blocking the function of KCa1.1 pore-forming α subunits in these FLS with paxilline inhibits their invasiveness and stops disease progression in animal models of RA (191, 192). However, paxilline is a lipophilic small molecule that blocks all KCa1.1 channels found in major organs, regardless of channel subunit composition (49, 193, 194), and can cross cell membranes as well as the blood-brain barrier; it therefore induces severe side effects such as tremors, incontinence, and hypertension (195-197). The molecular mechanism by which inhibiting KCa1.1 leads to inhibition of FLS invasiveness has remained unknown.

Besides KCa1.1, the literature so far demonstrated the presence of both an inward L-type calcium current and an outward voltage-gated delayed rectifier potassium current, of which KCa1.1 is a major constituent, in cultured rabbit intimal synoviocytes. The same channels, however, have not been described since in human FLS. FLS are known to express other ion channels, including a vast variety of members of the TRP family such as TRPV1, TRPV2,
TRPC1, TRPM3, and TRPM7, but their involvement in FLS function is still not fully understood (illustrated in Fig. 2.8.) (198). FLS expression of the extracellular matrix degradation enzyme matrix metalloproteases (MMPs) MMP-2 and MMP-3, two key mediators of invasion and joint damage, was significantly reduced by TRPV2 stimulation. These observations suggest that TRPV2 does not necessarily interfere with FLS migration but may instead disturb invasion and joint damage via interfering with an effector pathway such as MMP expression or cell activation (198). TRPM7 is also upregulated in RA-FLS compared to control and it was suggested that antagonists of TRPM7 channels may increase RA-FLSs apoptosis in vitro (199).

Figure 2.8.: *The phenotype of FLS highly depends on ion channels*

The diagram shows the key ion channels involved in regulation of FLS activation. The channels on the left side augment, whereas channels on the right side suppress FLS activation.

Also, α7nAChR and its dupα7 variant are expressed in RA synovium, where they may play a critical role in regulating inflammation and α7nAChR agonists reduced tumor necrosis factor α–induced IL-6 and IL-8 production by FLS (200, 201). Aquaporin 1 and 9 are expressed, too, in RA-FLS, and are involved in edema formation in osteoarthritis (OA) and RA. Lastly, ASIC3 is also expressed in RA-FLS, regulating pH responsiveness and controlling release of the extracellular matrix polysaccharide hyaluronan (202).
In conclusion, all the ion channels above may be potential therapeutic targets not only to treat the symptoms of pain associated with diseases of the joint, but more significantly, to attenuate the underlying causes of such diseases.

2.4.2. *KCa1.1* as a possible therapeutic target

In many excitable cells, *KCa1.1* channels are localized in plasma membrane complexes with voltage-gated Ca\(^{2+}\) channels; their activation via Ca\(^{2+}\)-entry causes cell hyperpolarization which prevents further Ca\(^{2+}\)-influx by closing proximal Ca\(^{2+}\) channels, thereby providing a negative feedback regulatory mechanism for Ca\(^{2+}\)-entry into the cell. In smooth muscle, proximity of *KCa1.1* channels to sarcoplasmic reticulum Ca\(^{2+}\) release sites provoke a similar negative-feedback loop. However, in non-excitable cells, *KCa1.1* channels supply positive-feedback regulation for Ca\(^{2+}\)-entry by providing K\(^{+}\)-efflux, thereby stimulating Ca\(^{2+}\)-influx. Moreover, they can provide K\(^{+}\) flux in epithelial cells that facilitates transmembrane flux of chloride along with water (1, 4, 203).

Because of their functional properties and extensive pattern of expression, *KCa1.1* channels regulate a wide range of processes in animals: they control smooth muscle contractility, neuronal excitability, neurotransmitter release, endocrine secretion, epithelial function, and activation or migration of non-excitable cells like fibroblasts, among other putative physiologic roles (e.g. in cell migration). Therefore, it is expected that direct pharmacological modulation of *KCa1.1* channels, either their activation or inhibition, would present a plethora of therapeutic opportunities (204).

Development of *KCa1.1* channel agonists which target smooth muscle has been well explored, and clinical indications could include hypertension, erectile dysfunction, asthma, dysmenorrhea, and overactive bladder. In smooth muscles, *KCa1.1* channels are coupled to ryanodine receptors (RyR) and often by the auxiliary β1 subunits (7, 205, 206). Activation of *KCa1.1* channels by RyR-mediated Ca\(^{2+}\) sparks potentiates a large outward K\(^{+}\) current that hyperpolarizes the membrane potential of smooth muscle cells, decreases Ca\(^{2+}\)-influx and relieves smooth muscle constriction. Direct and indirect *KCa1.1* channel inhibition improves smooth muscle contractility both *in vivo* and *in vitro*, whereas activation of *KCa1.1* channels in some smooth muscle tissues has a marked relaxing effect (204). Another potential application
of a KCa1.1 agonist would be activating channels in the nephrons of the kidney to stimulate K$^+$ secretion and thus limit plasma hyperkalemia in certain conditions (207).

Obviously, using activators of KCa1.1 channels in neuronal tissue as a therapeutic approach must be approached with caution (208, 209). Mutations enhancing KCa1.1 activity can cause generalized epilepsy and paroxysmal dyskinesia, as well as spontaneous seizures and temporal lobe epilepsy. These potential side effects might be avoided by limiting blood-brain barrier penetration of the drug, or by focusing on activation of KCa1.1 channels assembled with unique beta subunit compositions in the target tissues that are different from KCa1.1 channels. The only possible benefit of a neuronal KCa1.1 agonist would be in the peripheral nervous system to reduce electrical activity of pain pathways and provoke analgesia. However, these therapeutics are still theoretical and require more robust pharmacological tools than currently available.

Development of KCa1.1 channel blockers could also be of therapeutic benefit in certain diseases, such as rheumatoid arthritis, glioblastoma multiforme, hypotensive crisis, and even glaucoma. However, a more cautious strategic approach is required than with a KCa1.1 channel agonist, to spare the countless physiological functions of this channel. For example, systemic exposure to the KCa1.1 channel inhibitor paxilline caused smooth muscle hyperexcitability, resulting in vasoconstriction and hypertension. Also, exposure in the central nervous system resulted in impaired motor functions and cerebellar ataxia, disrupted circadian rhythm, generalized and temporal epilepsy, seizures (210, 211). Moreover, disruption of KCa1.1 channel activity in the kidney could result in decrease of K$^+$ secretion and subsequent hyperaldosteronism, further contributing to manifest hypertension. Lastly, a KCa1.1 inhibitor could also lead to spontaneous urinary bladder activity and thus uncontrolled urination.

Therefore, if KCa1.1 channels are to be targeted with an inhibitor, care must be taken to prevent broad exposure of KCa1.1 channel containing tissues to drug during dosing. Possible ways to overcome this hurdle would be application of an agent locally, directly onto the target, or synthesizing a small molecule modulator with metabolic liabilities to ensure fast metabolism and rapid clearance, or, using the drug in acute therapy rather than chronically (204). Finally, as the ancillary subunits of KCa1.1 are restricted to certain tissues, it may be possible to design inhibitors (e.g. antibodies) that only target the channel coupled to a certain regulatory subunit to minimize cross-reaction with different channel phenotypes in other tissues.
3. AIMS OF THE STUDY

As mentioned previously, voltage-gated ion channels play a key role in the regulation of different inflammatory cells, and thus in immune responses in general. We approached the functional aspects of potassium channels of the inflammatory cells from two directions.

Firstly, as detailed in the introduction, we approached the heterogeneity in the anti-proliferative effects of different ion channel blockers on T cells (Fig. 2.6.). The underlying mechanism responsible for this phenomenon was still unclear, although it could be accounted largely to the different methods of T cell stimulation. Therefore, our aim was to elucidate this phenomenon by comparing the anti-proliferative effects of ion channel blockers and rapamycin on lymphocytes cultured and activated under identical experimental conditions. Moreover, considering our results at various mitogen concentrations, we propose a theory to explain the underlying mechanisms of our observations.

Furthermore, we approached ion channel function in autoimmune diseases in regards of rheumatoid arthritis and more specifically RA-FLS. The RA-FLS express functional KCa1.1 as the major K⁺ channel at their plasma membrane. Paxilline, a lipophilic small molecule that blocks all KCa1.1 channels found in major organs, regardless of channel subunit composition, it therefore induces severe side effects such as tremors, incontinence, and hypertension. As detailed in section 2.4.2, despite the drawbacks of the unspecific block of KCa1.1 by paxilline, the channel remains an attractive target for therapy, partly because the regulatory subunits of KCa1.1 have restricted tissue distribution and affect channel pharmacology. To date, however, no KCa1.1 β subunit has been described in RA-FLS. Thus, our aim was to elucidate whether RA-FLS express any accessory β subunits, and whether expression of these subunits have any functional implications in these cells.
4. MATERIALS AND METHODS

4.1. Reagents

All reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA), unless stated otherwise.

4.2. Isolation and culture of peripheral blood mononuclear cells

PBMCs were isolated from heparin-treated (heparin from TEVA Pharmaceutical Industries Ltd., Debrecen, Hungary) peripheral blood of healthy volunteers, under appropriate Ethical Committee approved protocol (DE OEC RKEB/IKEB 3989-2013). First, Hanks’ Balanced Salt Solution (HBSS) was used to dilute the blood in 1:1 ratio, then the blood was centrifuged with the Ficoll-Hypaque density gradient (GE Healthcare Life Sciences, Little Chalfont, UK) at 1400 rpm for 30 minutes at room temperature. Next, the cloudy mononuclear cell layer was collected and washed two times using 50 ml HBSS, ultimately obtaining the PBMC population used in our experiments.

In n=4 preliminary experiments we used purified CD3+ T lymphocytes obtained by negative selection using RosetteSep™ (Stem Cell Technologies™, Vancouver, Canada) technique. This kit targets non-T cells for removal with antibodies recognizing specific cell surface markers, thus allowing negative selection of T lymphocytes. Using this technique, we could enrich CD3+ T cells to >95% in the population.

Following carboxyfluorescein succinimidyl ester staining (CFSE staining, see in section 4.5.3.) and activation, cells were cultured in 24 or 96 well plates at a cell density of 10^6 cells/ml in standard RMPI-1640 medium (Sigma-Aldrich Co., Saint Louis, MO, USA) supplemented with 15% HEPES buffer (Sigma-Aldrich Co., Saint Louis, MO, USA), 10% FBS, 10 IU/ml penicillin, 0.1g/ml streptomycin and 2 mg/ml L-glutamine at 37°C in humid atmosphere with 5% CO2. In each experiment, every plate was incubated for 5 days and was supplemented with fresh culture medium after 72 hours. After harvesting, cells underwent propidium iodide (PI) staining and subsequent FACS analysis.

4.2.1. Selective stimulation of T lymphocytes

At the beginning of the study, we performed preliminary experiments regarding our preferred method of stimulation. Four widely used and well-known lymphocyte stimulation techniques were compared using CFSE dilution assay on PBMCs: PHA stimulation; PMA
combined with ionomycin; soluble anti-CD3 antibody alone and in combination with anti-CD28. Moreover, we measured whole-cell K\(^+\) currents, current density and biophysical characteristics of the Kv1.3 channel on representative populations of the stimulated T cells. We found the anti-CD3 and anti-CD28 stimulation was most reproducible (shown in 5.1.1.) and thus, we used this approach in our further experiments.

We applied 200 nM – 3 µM soluble anti-CD3 antibodies combined with a constant amount of 1 µg/ml soluble mouse anti-human CD28 in n=8 experiments for specific T cell stimulation in the PBMC and lymphocyte cultures. We enhanced the rate of stimulation by adding the soluble antibodies to the bottom of the culture well, left it to bind to the plate surface for 30 minutes at room temperature, then cells were added to the wells in culture medium suspension. In n=8 experiments we used superparamagnetic bead-conjugated anti-CD3 and anti-CD28 monoclonal antibodies (Life Technologies Co., Waltham, MA, USA), which we found more user-friendly than the soluble antibodies. The pairwise comparison of soluble mitogens and bead-mediated stimulation Student’s t-test showed no significant difference between the divided cell populations with the two methods of stimulation (p=0.336). The beads are also known to provide adequate cross-linking, thus inducing a relatively high level of activation (151), in contrast to stimulation with soluble anti-CD3 and anti-CD28, that resulted in a higher amount of variability in our measurements (212). The bead-to-cell ratio in these cases was 1:200 - 1:1 (see Results).

4.2.2. Applying pharmacological inhibitors of T lymphocyte ion channels

To block the Kv1.3 channel, we used the peptide-type toxin AnTx, previously pharmacologically assessed by our lab (63). KCa3.1 channels were blocked using TRAM-34 (161) and the CRAC channels were inhibited by 2-Apb (213). We used the ion channel inhibitors at two different concentrations: the lower was equal to the dissociation constant, or \(1\times K_d\), of ion channel inhibition of the blockers and the higher was 10 times the \(K_d\) \((10\times K_d)\). In the case of AnTx, we used 500 pM \((1\times K_d)\) and 5 nM (63). In the case of 2-Apb, the \(K_d\) for lymphocytes is 5 µM, and the other concentration used was 50 µM \((10\times K_d)\). Finally, the KCa3.1 blocker TRAM-34 was used in 20 nM \((1\times K_d)\) and 200 nM \((10\times K_d)\) concentrations. In the case of rapamycin the lowest concentration reported in the literature (214, 215) to inhibit T cell proliferation by 50% \((1\times IC_{50} = 20 \text{ pM})\) was used as the lower dose and 200 pM \((10\times IC_{50})\) was used as the higher dose.
4.3. CFSE dilution assay and PI staining

We applied the CFSE dilution assay, originally described in 1994 by Lyons et al (216-218), to measure the rate of cell proliferation. The staining procedure can be summarized as following: the membrane-permeable, but non-fluorescent carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) binds to structural proteins within the cell, and is subsequently cleaved by nonspecific esterases to become the membrane non-permeable and fluorescent CFSE. Upon cell division, the amount of CFSE is gradually halved in the daughter cells, thus the number of division cycles the cells have undergone can be determined. In our case, the lymphocytes divided usually every 24-48 hours, leading to 4-6 measurable cycles at the end of our experiments.

The final concentration of CFDA-SE (CellTrace™ CFSE Cell Proliferation Kit, Life Technologies Co., Waltham, MA, USA) in our experiments was 1µM that led to a 100-to-1000-fold increase in the fluorescence intensity of the measured cells over the basal autofluorescence of unstained cells. After adding CFDA-SE, we incubated the PBMCs or T lymphocytes for 15 min at room temperature, then for 20 min at 37°C. Lastly, the cells were washed once with phosphate buffer solution (PBS). We took caution that the CFSE-stained cells remain hidden from excess light during our experiments. The cellular fluorescence after CFSE staining was ultimately recorded by flow cytometry.

PI staining was performed at the end of the 5-day incubation period. Therefore, we harvested and washed the cells once using HBSS, then added PI to the cell suspension to achieve 1 µg/ml final concentration. Cells were mixed gently with PI and then incubated in the dark for 5 minutes at room temperature.

4.4. Flow cytometry experiments

The flow cytometry measurements on PBMCs and T lymphocytes were performed on BD FACScan™ and Facs Array™ flow cytometers. We measured the light scatters, namely the forward scatter (FSC) and side scatter (SSC) and the fluorescence intensity on green and red channels. Gate setting for lymphocytes is shown in Fig. 5.2.A, and the gating of viable cells is represented in Fig. 5.4.A and B. The sheath fluid consisted of 1x PBS. Lymphocytes were selected from mixed cell populations of PBMC by their light scatter profile on FACS analysis.
Cell proliferation was measured based on the declining CFSE intensity in the green channel (Fig. 5.1B.). Division index (DI) was used as the indicator of proliferation and was calculated by the following formula:

$$ DI = \left(\frac{\sum_{k=1}^{n} A_k}{\sum_{k=0}^{n} A_k} \right) $$

where k is the division cycle number (i.e. generation number) of cells, and A_k is the cell number in the k^{th} division cycle according to Fig. 5.1.B.

When performing the PI staining, the flow cytometer settings were adjusted to a negative control tube containing unstained cells. PI fluorescence intensity was measured in the red channel, because samples were co-stained with CFSE.

In case of RA-FLS, detection of the α subunit of KCa1.1 and of CD44, podoplanin, cadherin 11 and MMP-2 was performed as previously described (192, 219, 220) using antibodies listed in Table 1. Cells were treated with brefeldin A (eBioscience, San Diego, CA, USA) for 6 h before detection of intracellular MMP-2. Cells were permeabilized with 0.5% saponin for detection of intracellular epitopes. Data was acquired by a Canto II flow cytometer (BD Biosciences, San Jose, CA) using BD FACSDiva and analyzed using FlowJo (Treestar, Ashland, OR). Alternatively, live CD44$^{\text{high}}$ and CD44$^{\text{low}}$ cells were sorted under sterile conditions using a FACSariaII flow cytometer (BD Biosciences) and immediately used for invasion assays.
<table>
<thead>
<tr>
<th>Target</th>
<th>Host</th>
<th>Vendor (catalog number; manufacturer location)</th>
<th>Conjugation</th>
<th>Clone</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary antibodies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actin</td>
<td>Rabbit</td>
<td>Sigma-Aldrich (A2066; St. Louis, MO, USA)</td>
<td>–</td>
<td>–</td>
<td>WB</td>
</tr>
<tr>
<td>Actin</td>
<td>Mouse</td>
<td>Sigma-Aldrich (A3853)</td>
<td>–</td>
<td>AC-40</td>
<td>WB</td>
</tr>
<tr>
<td>Cadherin-11</td>
<td>Mouse</td>
<td>Thermo Fisher Scientific (MA1-06306; Rockford, IL, USA)</td>
<td>–</td>
<td>16A</td>
<td>FC</td>
</tr>
<tr>
<td>CD44</td>
<td>Mouse</td>
<td>Abcam (ab187571; Cambridge, MA, USA)</td>
<td>Alexa Fluor 488</td>
<td>MEM85</td>
<td>FC, EP</td>
</tr>
<tr>
<td>KCa1.1α</td>
<td>Mouse</td>
<td>Antibodies, Inc. (NeuroMab, 75-022; UC Davis/NIH NeuroMab Facility, Davis, CA, USA)</td>
<td>–</td>
<td>L6/60</td>
<td>WB</td>
</tr>
<tr>
<td>KCa1.1α</td>
<td>Rabbit</td>
<td>EMD Millipore (AB5228; Billerica, MA, USA)</td>
<td>–</td>
<td>–</td>
<td>FC</td>
</tr>
<tr>
<td>KCa1.1β1</td>
<td>Rabbit</td>
<td>Novus Biologicals (NBP1-33484; Littleton, CO, USA)</td>
<td>–</td>
<td>–</td>
<td>WB</td>
</tr>
<tr>
<td>KCa1.1β2</td>
<td>Mouse</td>
<td>Antibodies, Inc. (NeuroMab, 75-087; UC Davis/NIH NeuroMab Facility)</td>
<td>–</td>
<td>N53/32</td>
<td>WB</td>
</tr>
<tr>
<td>KCa1.1 pan-β3</td>
<td>Rabbit</td>
<td>Abcam (ab137041)</td>
<td>–</td>
<td>EPR9543(B)</td>
<td>WB</td>
</tr>
<tr>
<td>KCa1.1 β3a, βc, βd, βe</td>
<td>Mouse</td>
<td>Rockland Immunochemicals (200-301-E96; Limerick, PA, USA)</td>
<td>–</td>
<td>S40B-18</td>
<td>WB</td>
</tr>
<tr>
<td>KCa1.1β4</td>
<td>Mouse</td>
<td>Antibodies, Inc. (NeuroMab, 75-086; UC Davis/NIH NeuroMab Facility)</td>
<td>–</td>
<td>L18A/3</td>
<td>WB</td>
</tr>
<tr>
<td>MMP-2</td>
<td>Mouse</td>
<td>BioLegend (634802; San Diego, CA, USA)</td>
<td>–</td>
<td>F14P4D3</td>
<td>FC</td>
</tr>
<tr>
<td>Podoplanin</td>
<td>Rat</td>
<td>BioLegend (337003)</td>
<td>Phycoerythrin</td>
<td>NC-08</td>
<td>FC</td>
</tr>
<tr>
<td>Secondary antibodies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse IgG</td>
<td>Goat</td>
<td>LI-COR Biosciences (926-32210; Lincoln, NE, USA)</td>
<td>Infrared-800</td>
<td>–</td>
<td>WB</td>
</tr>
<tr>
<td>Mouse IgG1</td>
<td>Goat</td>
<td>Thermo Fisher Scientific (A-21127)</td>
<td>Alexa Fluor 555</td>
<td>–</td>
<td>FC</td>
</tr>
<tr>
<td>Rabbit IgG</td>
<td>Donkey</td>
<td>LI-COR Biosciences (926-68023)</td>
<td>Infrared-680</td>
<td>–</td>
<td>WB</td>
</tr>
<tr>
<td>Rabbit IgG</td>
<td>Goat</td>
<td>Abcam (ab150079)</td>
<td>Alexa Fluor 647</td>
<td>–</td>
<td>FC</td>
</tr>
</tbody>
</table>

Table 1. Characteristics of the antibodies used for this study.
EP electrophysiology, FC flow cytometry, IgG immunoglobulin G, KCa calcium-activated potassium channel, MMP matrix metalloproteinase, WB Western blot analysis
4.5. Measurement of secreted cytokine concentration

Culture supernatants of human peripheral blood mononuclear cells (n=3) were harvested five days after application of mitogens and ion channel blockers. Cytokine sandwich enzyme-linked immunosorbent assay (ELISA) was used to specifically detect and quantitate the concentration of soluble cytokines, namely IL-10 and IFN-γ. The level of these cytokines in the supernatant was measured by OptEIA kits (BD Biosciences, Franklin Lakes, NJ, USA), using duplicates, according to manufacturer’s instructions.

4.6. Culturing RA-FLS

FLS from 14 patients with RA and 4 patients with osteoarthritis (OA), defined according to the criteria of the American College of Rheumatology (221), were purchased from Asterand (Detroit, MI) or collected as described (222, 223) under the appropriate Institutional Review Board (IRB) approved protocols (Table 2). Cells were harvested for future experiments between passages 4 and 11; the FLS were cultured in DMEM (Life Technologies, Grand Island, NY) supplemented with 10 IU/ml penicillin, 0.1g/ml streptomycin, 1 mM sodium pyruvate, 2 mg/ml L-glutamine, and 10% FBS.
<table>
<thead>
<tr>
<th>Donor</th>
<th>Diagnosis</th>
<th>Sex</th>
<th>Ethnicity</th>
<th>Disease duration (years)</th>
<th>RF</th>
<th>Medications</th>
<th>Origin of cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA-1</td>
<td>RA</td>
<td>Female</td>
<td>White</td>
<td>3</td>
<td>+</td>
<td>NSAID</td>
<td>A</td>
</tr>
<tr>
<td>RA-2</td>
<td>RA</td>
<td>Male</td>
<td>Hispanic</td>
<td><1</td>
<td>+</td>
<td>Prednisone, DMARD</td>
<td>A</td>
</tr>
<tr>
<td>RA-3</td>
<td>RA</td>
<td>Female</td>
<td>White</td>
<td><1</td>
<td>+</td>
<td>NSAID</td>
<td>A</td>
</tr>
<tr>
<td>RA-4</td>
<td>RA</td>
<td>Female</td>
<td>White</td>
<td>12</td>
<td>+</td>
<td>NSAID, prednisone</td>
<td>A</td>
</tr>
<tr>
<td>RA-5</td>
<td>RA</td>
<td>Female</td>
<td>Hispanic</td>
<td>2</td>
<td>+</td>
<td>DMARD, NSAID</td>
<td>FITDP</td>
</tr>
<tr>
<td>RA-6</td>
<td>RA</td>
<td>Female</td>
<td>White</td>
<td>21</td>
<td>+</td>
<td>Prednisone, DMARD</td>
<td>FITDP</td>
</tr>
<tr>
<td>RA-7</td>
<td>RA</td>
<td>Female</td>
<td>White</td>
<td>30</td>
<td>+</td>
<td>Prednisone, DMARD</td>
<td>FITDP</td>
</tr>
<tr>
<td>RA-8</td>
<td>RA</td>
<td>Female</td>
<td>White</td>
<td>20</td>
<td>+</td>
<td>Etanercept, prednisone</td>
<td>FITDP</td>
</tr>
<tr>
<td>RA-9</td>
<td>RA</td>
<td>Female</td>
<td>White</td>
<td>21</td>
<td>+</td>
<td>Leflunomide, etanercept, prednisone</td>
<td>FITDP</td>
</tr>
<tr>
<td>RA-10</td>
<td>RA</td>
<td>Male</td>
<td>White</td>
<td>15</td>
<td>+</td>
<td>NSAID, prednisone, adalimumab</td>
<td>FITDP</td>
</tr>
<tr>
<td>RA-11</td>
<td>RA</td>
<td>Female</td>
<td>African American</td>
<td>11</td>
<td>+</td>
<td>Hydroxychloroquine, prednisone</td>
<td>FITDP</td>
</tr>
<tr>
<td>RA-12</td>
<td>RA</td>
<td>Male</td>
<td>White</td>
<td>>10</td>
<td>+</td>
<td>Etanercept</td>
<td>FITDP</td>
</tr>
<tr>
<td>RA-13</td>
<td>RA</td>
<td>Female</td>
<td>Hispanic</td>
<td>>10</td>
<td>+</td>
<td>Methotrexate, prednisone</td>
<td>FITDP</td>
</tr>
<tr>
<td>RA-14</td>
<td>RA</td>
<td>Female</td>
<td>White</td>
<td>3</td>
<td>+</td>
<td>Prednisone, methotrexate</td>
<td>FITDP</td>
</tr>
<tr>
<td>OA-1</td>
<td>OA</td>
<td>Female</td>
<td>White</td>
<td>12</td>
<td>−</td>
<td>None</td>
<td>A</td>
</tr>
<tr>
<td>OA-2</td>
<td>OA</td>
<td>Male</td>
<td>White</td>
<td>16</td>
<td>−</td>
<td>None</td>
<td>A</td>
</tr>
<tr>
<td>OA-3</td>
<td>OA</td>
<td>Male</td>
<td>White</td>
<td>25</td>
<td>N/A</td>
<td>None</td>
<td>FITDP</td>
</tr>
<tr>
<td>OA-4</td>
<td>OA</td>
<td>Male</td>
<td>White</td>
<td>78</td>
<td>N/A</td>
<td>None</td>
<td>FITDP</td>
</tr>
</tbody>
</table>

Table 2. Characteristics of the subjects who donated FLS for this study.
DMARD: disease-modifying antirheumatic drug, A: Asterand, FITDP: Feinstein Institute Tissue Donation Program, N/A: not available, NSAID: non-steroidal anti-inflammatory drug, OA: osteoarthritis, RA: rheumatoid arthritis, RF: rheumatoid factor. Patients with RA were 58 ± 10 years old, and patients with OA were 57 ± 5 years old.
4.7. Reverse transcription (RT) and quantitative polymerase chain reaction (qPCR)

Total RNA was isolated from approximately 5×10^5 cells using TRIzol (Life Technologies). Reverse transcription was performed with Superscript III reverse transcriptase and random hexamer primers (Life Technologies), according to the manufacturer's protocol. The resulting cDNA was used as a template for qPCR primers (Table 3.) designed from the National Institutes of Health qPrimerDepot (http://primerdepot.nci.nih.gov/), or designed manually and tested by PrimerBlast (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). Amplicon sizes were between 70 and 250 bp in all cases. qPCR reactions were conducted in final volumes of 10 µL using the following components: diluted cDNA (1:10) 4 µL; and oligo forward and reverse primers (2.5 µM each) in 6 µL of iTAQ SYBR Green supermix (Bio-Rad, Hercules, CA). Reactions were run in a ViiA™ 7 Real-Time PCR System (Life Technologies), detecting the accumulation of the fluorescent signal. The cycling conditions were: 20 s at 95°C, 40 cycles at 95°C for 1 s and 60°C for 20 s, 95°C for 15 s, 60°C for 1 min, and a gradient from 60°C to 95°C for 15 min. The results were analyzed using the ViiA™ 7 Software.

<table>
<thead>
<tr>
<th>Subunit</th>
<th>Accession number</th>
<th>Sense (forward) 5'-3'</th>
<th>Antisense (reverse) 3'-5'</th>
<th>bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>NM_002247</td>
<td>GCTCAAGTACCTGTGGACCG</td>
<td>CTGGTTTGAGAGTGCCATCC</td>
<td>104</td>
</tr>
<tr>
<td>β1</td>
<td>NM_004137</td>
<td>CTGTACCACACGGAGGACAC</td>
<td>GCTCTGACCTTCTCCACGTC</td>
<td>107</td>
</tr>
<tr>
<td>β2a</td>
<td>NM_181361</td>
<td>ATTAAGGGTGGCTTTTGAGG</td>
<td>GTTGGGTCAGGCTCCTTTT</td>
<td>98</td>
</tr>
<tr>
<td>β2b</td>
<td>NM_005832</td>
<td>GAGAAGAGGCAACAAAAGGCG</td>
<td>TTAGCAAATCCCCAGACATTCG</td>
<td>107</td>
</tr>
<tr>
<td>β3a</td>
<td>NM_171828</td>
<td>AAATCACACTGTGAGGAGGC</td>
<td>GCACATCTAGTGGTCTCCA</td>
<td>105</td>
</tr>
<tr>
<td>β3b</td>
<td>NM_171829</td>
<td>TCTGAGTGAGGGGCTCTTTT</td>
<td>GCACATCTAGTGGTCTCCA</td>
<td>105</td>
</tr>
<tr>
<td>β3c</td>
<td>NM_171830</td>
<td>CCATGATGGCTTCCACTAGC</td>
<td>GCAGTGCAAGGCTGATCTTC</td>
<td>100</td>
</tr>
<tr>
<td>β3d</td>
<td>NM_014407</td>
<td>AGGGAGGTCAGGATATCCCTG</td>
<td>GAAGGCTGTGTTGTTGTTT</td>
<td>351</td>
</tr>
<tr>
<td>β3e</td>
<td>NM_001163677</td>
<td>ACCCGTGTGTGAGGTGTTTT</td>
<td>TCTGTAACATACGCTGCTGGA</td>
<td>107</td>
</tr>
<tr>
<td>β4</td>
<td>NM_014505</td>
<td>CTGAGTCCAACACTAGGAGGC</td>
<td>GATTTTCCTCTTACAGGAGG</td>
<td>96</td>
</tr>
<tr>
<td>GAPDH</td>
<td>NM_002046</td>
<td>AAAGGTGAAGGTCGGAGCTCA</td>
<td>AATGAAGGGGTCATTGATGG</td>
<td>108</td>
</tr>
</tbody>
</table>

Table 3. Primers used for qPCR.

For data analysis, we attained the cycle threshold (cT) values, defined as the number of cycles required for the fluorescent signal to cross the background level. Therefore, a lower cT value indicates greater amount of target nucleic acid in the sample, and in our case greater gene expression. Each cT value was substracted by the cT of the loading control, yielding the ΔcT. Finally, for relative comparison of gene expression, we substracted each ΔcT value with the ΔcT of the reference housekeeping gene GAPDH, noted as ΔcT- ΔcTGAPDH. Moreover, due to exponential nature of PCR, the α to β ratio was calculated as:

$$\frac{\alpha}{\beta} = 2^{\frac{\Delta cT - \Delta cT_{GAPDH}}{\Delta cT_{KCa1.1\alpha} - \Delta cT_{GAPDH}}}$$
4.8. SDS-PAGE and Western blotting

RA-FLS and healthy Lewis rat testes (Baylor College of Medicine, Houston, USA) were lysed in RIPA buffer (Sigma, Saint Louis, MO) containing 1% protease inhibitors. Protein levels were measured using the Bradford assay. Equal amounts of protein (20 µg) were loaded and separated by SDS-PAGE (Life Technologies), then transferred onto nitrocellulose membranes (Bio-Rad), according to manufacturer's guidelines. Blots were incubated overnight in a blocking solution consisting of 4% Blotto non-fat milk (Santa Cruz Biotechnology, Santa Cruz, CA). Blots were probed using antibodies specific for the human KCa1.1 channel α and β subunits (Table 1). Each primary antibody was diluted 1:500 in blocking solution. As loading controls, we used anti-actin antibodies. After overnight incubation and wash followed by 2 hours probing with IR-680 or IR-800 labeled secondary antibodies (Table 1) for 1 h at room temperature. The membranes were washed 3 times for 15 min with PBS + 0.1% Tween-20. Visualization was performed with a Li-Cor Odyssey Scanner, and data analyzed with ImageJ (National Institutes of Health).

4.9. Transfection of small interfering RNA (siRNA)

The mix of three different constructs of GAPDH, KCNMB1, or KCNMB3-specific small interfering RNA were mixed with DharmaFect transfection reagent (Dharmacon, Lafayette, CO) and added to 35 mm petri dishes containing cells at ≈80% confluency according to the manufacturer's instruction. RA-FLS were kept in serum-free medium for 24 h prior to siRNA treatment with DharmaFect siRNA transfection reagent (192). Cells were used 40-80 hrs following transfection of electrophysiological, flow cytometry, and transwell invasion experiments.

4.10. Transwell invasion assay

The ex vivo invasiveness of FLS was assayed in a transwell system using collagen-rich Matrigel-coated inserts (BD Biosciences) as described in the literature (191, 192, 198). Briefly, at the start of the experiment, FLS-containing inserts in serum free medium were placed on 10% serum +DMEM containing wells. The FLS aimed to reach into the serum-rich environment, but had to digest the Matrigel along the way. Moreover, they needed to migrate actively through their environment to reach the bottom of the insert, that the cells were not able to penetrate. After 24 hours, we carefully discarded the Matrigel layer and stained the FLS using crystal violet and counted the cells on the bottom of the inserts.
4.11. Electrophysiology

4.11.1. Whole-cell patch-clamp

Standard whole-cell patch-clamp techniques were used in voltage-clamp configuration, as described previously (224). Pipettes were pulled from GC 150 F-15 borosilicate glass capillaries (Clark Biomedical Instruments, Pangbourne, UK) to gain electrodes of 2-5 MΩ resistance in the bath. Series resistance compensation up to 85% was used to minimize voltage errors and achieve optimal voltage clamp conditions.

Cells were plated on glass coverslips or petri dishes and allowed to adhere. When indicated, cells were incubated for 15 min at room temperature with fluorophore-conjugated anti-CD44 antibodies (Table 1), washed, and CD44high and CD44low cells were immediately assessed for K+ currents (225). Total K+ currents were recorded using the patch clamp technique in the whole-cell configuration, as described (191, 192, 226). When measuring Kv1.3 in lymphocytes, the internal solution contained 140 mM KF, 5 mM NaCl, 11 mM K\textsubscript{2}EGTA, 2 mM MgCl\textsubscript{2}, and 10 mM HEPES (pH 7.20, ~295 mOsm). When measuring KCa1.1, the internal solution contained 10 mM EGTA, 5 mM HEPES and 5 µM free Ca2+, calculated using Maxchelator (http://maxchelator.stanford.edu/CaEGTA-TS.htm). The external solution contained 160 mM NaCl, 4.5 mM KCl, 2 mM CaCl\textsubscript{2}, 1 mM MgCl\textsubscript{2}, and 10 mM HEPES, pH 7.4 in both cases. Experiments were performed at room temperature (20-22°C).

Current density was calculated by dividing whole cell peak currents by the cell capacitance. Lymphocyte cell capacitances varied from 2-9 pF. Whole-cell measurements of T lymphocytes were carried out using Axopatch-200B amplifiers connected to personal computers using Axon Instruments Digidata 1440 data acquisition boards (Molecular Devices, Sunnyvale, CA). For data acquisition and analysis, the pClamp10 software package (Molecular Devices, Sunnyvale, CA) were used. RA-FLS cell capacitances ranged from 9 to 17 pF. Results were analyzed using Igor Pro software (WaveMetrics, Lake Oswego, OR) when measuring RA-FLS and OA-FLS.
4.11.2. Activation and inactivation kinetics of the K^+ current

To assess the activation time constants of the Kv1.3 and KCa1.1 channels, the membrane was depolarized to $+50$ mV for 15 ms and $+140$ mV for 50 ms, respectively, from a holding potential of -120 mV and -100 mV, respectively. Current traces were fitted with a single exponential function rising to the maximum according to the Hodgkin-Huxley model ($I(t) = I_a \times (1-\exp(-t/\tau_a))^4 + C$, where I_a is the amplitude of the activating curve component; τ_a is the activation time constant of the current; C: current amplitude at -120 mV).

To study the inactivation of Kv1.3 and KCa1.1 channels, pulses were evoked to $+50$ mV for 2 s and $+140$ mV for 200 s, respectively, from a holding potential -120 mV and -100 mV, respectively. The decaying part of the current traces was fitted with a single exponential function ($I(t) = I_0 \times \exp(-t/\tau_{in,i}) + C$, I_0: amplitude of current, $\tau_{in,i}$: inactivation time constant for different groups, C: steady-state current of the whole-cell record at the end of the depolarizing pulse) to attain the inactivation time constant.

4.11.3. Test substances

We used altogether four different substances to assess the pharmacological properties of the KCa1.1 channels.

- **LCA**, that enhances KCa1.1 currents only when the channel contains the β1 subunit (40, 41, 227); a stock of LCA (Sigma) was prepared in 1:10 solution of dimethyl sulfoxide (DMSO) and 70% ethanol.
- **AA**, that enhances KCa1.1 currents only when the channel contains β2 or β3 subunits (42, 227); a stock of AA (Sigma) was prepared in DMSO.
- **Paxilline**, that blocks KCa1.1 channels regardless of β subunit expression (49, 191, 228); a stock of paxilline (Fermentek, Jerusalem, Israel) was prepared in DMSO.
- **ChTx**, that blocks all KCa1.1 channels unless they contain the β4 subunit (31, 227, 229); a stock of ChTx (Peptides International, Louisville, KY) was prepared in P6N buffer (10 mM NaHPO$_4$, 0.8% NaCl, 0.05% Tween-20, pH 6.0) (219, 230, 231).

The stock solutions were further diluted with electrophysiology bath solution immediately before use so that final DMSO concentrations did not exceed 0.05%.
4.12. Statistical evaluation and plotting the results

Flow cytometry data were collected using the BD CellQuest software. For data analysis, we used the freeware program Cyflogic 1.2.1 and the Flowjo X software. The analyzed data was exported to Microsoft Office Excel. For statistical evaluation of our results we used the program SigmaPlot 12.0 and GraphPad Prism 5, where all data is represented as mean ±S.E.M. To compare different treatments to the control cell population, we applied one-way analysis of variance (ANOVA) test and as post hoc analysis, the Holm-Sidak test. Also, when the data was not normally distributed, as was the case in the very heterogeneous RA-FLS population, we performed non-parametric ANOVA on ranks test (also known as Kruskal-Wallis test), followed by Dunn's post-hoc test, to calculate statistical significance of our results. We marked the level of significance with * if p was <0.05, with **, if p was <0.01, and with ***, if p was <0.001.
5. RESULTS

5.1. The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation

5.1.1. Dose-dependence of mitogen-induced proliferation

Firstly, we aimed to determine which mode of T lymphocyte activation creates the most homogenous cell population in regards of ion channel expression. Therefore, we measured Kv1.3 membrane expression by whole-cell patch clamp and subsequent calculation of current density after treatment of PHA; PMA and ionomycin; anti-CD3; anti-CD3 and anti-CD28 used in combination (Fig. 5.1.).

Figure 5.1.: Kv1.3 expression and biophysical properties upon T lymphocyte activation

A-B) Whole-cell recordings of T lymphocytes following depolarization to 50 mV for 15 ms and 2 s, respectively. C-F) Whole-cell capacitance, Kv1.3 current density, activation kinetics and inactivation kinetics, respectively, of T lymphocytes upon the following forms of stimulation: control: unstimulated; PMA+Iono: 1µM PMA together with 1µM ionomycin; αCD3+αCD28: 1µM and 1µM; PHA: 1µM. Boxes represent quartiles and whiskers represent 10.-90. percentiles, * p<0.05
In case of all treatments, cell division index was >80% (calculated by Eq.3., see 4.4). Our results indicate that both PHA and anti-CD3 plus anti-CD28 stimulation lead to significant increase in Kv1.3 current density, however, in case of PHA, the population was extremely heterogeneous compared to other modes of stimulation in regards of capacitance as well as current density (Fig. 5.1.). The biophysical characteristics of the Kv1.3 channel did not change significantly upon stimulation, only the inactivation kinetics slowed upon stimulation with combined anti-CD3 and anti-CD28.

After choosing our preferred mode of stimulation, our first step was to achieve multiple levels of selective T lymphocyte stimulation using anti-CD3 and anti-CD28 monoclonal antibodies.

Figure 5.2.: Cell proliferation at different mitogen concentrations.

A) The left and middle dot plots show stimulated PBMC populations stimulated by 1 µg/ml anti-CD3 and anti-CD28 monoclonal antibodies on day 0 and day 5, respectively. Solid black line polygons indicate the position of the gates. The dot plot on the right shows the FSC/Fluorescence intensity of the same population as on the middle dot plot, B) The fluorescence intensity histogram shows CFSE fluorescence intensity obtained from the gated population of the dot plot on the right in panel A. The marker above the histogram indicates the divided and the undivided cell populations, and the ratio of divided cells to all gated cells was calculated yielding the division index (DI, see Materials and Methods). C) DI of the cells stimulated by anti-CD3 and anti-CD28 at various mitogen concentrations, calculated by Eq.3 in chapter 4.4. The DIs of these populations are shown in Fig 5.3, as positive controls (Pos.) and the DI of inhibitor treatments were normalized to this data.
In our preliminary experiments, we did not find significant differences between CD3+ T cells and PBMCs regarding the extent of proliferation or in the proliferation-inhibiting effect of AnTx at K_d and 10K_d concentrations. Therefore, we used whole PBMC population in our main experiments.

Fig. 5.2.C shows that comparing the division indices (DI) of stimulated PBMC populations 5 days following mitogen stimulus, four levels of the mitogen effect could be distinguished: low concentration (200 ng/ml or 1 bead:200 cells) of the mitogen led to a relatively low amount of proliferation, while the medium (500 ng/ml or 1 bead:50 cells), high (1 µg/ml or 1 bead:10 cells) and very high concentrations (3 µg/ml or 1 bead:1 cells) resulted in markedly high rates of cell division. Pairwise comparison of the observed proliferation rates indicated a significant increase with each subsequent increase in mitogen concentration.

5.1.2. Ion channel blockers and rapamycin alone and in combination inhibit lymphocyte proliferation

The effect of ion channel inhibitors on cell proliferation was tested at a concentration corresponding to the dissociation constant of the drug on the relevant channel ($1\times K_d$) and at ten times higher concentration ($10\times K_d$). Rapamycin was used at the lowest IC$_{50}$ obtained from the relevant literature (214, 215), and at ten times higher concentration. Fig. 5.3.A-D panels show representative fluorescence histograms of the CFSE dilution assay recorded in the absence or in the presence of the blockers in two concentrations. The markedly reduced peaks of the gray-shaded histogram relative to the control light-gray line in Fig. 5.3.A qualitatively show that the Kv1.3 K$^+$ channel blocker AnTx at $10\times K_d$ concentration inhibited proliferation when the cells were stimulated at low mitogen concentration. Quantitative analysis using normalized DIs (Fig. 5.3.E and F) showed that AnTx at $1\times K_d$ and $10\times K_d$ concentration inhibited proliferation at low, but not at very high mitogen concentration.

The nearly superimposable fluorescence histograms in Fig. 5.3.B show that the KCa3.1 inhibitor TRAM-34, regardless of its concentration, caused only a minor reduction of the proliferation of T cells stimulated by low mitogen concentration. The statistical analysis of the DIs (Fig. 5.3.E and F) showed that TRAM-34 failed to inhibit cell proliferation both at $1\times K_d$ and at $10\times K_d$ concentrations regardless of the mitogen concentration used. The gray-shaded histogram in Fig. 5.3.C shows qualitatively that at low mitogen stimulation the CRAC channel
modulator, 2-Aminoethoxydiphenyl borate (2-Apb) applied at 10×K\textsubscript{d} blocker concentration inhibited cell proliferation whereas 1×K\textsubscript{d} blocker concentration was ineffective. Fig. 5.3.F shows that at very high mitogen concentration 2-Apb did not inhibit T cell proliferation even at 10×K\textsubscript{d} concentration.

The representative histograms in Fig. 5.3.D shows that the mTOR inhibitor rapamycin, applied at both 1×IC\textsubscript{50} and 10×IC\textsubscript{50} concentrations markedly inhibits the proliferation of T cells stimulated with low mitogen concentration. This effect was confirmed by the statistical analysis shown in Fig. 5.3.E. As opposed to the ion channel blockers AnTx and 2-Apb, rapamycin alone inhibited proliferation even at very high mitogen concentration both at 1×IC\textsubscript{50} and 10×IC\textsubscript{50} doses. As shown in Fig. 5.3.G, using the combination of all ion channel blockers at 10×K\textsubscript{d} concentration led to a marked inhibition of cell proliferation, which did not differ from the blocking potential of 10×IC\textsubscript{50} rapamycin. The inhibitory effect of ion channel blockers combined with rapamycin proved to be the most effective treatment, resulting in complete blockage of cell division. In the latter case proliferation was not significantly different from the negative control group, which was not stimulated by mitogens.
Figure 5.3.: Effect of ion channel blockers and rapamycin on cell proliferation.

A-D) The representative fluorescence histograms corresponding to the CFSE dilution assay (see methods) show the effect of four inhibitors on T cell proliferation. Light gray lines in the histograms indicate the positive control population (Pos.) treated solely with mitogens, black lines and gray filled histograms indicate data obtained in the presence of a blocker at $1\times K_d$ and $10\times K_d$ concentrations, respectively (concentrations see in text). Cells were stimulated with low mitogen concentration in each case. E-F) Proliferation, represented by DI (see Figure 5.2.), at low (Fig. 5.2.E) or very high (Fig. 5.2.F) mitogen concentrations in the presence of $1\times K_d$ (cross-hatched bars) and $10\times K_d$ (gray) blocker concentrations. Neg. indicates the negative control population, where cells were not stimulated by mitogens, but were stained with CFSE. The DIs of samples treated with different blockers were normalized to the average DI of the Pos. sample. G) Comparison of the effectiveness of treatment combinations as compared to the pos. control. During the combined treatments, each blocker was applied at its $1\times K_d$ (cross-hatched) or $10\times K_d$ (gray) concentration, data obtained for different mitogen concentrations were pooled for the analysis. H) Mitogen-dependence of the inhibition of cell proliferation. The DIs were determined in the presence of AnTx at $1\times K_d$ (left) or $10\times K_d$ (right), at low (black), medium (dark gray), high (gray) and very high (light gray) mitogen concentrations (see legend to Fig. 5.2). Error bars indicate S.E.M, asterisks indicate significance (* if p was <0.05, with **, if p was <0.01, and with ***, if p was <0.001)
Data above showed that the Kv1.3 blocker AnTx and the CRAC channel blocker 2-Apb interfered with T cell proliferation only if cells were stimulated at low mitogen concentration but were ineffective if cells were stimulated with very high mitogen concentration. To further explore this phenomenon, we measured the normalized DI at varying mitogen concentrations (low, medium, high and very high, see above) in the presence of $1\times K_d$ (Fig. 5.3.H left panel) or $10\times K_d$ (Fig. 5.3.H right panel) concentrations of AnTx. As shown in Fig. 5.3.H right panel a marked inhibition of cell division was observed when the combination of low mitogen and $10\times K_d$ blocker concentration (black bar) was used. At medium, high and very high mitogen concentrations the inhibition of proliferation was not statistically significant as compared to the positive control, but a clear decreasing trend is seen in the effectiveness of the blockers with increasing mitogen concentration. The same tendency could be observed if AnTx was applied at $1\times K_d$ concentration (Fig. 5.3.H left panel). The inhibition of proliferation was statistically significant only if low mitogen concentration was used whereas at medium, high, and very high mitogen concentrations the inhibition of proliferation did not prove to be significant.

5.1.3. Cell viability is not affected by the inhibitors of T cell proliferation

The reduced proliferation in the presence of the ion channel blockers and rapamycin (see above, Fig. 5.3.) might be induced by a decrease in the viability of the cells in the presence of these compounds. This was tested in the experiments shown in Fig. 5.4. using a propidium iodide uptake assay. The dot-plots in Fig. 5.4.A show the threshold discriminating viable and non-viable cells using the combination of forward scatter and PI fluorescence. The corresponding fluorescence histograms in Fig 5.4.B show that stimulation of the cells increased the proportion of the viable cells. The proportion of viable cells was not altered either by the channel blockers or rapamycin alone, or in their various combinations regardless of the concentration of the compounds (Fig. 5.4.C).
Figure 5.4.: Effect of ion channel blockers and rapamycin on the cellular viability.

A) The dot plots show the standard gating strategy for propidium iodide (PI) staining. The left panel indicates non-stimulated (Neg.), the right panel shows the stimulated population (Pos.) after 5 days of incubation with superparamagnetic bead-conjugated anti-CD3 and anti-CD28 monoclonal antibodies at 1 bead:1 cells ratio. The horizontal black line indicates the threshold for discriminating live and non-live cells. B) The fluorescence histograms were generated from the dot plots shown in A, the bar and the markers indicate the PI negative viable and the PI positive non-viable cells in the Neg. (black line) and Pos. (gray fill) samples. C) Viability of the cell populations in the presence of inhibitors. The number of PI negative cells in the presence of various compounds was normalized to that of the untreated, but activated cells (Pos. sample). Cross-hatched and gray bars show data obtained in the presence of 1×Kd and 10×Kd concentrations of the indicated compounds alone or in mixtures (T-34: TRAM-34, Rapa: rapamycin). Mixtures of ion channel blockers contained each blocker at 1×Kd or 10×Kd (Ion Ch. blockers) whereas in the Ion Ch. Blockers+Rapa samples the ion channel blocker mixture is supplemented with the corresponding concentrations of rapamycin (1×IC50 or 10×IC50). Error bars indicate S.E.M.
5.1.4. Cytokine production of T cells can be reduced by ion channel blockers

We investigated the effect of channel blockers and rapamycin on the secretion of the anti-inflammatory IL-10 and the pro-inflammatory IFN-γ cytokines by ELISA. Increasing the mitogen concentration from low to very high induced approximately 4-fold and 10-fold increases in secreted IL-10 and IFN-γ levels, respectively (Fig. 5.5. A and B, Pos.). IFN-γ as well as IL-10 secretion was significantly inhibited at low mitogen stimulation by all inhibitors and combinations at both applied concentrations (Fig. 5.5.A and B, left panels). At very high mitogenic stimulation IFN-γ secretion was inhibited by AnTx, rapamycin and combination treatments at 10×K_d and by 2-Apb and the ion channel blocker combination at 1×K_d (Fig. 5.5.A right panel). IL-10 production was only inhibited by 10×K_d of 2-Apb, rapamycin and combination treatments (Fig 5.5.B right panel).

Figure 5.5.: Inhibition of cytokine secretion by ion channel blockers and rapamycin.

A) IFN-γ and B) IL-10 secretion were measured using ELISA (OptEIA kit) at different mitogen concentrations. Left and right panels refer to data obtained at low and very high mitogen concentrations. Neg. indicates the unstimulated control cell population whereas Pos. indicates the mitogen-stimulated cell population in the absence of ion channel blockers and/or rapamycin. The blockers are represented at 1×K_d (cross-hatched), 10×K_d (gray) or in case of rapamycin 1×IC_{50} and 10×IC_{50} concentrations, respectively. Error bars indicate S.E.M, asterisks indicate significance (* if p was <0.05, with **, if p was <0.01, and with ***, if p was <0.001), and n.d. indicates “not detectable” where values are too low to be shown.
5.2. Different Expression of β Subunits of the KCa1.1 Channel by Invasive and Non-Invasive Human Fibroblast-Like Synoviocytes

5.2.1. RA-FLS express multiple β subunits at the mRNA and protein levels

We found the marked expression of KCa1.1 α subunit in RA-FLS, described thoroughly in a previous article (191). Analysis of mRNA levels by qPCR in RA-FLS showed expression of most KCa1.1 β subunits compared to the housekeeping gene GAPDH (Fig. 5.6.A), albeit at very low levels for β2b and β3d. When compared to the expression levels of the KCa1.1 pore-forming α subunit, the highest relative mRNA expression levels were found for three splice variants of the β3 subunit (β3b, β3c, and β3e) and for β4 subunits (Fig. 5.6.B).

![Figure 5.6.](image)

Figure 5.6.: RA-FLS express mRNA of multiple KCa1.1 β subunits.

A) expression fold measurements were conducted by RT-qPCR, compared to GAPDH expression (n = 6 donors with 3 independent repeats). Each bar shows expression of a different KCa1.1 subunit, the letters a-e represent different transcript variants. A lower Δct-Δct\text{GAPDH} value indicates higher relative expression of the target gene, as detailed in 4.7. B) α to β ratio (see Eq. 4.) showing the amount of KCa1.1 α subunits expressed for each single β subunit. Note the different scales of the y-axis in B. Error bars indicate S.E.M.

Since mRNAs are not always translated into proteins, we used Western blotting to determine protein levels of the different β subunits. Analysis of the total cellular protein content shows variable amounts of all β subunits of KCa1.1 in different RA-FLS donors compared to
the loading control actin. Whereas expression of β1, β2, and β4 was only detectable in the cell lysates from some donors, β3 subunits were consistently identified in all donors but one (Fig. 5.7.).

Figure 5.7.: RA-FLS express proteins of multiple KCa1.1 β subunits

A) Representative Western Blot from a gel loaded with proteins from one RA-FLS donor with different lanes probed with antibodies against different subunits of KCa1.1 (top) and actin (bottom). B) Intensity of KCa1.1 α and β subunit protein bands normalized to actin expression levels in RA-FLS; each symbol on the scatter plot represents results from a different donor. The horizontal bar represents the mean for each subunit.

5.2.2. RA-FLS express either β1 or β3b subunits at their plasma membrane

The pore-forming α subunits of KCa1.1 can be detected at the plasma membrane and in the nucleus of RA-FLS (191). Since our focus here is on the channels expressed at the plasma membrane and since co-expression of β subunits with α subunits affects the kinetics and pharmacology of K⁺ currents through the KCa1.1 channel, we used patch-clamp electrophysiology to assess the expression of functional β subunits at the plasma membrane of RA-FLS. Of the 51 RA-FLS from 5 different donors patch-clamped, 47 (92%) exhibited a K⁺ current (Fig. 5.8.A and Table 4.) as previously described (191). Addition of paxilline, a blocker of the KCa1.1 α subunits regardless of β subunit expression (49, 191, 228), completely blocked the K⁺ current in all 14 cells tested (Fig. 5.8.A and B and Table 4.), further confirming that the K⁺ channel observed is KCa1.1, as previously demonstrated (191). In 70% of the cells analyzed, the current displayed little or no inactivation (Fig. 5.8.A and Table 4.). Since β2a, β3a, β3c, and β3e subunits have all been shown to induce inactivation of KCa1.1 (205, 227, 229, 232, 233),
the lack of inactivation suggest these subunits are not involved in the KCa1.1 channel in RA-FLS.

<table>
<thead>
<tr>
<th>Finding</th>
<th>Eliminated β subunit</th>
<th>Possible β subunit</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrophysiology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92% of RA-FLS display a K⁺ current</td>
<td>None</td>
<td>None, β1, β2a, β2b, β3a, β3b, β3c, β3d, β3e, β4</td>
<td>(191)</td>
</tr>
<tr>
<td>The K⁺ current in 100% of RA-FLS is sensitive to paxilline</td>
<td>None</td>
<td>None, β1, β2a, β2b, β3a, β3b, β3c, β3d, β3e, β4</td>
<td>(49, 191, 228)</td>
</tr>
<tr>
<td>70% of RA-FLS KCa1.1 currents are non-inactivating</td>
<td>β2a, β3a, β3c, β3e</td>
<td>None, β1, β3b, β3c, β3d, β4</td>
<td>(205, 227, 229, 232, 233)</td>
</tr>
<tr>
<td>100% of RA-FLS KCa1.1 currents are sensitive to ChTX</td>
<td>β4</td>
<td>None, β1, β3b, β3d</td>
<td>(31, 227)</td>
</tr>
<tr>
<td>36% of RA-FLS KCa1.1 current are sensitive to LCA</td>
<td>β2a, β2b, β3a, β3b, β3c, β3d, β3e, β4</td>
<td>β1</td>
<td>(40, 41, 227)</td>
</tr>
<tr>
<td>65% of RA-FLS KCa1.1 currents are sensitive to AA</td>
<td>β1, β4</td>
<td>β3b, β3d</td>
<td>(42, 227)</td>
</tr>
<tr>
<td>Western blotting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Band detected with pan-β3 antibody</td>
<td>None</td>
<td>β3b, β3d</td>
<td></td>
</tr>
<tr>
<td>No band detected with antibody selective for β3a, β3c, β3d, and β3e</td>
<td>β3a, β3c, β3d, β3e</td>
<td>β3b</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Summary of findings from the electrophysiology and Western blot assays for identification of the functional β subunits expressed by RA-FLS.

To further identify the β subunits associated with the KCa1.1 channels in RA-FLS, we used KCa1.1 openers and blockers known to exert different effects on the channel depending on its β subunit composition. First, we tested the effects of the scorpion venom toxin ChTx on RA-FLS K⁺ currents as it can only block KCa1.1 channels that do not contain the β4 subunit (31, 227, 229). ChTx inhibited the currents at 100 nM in all cells tested (Fig. 5.8.A and B and Table 4.), demonstrating the absence of β4 subunits in KCa1.1 channels of RA-FLS. We next tested the effects of LCA, known to enhance currents through KCa1.1 channels in the presence of β1 subunits (40, 41, 227). This increase in current was observed in only 36% of RA-FLS tested (Fig. 5.8.A and B and Table 4.), demonstrating that KCa1.1 channels are formed of α and β1 subunits in approximately a third of RA-FLS. To identify the β subunit in the remainder of the RA-FLS, we used AA, known to increase KCa1.1 currents in the presence of β2 and β3 subunits (42, 227). Such an increase was observed in 65% of cells tested (Fig. 5.8.A and B and Table 4). Since the kinetics data above had already eliminated the possibility of β2a,
β3a, β3c, or β3e subunits (Fig. 5.8.A and Table 4), this result with AA suggests that the majority of RA-FLS express a β3 subunit, either β3b or β3d (Table 4). To discriminate between these two splice variants of β3, we performed Western blot experiments using two types of antibodies. The first antibody is directed to a conserved region of the β3 subunit, common to all five splice variants, and leads to a band of the correct molecular weight (Fig. 5.7.A and 5.8.C and Table 4.). The second antibody used was raised against the N-terminus of β3 and therefore detects all splice variants of β3 other than β3b.

Figure 5.8 Functional KCa1.1 β3b subunits are present on the plasma membrane of RA-FLS.

A) Representative traces of whole-cell KCa1.1 currents elicited by 140 mV pulses for 200 ms with 5 µM Ca2+ in the internal solution before (control) and after applying 2 µM paxilline (Pax), 100 nM ChTx, 30 µM AA or 75 µM LCA. B) Peak KCa1.1 currents after different treatments normalized to the control levels. Mean ± S.E.M.; n = 5 different donors. C) Representative Western Blot from a gel loaded with proteins from one RA-FLS donor with different lanes probed with antibodies against all splice variants of KCa1.1 β3 (pan-β3) or against KCa1.1 β3a,c,d,e only (top) and intensity of KCa1.1 β3 protein bands normalized to actin expression levels. Mean ± S.E.M.; n = 6 different donors. D) Activation kinetics of RA-FLS K+ currents; each symbol on the scatter plot represents a different cell; n = 5 different donors; **p≤0.01, ***p≤0.001.
Although this antibody detected a band of the correct molecular weight (about 32 kDa) in rat testis extracts, the only tissue with known β3 expression (234), it yielded no detectable band with RA-FLS extracts (Fig 5.8.C and Table 4), suggesting that RA-FLS express the β3b subunit of KCa1.1. Since β1, but not β3b, subunits slow the activation kinetics (τ_{Act}) of KCa1.1 channels (235), we measured these kinetics in RA-FLS and found a spread in τ_{Act} with only 17 of the 54 cells assessed (31%) having a $\tau_{\text{Act}} > 4$ ms and 69% of RA-FLS having a $\tau_{\text{Act}} \leq 4$ ms (Fig. 5.8.D). These results reinforce the finding that different individual RA-FLS cells within a line express different β subunits.

5.2.3 Expression of KCa1.1 β3b is associated with higher levels of KCa1.1 α and CD44

Since invasiveness is an important feature of aggressive FLS during RA, we wanted to test whether invasiveness is associated with differential expression of KCa1.1 β subunits by the cells. In the absence of antibodies that recognize an extracellular epitope of either β1 or β3 subunits, we searched for a surrogate marker with an extracellular epitope to allow for isolation of live cells. Elevated expression of CD44, a type I transmembrane glycoprotein that binds hyaluronan and other extracellular and cell surface ligands, by FLS and other cells was observed in RA (236, 237). Interestingly, an elevated CD44 expression correlates with enhanced invasiveness of cancer cells (238, 239). To determine whether expression of β1 or β3 subunits correlates with CD44 expression levels and invasiveness in RA-FLS, we first showed a correlation between elevated expression of KCa1.1 α and of CD44 (Fig. 5.9.A). We next used flow cytometry to sort CD44$^{\text{high}}$ and CD44$^{\text{low}}$ RA-FLS and performed invasion assays. CD44$^{\text{high}}$ RA-FLS were significantly more invasive than CD44$^{\text{low}}$ cells (Fig. 5.9.B). Since FLS invasiveness has also been associated with expression of podoplanin, cadherin-11, and MMP-2 (240, 241), we assessed expression levels of these three markers within the CD44$^{\text{low}}$ and CD44$^{\text{high}}$ populations of RA-FLS. We observed an association between elevated expression of CD44 and all three markers (Fig. 5.9.C).

We then stained cells for expression of CD44 and performed whole-cell patch-clamp to assess K^+ current densities and activation kinetics in CD44$^{\text{high}}$ and CD44$^{\text{low}}$ cells (Fig. 5.9.C). CD44$^{\text{high}}$ RA-FLS exhibited higher current densities and faster activation rates than did CD44$^{\text{low}}$
The KCa1.1 β3 subunit is expressed by CD44^{high} RA-FLS whereas the β1 subunit is expressed by CD44^{low} RA-FLS and OA-FLS.

A) Representative flow cytometry histograms showing expression of KCa1.1_α by CD44^{high} and CD44^{low} RA-FLS. Gray shading represents control staining; black lines represent CD44 (left) or KCa1.1_α (middle and right) staining. B) Invasiveness of unsorted RA-FLS and RA-FLS from the same donors sorted by flow cytometry into CD44^{low} and CD44^{high} populations. Mean ± SEM; n = 3 RA-FLS donors. The line for the error bar for the control was thickened compared with other plots to make it visible. C) Representative flow cytometry histograms showing expression of podoplanin, cadherin-11, and matrix metalloproteinase (MMP)-2 by CD44^{high} (green) and CD44^{low} (gray) RA-FLS. In the left panel, gray shading represents control staining and black lines represent CD44 staining. D) Individual RA-FLS stained for CD44. The patch-clamp pipette’s shadow is visible on the right of each image. E) K+ current density elicited at 140 mV in CD44^{high} RA-FLS, CD44^{low} RA-FLS, and OA-FLS. Mean ± SEM; n = 5 RA-FLS donors and 4 OA-FLS donors. F) Activation kinetics (τ_{act}) of K+ currents elicited at 140 mV in CD44^{high} RA-FLS, CD44^{low} RA-FLS, and OA-FLS. Mean ± SEM; n = 5 RA-FLS donors and 4 OA-FLS donors. G) K+ current density after treatment of CD44^{high} RA-FLS, CD44^{low} RA-FLS, and OA-FLS with 75 μM lithocholic acid (LCA) or 30 μM arachidonic acid (AA) and normalized to current densities before treatment (horizontal dashed line). Mean ± SEM; n = 5 RA-FLS donors and 4 OA-FLS donors. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
cells, suggesting expression of β1 subunits by CD44low cells and of β3b subunits by CD44high cells (Fig. 5.9.D and E). These results were further confirmed by assessing the effects of AA and LCA on the two cell subsets as CD44high cells displayed sensitivity to AA but not LCA whereas CD44low cells displayed sensitivity to LCA and not AA (Fig. 5.9.F). As a control, we used minimally invasive FLS obtained from patients with OA. OA-FLS exhibited low current densities at 140 mV, fast τ_{Act}, and sensitivity to LCA but not AA, similarly to CD44low RA-FLS (Fig. 5.9.D-F).
5.2.4 Knocking down the β3 subunit of KCa1.1 decreases cell surface expression of the pore-forming α subunit of KCa1.1

We used a pool of siRNA to selectively inhibit gene expression of the β3 subunit. In whole-cell patch-clamp assays, RA-FLS became less sensitive to treatment with the β3 agonist AA after transfection with β3, but not control siRNA, demonstrating the effectiveness of the siRNA. Neither control nor β3 siRNA affected the cells’ response to LCA showing a lack of effect on β1 subunits (Fig. 5.10.A). Flow cytometry measurements showed that β3 silencing induced a 20% reduction in expression of the KCa1.1 α subunit (Fig. 5.10.B). Moreover, whole cell KCa1.1 current densities at voltages above 50 mV were significantly decreased after KCa1.1 β3 subunit silencing (Fig. 5.10.C), suggesting lower surface expression of the α subunit of KCa1.1.

![Figure 5.10.](image)

Figure 5.10.: Silencing KCa1.1 β3 expression reduces cell surface expression of KCa1.1 α

A) K^+ current density of untransfected RA-FLS and RA-FLS transfected with control siRNA or with siRNA against KCa1.1 β3 before (black) and after treatment with 30 µM AA (white; top plot) or 75 µM LCA (grey; bottom plot) and normalized to current densities before treatment; Mean ± S.E.M.; n = 4 RA-FLS donors. B) Representative flow cytometry histograms showing background staining (grey shaded), expression levels of KCa1.1 α in untransfected RA-FLS (dotted line) and RA-FLS transfected with siRNA against KCa1.1 β3 (solid black line; left histogram) or with control siRNA (solid black line; right histogram). The bar graph below shows the percentage of cells expressing KCa1.1 α calculated from the flow cytometric profiles of 3 RA-FLS samples; Mean ± S.E.M. C) K^+ current densities of RA-FLS transfected with control siRNA (□) or with siRNA against KCa1.1 β3 (●) and pulsed stepwise from -40 to 140 mV in 20 mV increments; Mean ± S.E.M.; n = 4 RA-FLS donors. *$p\leq0.05$, **$p\leq0.01$, ***$p\leq0.001$.

60
5.2.5 Knocking down the β3, but not the β1, subunit of KCa1.1 attenuates the ex vivo invasiveness of RA-FLS

Reducing the expression or function of the α subunit of KCa1.1 inhibits the invasiveness of FLS (191, 192); we therefore assessed the effects of silencing the β3 subunit of KCa1.1 on RA-FLS invasiveness using Matrigel invasion assays. We also used a pool of siRNA to inhibit the expression of the β1 subunit of KCa1.1 and used the channel’s sensitivity to LCA to demonstrate the effectiveness of the siRNA as control siRNA did not affect RA-FLS response to LCA whereas β1 siRNA reduced it (Fig. 5.11.A). Whereas β3 siRNA reduced the invasiveness of RA-FLS, silencing the β1 subunit of KCa1.1 did not affect this invasiveness (Fig. 5.11.B).

Figure 5.11: *Silencing KCa1.1 β3 but not KCa1.1 β1 expression reduces inhibits the invasiveness of RA-FLS*

A) K⁺ current density of untransfected RA-FLS and RA-FLS transfected with control siRNA or with siRNA against KCa1.1 β1 before (black) and after treatment with 75 µM LCA (grey) and normalized to current densities before treatment; Mean ± S.E.M.; n = 3 RA-FLS donors. B) Invasiveness of untransfected RA-FLS and RA-FLS transfected with control siRNA, with siRNA against KCa1.1 β3, or with siRNA against KCa1.1 β1; Mean ± S.E.M.; n = 4 RA-FLS donors. *p≤0.5, **p≤0.01, ***p≤0.001.
6. DISCUSSION

6.1 The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation

Altered T cell homeostasis is involved in the pathogenesis of autoimmune diseases such as MS (242) and systemic lupus erythematosus (243). To maximize anti-proliferative effects and to reduce potential side effects, immunosuppressive drugs are commonly used in combinations (244). One group of the most promising candidates for future therapy is the family of Kv1.3 inhibitors, because this ion channel is found only in a few tissues and it can be inhibited selectively (124). Before applying ion channel blockers in therapy, it is crucial to investigate how they interact with other immunosuppressive agents. However, original research data about the pharmacodynamics of combinations of traditional immunosuppressive and novel drugs such as ion channel blockers are scarce and they usually lack functional comparison. Therefore, in our recent experiments, we approached this problem from multiple aspects and have found an additive interaction between rapamycin and the ion channel blockers when using them in combination.

The effects of ion channel blockers exerted on T cell functions have already been described (69). However, to the best of our knowledge, no data comparing the proliferative effects of Kv1.3, KCa3.1 and CRAC channel blockers applied alone or in combination at identical experimental conditions are currently available. Moreover, the synergy between the effects of ion channel inhibitors and the mTOR inhibitor rapamycin has not been investigated to date. In our study we were the first to describe the mitosis-inhibiting effect of AnTx, a high affinity scorpion toxin blocker of Kv1.3 (63) both at high (10×Kd) and low (1×Kd) concentrations. The observed effect of 2-Apb correlated well with past literature, as it was proposed that 2-Apb has a bimodal effect. At low blocker concentrations (Kd), 2-Apb promotes Ca^{2+} signaling, which ultimately results in enhanced cell proliferation, whereas at higher concentrations, in our case at 10×Kd, it effectively inhibits the CRAC channel, ultimately blocking cellular proliferation (245).

Even low mitogen concentrations, which corresponded to 1:200 bead-to-cell ratio produced an unexpectedly high amount of polyclonal lymphocyte proliferation, as over 30% of the cells have undergone cell division. This phenomenon may be explained by the fact that there is a large number of anti-CD3 and anti-CD28 molecules on a single bead, and that lymphocytes form a rosette-like structure around beads. Therefore, numerous lymphocytes are activated
simultaneously by a single bead, and this effect could be further enhanced by autocrine and paracrine cytokine secretion of the activated T cells (246, 247).

Our most intriguing finding in this research was that increasing the mitogen concentration markedly decreased the anti-proliferative effect of ion channel blockers that ultimately completely disappeared when cells were stimulated with very high concentration of the mitogens (Fig. 5.3.H). A possible explanation may be that at low mitogen concentrations the few, initially highly localized Ca2+ signals are suppressed by the blocked ion channels in their immediate vicinity (248). However, at very high mitogen concentration when most TCRs are likely to be activated, the number of localized signaling loci is sufficiently high so that even a very low fraction of unblocked ion channels is sufficient to maintain the downstream activation cascade upon TCR activation. Moreover, it is reasonable to assume that lymphocytes redirect their activation pathways to other, Ca2+-independent directions. As several intracellular signaling pathways, e.g. mTOR activation, do not essentially involve ion channels (146, 147), these processes may become overly active upon applying very high mitogen concentrations. However, to the best of our knowledge no study has ever addressed this question and thus it warrants further experiments.

Figure 6.1. Increasing stimulation disrupts the anti-proliferative effect of the blockers

![Diagram showing the effect of mitogen concentration on T lymphocyte proliferation](image_url)

Ion channel blockers inhibit T lymphocyte proliferation at low mitogen concentrations. This effect fades upon using higher mitogen concentrations, but can be rescued by combining ion channel blockers with other immunopharmacological agents such as the mTOR inhibitor rapamycin.

At very high mitogen concentrations we could achieve significant blockage of proliferation only by using rapamycin or its combination with ion channel blockers acting on a different pathway that ultimately leads to permanent changes in cellular signaling (Fig. 6.1.).
This may indicate that co-treatment of T cells with rapamycin and ion channel blockers may be a more feasible therapeutic approach than using these drugs separately.

Previous studies have shown that blocking Kv1.3 channels without affecting the KCa3.1 channels inhibited IFN-γ expression in T_{EM} (249). Moreover, the blockage of CRAC channels with SKF 96365 decreased both IL-10 and IFN-γ production (176). In line with these studies our data showed that treatment of T-cells with various inhibitors (Fig. 5.5) significantly decreased both anti-inflammatory IL-10 and inflammatory IFN-γ cytokine production but only at low mitogenic stimulation. In accordance with the literature TRAM-34 strongly suppressed cytokine production despite the fact that it did not inhibit proliferation (77, 161). At very high mitogen concentration the effect of the ion channel blockers on cytokine production diminished. Although some of them caused statistically significant reductions in cytokine production, these changes are not likely to be biologically relevant as the remaining concentration of IFN-γ still remained in the ng/ml range and therefore was sufficient to promote cell proliferation, so division rate was unaffected. In contrast, rapamycin and the combination treatments applied at 10×K_d concentration caused a more robust decrease, which was also reflected in the suppressed proliferation of these cells.

Since IL-10 and IFN-γ levels were affected in a qualitatively comparable manner by the inhibitors both at low and very high mitogen concentrations, it is safe to assume that these treatments did not alter the proportion of T cell subtypes specifically (i.e. CD4^+ T_H1 and CD8^+ cytotoxic T cells vs. T_H2 T cells and regulatory CD4^+/CD25^+/FoxP3^+ T_{reg} cells), but rather were affecting globally the entire T cell population.

In summary, the greatest level of inhibition of T-cell proliferation and the production of selected cytokines could be achieved by rapamycin, and this effect could be further potentiated by using it in combination with cation channel blockers. This may indicate an additive effect of Ca^{2+}-dependent and Ca^{2+}-independent inhibitory mechanisms involved in T-cell activation. Finally, we found that upon increasing the concentration of the mitogenic antibodies, the anti-proliferative effect of ion channel blockers faded. The increased in vitro antiproliferative potency of rapamycin and ion channel blocker combination presented in this study urges for in vivo experiments whereby the therapeutic benefit of the combined treatment can be assessed.
6.2 Different Expression of β Subunits of the KCa1.1 Channel by Invasive and Non-Invasive Human Fibroblast-Like Synoviocytes

In the second part of this work we focused on the KCa1.1 channel, that has been proposed as a therapeutic target to treat RA (191, 192). However, the wide tissue distribution of the pore-forming α subunit of the channel precludes the use of antagonists targeted to this subunit alone due to the risk of severe side effects in multiple organ systems (195-197). KCa1.1 does however remain an attractive target for therapy because the regulatory β subunits of KCa1.1 have restricted tissue distribution (30, 32). Here, we demonstrated that RA-FLS express functional β1 and β3 subunits of KCa1.1 at their plasma membrane and that expression of β3 is higher on CD44^{high} RA-FLS and is associated with higher expression levels of KCa1.1 α. Silencing β3, but not β1, significantly reduced the invasiveness of RA-FLS. In addition, silencing β3 reduced the expression level of KCa1.1 α.

Analysis by qPCR showed expression of most β subunits in RA-FLS at the mRNA level. Low mRNA expression levels of β accessory subunits were described in the majority of tissues, therefore it was not surprising to find similar results in RA-FLS (234). In addition, mRNA are not always translated into proteins, requiring the detection of the proteins themselves. Western blots detected β3 subunits in all samples analyzed but other β subunits were also detectable at the mRNA and protein levels in some samples. Determination of the kinetics and pharmacological profile of KCa1.1 currents of RA-FLS by single-cell electrophysiology demonstrated the expression of functional β1 and β3 subunits at the plasma membrane. Previous work has also shown the expression of the α subunit of KCa1.1 in the nucleus of RA-FLS and in several organelles in different cell types (250). This raises the possibility that β subunits of the channel may also be expressed by organelles and play a role not yet understood in FLS.

Levels of the β subunits were lower than those of the α subunit as measured at the mRNA and protein levels by qPCR and Western blot, respectively. It is therefore likely that each α subunit tetramer is associated with fewer than 4 β subunits. The ratio of β and α subunits required to modify current kinetics and pharmacological response of KCa1.1 channels remains unclear; our electrophysiology results demonstrate that the numbers of β1 or β3 expressed by RA-FLS is sufficient to affect the function of the KCa1.1 channels at their plasma membrane.

The majority of RA-FLS had characteristic whole cell KCa1.1 K⁺ currents sensitive to paxilline, except for approximately 8% of the cells that displayed no K⁺ currents under the conditions used, confirming our previous study (191). No single assay is sufficient to identify the β subunits associated with α subunits to form KCa1.1 channels; we have therefore used a
combination of patch-clamp electrophysiology to measure activation and inactivation kinetics of the currents and test the effects of well-characterized pharmacological agents and of Western blots using antibodies raised against different epitopes of the β3 subunit. When examining the pharmacological response to the perfused agents, we used the bile acid derivate LCA, which, at concentrations of 50-150 µM acts as a potent reversible potentiator of KCa1.1 currents only in the presence of β1 subunits (40, 251). A minority of cells responded to LCA, indicating functional β1 subunit expression on some RA-FLS. In contrast, treating the RA-FLS with 30 µM AA, known to enhance KCa1.1 currents only in the presence of β2 or β3 subunits (42), induced an increase in current amplitude in the majority of the cells. We tested ChTx that blocks KCa1.1 channels associated with β1, β2, and β3, but not β4 subunits, (31) leading to current block in 100% of the RA-FLS assayed and thus demonstrating the absence of β4 subunits as components of KCa1.1 at the plasma membrane of these cells. A phenotype of non-inactivating KCa1.1 currents blocked by both paxilline and ChTx, and potentiated by AA, but not by LCA, leads to the conclusion, that the majority of RA-FLS mainly express functional KCa1.1 α and β3 subunits. Western blots using antibodies specific to different β3 epitopes indicate that RA-FLS express the β3b isoform.

Our data correlate with the expression of KCa1.1 channels formed of α and β3 subunits and high current densities with a high expression of CD44, previously shown in RA synovial tissues (236, 237) whereas the αβ1 phenotype correlated with a low expression of CD44 and lower current densities. Since we had previously shown an increased expression of KCa1.1 α in invasive FLS (192), this raised the possibility that a differential expression of β subunits could underlie the different expression levels of the α subunit of KCa1.1. Indeed, silencing of the β3 subunit did decrease the expression levels of KCa1.1 α and reduced the K+ current densities, suggesting that β3 may participate in the cell surface expression of the channel as has been described in other systems with β1, β2, and β4 (33, 34, 39).

To our knowledge, association between high expression levels of potassium channels and CD44 has not directly been reported. However, CD44 expression has long been associated with cancer cell metastasis (239). More recently, the expression of various potassium channels, including KCa1.1, has also been linked to enhanced metastatic potential in cancer (252). Further work needs to be done to determine whether CD44 and potassium channels share any signaling pathways leading to their concomitant upregulation in highly motile cells and to assess whether their expression or function is interdependent in these cells. Additional work is also required to determine whether the switch from KCa1.1 β1 to β3b expression in RA-FLS is a consequence, an initiating event, or an independent event in the upregulation of CD44 by these cells. Finally,
it will be interesting to establish whether KCa1.1 and CD44 play synergistic roles in regulating the invasiveness of RA-FLS.

The work presented here focused on the regulatory β subunits of KCa1.1. In the last few years, γ subunits of KCa1.1 have also been identified in various tissues (16, 35). These subunits are structurally different from β subunits but, like β subunits, affect the function of the KCa1.1 channels with which they are co-expressed. It is possible that FLS express γ subunits of KCa1.1 in addition to the β subunits we have identified, either at the plasma membrane or in organelles.

The KCa1.1 channel formed of α and β3 subunits expressed by RA-FLS represents an attractive therapeutic target for RA. The mRNA for β3 is expressed only in very low quantity in most tissues, with the highest levels detected in the testis (234). The incidence of RA is higher in women than in men (183-185); in the majority of patients there would therefore not be a concern about male reproductive organ toxicity. Furthermore, the testes are protected by the blood-testis barrier that prevents access from many drugs (253). It is therefore possible to design KCa1.1 blockers that cannot cross this barrier.

In addition to this restricted tissue distribution, the presence of β subunits alters the pharmacology of the channel. Indeed, several scorpion venom peptides affect KCa1.1 channels differently depending on the β subunit expressed. ChTx and iberiotoxin both block KCa1.1 channels containing β1, β2, and β3, but not β4 subunits, (31, 254). Martentoxin blocks KCa1.1 formed of αβ4 whereas it opens KCa1.1 formed of αβ1 and is yet to be tested on KCa1.1 containing β2 or β3 subunits (255). It is therefore conceivable that venom peptides that selectively target KCa1.1 αβ3 could be identified or that existing KCa1.1-blocking peptides could be engineered to enhance their selectivity for this channel as was done successfully with other K+ channel-blocking peptides (45, 169, 256). A peptide selective for KCa1.1 αβ3 that cannot cross the blood-testis barrier would be attractive to target KCa1.1 on invasive RA-FLS without the severe side effects induced by the blockade of all KCa1.1 channels regardless of β subunit expression.
7. SUMMARY

Ion channels are key regulators of the inflammatory process, in regards of T lymphocytes as well as of fibroblast like synoviocytes in rheumatoid arthritis, RA-FLS. It is still necessary to deepen our understanding on these topics to be able to treat autoimmune diseases using ion channel inhibitors.

As a major concern, it was not clear how ion channel inhibition correlated with inhibition of cell proliferation as there was an obvious variability in the literature regarding this topic. Our results showed that ion channel blockers and rapamycin inhibit cytokine secretion and cell division in T cells in a dose-dependent manner, while not impairing cell viability. Our key finding was that upon increasing the extent of mitogenic stimulation, the anti-proliferative effect of the ion channel blockers diminished and at very high concentrations it disappeared. Also, this antiproliferative effect can be recovered by combining ion channel blockers with immunopharmacological agents such as the mTOR inhibitor rapamycin. Our findings thus may indicate synergy among the various activation pathways and wishes for in vivo experiments where the benefit of the combined treatment can be assessed in autoimmune diseases.

Furthermore, we aimed to improve our understanding considering novel therapeutic opportunities involving ion channel inhibition in rheumatoid arthritis. As RA-FLS, the major effector cells responsible for cartilage destruction in RA, express mainly KCa1.1 channels as potassium channels, these channels can be regarded as an attractive target for RA treatment. As the pore-forming subunit is ubiquitously expressed in the human body, tissue-restricted accessory subunits are the best targets in blocking these channels without any significant side effects. We identified KCa1.1 β1 and β3 regulatory subunits expressed in RA-FLS. KCa1.1 β3 subunits were expressed by in the vast majority of the cells and were associated with highly invasive CD44\text{high} RA-FLS, whereas minimally invasive CD44\text{low} RA-FLS and FLS from patients with osteoarthritis expressed either β1 or no regulatory β subunits. Furthermore, we showed that silencing the β3 but not the β1 subunit with siRNA reduces KCa1.1 channel density at the plasma membrane of RA-FLS and inhibits RA-FLS invasiveness. These findings suggest that the KCa1.1 channel, composed of α and β3 subunits in RA-FLS is an attractive therapeutic target for RA, and future efforts are desired to develop a specific KCa1.1 β3 inhibitor.

In conclusion, we lifted former mysteries involving the functional role of ion channels in both physiological and pathological conditions and by pointing out novel therapeutic opportunities we authenticated future efforts in the aspect of ion channels and disease.
8. ÖSSZEFOGLALÁS

Az ioncsatornák a gyulladásos folyamatok kulcsfontosságú szabályozói, mind T-limfocitákakn, mind pedig effektor sejteken (pl.: RA-FLS). További ismeretek szükségesek a fenti témával kapcsolatosan, hogy képesek legyünk autoimmun betegségeket ioncsatorna gátlószerekkkel kezelní.

Többek között nem volt világos, hogyan függ össze az ioncsatornagátlás a sejtproliferáció gátlásával, mivel a szakirodalom nagy mértékű szórást mutatott ezen adatokban. Eredményeink azt mutatták, hogy az ioncsatornablokkolók és a rapamicin dózisfüggő módon gátolják a T-sejtek citokin-szerkőréjárat és osztódását, miközben nem csökkentik ezen sejtek életképességét. Legfontosabb megállapításunk az volt, hogy a mitogén stimulusszint mértékének növelésekor az ioncsatornagátlók antiproliferatív hatása csökkent, és nagyon magas koncentrációban el is tűnt. Ezt az proliferáció gátló hatást vissza lehetett állítani oly módon, hogy az ioncsatornablokkolókat egyéb anyagokkal, például mTOR gátoló rapamicinnel kombináltuk. Eredményeink tehát szinergiát mutattak a különböző aktivációs utak között és további in vivo kísérletek szükségesek, hogy az együttes kezelés előnyeit autoimmun betegségekben fel lehessen mérti.

Ezen túlmenően a reumatoid artritiszben ioncsatornagátlással járó új terápiás lehetőségek tekintetében bővítettük ismereteinket. Mivel az RA-FLS-k, a RA-ban a porc pusztulásáért felelős fő effektor sejtek, K⁺ csatornaként főként a KCa1.1 csatornát fejezik ki, ezek a csatornák vonzó célpontok a RA kezelésben. Mivel a pórusképző alegység mindenütt jelen van az emberi szervezetben, a szövetileg behatárolt járulékos alegységek a legmegfelelőbb célpontok ezen csatornák blokkolásában, hogy kiküszöböljük a lehetséges jelentős mellékhatásokat. A RA-FLS-ekben KCa1.1 β₁ és β3 szabályozó alegységeket azonosítottuk. A KCa1.1 β3 alegységet a sejtek túlnyomó többsége expresszálta, és erősen invazív CD44ʰigh RA-FLS-sel társult, míg az osteoarthritisben szenvedő betegek vagy a minimálisan invazív CD44ʰlow RA-FLS-el β1 alegységet vagy semmilyen β-t se fejezték ki. Továbbá azt mutattuk ki, hogy a β3 alegység siRNS-sel történő csendesítésével csökkent a KCa1.1 csatorna sűrűsége az RA-FLS membránjában, és csökkent az RA-FLS invazivitása. Ezek az eredmények arra utalnak, hogy az RA-FLS α- és β3-alegységéből álló KCa1.1-csatorna vonzó terápiás cél pont RA-ban, és a jövőben erőfeszítésekre van szükség egy specifikus KCa1.1. β3-inhibitor kifejlesztéséhez.

Összefoglalva elmondhatjuk, hogy az ioncsatornák funkcionális szerepe mind fiziológias, mind kóros körülmények között számottevő, és betegségekben, új terápiás lehetőségként kiemelt jelentőségűek lehetnek az ioncsatornák.
9. REFERENCES

9. Horrigan FT, Aldrich RW. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels. J Gen Physiol.2002;120:267-305.

70

40. Bukiya AN, Vaithianathan T, Toro L, Dopico AM. Channel β2-4 subunits fail to substitute for β1 in sensitizing BK channels to lithocholate. Biochem Biophys Res Commun. 2009;390:995-1000.

44. Hille B. Ion channels of excitable membranes. Third edition ed.

104. Lennon VA. Immunology of the acetylcholine receptor. Immunological communications. 1976;5:323-344.

Weir MR, Peppler R, Gomolka D, Handwerger BS. Calcium channel blockers inhibit cellular uptake of thymidine, uridine and leucine: the incorporation of these molecules into DNA, RNA and protein in the presence of calcium channel blockers is not a valid measure of lymphocyte activation. Immunopharmacology. 1993;25:75-82.

10. LIST OF PUBLICATIONS

List of publications related to the dissertation

 DOI: http://dx.doi.org/10.1186/s13075-016-1003-4
 IF: 4.121

 DOI: http://dx.doi.org/10.1016/j.imlet.2016.02.003
 IF: 2.86
List of other publications

 DOI: http://dx.doi.org/10.1021/acs.joc.7b00124
 IF: 4.849 (2016)

 Pflugers Arch. 468 (8), 1403-1418, 2016.
 DOI: http://dx.doi.org/10.1007/s00424-016-1851-4
 IF: 3.156

 DOI: http://dx.doi.org/10.1016/j.cellimm.2013.01.004
 IF: 1.874

Total IF of journals (all publications): 16,886
Total IF of journals (publications related to the dissertation): 6,981

The Candidate's publication data submitted to the IDEa Tudostér have been validated by DEENK on the basis of Web of Science, Scopus and Journal Citation Report (Impact Factor) databases.

01 September, 2017
11. ORAL AND POSTER PRESENTATIONS

I. Oral presentations on conferences

- K+ current expression and proliferation of human T-lymphocytes induced by various stimuli (oral presentation)
Authors: Pethő Zoltán Dénes, Balajthy András

- Limfociták proliferációjának és Kv1.3 kálium ioncsatornáinak vizsgálata hiperkoleszterinémiás állapotban (oral presentation)
Authors: Balajthy András, Pethő Zoltán Dénes, Dr. Somodi Sándor, Dr. Hajdú Péter

august 2011.: European Biophysics Societies' Association (EBSA) congress, Budapest, Hungary.
- Analysis of the K+ current in human T-cells in hypercholesterinaemic state (oral presentation)
Authors: Balajthy András, Pethő Zoltán Dénes, Dr. Krasznai Zoltán, Dr. Somodi Sándor, Dr. Hajdú Péter

july 18-21. 2013.: International Medical Student Congress Novi Sad IMSCNS, Novi Sad, Serbia.
- Studying the interactions between mesenchymal stem cells and lymphocytes (oral presentation)
Authors: Pethő Zoltán Dénes, Balajthy András, Mészáros Beáta

Mesenchymalis őssejtek hatása T-lymphocyták proliferációjára és Kv1.3 ioncsatornáira (oral presentation)

Authors: Pethő Zoltán Dénes, Mészáros Beáta, Balajthy András, Bartók Ádám, Dr. Panyi György

May 22, 2013. I. Sántha Kálmán Szakkollégiumi Kerekasztal, Debrecen, Hungary (szakkollégiumi konferencia)

Limfociták és mezenhimális őssejtek közötti kölcsönhatások tanulmányozása I. (oral presentation)

Author: Pethő Zoltán Dénes

December 5, 2013. III. Sántha Kálmán Szakkollégiumi Kerekasztal, Debrecen, Hungary (szakkollégiumi konferencia)

A mezenhimális őssejtek és lehetséges immunomoduláns hatásaik (oral presentation)

Author: Pethő Zoltán Dénes
II. Poster presentations on conferences

April 9-11. 2010.：“Bridges in Life Sciences 5th Annual Scientific Meeting” - Lvov, Ukraine.

- K+ current expression and proliferation of human T-lymphocytes induced by various stimuli (poster)
Authors: Pethő Zoltán Dénes, Balajthy András

- Analysis of the K+ current in human T cells in hypercholesterinaemic state (poster)
Authors: Balajthy András, Pethő Zoltán Dénes, Somodi Sandor

- Kationcsatorna-gátlószerek hatása mitogénnel stimulált T-limfocitákra (poszter)
Authors: Pethő Zoltán Dénes, Balajthy András, Dr. Varga Zoltán, Dr. Panyi György

August 2011: European Biophysics Societies’ Association (EBSA) congress, Budapest, Hungary.

- Effect of ion channel blockers on T-lymphocytes stimulated with anti-CD3 and anti-CD28 (poszter)
Authors: Pethő Zoltán Dénes, Balajthy András, Dr. Krasznai Zoltán, Dr. Varga Zoltán, Dr. Panyi György

- Immune cells produce thyroglobulin antibodies in thyroid cancer: a tissue-specific immune response (poszter)
Authors: Pethő Zoltán Dénes, Balajthy András, Christian Bernecker, Margret Ehlers, Dr. Panyi György, Matthias Schott

- Effects of hypercholesterinaemia on Kv1.3 currents (poster)
Authors: Balajthy András, Pethő Zoltán Dénes, Dr. Somodi Sándor, Dr. Hajdú Péter
Inherited disorder of cholesterol biosynthesis (SLO syndrome) modifies the function of Kv1.3 channels and proliferation of lymphocytes (poster)

Authors: Balajthy András, Pethő Zoltán Dénes, Dr. Hajdú Péter

A Smitz-Leimnitz-Opitz szindróma megváltoztatja a lymphocyták Kv1.3 ioncsatornáinak működését, melyet ciklodextrin/7DHC töltéssel modellezni lehet (másodszerzős poster)

Authors: Balajthy András, Pethő Zoltán Dénes, Dr. Somodi Sándor, Dr. P. Szabó Gabriella, Dr. Hajdú Péter

Inherited disorder of cholesterol biosynthesis (SLO syndrome) modifies the function of Kv1.3 channels and proliferation of lymphocytes (poster)

Authors: Balajthy András, Pethő Zoltán Dénes

Altered Gating of Kv1.3 Channels of T Lymphocytes in Smith-Lemli-Opitz Syndrome (poster)

Authors: Andras Balajthy, Sandor Somodi, Maria Peter, Zoltan Denes Petho, Laszlo Vigh, Gyorgy Panyi, Peter Hajdu

KCa1.1 (BK) channels on fibroblast-like synoviocytes: a novel therapeutic target for rheumatoid arthritis (társszerzős poszter)

Authors: Mark R. Tanner, Zoltan Denes Petho, Rajeev B. Tajhya, Redwan Huq, Frank T. Horrigan, Percio S. Gulco, Christine Beeton
- The anti-proliferative effect of cation channel blockers on T lymphocytes stimulated by anti-CD3 and anti-CD28 (társzszerzős poszter)

Authors: Zoltan Varga, Zoltan Denes Petho, Andras Balajthy, Adam Bartok, Sandor Somodi, Orsolya Szilagyi, Gyorgy Panyi

May 19.-22. 2015.: 45. Sümegi Membrán-transzport konferencia, Sümeg, Hungary.

- Glioblastoma multiforme KCa1.1 ioncsatornáinak feltérképezése (poster)

Szerző: Pethő Zoltán Dénes, Papp Pál, Balajthy András, Klekner Álmos, Panyi György, Varga Zoltán

February 27.- March 2. 2016: Biophysical Society 60th Annual meeting (BSM) , Los Angeles, USA.

- The effect of membrane cholesterol content on the gating mechanism of voltage gated potassium channels (poster)

Authors: Pal Papp, Zoltan Petho, Gyorgy Panyi, Zoltan Varga

- 7-dehydrocholesterol modifies the operation of Kv1.3 channels in T cells isolated from Smith-Lemli-Opitz syndrome patients (poster)

Authors: Andras Balajthy, Zoltan Petho, Sandor Somodi, Zoltan Varga, Maria Peter, Laszlo Vigh, Gabriella P. Szabó, Gyorgy Paragh, Gyorgy Panyi, Peter Hajdu

February 11.- 15. 2017: Biophysical Society 61th Annual meeting (BSM) , New Orleans, USA.

- KCa1.1 Channel Auxiliary Beta Subunit Composition in Glioblastoma Multiforme (poster)

Authors: Zoltan Denes Petho, Andras Balajthy, Almos Klekner, Laszlo Bognar, Zoltan Varga, Gyorgy Panyi

May 17.- 19. 2017: Brain Tumor Congress, Berlin, Germany.

- KCa1.1 Channel Auxiliary Beta Subunit Composition in Glioblastoma Multiforme (poster)

Authors: Zoltan Denes Petho, Andras Balajthy, Almos Klekner, Laszlo Bognar, Zoltan Varga, Gyorgy Panyi

88

- The specific fluorescent signal in voltage clamp fluorometry originates from quenching amino acids in the Ci-Hv1 proton channel (poster)

Authors: Zoltán Pethő, György Panyi, Zoltán Varga, Ferenc Papp
III. Student Research Conferences

2009 / 2010. local TDK conference, Debrecen:

- Különböző stimulációk hatására bekövetkező proliferáció- és ionáramváltozás T-limfocitákon (1. prize)

Authors: Pethő Zoltán Dénes, Balajthy András

- Kv1.3 ioncsatornák vizsgálata hypercholesterinaemiás állapotban

Authors: Balajthy András, Pethő Zoltán Dénes

2010 / 2011. local TDK conference, Debrecen:

- Kationcsatorna-gátlószerek hatása mitogénnel stimulált T-limfocitákra (1. prize)

Authors: Pethő Zoltán Dénes, Balajthy András

- Limfociták proliferációjának és Kv1.3 kálium ioncsatornáinak vizsgálata
 hiperkoleszterinémiás állapotban (1. prize)

Authors: Balajthy András, Pethő Zoltán Dénes

2011 / 2012. local TDK conference, Debrecen:

- A koleszterin bioszintézis örökkletes zavara (SLO szindróma) módosítja a limfociták Kv1.3
 csatornáinak működését és proliferációját (1. prize)

Authors: Balajthy András, Pethő Zoltán Dénes

2012 / 2013. local TDK conference, Debrecen:

- Mezenhímális őssejtek és limfociták kölcsönhatásainak vizsgálata (1. prize)

Authors: Pethő Zoltán Dénes, Balajthy András

2013 / 2014. local TDK conference, Debrecen:
-Módosított tenyésztőoldat előállítása K+ - csatorna gátlószerek hatásának optimalizálásához (3. prize)

Authors: Pethő Zoltán Dénes, Balajthy András

2010 / 2011. XXX. National OTDK conference -Debrecen:

- Kationcsatorna-gátlószerek hatása mitogénnel stimulált T-limfocitákra (2. prize)

Authors: Pethő Zoltán Dénes, Balajthy András

- Limfociták proliferációjának és Kv1.3 kálium ioncsatornáinak vizsgálata hiperkoleszterinémiás állapotban (3. prize)

2012 / 2013. XXXI. National OTDK conference-Szeged:

- Mezenhimális össejtek és limfociták kölcsönhatásainak vizsgálata (különdíj)

Authors: Pethő Zoltán Dénes, Balajthy András

- A koleszterin bioszintézis őrkletes zavara (SLO szindróma) módosítja a limfociták Kv1.3 csatornáinak működését és proliferációját (1. prize)

Authors: Balajthy András, Pethő Zoltán Dénes

2014 / 2015. XXXII. National OTDK konferencia-Budapest:

- Módosított tenyésztőoldat előállítása K⁺ - csatorna gátlószerek hatásának optimalizálásához (2. prize)

Author: Pethő Zoltán Dénes

2013. TDK thesis (diplomamunka):

- Kationcsatorna-gátlószerek hatása mitogénnel stimulált T-limfocitákra

Author: Pethő Zoltán Dénes
12. KEYWORDS
ion channel
potassium channel
regulatory subunit
patch clamp
electrophysiology
cell proliferation
cell migration
cytokine secretion
T lymphocyte
autoimmune disease
arthritis

KULCSSZAVAK
ioncsatorna
kálium csatorna
járulékos alegység
patch-clamp
elektrofiziológia
sejtproliferáció
sejtmigráció
citokinszekréció
T limfocita
autoimmun betegség
arthritis
13. ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my supervisor Dr. Zoltán Varga, who has been my mentor throughout my medical studies as well as during my PhD education.

Also, sincerely appreciate the tremendous help from Prof. Dr. György Panyi, the leader of the Electrophysiology Laboratory, who has invited me to the workgroup as a first-year medical student and provided me with invaluable insights both in the scientific and in the everyday life during the last ten years.

Also, am extremely grateful to Dr. Christine Beeton, who has welcomed and accepted me in her lab during my scholarship as a first-year graduate student and her inspirational insights led to an exceptionally productive collaboration between our workgroups.

I would also like to thank the head of the Department of Biophysics and Cell Biology, Prof. Dr. János Szöllősi for allowing me to pursue my research in the department.

Moreover, I cannot even begin to express my appreciation to Dr. András Balajthy, whose help motivated me during the past decade.

The continuous and helpful assistance provided by our lab technicians, Cecília Nagy and Adrienn Bagosi are also greatly appreciated.

I must thank the past and present members of our laboratory: Dr. Zoltán Krasznai, Dr. Sándor Somodi, Dr. Tibor G. Szántó, Dr. Ferenc Papp, Dr. Ádám Bartók, Dr. Orsolya Szilágyi, Dr. Beáta Mészáros, Dr. Ágnes Tóth, Dr. Pál Pap, Dr. Brigitta Domján, Dr. Florina Zákány, Orsolya Vörös, who have not only helped me during my professional life, but have also ensured a great atmosphere to work in.

Also, I am grateful for the members of Christine Beeton’s lab, Dr. Rajeev B. Tajhya, Dr. Redwan Huq, and Mark. R. Tanner, who put a lot of effort in helping and training me during my stay at Baylor College of Medicine.

Furthermore, I would like to thank Dr. Pércio S. Gulko and Theresa Laragione, our collaborators from the Icahn School of Medicine at Mount Sinai who provided us with FLS and verified their purity.

Finally, I express my deepest appreciations to my Family and my Fiancée, who never gave up on me and have always supported me.
The experimental work was performed by the support of the TÁMOP-4.2.2.A-11/1-KONV/2012-0025 project and of Baylor College of Medicine fundings. The doctoral training program was supported by the Campus Hungary Fellowship and the Hungarian National Excellence Program. This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 ‘’ and KTIA_NAP_13-2-2015-0009. Lastly, the work is supported by the GINOP-2.3.2-15-2016-00015 project. The project is co-financed by the European Union and the European Regional Development Fund.