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Abstract 

 

MicroRNAs are important components of the post-transcriptional fine-tuning of macrophage 

gene expression in physiological and pathological conditions. However, the mechanistic 

underpinnings and the cis-acting genomic factors of how macrophage polarizing signals 

induce miRNA expression changes are not well characterized. Therefore, we systematically 

evaluated the transcriptional basis underlying the inflammation-mediated regulation of 

macrophage microRNome using the combination of different next generation sequencing 

datasets. We investigated the LPS-induced expression changes at mature miRNA and pri-

miRNA levels in mouse macrophages utilizing a small RNA-seq method and publicly 

available GRO-seq dataset, respectively. Next, we identified an enhancer set associated with 

LPS-responsive pri-miRNAs based on publicly available H3K4 mono-methylation-specific 

ChIP-seq  and GRO-seq datasets. This enhancer set was further characterized by the 

combination of publicly available ChIP and ATAC-seq datasets. Finally, direct interactions 

between the miR-155-coding genomic region and its distal regulatory elements were 

identified using a 3C-seq approach. Our analysis revealed 15 robustly LPS-regulated 

miRNAs at the transcriptional level. In addition, we found that these miRNA genes are 

associated with an inflammation-responsive enhancer network. Based on NFκB-p65 and 

JunB transcription factor binding, we showed two distinct enhancer subsets associated with 

LPS-activated miRNAs that possess distinct epigenetic characteristics and LPS-

responsiveness. Finally, our 3C-seq analysis revealed the LPS-induced extensive 

reorganization of the pri-miR-155-associated functional chromatin domain as well as 

chromatin loop formation between LPS-responsive enhancers and the promoter region. Our 

genomic approach successfully combines various genome-wide datasets and allows the 

identification of the putative regulatory elements controlling miRNA expression in classically 

activated macrophages.  

Keywords: pri-miRNA, inflammation, macrophage, enhancer, chromatin looping 
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Highlights 

 Next generation sequencing-based approaches were applied to investigate the 

transcriptional regulation of miRNA expression.  

 22 transcriptionally regulated miRNAs were identified in LPS-activated 

macrophages. 

 LPS-regulated pri-miRNAs are associated with 52 induced and 25 repressed 

enhancers. 

 2 distinct LPS-activated enhancer subsets can be distinguished based on 

inflammatory responsiveness, NFkB and AP-1 binding and distinct epigenetic 

characteristics. 

 The architecture of pri-miR-155-associated topological domain undergoes 

LPS-induced spatial reorganization. 
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1. Introduction 

 

MicroRNAs (miRNAs) are the most studied class of the small non-coding RNAs [1, 2]. They 

are well characterized components of the post-transcriptional fine-tuning of gene expression 

in mammals and participate in the regulation of embryonic development, cellular 

differentiation as well as disease progression [3-6]. MiRNA genes are located in both 

intergenic regions and intronic/exonic regions of protein-coding genes in the genome [2]. 

Their primary transcripts, pri-miRNAs, are usually transcribed by RNA polymerase II [7], 

although RNA polymerase III-transcribed pri-miRNAs have also been described [8]. Pri-

miRNAs are processed in nuclear and cytoplasmic steps by RNase III enzymes Drosha and 

Dicer [2]. Mature miRNAs are loaded into RNA-induced silencing complex (RISC) and 

generally recognize the 3’ untranslated regions (3’UTR) of their target mRNAs [9]. RISC-

incorporated miRNAs act as negative regulators of gene expression via induction of target 

mRNA degradation or inhibition of protein synthesis [6, 9, 10]. 

Despite the fact that several regulatory mechanisms of miRNA expression are described at 

different levels of miRNA biogenesis, including transcription, processing and transport 

(reviewed in [11]), the transcriptional control of miRNA expression under different 

physiological and pathological conditions remains poorly understood. Although a few studies 

demonstrated the involvement of distinct tissue or signal-specific transcription factors, the 

number of published genome-wide miRNA transcriptional studies are limited. This is mainly 

due to technical difficulties and certain biological features of pri-miRNAs including (i) rapid 

processing and low copy number of pri-miRNAs, (ii) inadequate annotation of pri-miRNA 

genes, and (iii) lack of integrated genomic and bioinformatics approaches [12-16]. The in 

silico combination of genome sequence and ditag expression data may provide insight into 

the transcript structure of pri-miRNAs but this information alone is not sufficient to 

determine the cell type- and internal/external signal-dependent regulation of pri-miRNA 

expression [17]. Next generation sequencing (NGS) technologies including Global Run On 

and sequencing (GRO-seq), Chromatin Immunoprecpitation and sequencing (ChIP-seq) and 

bisulfite sequencing provide valuable information about the transcriptional regulation of 

miRNAs [18-22]. By using GRO-seq, 322 expressed and 119 17β-estradiol-regulated pri-

miRNAs have been identified in the estrogen-receptor α-positive MCF-7 human breast cancer 

cell line [18]. Combined analysis of histone modifications and DNA methylation at miRNA 

promoters proved to be a useful, but limited approach to determine the epigenetic regulation 

of miRNA expression in colorectal cancer cells and monocyte-derived dendritic cells [20, 

21]. ChIP-seq-based detection of active histone mark H3K4m3 alone or in combination with 

RNA polymerase II binding proved to be suitable for identifying active pri-miRNA promoter 

regions [19, 21, 23, 24]. However, our understanding about the involvement of additional cis-

regulatory components in the control of miRNA transcription is far from complete. 

It has become evident in recent years that the long-range interaction between promoters and 

distal-acting enhancers is necessary for cell type-specific and/or signal-dependent expression 

of coding and non-coding transcripts [25].  The integration of different NGS methods 

including Assay for Transposase-Accessible Chromatin with high-throughput sequencing 

(ATAC-seq), GRO-seq, ChIP-seq  of general enhancer mark H3K4m1 and chromosome 

conformation capture techniques are suitable tools to identify enhancer networks and 

functional promoter-enhancer interactions in different cellular systems (reviewed in [26, 27]). 

Nonetheless, our current knowledge about cell type or signal-specific enhancer networks in 

the regulation of pri-miRNA transcriptome is limited to only a handful of examples [28, 29]. 

Therefore a more thorough and better integrated epigenomic approach is needed in order to 
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identify (1) transcription units of pri-miRNAs, (2) transcription start sites (TSS) and 

promoters, (3) proximal and distal enhancers and long-range interactions regulating miRNA 

gene expression. Macrophages display substantial functional heterogeneity, they are essential 

for the maintenance of tissue homeostasis and play critical roles in the regulation of 

inflammatory response against invading microbial pathogens as well as the resolution of 

inflammation. In addition, they are involved in the pathophysiology of chronic inflammatory 

diseases and tumor development [30, 31]. Inflammatory macrophage phenotype is triggered 

by pathogen-derived molecules such as lipopolysaccharide (LPS) and inflammatory 

cytokines including interferon gamma (IFNγ) or tumor necrosis factor alpha (TNFα) through 

the activation of the Janus kinase (JAK)/signal transducer and activator of transcription 

(STAT1) axis or the activator protein 1 (AP-1) and nuclear factor kappa-light-chain-enhancer 

of activated B cells (NFkB) signaling pathways [32, 33]. The functional properties associated 

with inflammatory signal-induced macrophage activation require tight regulation of the 

inflammation-specific gene expression program at the transcriptional and post-transcriptional 

levels [31]. It has been shown that, along with changes in mRNA transcription, the miRNA 

signature of macrophages is also modulated following LPS stimulation or microbial pathogen 

infections [34-37].  Inflammation responsive miRNAs proved to be important post-

transcriptional regulators in controlling the function of macrophages, either promoting the 

pro-inflammatory macrophage activation or inhibiting the overwhelming inflammatory 

response [38-45]. Despite the well known miRNA-associated functions during inflammatory 

macrophage activation, the mechanistic background of inflammation-dependent regulation of 

miRNA expression is poorly understood.  

Here we provide a complex NGS-based approach combining small RNA-seq, GRO-seq, 

ChIP-seq, ATAC-seq and 3C-seq methods to unravel the transcriptional basis of 

inflammation-induced changes in the macrophage miRNome. Our strategy has led to the 

annotation of inflammation-responsive enhancers to microRNA genes and validated the 

physical interactions between the LPS-activated pri-miR-155 promoter and its enhancers.     

 

2. Materials and methods 

 

2.1. Animals: 

Wild-type (C57BL/6J) mice were housed under minimal disease conditions and the 

experiments were carried out under institutional ethical guidelines and licenses. Animal 

experiments in the Nagy laboratory were carried out with protocols approved by the 

Institutional Review Board of the University of Debrecen (file numbers: 120/2009/DE MAB 

and 21/2011/DE MAB).  

 

2.2. Materials: 

LPS (Salmonella enterica serotype minnesota Re 595) was obtained from Sigma Aldrich. 

2.3. Differentiation of bone marrow-derived macrophages: 

Bone marrow was isolated from 8-12 weeks old male mice. Isolation and differentiation were 

completed as described earlier [46]. Isolated bone marrow-derived cells were differentiated 

for 6 days in the presence of L929 supernatant. Cells were polarized on the 6
th

 day of the 

differentiation with LPS (100 ng/ml) for the indicated period of time. 
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2.4. Small RNA-sequencing and data analysis: 

Small RNA-sequencing libraries were generated from 1 g of total RNA using TruSeq Small 

RNA Sample Preparation Kit (Illumina) according to manufacturer’s protocol. Briefly, after 

ligation of 3’ and 5’ RNA adapters, reverse transcription was performed to synthesize cDNA 

and then using Illumina specific index adapter primers, cDNA was amplified. The amplified 

library was excised from 6% Novex TBE PAGE gel (Invitrogen) and after purification the 

libraries were quantified by Qubit fluorometer and checked on BioAnalyzer 2100 using 

DNA1000 chip (Agilent Technologies). Single read 50bp sequencing was performed on 

HiScanSQ instrument (Illumina). Small RNA-seq samples were aligned by novoalign (with –

r Random and –m options) to mm10 genome assembly (GRCm38.p1.) and converted into 

BAM files with SAMtools [47, 48]. The Rsubread and edgeR packages were used to quantify 

and infer the statistically significant miRNAs using mature miRNA collection from MirBase 

(v21), respectively. CPM (counts per million) scores were normalized by using TMM 

method. For the downstream analysis only the expressed miRNAs (CPM>=10 at least in two 

samples) and significantly changed (p-value<=0.05 and FDR <= 0.1) miRNAs were used. 

 

2.5. Real-time quantitative PCR: 

Total RNA was isolated from cells using Tri Reagent (MRC) according to manufacturer's 

protocol. For quantification of mRNAs and pri-miRNAs reverse transcription was performed 

by using High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems). RT primers 

for mature miRNAs were supplied by Applied Biosystems. Transcript quantification was 

performed by quantitative real-time RT (reverse transcriptase) PCR (polymerase chain 

reaction) using SYBR Green assays (selfmade assays). qPCR assays and primer sequences 

are listed in Supplementary Table 1. 

 

2.6. GRO-seq and ChIP-seq and ATAC-seq data analysis: 

Primary analysis of the raw reads was carried out using our ChIP-seq analysis command line 

pipeline [49]. Briefly, Burrows-Wheeler Alignment Tool (BWA, [50]) was used to align the 

reads to mm10 genome assembly (GRCm38.p1.) with default parameters [47]. MACS2 [51] 

was used for predicting transcription factor peaks (q-value<=0.01) and findPeaks.pl (with ‘-

size 1000’ and ‘-minDist 2500’ options) for histone regions with option ‘-style histone’ [52]. 

Artifacts were removed using the ENCODE blacklist (ENCODE Cons.) [53]. This pipeline is 

available upon request. Predicted peaks were sorted by average coverage (RPKM, Reads Per 

Kilobase per Million mapped reads) calculated by DiffBind v1.0.9 [54]. Intersections, 

subtractions and merging of the predicted peaks were made with BedTools [55]. Proportional 

Venn diagrams were generated with VennMaster [56]. Genome coverage files (bedgraph 

files) for visualization were generated by makeUCSCfile.pl and then converted into tdf files 

using igvtools with ‘toTDF’ option [57]. De novo motif discovery was performed on the 100 

bp vicinity of the peak summits using findMotifsGenome.pl from HOMER. Integrative 

Genomics Viewer (IGV2.3, Broad Institute) was used for data browsing [57] and creating 

representative snapshots. Normalized tag counts for Meta histograms and RD plots were 

generated by annotatePeaks.pl with ‘-ghist’ and ‘-hist 25’ options from HOMER and then 

visualized by Java TreeView or R using ggplot2 [58]. GRO-seq transcripts were predicted by 

findPeaks,pl with ’-style groseq’ option of HOMER (with parameters minBodySize=1000, 

maxBodySize=80000, tssFold=5, bodyFold=1.5 endFold=6.5) and merged with known gene 

bodies within a window of 1000bp in a strand specific manner. Finally to make the prediction 
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of TSSs of predicted transcripts more precise they were split by the union of control and LPS 

treated H3K4m3 regions (3000bp distance between features allowed for features to be 

merged) dealing with the cases when there is more than active promoter regions on the same 

transcript. TSS predictions from FANTOM5 data set aligned to mm9 was converted to mm10 

genome using liftOver [59]. 

 

2.7. Domain prediction: 

Raw ChIP-seq reads of 47 CTCF and 42 Cohesin (RAD21, SMC1/3 or SA1/2) samples were 

downloaded from the Sequence Read Achive of NCBI and processed by our ChIP-seq 

analysis command line pipeline [49]. Peaks determined by MACS2 [51] were filtered by 

score (≥10) and the blacklist of ENCODE [53]. Consensus CTCF peak summits were defined 

as the average genomic location of at least two summits within 51 bp. Consensus peak 

summits for Cohesin were defined in the same manner. Insulator peak summits were 

determined from those consensus CTCF peak summits that were closer to a consensus 

Cohesin peak summit than 51 bp. Motif enrichments were determined in two rounds by 

findMotifsGenome.pl (HOMER) [52] from the 100 bp region around the 5000 most 

ubiquitous insulator peak summits. After mapping the putative elements matching with the 

CTCF motif of the first search by annotatePeaks.pl (HOMER), we used those top 5000 

regions lacking these hits. Score 6 was set for both CTCF motif matrices, and to filter 

putative CTCF elements in the case of multiple occurrences at the same region, we preferred 

those hits following the direction of the CTCF/Cohesin peak location compared to each other 

[60, 61] and having the highest motif score. Insulators showing clear protein-binding 

direction without predicted element were also included in domain prediction. Read density 

(RPKM) of CTCF and RAD21 ChIP-seq derived from bone marrow-derived macrophages 

was calculated on the 100 bp wide genomic region around insulators, and those regions 

having an RPKM value exceeding the hundred-thousandth of the summed density of all 

regions per sample in both samples were selected. The closest insulators showing convergent 

direction within 1 Mb distance and farther than 1 Kb were assigned to each other and called 

domains if their coverage showed less than 2-fold difference for both proteins. In the case of 

overlapping domains, those having the highest insulator coverage were selected. Domains 

with divergent insulators were determined in a similar manner.  

 

2.8. Enhancer annotation and eRNA expression analysis: 

Enhancer transcripts were predicted based on the pool of the sequence reads derived from the 

(2x4) LPS-treated time-course GRO-seq samples according to our previous work [46]. From 

nearby enhancers within 1 Kb, those were used in the further analyses showing the highest 

expression calculated in RPKM. Enhancers were filtered based on their expression level 

(over 0.5 RPKM in at least one sample per replicate), expression change (at least 1.3 fold 

change in the same time point(s) in both replicates as compared to time 0) and the overlap 

with H3K4m1 enrichment upon LPS treatment (according to the region prediction of 

HOMER). Intergenic H3K4m1/eRNA "double positive" enhancers farther than 1 Kb and 

within 50 Kb compared to LPS-responsive pri-miRNA TSSs and/or within the predicted 

domains around the pri-miRNA TSSs and flanked by the highest CTCF/Cohesin peaks were 

assigned to the associated gene. RPKM values for H3K4m1 enrichment were calculated 

within the 1 Kb wide region around the annotated enhancers. 
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2.9. ChIP: 

ChIP was performed essentially as previously described [46, 62]. The following antibodies 

were used: P300 (sc-585), PU.1 (sc-352), p65 (sc-372), PolII-pS5 (ab5131) and PolII-pS2 

(ab5095). Primer sequences are available upon request. The amount of immunoprecipitated 

DNA was quantified with Qubit fluorometer (Invitrogen). DNA was applied for qPCR 

analysis. Primer sequences are listed in Supplementary Table 2. 

 

2.10. 3C-seq and analysis: 

Experiments were carried out as previously described (Stadhouders et al., 2013). After the 

first digestion and ligation the 3C DNA pool was purified with phenol/chloroform/ 

isoamyl alcohol (25:24:1) (Sigma). Second restriction digestion was performed by using 

DpnII (NEB) for 16 hours per manufacturer’s instruction. Second ligation was performed at 

16C for 6 hours with 200U of T4 DNA ligase. DNA was then purified again with 

phenol/chloroform/isoamyl alcohol (25:24:1) followed by QIAquick gel purification columns 

(Qiagen). Bait specific inverse PCRs were performed using primers coupled to Universal 

Illumina adapters and Barcode sequences. Reactions were purified by QIAquick gel 

purification columns. Amplicon libraries were quantified and qualified by Agilent using 

DNA 7500 chip cartridge. Primers are available upon request. Amplicon libraries were 

sequenced on Illumina HiSeq sequencer. Raw reads were demultiplexed using FASTX-

Toolkit and then aligned to mm10 genome assembly (GRCm38.p1.) by BWA [50]. Bedgraph 

and TDF files for visualization were generated as previously described. The R package 

r3Cseq (pvalue<=0.05) was used to predict the putative interactions [63]. 

 

2. 11. Availability of data and materials  

Small RNA sequencing and 3C sequencing data were submitted to NCBI SRA depository 

under accession number PRJNA379555. ChIP-seq data were downloaded from the NCBI 

GEO depository (GSE38379, GSE16723) and from NCBI SRA depository (accesion number 

PRJNA194083). GRO-seq data were downloaded from the NCBI GEO depository 

(GSE60857). ATAC-seq data were downloaded from the NCBI GEO depository 

(GSE78873). The used genome-wide datasets are collected in Supplementary Table 3. 

2.12. Statistical analysis 

RT-qPCR and ChIP-qPCR assays were presented as mean +/-SD. We made at least two 

biological replicates and we performed one-way Anova with Dunnett post-hoc test and results 

were considered significant with p ˂0.05. 

 

3. Results  

 

3.1. Characterization of the transcriptional basis of inflammation responsive miRNA 

signature in macrophages 

 

In order to determine which macrophage-expressed miRNAs are responsive to inflammatory 

signals, we exposed mouse bone-marrow-derived macrophages (BMDMs) to LPS stimulus 
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for 3 hours and performed small RNA sequencing. We observed that 261 miRNAs were 

expressed in unstimulated BMDMs (Supplementary Table 4) and 17 miRNAs showed 

significantly different expression upon LPS treatment (p-value˂0.05 and FDR˂0.1; 4 

downregulated and 13 upregulated; Supplementary Table 5). 

To explore the potential regulatory mechanisms controlling LPS-dependent miRNA 

expression, we identified the pri-miRNA transcripts using the combination of publicly 

available GRO-seq and H3K4m3-specific (active gene promoter mark) ChIP-seq datasets 

from control and LPS-activated BMDMs [64, 65]. We detected 518 sense nascent RNA 

transcripts overlapping with 568 miRNA genes in the absence and/or presence of LPS 

activation (Supplementary Table 6). 12 of the detected nascent RNA transcripts overlapped 

with the genes of 17 LPS-regulated miRNAs (Supplementary Table 6). Next, we investigated 

the genomic location and primary transcript size of inflammation responsive miRNAs. 58% 

of them were intergenic, while 17% and 25% showed intronic and exonic localization, 

respectively (Supplementary Figure 1A). Although, the length distribution of pri-miRNAs 

was very diverse (ranging from 5,6 to 73 Kb) the majority of primary transcripts (9/12) fell 

within the range of 5,6-20Kb (Supplementary Figure 1B). To investigate the transcriptional 

or posttranscriptional regulatory effects of LPS, we determined the pri-miRNA expression 

changes using the same GRO-seq datasets [65]. 15 out of 17 transcribed LPS-responsive 

miRNAs (3 down-regulated and 12 upregulated) showed similar LPS-mediated expression 

patterns with their pri-miRNAs (3 down-regulated and 7 up-regulated; 3 LPS-induced pri-

miRNAs contained more than one miRNAs) suggesting dominantly transcriptional regulation 

of miRNA expression in inflammatory macrophages (Figure 1A). For validation purposes, 

we selected three previously published inflammation-responsive miRNAs, including the LPS-

induced miR-155 and miR-147 as well as the LPS-repressed miR-223 (Figure 1B) [38-44]. 

Time course experiments of LPS stimulation validated the LPS-mediated induction of pri-

miR-155 and pri-miR-147 and the suppression of pri-miR-223 expression (Figure 1C).  

Taken together, these results indicate that the majority of inflammation responsive miRNAs 

are regulated at the transcriptional level in BMDMs. Nevertheless, differential regulation of 

certain pri-miRNAs and mature miRNAs suggests the participation of post-transcriptional 

regulatory mechanisms.             

3.2. Transcription start sites of inflammation responsive pri-miRNAs are associated 

with general active promoter marks and RNA polymerase II binding  

 

It is well known that specific epigenetic marks including H3K4m3 and H3K27Ac as well as 

RNA polymerase II (RNAPII) binding are associated with the promoter region of 

transcriptionally active protein-coding genes [26, 66]. Recently, active promoter-specific 

H3K4m3 and RNAPII binding has been previously used for the identification of pri-miRNA 

promoter regions as well [23, 24]. In order to see if inflammation-regulated pri-miRNA genes 

have similar epigenetic signatures, we analyzed publicly available H3K4m3, H3K27Ac and 

RNAPII-specific ChIP-seq datasets from both unstimulated and LPS-stimulated BMDMs 

[64]. As expected, transcriptional start sites (TSSs) of the inflammation-responsive pri-

miRNA genes were associated with H3K4m3, H3K27Ac and RNA Pol II enrichments 

(Figure 1D, Supplementary Figure 1C and data not shown). LPS exposure enhanced the 

presence of H3K27Ac and RNAPII on the TSSs of LPS-activated pri-miRNAs, including pri-

miR-155 and pri-miR-147 (Figure 1D and Supplementary Figure 1C). In contrast, LPS-

dependent reduction of H3K27Ac and RNAPII binding were detected at the TSSs of 
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inflammation-repressed pri-miRNA genes such as pri-miR-223, without the alteration of 

H3K4m3 enrichment (Figure 1D and Supplementary Figure 1C).  

Taken together, these findings confirmed that (i) inflammation sensitive miRNA genes have 

similar epigenetic features as protein-coding genes and (ii) their transcription seems to be 

dependent on RNAPII.      

 

3.3. LPS-regulated pri-miRNAs are associated with an inflammation-responsive 

enhancer network  

 

Eukaryotic enhancers associating with protein-coding genes are marked by specific post-

translational histone modifications including H3 histone lysine 4 mono- and dimethylation 

(H3K4m1, H3K4m2) and enhancer RNA (eRNA) expression (Reviewed in [67] and [68]. 

Enhancers have also been shown to regulate pri-miRNA transcription in many cell types and 

tissues [28, 29]. These pri-miRNA-associated distal regulatory regions have general 

enhancer-like characteristics including enhancer-specific H3K4 mono-methylation and eRNA 

expression [28, 29]. Based on these findings, we aimed to determine whether inflammation-

responsive enhancers can be found in the same topologically associated domains with pri-

miRNA genes by using publicly available H3K4m1-specific ChIP-seq and GRO-seq datasets 

[64, 65].  We performed sub-topological domain (sub-TAD) prediction based on mouse 

BMDM-derived CTCF and Rad21 datasets, utilizing a previously described algorithm [46, 

60, 69-71].  

As expected, inflammation responsive pri-miRNA genes were associated with H3K4m1 and 

eRNA "positive" distal regulatory elements (Supplementary Figure 2A, Figure 2A and B). 

Our global analysis revealed 33 induced and 11 repressed enhancers (Supplementary Figure 

2A and Figure 2B) in the sub-TADs of LPS-regulated pri-miRNA genes (Supplementary 

Figure 2A and Figure2B). Genomic distribution of inflammation regulated enhancers relative 

to the TSS of pri-miRNAs revealed that 67% (22/33) of activated enhancers showed 

upstream localization from the corresponding TSSs (Supplementary Figure 2B). In addition, 

48% (16/33) of LPS-activated enhancers were located more than 40 Kb from TSSs 

(Supplementary Figure 2B). LPS-repressed enhancers also showed asymmetric distribution 

around the TSS, however, 73% (8/11) of them were located within 40 Kb relative to TSS 

(Supplementary Figure 2B), suggesting that repressive mechanisms more often operate from 

closer distances compared to the activating ones. 

Next, we decided to identify and characterize inflammation responsive enhancers in the 

annotated sub-TADs of LPS-regulated miR-155, miR-147 and miR-223 genes. We identified 

9 and 2 H3K4m1 positive enhancers, exhibiting LPS-induced eRNA expression in the pri-

miR-155 and pri-miR-147 sub-TADs, respectively (Figure 2C). On the other hand, the LPS-

repressed pri-miR-223 gene was associated with 3 LPS-repressed enhancers (Figure 2C). For 

all three pri-miRNAs, we selected 2-2 enhancers for the further characterization by 

measuring LPS-dependent eRNA expression using RT-qPCR. LPS-dependent activation of 

selected pri-miR-155-associated enhancers correlated with pri-miRNA expression (Figure 1C 

and 2D). Similarly, elevated eRNA expression was observed at pri-miR-147_+14 Kb and 

+27Kb enhancers after LPS treatment, followed by induced pri-miR-147 expression (Figure 

1C and 2D). However, the examined pri-miR-147-associated enhancers showed different 

activation kinetics at later time points (12 and 24 hours) of LPS stimulation. The pri-miR-

147_+27 Kb enhancer activity showed significant reduction compared to its maximal 
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expression level following 12 and 24 hours of LPS treatment (Figure 2D). In contrast, eRNA 

expression remained at a high level at the latest (12 and 24 hours) time points after LPS 

stimulation at pri-miR-147_+14 Kb enhancer (Figure 2D). Finally, the selected pri-miR-223-

associated enhancers were repressed significantly as early as 1 hour after LPS stimulation and 

showed reduced enhancer activities at the 24 hour time point similarly to pri-miR-223 

expression (Figure 1C and 2D).       

Overall, these results demonstrate that LPS-sensitive miRNA genes are associated with 

enhancers showing coordinated eRNA expression changes that follow the kinetics of pri-

miRNA expression. These results are consistent with studies focusing on mRNA-associated 

enhancers, thus suggest that enhancers may participate in the transcriptional regulation of 

LPS-responsive miRNA expression, analogous to mRNAs [72, 73].    

 

3.4. Classification of inflammation responsive pri-miRNA-associated enhancers based 

on NFkB-p65 binding   

  

Exposure of macrophages to LPS leads to the activation of NFkB and AP-1 transcription 

factor complexes resulting in dramatic changes in the chromatin structure, epigenome and 

transcriptome of immune cells [74]. In order to assess the contribution of NFkB and AP-1 

transcription factor complexes to the regulation of LPS-responsive pri-miRNAs, we analyzed 

the binding of NFkB subunit p65 and AP-1 complex member JunB at the LPS-regulated 

enhancers using publicly available ChIP-seq data [64, 72]. As we expected, NFkB-p65 

binding was negligible in unstimulated BMDMs, while LPS stimulation recruited NFkB-p65 

to 13961 genomic regions (Supplementary Figure 3A). Conversely, JunB binding was 

detected at 6497 genomic sites in resting macrophages, and this number increased to 47057 

after LPS stimulation (Supplementary Figure 3A). By focusing on the pri-miRNA-associated 

LPS-activated enhancers, we found that 51,5% (17/33) of them showed NFkB-p65 binding 

("p65
high

" enhancers) while the remaining 48,5% (16/33) were not associated with NFkB-p65 

binding ("p65
low

" enhancers) (Figure 3A, B and Supplementary Figure 3A). In contrast, we 

could not detect NFkB-p65 binding at the majority (9/11) of enhancers associated with LPS-

repressed pri-miRNAs (Figure 3A, B and Supplementary Figure 3A). We observed that basal 

and LPS-induced JunB binding was weaker at LPS-activated p65
low

 enhancers compared to 

p65
high

 enhancers (Figure 3C and Supplementary Figure 3A). Similarly, LPS-repressed 

enhancers showed low JunB occupancy both in resting and LPS stimulated macrophages 

(Figure 3C and Supplementary Figure 3A).  

As expected, de novo motif analysis under NFkB-p65 and JunB peaks revealed significant 

enrichment of NFkB-p65 and Jun-AP1 motifs (Supplementary Figure 3B and C). Targeted 

motif discovery at the LPS-responsive pri-miRNAs-associated enhancer subsets showed that 

both NFkB-p65 and Jun-AP1 motifs were found a higher number at the p65
high

 enhancers 

compared to the p65
low

 and LPS-repressed enhancers (Figure 3D). Interestingly, Jun-AP1 

motif number (30) was higher at p65
high

 enhancers compared to NFkB-p65 motif number (8) 

despite the fact that LPS-induced JunB and p65 binding were similar (Figure 3B, C, D and 

Supplementary Figure 3A).       Collectively, these results demonstrate that enhancers 

associated with LPS-activated pri-miRNAs show distinct NFkB-p65 and JunB binding 

patterns, whereas LPS-repressed enhancers are associated with low NFkB-p65 and JunB 

binding, indicating the presence of indirect repressive mechanisms. 
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3.5. LPS-activated p65
high

 and p65
low

 pri-miRNA-linked enhancers have different 

epigenetic characteristics    

 

In order to investigate whether the functional characteristics of inflammation-responsive 

enhancers are determined by NFkB-p65 and JunB binding, we analyzed publicly available 

H3K4m1, H3K27Ac and RNAPII-specific ChIP-seq as well as ATAC-seq datasets from 

unstimulated and LPS-stimulated mouse BMDMs [64, 75]. Interestingly, basal chromatin 

accessibility was higher at p65
high

 compared to p65
low

 LPS-activated enhancers in 

unstimulated BMDMs (Figure 4A). Although chromatin accessibility was induced in an LPS-

dependent manner at both p65
high

 and p65
low

 enhancers, a greater increase was observed at 

p65
high

 enhancers compared to p65
low

 enhancers after 6 hours of LPS-stimulation (Figure 4A). 

In contrast, both basal and LPS-modulated H3K4m1 enrichments were similar at p65
high

 and 

p65
low

 LPS-activated enhancers (Figure 4B). Furthermore, elevated basal and LPS-induced 

H3K27Ac enrichment and RNAPII binding were observed at LPS-activated p65
high

 enhancers 

compared to p65
low

 enhancers (Figure 4C, D and E). As expected, both H3K27Ac and 

RNAPII enrichment were reduced, while H3K4m1 enrichment and chromatin accessibility 

were not influenced at LPS-repressed enhancers following LPS stimulation (Figure 2A, 

Figure 4A, C, D and E).  

In order to gain insight into the additional features of NFkB-p65/JunB-dependent and 

independent activation of inflammation-responsive pri-miRNA-associated enhancers, we 

selected four p65
high

 enhancers (pri-miR-155_-76Kb, pri-miR-155_-116Kb, pri-miR-155_-

92Kb, pri-miR-147_+27Kb)
 

and two p65
low

 enhancers (pri-miR-155_-62Kb, pri-miR-

147_+14Kb) for further characterization (Figure 4E). We determined the binding kinetics of 

NFkB-p65, PU.1 (macrophage lineage-determining transcription factor), P300 

(transcriptional co-activator) and RNAPII at the selected enhancers in mouse BMDMs by 

ChIP-qPCR. LPS-dependent induction of NFkB-p65 binding reached maximal occupancy at 

1 hour and it continuously decreased at later time points (6 and 24 hours) (Figure 5). As we 

expected, p65-binding was weakly detectable at p65
low

 enhancers (Figure 5). In contrast to 

NFkB-p65 binding, Pu.1-binding showed similar basal levels at p65
high

 and p65
low

 enhancers 

and all the enhancers showed induced Pu.1 occupancy after 1 hour of LPS stimulation which 

remained nearly unchanged at later time points (6 and 24 hours) (Figure 5).  

Finally, we studied the binding kinetics of p300, transcription initiation-specific RNAPII-pS5 

(serine 5 phosphorylated) and elongation-specific RNAPII-pS2 (serine 2 phosphorylated) at 

the selected enhancers. LPS-induced binding of p300, RNAPII-S5 and S2 proved to be higher 

at the p65
high

 compared to the p65
low

 enhancers (Figure 5). Interestingly, we observed 

temporal differences in RNAPII binding between pri-miR-155 and pri-miR-147-associated 

enhancers. Pri-miR-155-associated enhancers showed rapid RNAPII p-S2 and p-S5 

recruitment after 1 hour of LPS stimulation (Figure 5), while pri-miR-147-linked enhancers 

showed a delayed RNAPII recruitment peaking at 6 hours (Figure 5).             

Altogether, our results suggest that NFkB-dependent and independent processes equally 

participate in the establishment of inflammatory pri-miRNA gene/enhancer signature. 

Although H3K4m1 enrichment and LPS-dependent PU.1 binding did not show major 

differences between p65
low

 and p65
high 

enhancers, chromatin accessibility, H3K27Ac 

enrichment, p300 and RNAPII-binding of activated enhancers positively correlated with the 

strength of NFkB-p65 and JunB-binding. Finally, the temporal kinetics of RNAPII 

recruitment upon LPS stimulus showed pri-miRNA locus specificity. 
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3.6. The genome architectural context of inflammation-induced pri-miR-155 expression             

 

Mapping of the pri-miR-155-associated, LPS-responsive enhancers revealed that these 

enhancers are located far away (between -54 and -116 Kb) from the TSS of pri-miR-155 

gene. Therefore, we wanted to get some insight into whether these enhancers come in close 

spatial proximity to the TSS of pri-miR-155 gene upon inflammatory stimulus. To identify 

the basal and inflammation-induced chromatin interactions, we carried out 3C-seq using bait 

in the region of the most upstream LPS-activated enhancer located_-116 Kb from the miRNA 

gene in the predicted sub-TAD. We observed both constitutive and LPS-triggered interactions 

within the predicted sub-TAD of pri-miR-155 (Figure 6). Interestingly, permanent interaction 

was observed between the -116Kb enhancer and the TSS of pri-miR-155 (Figure 6; red 

arrow). In addition, LPS-induced interactions were detected between pri-miR-155_-116 Kb 

and other inflammation responsive enhancers within the sub-TAD (Figure 6; blue arrows).  

Collectively, our findings suggest that (i) the identified inflammation responsive enhancers 

interact with each other and the TSS of pri-miR-155; (ii) the structure of pri-miR-155-

associated sub-TAD undergoes inflammation-induced spatial reorganization in macrophages.    

 

 

 

4. Discussion             

 

Global miRNA expression analyses and functional studies have revealed important regulatory 

roles for inflammation responsive miRNAs in macrophage biology such as regulating the 

defense against infectious agents as well as modulating the initiation and resolution of 

inflammation (reviewed in [76] and [77]). Nevertheless, genome-wide analysis of the 

inflammation-modulated mature miRNome does not provide sufficiently detailed insights 

into the transcriptional and post-transcriptional background of miRNA expression changes. 

Our work is demonstrating the power and utility of combining genome-wide next generation 

sequencing technologies to characterize the transcriptional regulation of inflammation 

responsive miRNAs in LPS-exposed mouse macrophages though the difference in LPS 

concentrations (10 and 100 ng/ml) between the applied publicly available datasets may be a 

potential limitation in this study (Figure 7A).   

Based on GRO-seq and H3K4m3-specific ChIP-seq datasets, 518 nascent RNA transcripts 

were detected overlapping with 568 miRNA genes in mouse macrophages. 470 out of 568 of 

transcribed pri-miRNAs were linked with previously identified TSSs in the integrated 

miRNA expression and promoter atlas of FANTOM5 database (Supplementary Table 6) [78]. 

Using our approach, 78% (367/470) of H3K4m3 positive TSSs were localized within +/-1000 

bp compared to the FANTOM5 database-derived TSSs confirming the high accuracy of our 

method, but the distance between the predicted and the previously identified TSSs was higher 

than 10 Kb in case of 60 miRNA genes including the LPS-repressed miR-30c-1 suggesting 

the existence of macrophage-specific TSSs/promoters of these miRNA genes (Supplementary 

Table 6). In addition, we identified the TSSs of 98 miRNA genes which were unidentified 

previously including the LPS-regulated miR-146a and miR-221/miR-222 polycistron 
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(Supplementary Table 6) completing the collection of miRNA-linked TSSs of the 

FANTOM5 database [78].                    

Using a strict statistical test during the small RNA-seq analysis (p˂0.05, FDR˂0.1), 15 LPS 

responsive mature miRNAs were identified which are regulated at the nascent RNA level in 

mouse macrophages based on the GRO-seq dataset including the well- established 

inflammation-associated miR-155, miR-146, miR-221 and miR-125a [41-45, 79, 80]. 

Interestingly, using a less strict statistical analysis (p˂0.05 without FDR cut off) has led to the 

identification of additional 6 miRNAs which are modulated in a similar manner at mature and 

pri-miRNA levels in independent RNA-seq and GRO-seq datasets suggesting their LPS-

dependent regulation (Supplementary Table 5, indicated by red double crosses). Among these 

miRNAs, we found novel LPS-induced miRNAs such as miR-5107, miR-674 and miR-7043. 

Interestingly, it has been shown previously that the Th2-type cytokine IL-4 induces miR-

5107 expression in a STAT6 independent manner in mouse BMDMs [16]. In addition, miR-

5107 expression is influenced in mouse liver and lung following Schistosoma japonicum 

infection suggesting its complex regulation during Th1 and Th2-type immune responses [81].  

RNAPII plays a central role in the transcription of miRNAs, but some RNAPIII-transcribed 

miRNAs have also been identified [7, 8, 23]. We found that all inflammation responsive 

intergenic and intragenic miRNAs were associated with RNAPII-occupied promoters and 

enhancers. In addition, RNAPII binding was regulated by LPS and correlated with the 

presence of active histone mark H3K27Ac and nascent RNA (pri-miRNA and eRNA) 

expression. Thus, our data suggest that dominantly RNAPII mediates transcription of 

inflammation responsive miRNAs.             

It has recently been described that several transcription factors frequently colocalize and 

cooperate in so-called hotspot regions of the genome independently from their known binding 

motifs, and thereby mediate transcriptional programming [82, 83]. LPS-activated TLR4 

receptor can activate both NFkB and AP-1 transcription factor complexes leading to the 

dramatic reprogramming of macrophage transcriptome [74, 84]. Both transcription factor 

complexes are essential for the inflammation-induced chromosome structure reorganization 

and DNA loop formation in different myeloid cells [85-87]. We identified two LPS-activated 

pri-miRNA-associated enhancer subsets based on NFkB-p65 subunit binding including p65-

bound (p65
high

) and p65-unbound (p65
low

) enhancers. Interestingly, higher basal and LPS-

induced JunB occupancy was observed at p65-bound enhancers compared to p65-unbound 

enhancers. In addition, the identified binding motifs of these transcriptional factor complexes 

showed differences between p65
high 

and p65
low

 enhancers. Both NFkB-p65 and  Jun-AP1 

motifs showed higher enrichment at p65
high

 enhancers compared to the p65
low 

enhancers 

though Jun-AP1 motif number was more than 3 times higher at both p65
high

 and p65
low

 

enhancer sets compared to the NFkB-p65 motif. Finally, while both enhancer subsets proved 

to be LPS inducible, p65
high

 genomic regions were associated with elevated LPS-induced 

enhancer activities compared to the p65
low

 enhancers. These data raise the possibility that (i) 

NFkB-p65 is able to bind non-canonical motifs and/or NFkB and AP-1 complexes may 

closely collaborate at certain inflammation-activated distal regulatory regions enhancing 

NFkB-p65 binding and enhancer activity. Nevertheless, further studies are needed to explore 

the molecular basis of the NFkB-p65 binding and the crosstalk between these transcription 

factor complexes at the level of individual enhancers.                       

Repression of nascent RNA expression and enhancer activity triggered by inflammatory 

signaling pathways has been previously described in macrophages and adipocytes, though the 

molecular background of inflammation-mediated repression is not completely understood 

[65, 88, 89]. Two potential mechanisms of inflammation-induced transcriptional repression 
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have been described including (i) TNFα-activated NFkB-directed redistribution of 

coactivators without direct p65 binding at the repressed enhancers in human adipocytes and 

(ii) formation of NFkB-p50, NCoR and HDAC3-containing repressosome at the promoter 

regions of tolerogenic inflammatory genes in LPS-stimulated mouse macrophages [89, 90]. 

Along with 12 transcriptionally induced miRNAs, we identified 3 transcriptionally repressed 

miRNAs in LPS-exposed macrophages. These miRNAs were associated with 11 LPS-

repressed enhancers, which were localized within the same CTCF/RAD21-established sub-

TADs. We observed that the LPS-mediated repression was associated with low NFkB-p65 

and JunB occupancies at the enhancers associated with these pri-miRNAs, in agreement with 

previous studies [65]. Thus, our findings suggest that LPS-induced repression of enhancers 

associated with repressed pri-miRNAs is likely to be mediated independently of NFkB-p65 

and JunB transcription factors. Nevertheless, the exact transcriptional mechanisms by which 

these pri-miRNAs are repressed remain to be determined.         

One of the well-studied inflammatory miRNAs, mir-155, has a conserved 

immunomodulatory role in many cell types in response to inflammatory signals by limiting 

the pro-inflammatory gene expression program [41-44, 91]. It has been described that pri-

miR-155 expression is induced via the activation of TLR and NOD-like receptor pathways 

[43, 92]. In addition, LPS-induced pri-miR-155 expression is inhibited by the anti-

inflammatory cytokine IL-10 in a STAT3-dependent manner [93]. Here, we aimed to 

investigate the specific mechanism responsible for the LPS-dependent transcriptional 

activation of pri-miR-155 expression in macrophages. By combining GRO-seq and H3K4m1 

ChIP-seq data, we identified 11 LPS-activated enhancers associated with the miR-155 gene, 

which clustered into enhancer clusters (super-enhancers). Interestingly, a similar enhancer 

cluster was observed in TNFα-stimulated human HUVEC cells [94]. Finally, our 3C-seq-

based analysis showed the LPS-induced reorganization of the miR-155 gene and formation of 

interactions between the activated enhancer clusters, the sub-TAD border and the TSS of pri-

miR-155. These findings suggest that transcriptional induction of miR-155 expression 

following inflammatory stimuli involves the activation of miR-155-associated enhancers and 

the extensive rearrangement of chromosome architecture around the pri-miR-155 gene 

(Figure 7B).     

 

5. Conclusions 

 

The aim of this study was to investigate the transcriptional basis of inflammation-regulated 

macrophage miRNome by combining next generation sequencing-based technologies 

including small RNA-seq, GRO-seq, ChIP-seq, ATAC-seq and 3C-seq. Our next generation 

sequencing-based approach uncovered the LPS-responsive pri-miRNA and mature miRNA 

signature in mouse macrophages, and revealed that the majority of LPS-responsive miRNAs 

are regulated through their transcription and not their maturation. In addition, we show that 

inflammation-responsive pri-miRNAs are associated with an LPS-sensitive enhancer 

network. We could distinguish two subsets of inflammation-activated enhancers that showed 

different NFkB-p65 and JunB binding characteristics and LPS responsiveness. Finally, we 

demonstrated the LPS-induced reorganization of the pri-miR-155-associated functional 

chromatin domain. These results are consistent with the notion that transcriptional regulatory 

mechanisms including modulation of enhancer activity and rearrangement of chromatin 

structure play an essential role in the control of inflammation-responsive miRNA expression 

in macrophages. We propose that the complex genomics-bioinformatics approach presented 
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here is amenable to other cell types and other signaling pathways as well, providing a useful 

tool for the scientific community.    
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Figure legends 

 

Figure 1. LPS-dependent regulation of miRNA expression at the transcriptional level in 

mouse BMDMs. (A) Heat map showing fold changes of transcriptionally regulated miRNA 

expression at mature (left panel) and pri-miRNA (right panel) levels in LPS-stimulated 

macrophages compared with unstimulated control. (B) Genome browser view of GRO-seq 

data showing the primary RNA transcripts of selected LPS-regulated miRNAs in unstimulated 

and LPS-stimulated mouse macrophages. Macrophages were treated with LPS for 20, 60 and 

180 minutes. (C) RT-qPCR-based validation of pri-miRNA expression in LPS-stimulated and 

unstimulated macrophages. Macrophages were treated with LPS for 20 minutes as well as 1, 

3, 6, 12 and 24 hours. Each data point represents the mean and SD of three biological 

replicates. *P˂0.05, **P˂0.01, ***P˂0.001 compared with the unstimulated control marked 

as 0. (D) Strand-specific GRO-Seq, H3K4m3, H3K27Ac and RNA Pol II-specific ChIP-seq 

signals in LPS-stimulated and unstimulated mouse macrophages at TSSs and gene bodies of 

the selected inflammation responsive pri-miRNAs visualized by the Integrative Genomics 

Viewer.  

 

Figure 2. Identification of LPS-regulated enhancers associated with inflammation 

responsive miRNA genes in mouse BMDMs with the combination of GRO-seq and 

H3K4m1-specific ChIP-seq datasets. (A) Box plot representation of H3K4m1 at the 

activated and repressed pri-miRNA-associated enhancers in LPS-stimulated and unstimulated 

mouse BMDMs. Macrophages were treated with LPS for 4 hours. (B) Box plot representation 

of eRNA expression at the activated and repressed pri-miRNA-associated enhancers in LPS-

stimulated and unstimulated mouse BMDMs. . Macrophages were treated with LPS for 20, 60 

and 180 minutes. (C) Strand-specific GRO-Seq, H3K4m1, CTCF and Rad21-specific ChIP-

seq signals in LPS-stimulated and unstimulated mouse macrophages at the genomic loci of 

miR-155, miR-147 and miR-223 are visualized by the Integrative Genomics Viewer. (D) RT-

qPCR-based measurement of eRNA expression of 2-2 selected miR-155, miR-147 and miR-

223-associated enhancers  in LPS-stimulated and unstimulated macrophages. Macrophages 

were treated with LPS for 20 minutes as well as 1, 3, 6, 12 and 24 hours. Each data point 

represents the mean and SD of three biological replicates. *P˂0.05, **P˂0.01, ***P˂0.001 

compared with the unstimulated control marked as 0.   

 

Figure 3. NFkB binding-based characterization of LPS-activated pri-miRNA-associated 

enhancers. (A) The ratio of NFkB subunit p65-bound (p65
high

) and un-bound (p65
low

) LPS-

activated and repressed pri-miRNA-associated enhancers in mouse BMDMs. (B) Box plot 

representation of NFkB-p65 binding at p65
high

 and p65
low

 LPS-activated as well as LPS-

repressed enhancers in LPS-stimulated and unstimulated (ctrl) mouse macrophages. 

Macrophages were treated with LPS for 3 hours. (C) Box plot representation of JunB binding 

at p65
high

 and p65
low

 LPS-activated as well as LPS-repressed enhancers in LPS-stimulated and 

unstimulated mouse macrophages. Macrophages were treated with LPS for 4 hours. (D) 

Targeted NFkB-p65 and Jun-AP1 binding motif identification at p65
high

 and p65
low

 LPS-

activated as well as LPS-repressed enhancers (identified motif number/motif ʺpositiveʺ 

enhancers).  
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Figure 4. Characterization of p65
high

 and p65
low

 pri-miRNA-associated enhancers in 

mouse BMDMs. (A) Box plot representation of the ATAC-seq intensities at p65
high

 and p65
low

 

LPS-activated as well as LPS-repressed enhancers in unstimulated and LPS-stimulated 

macrophages. Macrophages were treated with LPS for 2 and 6 hours. (B) Box plot 

representation of H3K4m1 enrichment at p65
high

 and p65
low

 LPS-activated enhancers in LPS-

stimulated and unstimulated mouse macrophages. Macrophages were treated with LPS for 4 

hours.  (C) Box plot representation of H3K27Ac enrichment at p65
high

 and p65
low

 LPS-

activated as well as LPS-repressed enhancers in unstimulated and LPS-stimulated 

macrophages. Macrophages were treated with LPS for 4 hours. (D) Box plot representation of 

RNA Pol II binding at p65
high

 and p65
low

 LPS-activated as well as LPS-repressed enhancers in 

unstimulated and LPS-stimulated macrophages. Macrophages were treated with LPS for 4 

hours. (E) Strand-specific GRO-Seq, H3K4m1, H3K27Ac, NFkB-p65, JunB and RNAPII 

ChIP-Seq signals at the selected p65
high

 and p65
low

 LPS-activated as well as LPS-repressed 

enhancers in LPS-stimulated and unstimulated mouse macrophages. GRO-seq as well as 

ChIP-seq for the indicated factors and post-translational histone modifications are visualized 

by the Integrative Genomics Viewer.   

 

Figure 5. Functional characterization of selected pri-miR-155 and pri-miR-147-

associated LPS-activated p65
high

 and p65
low

 enhancers in mouse inflammatory 

macrophages. ChIP-qPCR measurements against RNA Pol II-pS5, RNA Pol II-pS2, Pu.1, 

NFkB-p65 and p300 on selected LPS-activated enhancers and negative control Prmt8 

enhancer (Prmt8e) regions from wild-type unstimulated and LPS- stimulated macrophages. 

Macrophages were treated with LPS for 1, 6 and 24 hours.  The mean and ±SD of two 

biological replicates are shown. *P˂0.05, **P˂0.01, ***P˂0.001 compared with the 

unstimulated control marked as 0.  

 

Figure 6. Basal and inflammation-induced chromatin interactions between the LPS-

activated enhancers and the TSS of pri-miR155 within the miR-155-associated sub-

TAD.  Genome browser view of the pri-miR-155 locus containing proximal interacting 

regions of the intergenic bait in LPS-stimulated and unstimulated mouse BMDMs as well as 

loop predictions generated based on CTCF/RAD21-cobound regions. Asterisks show the site 

of the specific bait. GRO-seq and ChIP-seq for the indicated factors are shown. Green 

arrowheads and gray dashed lines indicate the predicted domain borders.  

 

Figure 7. Schematic representation of the experimental pipeline and proposed 

regulation of miR-155. (A) Flowchart showing genomics and bioinformatics pipeline utilized 

in the characterization of transcriptionally-regulated LPS-responsive miRNAs in mouse 

macrophages. (B) Schematic representation of LPS-induced pri-miR-155 transcription in 

mouse macrophages.    
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