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ABSTRACT 

 

This is the second of the two white papers from the fourth UC Davis Systems 

Approach to Understanding Cardiac Excitation-Contraction Coupling and Arrhythmias 

Symposium (March 3-4, 2016), a biannual event that brings together leading experts in 

different fields of cardiovascular research. The theme of the 2016 symposium was “K
+
 

Channels and Regulation”, and the objectives of the conference were several fold: 1) to 

identify current knowledge gaps; 2) to understand what may go wrong in the diseased heart 

and why; 3) to identify possible novel therapeutic targets; and 4) to further the development 

of systems biology approaches to decipher the molecular mechanisms and treatment of 

cardiac arrhythmias.  

The sessions of the Symposium focusing on the functional roles of cardiac K
+
 channel 

in health and disease, as well as K
+
 channels as therapeutic targets, were contributed by Ye 

Chen-Izu, Gideon Koren, James Weiss, David Paterson, David Christini, Dobromir Dobrev, 

Jordi Heijman, Thomas O‟Hara, Crystal Ripplinger, Zhilin Qu, Jamie Vandenberg, Colleen 

Clancy, Isabelle Deschenes, Leighton Izu, Tamas Banyasz, Andras Varro, Heike Wulff, 

Eleonora Grandi, Michael Sanguinetti, Donald Bers, Jeanne Nerbonne, and Nipavan 

Chiamvimonvat as speakers and panel discussants.  This article summarizes state-of-the-art 

knowledge and controversies on the functional roles of cardiac K
+
 channels in normal and 

diseased heart. We endeavor to integrate current knowledge at multiple scales, from the 

single cell to the whole organ levels, and from both experimental and computational studies.  

 

mailto:jnerbonne@wustl.edu
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I. Diversity and functional roles of K
+
 channels in cardiac repolarization: from 

single cell to whole organ levels 

There are many types of K
+
 channels in mammalian cardiac cells, the expression of 

which varies greatly throughout the heart, from atria to ventricles, epi- to endocardium, and 

from apex to base. This remarkable diversity allows for precise and differential control of 

resting membrane potential (RMP), action potential (AP) duration (APD), and refractoriness 

throughout the heart (Bartos et al., 2015). Most cardiac cells express some combination of 

voltage-gated transient outward (Ito), voltage-gated delayed rectifier, inward rectifier (IK1), 

and ligand-gated (ATP-sensitive (IK,ATP), acetylcholine-activated (IKACh), and Ca
2+

-activated 

(IK,Ca)) K
+
 channels.  Three delayed rectifier K

+
 currents have been distinguished: ultra-rapid 

(IKur), rapid  (IKr) and slow (IKs)  (Zeng et al., 1995). The structure, function, and regulation of 

each channel type are discussed in detail in the companion white paper by Grandi et al. (J 

Physiol, 2016).  Here, we will highlight the diversity of K
+
 channels throughout the heart and 

discuss how this diversity contributes to heterogeneities in repolarization and APD. 

K
+
 channel diversity: atrio-ventricular differences 

There are several key differences between atrial and ventricular APs, with ventricular 

myocytes having a longer APD, a more hyperpolarized RMP, a longer plateau phase that 

reaches a more depolarized potential, and a faster rate of repolarization compared to atrial 

myocytes (Schram et al., 2002). Although differential expression of Na
+
 and Ca

2+
 channels, 

Na
+
/Ca

2+
 exchanger (NCX), and gap junctions contributes to atrioventricular differences, K

+
 

channel diversity also plays a critical role. Most notably, IKur and IK,ACh (corresponding to the 

Kv1.5 and Kir3.1:Kir3.4 proteins, respectively) are nearly absent in ventricular myocytes, 

whereas both of these K
+
 currents contribute significantly to the atrial AP in humans and in 

several animal models, including dogs, guinea pigs, and rats. (Boyle & Nerbonne, 1991; 
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Paulmichl et al., 1991; Fedida et al., 1993; Wang et al., 1993; Dobrzynski et al., 2001; 

Schram et al., 2002; Gaborit et al., 2007).  Likewise, small-conductance Ca
2+

-activated K
+
 

(SK) channels (KCa2.1, KCa2.2, and KCa2.3), which underlie IK,Ca, are predominantly 

expressed in the atria where they contribute to repolarization in mice and in humans (Xu et 

al., 2003; Tuteja et al., 2005). Therefore, targeting these atrial specific currents (IKur, IKACh, 

and IK,Ca) may represent a novel area for therapeutic intervention for atrial arrhythmias, the 

details of which are discussed in Section IV.   

Ventricular myocytes exhibit a prominent IK1 and corresponding higher expression of 

Kir2.1 (KCNJ2), which likely contributes to the more hyperpolarized RMP in ventricular 

versus atrial myocytes (Giles & Imaizumi, 1988; Dhamoon et al., 2004; Gaborit et al., 2007). 

The plateau phase of the AP is longer in ventricular cells due to a lower density of K
+
 

currents activated during the notch phase (smaller Ito and lack of IKur). This prolonged plateau 

phase allows for increased recovery of IKr from inactivation and a faster rate of repolarization 

in the ventricular myocytes.   

Ventricular K
+
 channel diversity: Transmural differences 

AP characteristics and corresponding K
+
 channel expression across the ventricular 

wall from epi- to endocardium have been well characterized in canine heart (Antzelevitch et 

al., 1999; Antzelevitch, 2010). Three AP waveforms have been identified: epicardial, mid-

myocardial (M-cells), and endocardial (Figure 1). The key differences between these cell 

types include a large „spike and dome‟ or notch phase in epicardial cells, and a significantly 

prolonged APD in M-cells (Yan et al., 1998). Epicardial cells also have a shorter APD than 

endocardial cells, whereas endocardial cells have a less pronounced notch phase (Sicouri & 

Antzelevitch, 1991). In addition to a longer baseline APD, a key feature of M-cells is a 

disproportionately prolonged APD in response to a slowing of rate and/or in response to 
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APD-prolonging agents (Antzelevitch et al., 1999) (Figure 1). The ionic determinants of the 

unique features of canine M-cells have been suggested to include a smaller IKs and a larger 

late Na
+
 current (INa,L) (Liu & Antzelevitch, 1995; Zygmunt et al., 2001). The 

disproportionate prolongation of APD in canine M-cells can lead to increased transmural 

dispersion of repolarization and the likelihood for reentrant arrhythmias. Furthermore, a 

prolonged APD may also predispose M-cells to early afterdepolarizations (EADs). Thus, if 

present in human ventricles,  M-cells may represent an important therapeutic target for the 

suppression of ventricular arrhythmias, especially in the setting of reduced repolarization 

reserve (Wilson et al., 2011). There is, however, considerable disagreement on the presence 

and functional importance of M cells, particularly in the human heart and the functional role 

of M cells in contributing to the dispersion of ventricular repolarization remains a topic of 

active debate. 

In canine ventricles, the prominent notch phase of epicardial APs has been attributed 

to a large Ito (Litovsky & Antzelevitch, 1988; Furukawa et al., 1990; Nabauer et al., 1996).  

In human and canine ventricles, Kv4.3 -subunits, together with the auxiliary subunit, 

KChIP2, generates Ito. Interestingly, KChIP2, but not Kv4.3, mRNA expression is correlated 

with the gradient of Ito and prominence of the AP notch (Rosati et al., 2001; Gaborit et al., 

2007).  IKr and IK1 are also important for canine ventricular repolarization, although there is 

no clear evidence of transmural differences in these currents (Liu & Antzelevitch, 1995). 

Ventricular K
+
 channel diversity: RV/LV differences 

The transmural gradient of APD described above exists in canine right and left 

ventricles (RV and LV); however, the APD is typically longer in canine LV, compared to the 

RV (Sicouri & Antzelevitch, 1991). The shorter APD in the RV is associated with an 

increased Ito and increased expression of both KChIP2 and Kv4.3 in both human and canine 
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hearts (Di Diego et al., 1996; Volders et al., 1999; Boukens et al., 2009). In rodents, Kv4.2 -

subunits conduct Ito and Kv4.2 mRNA and protein expression are higher in the RV of rat 

hearts (Wickenden et al., 1999). Canine RV myocytes also have increased IKs compared to 

LV, which correlates with increased protein expression of the accessory subunit, KCNE1, 

that modulates the Kv7.1 -subunits that underlie IKs (Volders et al., 1999; Ramakers et al., 

2003). No differences in other K
+
 currents, including IKr or IK1, have been observed between 

the RV and LV of canine hearts (Volders et al., 1999); however, IK1 is higher in the LV than 

in the RV in guinea pig heart (Samie et al., 2001; Molina et al., 2016). 

Ventricular K
+
 channel diversity: Apico-basal differences 

In the canine heart, APDs are shorter in the apex, compared to the base, of the LV and 

these shorter APDs correlate with increased Ito and IKs, as well as increased protein 

expression of KChIP2, Kv7.1 and mink (Szentadrassy et al., 2005). No apico-basal 

differences in IK1 or IKr have been documented and expression of Kir2.1 (IK1), Kv11.1 (IKr), 

and MiRP1 are similar in the apex and base in the canine heart (Szentadrassy et al., 2005). 

Repolarization in Purkinje fibre 

 Purkinje fibres form specialized conduction system in the ventricles and have been 

shown to have unique electrophysiological properties and to play critical roles in the 

generation of cardiac arrhythmias (Boyden et al., 2010). Specifically, canine Purkinje cells 

exhibit different types and densities of repolarizing K
+
 currents, compared to ventricular or 

atrial myocytes, as well as markedly different AP profiles (Vassalle & Bocchi, 2013). 

Moreover, Purkinje cells display spontaneous impulse initiation, similar to pacemaker cells. It 

has also been shown that Ito is very large in canine Purkinje cells (Jeck et al., 1995) and that 

Ito may play important roles in the generation of EADs in these cells (Zhao et al., 2012). 

β-adrenergic regulation of K
+
 channels during cardiac AP  
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Extensive studies have shown that the cardiac K
+
 channels responsible for AP 

repolarization are intricately regulated by -adrenergic tone, and several K
+
 channels –IKs, IKr, 

IK1– exhibit differential sensitivity to β-adrenergic stimulation (Tromba & Cohen, 1990; 

Volders et al., 2003; Thomas et al., 2004; Harmati et al., 2011). IKs is facilitated by -

adrenergic stimulation (Sanguinetti et al., 1991; Marx et al., 2002; Volders et al., 2003; 

Harmati et al., 2011); increased IKs contributes to the shortening of APD during rapid heart 

rates. When the IKs channel is defective in long QT syndrome (LQTS), a lack of adrenergic 

response of IKs could provide substrate for arrhythmias.  

The effects of β-adrenergic stimulation on IKr have been controversial. Harmati et al.  

(Harmati et al., 2011) and Heath et al. (Heath & Terrar, 2000) reported facilitation of IKr by 

isoproterenol via PKA and PKC pathways in canine and guinea pig ventricular myocytes. In 

contrast, Karle et al. (Karle et al., 2002) reported a reduction of IKr amplitude following 

isoproterenol application in guinea pig ventricular myocytes and Sanguinetti et al. 

(Sanguinetti et al., 1991) reported no measurable isoproterenol induced changes of IKr. 

Studies of the β-adrenergic stimulation on IK1 have also reported controversial results. Both 

facilitation and reduction of IK1 by isoproterenol have also been reported (Gadsby, 1983; 

Tromba & Cohen, 1990; Koumi et al., 1995; Wischmeyer & Karschin, 1996; Fauconnier et 

al., 2005; Scherer et al., 2007).   

Differential modulation of IKs, IKr, and IK1 by β-adrenergic stimulation has potentially 

important implications for cardiac AP repolarization and arrhythmogenesis. Banyasz et al. 

(Banyasz et al., 2014) used the AP-clamp Sequential Dissection technique to directly record 

IKs, IKr, and IK1 during the AP under physiological condition (internal and external solutions 

matching physiological milieu with preserved Ca
2+

 homeostasis). IKs, IKr, IK1 were 

systematically measured during APs at various adrenergic states using isoproterenol in 

physiologically relevant concentration range (1-30 nM). Isoproterenol significantly enhanced 
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IKs, moderately increased IK1, but slightly decreased IKr in a dose-dependent manner (Figure 

2). By recording the three K
+
 currents from the same cell, these investigators were able to 

dissect the relative contribution of each K
+
 current to repolarization. These analyses revealed 

that the dominant pattern of the K
+
 currents is IKr>IK1>IKs under physiological conditions, but 

that this pattern is reversed to IKs>IK1>IKr following ß-adrenergic stimulation (Figure 2). 

Therefore, ß-adrenergic stimulation fine-tunes the cardiac AP morphology by shifting the 

functional importance of the different K
+
 currents in a dose-dependent manner. These 

findings clearly suggest an important role for sympathetic tone in determining the functional 

effects of K
+
 channel blockers. 

K
+
 channel Diversity:  What does it all mean?   

 As stated earlier, the remarkable diversity of K
+
 channel expression throughout the 

heart allows for precise and differential control of local RMP, APD, and refractoriness.  

Indeed, computational AP models have shown that there are many possible combinations of 

ionic conductances that produce an equivalent RMP, APD and refractoriness. This is 

generally true of any input-output system in which the number of adjustable input parameters 

is large compared to the number of output constraints, leading to the concept that there are 

multiple “good enough solutions” that all can produce physiologically robust function 

(Marder & Goaillard, 2006; Weiss et al., 2012). Why is this important? From an evolutionary 

biology standpoint, robustness is critical for any biological organism facing constantly 

changing environmental conditions. However, evolution also depends on the ability to adapt 

in response to changing environmental conditions. How, then, can robustness (the ability to 

maintain a stable phenotype) be compatible with adaptability (the ability to change 

phenotype)? A diverse range of good enough solutions among the individuals in a population 

resolves this paradox in the following manner: all good enough solutions confer robustness to 

the normal day-to-day environmental changes; however, when the environment changes in an 
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unusual way, some good enough solutions will adapt better than others (Marder & Goaillard, 

2006; Weiss et al., 2012).  

As previously demonstrated by Sarkar & Sobie, one AP model may strongly depend 

on IKr for repolarization while the other is highly dependent on IKs (Sarkar & Sobie, 2010). 

Both models yield physiological APDs and Ca
2+

 transients. Now we can consider the 

consequences of administering an IKr-blocking drug to two individuals whose good enough 

solutions correspond to the two ventricular APs illustrated. The individual whose ventricular 

repolarization has a high dependence on IKr will exhibit much more significant APD and QT 

interval prolongation and consequently have a higher risk of Torsade de Pointes (TdP) than 

the other individual. Thus, in response to a potentially lethal perturbation, one perishes, but 

one survives. That is, robustness acts at the level of the individual, whereas adaptability 

operates at the level of the population. The good enough solutions concept underlying genetic 

diversity provides a compelling explanation for why the pronounced (~10-fold) heterogeneity 

in K
+
-current amplitude between different cells (Banyasz et al., 2011) is more than just 

random biological variability.  Rather, it serves a fundamental biological role.   

The “good enough solutions” concept also has major implications for mathematical 

modeling approaches to drug development and safety testing, in which off-target cardiac K
+
 

channel blocking effects are a major concern. At the present time, both non-cardiac and 

cardiac drugs must undergo expensive animal testing to screen for K
+
 channel blocking and 

other effects that predispose to QT prolongation and TdP. Models which use average data to 

build “representative” cell models of a specific type provide a binary yes or no answer to 

whether a drug will cause excessive APD prolongation, and there is often disagreement 

between specific models (Mirams et al., 2014). In biological populations, on the other hand, a 

IKr-blocking drug such as sotalol has a variable effect on APD and QT interval prolongation, 
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posing an overall risk of TdP of  <5% to the population. With advances in high speed 

graphics processing unit (GPU)-based computation, it is becoming increasingly feasible to 

create populations of models to simulate the genetic and phenotypic diversity of human 

populations (Britton et al., 2013). This approach starts with an AP model based on averaged 

data, and then randomly mutates the ionic conductances within appropriate experimentally-

determined ranges. The mutated model is then examined to define its AP and Ca
2+

 transient 

properties. Mutations which cause the model to exhibit properties outside the physiologically 

normal range are excluded. However, mutated models still falling within the physiologically 

normal range are retained, generating a diverse model population incorporating a range of 

electrophysiological parameter values, each one representing a good enough solution for a 

normal cardiac AP. The extent to which the model population realistically reflects a human 

population can be validated against existing clinical population data, for example the 

incidence with which known drugs cause QT prolongation and TdP. The ultimate goal is to 

be able to simulate the effects of a new drug on the clinically validated model population to 

yield a probabilistic, rather than a binary, estimate of adverse effects. A compelling futuristic 

strategy for integrating population-based modeling into a three component pre-clinical drug 

discovery and safety testing platform has recently been outlined by Gintant et al (Gintant et 

al., 2016).  The first component involves automated patch clamping to characterize in detail 

the biophysical effects of a drug on the major human cardiac ionic channels heterologously 

expressed in mammalian cells; the second component simulates these effects in silico in 

human population models to estimate probability of adverse effects; and the third component, 

if the drug still looks promising, is to test the drug‟s effects in population of genetically-

diverse human induced pluripotent stem cell (hiPSC)-derived cardiac myocytes, perhaps even 

including  the intended patient‟s iPSC-derived cardiac myocytes.     
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In summary, the biological variability and genetic diversity embodied in the “good 

enough solutions” concept apply to all aspects of human biology, including K
+
 channel 

diversity, and continue to play essential roles in the evolutionary success of the human race. 

We now have the tools to characterize the genetic diversity of human populations in 

unprecedented detail. The ability to incorporate this information into drug development and 

safety testing is an exciting new forefront with tremendous potential to become a milestone in 

precision medicine (please see additional discussion in Section IV). 

 

II. Roles of K
+
 channels in cardiac arrhythmias 

Cardiac arrhythmias can be divided into those resulting in abnormally fast electrical 

activity (tachyarrhythmias) or abnormally slow activity (bradyarrhythmias). Conceptually, 

tachyarrhythmias in both atria and ventricles are mediated by abnormal impulse formation, in 

particular ectopic (triggered) activity, and abnormal impulse propagation, notably reentry 

(Rosen, 1988; Weiss et al., 2015) (Figure 3). Ectopic activity can result from secondary 

depolarizations occurring either during the AP, termed early afterdepolarizations (EADs, or 

during diastole, termed delayed afterdepolarizations (DADs), as well as from abnormal 

automaticity due to enhanced diastolic depolarization in normally quiescent tissue. When 

occurring repeatedly at a sufficiently rapid rate, ectopic activity can produce heterogeneous 

“fibrillatory” conduction and sustain a tachyarrhythmia. Moreover, when ectopic activity 

encounters a vulnerable substrate characterized by short effective refractory periods (ERPs), 

large repolarization gradients and slow heterogeneous conduction, it can initiate reentry, 

which is considered the predominant tachyarrhythmia-maintaining mechanism. 

Bradyarrhythmias, on the other hand, result from reduced automaticity in the sinoatrial node 

(e.g., in sick sinus syndrome) or impaired atrioventricular conduction. Numerous studies have 
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shown that K
+
-channel dysregulation, resulting from genetic defects, drug effects, or disease-

related remodeling can promote all of these fundamental arrhythmia mechanisms (Figure 3) 

(Nerbonne & Kass, 2005; Schmitt et al., 2014). 

The critical role of K
+
-channel dysfunction in cardiac arrhythmias is particularly 

evident in congenital channelopathies such as long-QT and short-QT syndromes (LQTS and 

SQTS, respectively), Brugada or early repolarization syndrome (BrS), and familial (“lone”) 

atrial fibrillation (AF), all of which have been associated with an increased likelihood of 

tachyarrhythmias. Genetic variants in more than 15 different genes, including loss-of-

function mutations in the genes, KCNQ1 and KCNH2, encoding the pore-forming -subunits, 

Kv7.1 and Kv11.1, of IKs and IKr channels , as well as in the genes encoding the accessory β-

subunits, KCNE1 and KCNE2, of IKs and IKr channels, have been associated with LQTS 

(Nakano & Shimizu, 2016). Given the critical role of IKr and IKs in ventricular repolarization 

and the aforementioned heterogeneous distribution of these channels in the heart, these 

mutations are expected to result in heterogeneous APD prolongation. APD prolongation 

provides a larger window for activation of the depolarizing L-type Ca
2+

 current (ICa), as well 

as the late Na
+
 current (INa,L), thereby increasing the risk for EADs and ectopic activity. Loss-

of-function mutations in IK1, which controls final AP repolarization and stabilizes the RMP, 

have also been associated with QT prolongation (Fodstad et al., 2004). In addition to 

prolonging APD, loss of IK1 can destabilize the RMP, resulting in abnormal automaticity 

(Miake et al., 2002) or in larger DAD amplitudes in response to a given transient-inward 

current, thereby more readily achieving the threshold for activating Na
+
 channels and 

triggering an abnormal AP, all of which will increase the likelihood of ectopic activity.  

There is also substantial evidence for K
+
-channel dysregulation in more common 

cardiovascular diseases. For example, down-regulation of IK1, IKs and Ito contributes to APD 
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prolongation in heart failure (Li et al., 2004). Similarly, excessive APD prolongation and 

EAD-mediated triggered activity are likely also involved in the proarrhythmic side effects of 

numerous drugs, which predominantly result from effects on IKr. Consequently, analysis of 

potential IKr blocking effects is a mandatory element during the safety screening of every 

drug (Heijman et al., 2014a).  

Gain-of-function mutations in channel subunits generating IK1, IKr, IKs, and Ito, as well 

as IK,ATP,have been associated with ventricular arrhythmias in SQTs and BrS and with 

familial AF (Lieve & Wilde, 2015; Brugada, 2016; Christophersen & Ellinor, 2016; 

Sarquella-Brugada et al., 2016). Mechanistically, gain-of-function mutations in cardiac K
+
 

channels will decrease APD and ERP, thereby increasing the likelihood of reentry. In 

addition, upregulation of IK1 may stabilize reentrant rotors through RMP hyperpolarization, 

promoting arrhythmia maintenance, as has been clearly demonstrated in the mouse (Noujaim 

et al., 2007). Similar to loss-of-function K
+
 channel disorders, increases in K

+
 currents have 

also been observed in acquired cardiovascular diseases. Activation of IK,ATP during the early 

phases of ischemia, for example, shortens ERP and increases extracellular K
+
, thereby 

increasing the K
+
 reversal potential and depolarizing the RMP, which slows conduction 

velocity. Both factors likely contribute to reentrant ventricular tachyarrhythmias observed 

under these conditions.  

APD shortening is also a hallmark of AF-related electrical remodeling, likely 

contributing to AF maintenance and progression (Heijman et al., 2014b). Upregulation of IK1, 

IKs, as well as the two-pore K
+
 channel type 3.1 (K2P3.1) current, for example, plays a major 

role in AF-related APD shortening and is sufficient to offset the downregulation of other K
+
 

currents, such as IKur and Ito (Dobrev et al., 2005; Caballero et al., 2010; Schmidt et al., 

2015). Upregulation of other K
+
-channels could also be involved in cardiac 
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arrhythmogenesis, although most are incompletely understood. For example, in AF patients, 

IK,ACh develops constitutive, acetylcholine-independent activity, contributing to the increase 

in total inward-rectifier K
+
 current, despite reduction of agonist-induced peak IK,ACh (Dobrev 

et al., 2005). The role of SK channels in atrial arrhythmias similarly remains a topic of active 

investigation (Xu et al., 2003; Zhang et al., 2015). Expression of SK channels is increased in 

the failing heart and Ca
2+

-dependent activation of SK channels may shorten APD during 

fibrillation/defibrillation episodes, contributing to re-induction of ventricular 

tachyarrhythmias (Chua et al., 2011). On the other hand, SK channels may constitute an 

important repolarization reserve and their inhibition has been associated with increased 

susceptibility to pacing-induced ventricular arrhythmias during hypokalemia (Chan et al., 

2015).  

Considerable evidence, therefore, demonstrates that K
+
-channel dysfunction plays a 

major role in cardiac arrhythmias. For most channels, both loss-of-function and gain-of-

function have been associated with arrhythmias, albeit through distinct mechanisms. These 

findings suggest the existence of a goldilocks zone in which a balance among the different K
+
 

currents, as well as between repolarizing K
+
 currents and depolarizing Na

+
 and Ca

2+
 currents, 

ensures stability of cardiac electrophysiological activity. This complex interaction of ion 

channels, as well as the multitude of proarrhythmic mechanisms and diversity of K
+
-channel 

remodeling under different pathophysiological conditions, makes it challenging to predict the 

pro- or antiarrhythmic effects of a given alteration in K
+
-channel function. Of note, it has 

become clear that chronic modulation of K
+
-channel function (e.g., in a rabbit model of 

LQTS type 2) can produce extensive cardiac remodeling, which may further promote cardiac 

arrhythmias (Terentyev et al., 2014). 

Differential roles of K
+
 currents in arrhythmogenesis 
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 K
+
 currents affect APD by regulating the rate of repolarization. The pro-arrhythmic 

potential of alterations in different K
+
 channel types, however, are distinct, owing to 

differences in channel expression and/or biophysical properties. 

Delayed rectifier K
+
 currents (IKr and IKs). IKr activates and inactivates rapidly 

(Spector et al., 1996), whereas IKs activates slowly (Tristani-Firouzi & Sanguinetti, 1998). 

Activation of IKs is also dependent on Ca
2+

. In guinea pig, IKs may have many closed states 

(Silva & Rudy, 2005), and thus, as the heart rates become slower, more channels gradually 

enter the more deeply closed states, and fewer channels are available for opening during the 

AP. At fast heart rates, the slow deactivation results in IKs accumulation between beats and 

increased current during the AP plateau, resulting in APD shortening. In human and canine 

myocytes, however, IKs is small, deactivation is fast, and IKs accumulation does not occur 

between beats (Virag et al., 2001).  

Because of marked differences in kinetics, IKs and IKr play distinct roles in regulating 

AP dynamics at different heart rates. As shown in experiments by Antzelevitch and 

colleagues (Antzelevitch et al., 1991; Antzelevitch et al., 1999), after IKr is blocked, the APD 

of the M-cells becomes very long and continues to prolong at very slow heart rates. 

Theoretical studies show that in the presence of prolonged APDs with reduced repolarization 

reserve, the rate-dependence of APD at normal or slow heart rates and the slow activation and 

deactivation kinetics of a K
+
 current together with an inward window current of ICa,L may 

culminate in APD alternans at normal and slow heart rates (Qu et al., 2010; Qu & Chung, 

2012). This may form the basis for T-wave alternans seen clinically in LQTS patients 

(Schwartz & Malliani, 1975).   

The distinct properties and functional roles of IKr and IKs  provide mechanistic insights 

into the clinical presentation of different LQTS types (Schwartz, 2006). In LQT2 and LQT3, 

arrhythmias tend to occur during bradycardia or after a pause (Viswanathan & Rudy, 1999; 
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Viskin et al., 2000; Clancy & Rudy, 2002), whereas in LQT1, arrhythmias are often exercise-

induced (tachycardia-related). During slow heart rates, there are fewer IKs channels available 

for opening. Coupled with LQT2 and LQT3, this leads to disproportionately reduced 

repolarization reserve during bradycardia. In LQT1, IKr and Ito are the main repolarizing 

currents, and because these currents recover quickly, bradycardia does not preferentially 

reduce repolarization reserve. Instead, repolarization reserve is reduced during tachycardia, 

when Ca
2+

 elevation causing an increase in INCX and adrenergic stimulation of ICa,L is no 

longer counterbalanced by the adrenergic stimulation of IKs. 

Transient outward K
+
 current (Ito). A distinct feature of Ito is that both activation and 

inactivation are fast, and Ito is largely responsible for the spike-and-dome AP morphology in 

large animals. Unlike other K
+
 currents, increasing Ito in canine ventricular myocytes first 

prolongs, then dramatically shortens (collapses) APD (Dong et al., 2006).  Ito also plays a 

somewhat unexpected role in the genesis of EADs. Recent studies in rabbit ventricular 

myocytes (Zhao et al., 2012; Nguyen et al., 2015), for example, showed that, under 

conditions of reduced repolarization reserve, no EADs occurred without Ito and that the 

addition of Ito increased the likelihood of EADs, likely reflecting an effect on the membrane 

voltage and ICa,L re-activation.  

Inward rectifier K
+
 current (IK1). In addition to stabilizing the RMP, IK1 contributes 

to phase 3 repolarization. Reducing IK1 destabilizes RMP and results in pacemaker-like 

activity (Miake et al., 2002; Silva & Rudy, 2003) or DAD-mediated triggered activity 

(Schlotthauer & Bers, 2000). Due to its strong inward rectification, IK1 is small during the AP 

plateau and likely will have only a small effect on phase-2 EADs, although reducing IK1 may 

promote phase-3 EADs (Maruyama et al., 2011).    
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 Importantly, because AP dynamics of a single myocyte and the spatiotemporal 

conduction dynamics of three dimensional cardiac tissues reflect the repertoire of ion 

channels expressed, altering the properties/expression of one type of channel can be 

proarrhythmic or antiarrhythmic, depending on the status of all of other ion channels present. 

As a result, the roles of individual K
+
 channel types in arrhythmia generation and 

maintenance can only be fully understood by using multiscale and systems approaches that 

integrate molecular scale behaviors with tissue and organ scale behaviors (Qu & Weiss, 

2015), as well as behaviors at the population scale taking into account genetic diversities and 

complex environmental stress. Clearly, this is one of the grand challenges facing cardiac 

arrhythmia research today.  

 

III. Mechanisms of cardiac electrical remodeling in acquired disease 

Regulation of cardiac K
+
 channel expression both at the tissue and subcellular levels 

play critical roles in normal cardiac excitability. Remodeling of K
+
 channel expression, which 

occurs in various disease states, can predispose to an increased risk of sudden cardiac death 

(Nass et al., 2008). Remodeling is the end result of multiple facets of cardiac disease. Several 

disease states provide stressors that cause an increased physical demand on the heart and 

higher strain on the individual myocytes of the heart. This strain becomes transduced to local 

signaling pathways, causing increased sympathetic tone and inflammatory activation, which 

stimulates altered protein expression (Armoundas et al., 2001). Despite a significant amount 

of investigation, the precise mechanisms that underlie remodeling and drive pathogenesis 

remain incompletely understood and there is considerable interest in understanding the 

mechanisms that underlie the regulation of functional myocardial K
+
 channel expression 

under both normal and pathological conditions. 
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Cells from diseased hearts often display a prolonged APD. Although increases in 

inward (depolarizing) (Undrovinas et al., 1999; Houser et al., 2000) or decreases in outward 

(repolarizing) (Nabauer & Kaab, 1998) currents can result in prolonged APs, remodeling of 

K
+
 currents is, by far, the most prevalent mechanism leading to AP prolongation. Numerous 

studies over the last 10-20 years have documented changes in K
+
 channel expression, 

including Ito, IKr, IKs and IK1, that occur in heart failure and AF both in animal models as well 

as human tissues (Nass et al., 2008; Nattel et al., 2008).  

In AF, different changes have been described for IKr and IKs while an increase in IK1 

appears to be the consensus (Nattel et al., 2008; Yang & Nerbonne, 2016). IKur is the most 

prominent repolarizing current in human atrium and demonstrates pronounced remodeling in 

AF patients (Van Wagoner et al., 1997; Van Wagoner, 2003). More recently, efforts have 

focused on the molecular mechanisms underlying these observations, as this is the key to 

determining whether it might be possible to modulate these processes for therapeutic benefit. 

Changes at the level of transcription, translation, assembly and biogenesis, post-translational 

modifications, cellular localization and degradation have all been reported (Heijman et al., 

2014b; Nattel, 2015; Yang & Nerbonne, 2016), but how these changes are interrelated 

remains to be determined. 

Recent technical developments in “omics” technologies promise to be at the forefront 

of this field. At the gene level, next generation gene sequencing technologies have led to the 

identification of microRNAs and long non-coding RNAs (lncRNAs) that play critical roles in 

regulating transcription and translation of  many genes, including ion channel genes (Greco & 

Condorelli, 2015; Myers et al., 2015). At the protein level, new mass spectrometry methods 

have enabled global analyses of integrated responses rather than the analysis of individual 

components (Ferreira et al., 2015). Protein homeostasis or “proteostasis” is another important 
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factor in regulating gene expression involving a highly complex interconnection of pathways 

that influence the fate of a protein from synthesis to degradation (Balch et al., 2008). Further, 

it is likely that in stressed tissue, the overall cellular response may focus on maintaining 

certain subnetworks at the expense of others which can manifest as discrepancies between 

levels of transcripts, non-coding RNAs and proteins, that in turn could contribute to 

remodeling without necessarily maintaining a direct correlation between protein and mRNA 

levels (Balch et al., 2008). Finally, developments in novel computer architectures have 

facilitated multi-scale modeling approaches to integrate details of changes at multiple 

molecular levels to predict outputs at the whole tissue level for the expression and 

distributions of ion conductances (Weiss et al., 2012).  

With these new levels of integration, we can now decipher not just what channels are 

altered, but how they change in terms of expression levels, post-translational modifications, 

subcellular localization and how these changes evolve over time (Figure 4). With such rich 

data sets, we will also be able to identify both the individual members, as well as networks of 

regulators (microRNAs, lncRNAs, transcription factors) that mediate electrical remodeling. 

Furthermore, we will be able to address questions such as how do related stresses result in 

such different outcomes, e.g., how does exercise result in adaptive hypertrophy whilst 

hypertension results in maladaptive remodeling. Importantly, the basis of these differences 

may be exploited for therapeutic benefits. 

 

IV. Identification of novel therapeutic targets for cardiac arrhythmias 

Multiple K
+
 currents have been targeted for arrhythmia therapy. Unfortunately, to 

date, these target-specific drugs have not translated into new, safe, or effective antiarrhythmic 

therapy. Indeed, landmark studies of antiarrhythmic drugs have been shown to increase 
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mortality in patients with myocardial infarction or left ventricular dysfunction compared to 

placebo (CAST Investigators, 1989; Waldo et al., 1996; Kober et al., 2008). The key reason 

is the very fact that arrhythmia mechanisms are dependent on a highly complex and dynamic 

multi-scale system. Therefore, detailed mechanistic understanding of the molecular 

correlates, biophysical properties, and interdependence of cardiac ion channels at subcellular, 

cellular, and tissue levels are critical to the development of safe and effective antiarrhythmic 

drug therapy.  

Atrial-specific ion channel blockers 

AF is the most common sustained arrhythmia clinically (Ferrari et al., 2016). Even 

though catheter ablation has been widely used for AF, the treatment is invasive and remains 

inadequate in a significant number of patients and development of new anti-arrhythmic drugs 

for AF is highly desirable. Because atrial and ventricular myocytes express distinct 

repertoires of ion channels, there has been considerable interest in developing atrial-specific 

ion channel blockers for atrial arrhythmias (Wettwer et al., 2007; Burashnikov et al., 2008; 

Antzelevitch & Burashnikov, 2010; Burashnikov & Antzelevitch, 2010; Schotten et al., 2016; 

Voigt & Dobrev, 2016). However, it is critical to note that the degree of atrial selectivity of 

anti-arrhythmic drugs may be different in normal, compared to remodeled, hearts associated 

with different cardiac diseases. 

Kv1.5, encoded by KCNA5 (Tamkun et al., 1991), underlies IKur, which is expressed 

in human atria, but not ventricles (Fedida et al., 1993; Wang et al., 1993). Blockers of IKur, 

AVE0118 and XEN-D0101, prolong atrial APD and ERP in animal models and in humans 

(Wettwer et al., 2004; Schotten et al., 2007; Christ et al., 2008) and would be predicted to 

prevent AF in humans without risk of QT prolongation. However, Kv1.5 channels are down-

regulated in chronic AF (Van Wagoner et al., 1997; Van Wagoner, 2003). In addition, 
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blockade of IKur in human atrial tissue from patient in sinus rhythm elevates the AP plateau 

and shortens, rather than prolongs, APD, possibly by activating NCX in its reverse mode 

contributing to repolarizing current (Schotten et al., 2007). Block of IKur, therefore, may 

provide the substrate for development of AF in healthy atria, via abbreviation of APD and 

ERP (Burashnikov & Antzelevitch, 2008). Moreover, evidence from human has shown that 

both loss-of-function and gain-of-function mutations in KCN5A are associated with early 

onset lone AF (Christophersen et al., 2013). 

Vernakalant was suggested as a potential IKur blocker for the treatment of AF. 

However, it is a multichannel blocker, inhibiting not only IKur, but also Ito, IKr, IK,Ach, and 

IK,ATP, as well as the peak and late INa (Fedida, 2007; Burashnikov et al., 2008). The 

antifibrillatory effect of vernakalant may result from its blockade of the peak INa which 

increases cardiac excitation threshold, slows conduction, and creates a period of 

refractoriness (Burashnikov et al., 2008). In addition, there are differences in the effects of 

vernakalant in canine and human atrial myocytes and there is a controversy about whether 

IKur in dog is generated by Kv3.1 or Kv1.2, rather than Kv1.5, as in human (Nattel et al., 1999; 

Fedida et al., 2003). 

Another atrial-specific ion channel that has received considerable attention is IK,ACh, 

encoded by the G-protein activated inwardly rectifying K
+
 channel α-subunits, Kir3.1/Kir3.4 

(Ravens et al., 2013) The channels are more abundantly expressed in atrial than in ventricular 

myocytes (Krapivinsky et al., 1995; Dobrzynski et al., 2001; Schram et al., 2002; Gaborit et 

al., 2007). The current has been shown to mediate AF induced by vagal stimulation via 

activation of muscarinic M2 receptors. IK,ACh hyperpolarizes the membrane potential and 

shortens atrial APs, contributing to maintenance of AF by promoting reentry (Kovoor et al., 

2001). More importantly, in chronic AF, the channels are constitutively active in the absence 
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of any M2 receptor ligand (Dobrev et al., 2005), suggesting IK,ACh should be viewed as a 

promising target for AF (Voigt & Dobrev, 2016). 

Several antiarrhythmic agents including azimilide, dofetilide, dronedarone, ibutilide, 

sotalol and terikalant block IK,ACh and may contribute to their efficacy in AF (Ravens et al., 

2013). The benzopyrane derivative NIP-142 selectively blocks IK,ACh and reverses the 

shortening effect of carbachol or adenosine on atrial APs (Matsuda et al., 2006) and inhibits 

vagally-induced AF. The congener NIP-151 blocks IK,ACh with a potency that is at least four 

orders of magnitude higher than IKr and is highly effective in canine AF models (Hashimoto 

et al., 2008). Although many drugs have IK,ACh blocking properties, selective IK,ACh blockade 

has only recently been reported using the compound NTC-801 that has been shown to be 

effective in AF models (Machida et al., 2011).  

 

Novel therapeutic targets 

Recent studies have provided evidence for possible novel therapeutic targets for K
+
 

channels in the treatment of cardiac arrhythmias. Specifically, studies have demonstrated the 

important roles of SK channels in cardiac repolarization. Indeed, interests in cardiac SK 

channels are further fueled by recent studies suggesting a possible role of SK channels in lone 

AF (Ellinor et al., 2010; Christophersen & Ellinor, 2016). Recently, three different SK 

channel inhibitors including UCL1684, N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine 

(ICA) (Gentles et al., 2008) and NS8593 have been shown to have anti-arrhythmic effects in 

models of AF in rat, guinea pig, rabbit, and dog (Diness et al., 2010; Diness et al., 2011; Qi et 

al., 2014). The results from these studies suggest that SK channels may represent a potential 

therapeutic target for the treatment of atrial arrhythmias. However, there remain major gaps 

in our knowledge. Blockade of SK channels in cardiac arrhythmias has been shown to be 
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both anti-arrhythmic (Diness et al., 2010; Diness et al., 2011) and proarrhythmic (Hsueh et 

al., 2013; Wagner & Maier, 2013) in various models, possibly influenced by the state of other 

currents that integrate with the SK channel current to shape AP. 

Combination drug therapy 

One of the most commonly prescribed anti-arrhythmic drugs is amiodarone, which 

has been shown to block several cardiac K
+
 currents, as well as INa and ICa. It is also a 

noncompetitive antagonist of - and -adrenergic receptors. Amiodarone has been 

demonstrated to be effective and relatively safe without inducing TdP polymorphic 

ventricular tachycardia that is seen as a result of QT prolongation (Zimetbaum, 2007; Singh, 

2008). In addition to amiodarone, several anti-arrhythmic drugs including dronedarone, 

vernakalant and ranolazine have been shown to be effective clinically for AF with low 

incidence of proarrhythmias (Burashnikov & Antzelevitch, 2010). These anti-arrhythmic 

drugs inhibit INa with relatively fast kinetics, as well as block IKr and late INa (Burashnikov et 

al., 2008). In addition, rapidly dissociating INa blockers are found to be atrial selective in 

contrast to the slowly dissociating blockers (Burashnikov et al., 2008). A recent new line of 

investigation uses combinations of antiarrhythmic drugs that may allow the use of lower 

dosages with reduced side effects and better balance the inward and the outward currents in 

normalizing AP (Aguilar et al., 2015; Reiffel et al., 2015). 

Drug-induced proarrhythmias 

 Drug-induced proarrhythmias can be caused by both cardiovascular and non 

cardiovascular drugs and can be life-threatening. This is due to drug-induced QT 

prolongation and TdP polymorphic ventricular tachycardia. Individual susceptibility includes 

pharmacokinetic risk factors and genetic predisposition. Additional risk factors include 
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structural heart disease and electrolyte imbalance. Drug induced proarrhythmias are discussed 

in more details in the companion white paper (see Grandi et al., 2016). 

Inherited mutations in the Kv11.1 (hERG) -subunit of IKr, encoded by KCNH2, are 

linked to type 2 LQTS. In addition, life-threatening arrhythmia can also be induced by 

blockade of Kv11.1 channels in a surprisingly diverse group of drugs with vastly different 

chemical structures. Antiarrhythmic, antihistamine, antimicrobial, antipsychotic, and 

antidepressant drugs are important classes associated with risk of proarrhythmia. Indeed, 

effect on IKr is a common reason for drug failure in preclinical safety trials. Even though 

inherited LQTS and TdP can be caused by loss-of-function mutations in multiple cardiac 

K
+
 channels, drug-induced LQTS and TdP are predominantly caused by direct blockade of 

Kv11.1 channels or disruption of Kv11.1 channel trafficking to the cell surface (Sanguinetti & 

Tristani-Firouzi, 2006; Yang et al., 2014).  

Previous studies have suggested that Kv11.1 channels have structural features that can 

more effectively accommodate the binding of drugs compared with other K
+
 channels. 

Specifically, two aromatic residues (Tyr 652 and Phe 656) located in the S6 domain of the 

Kv11.1 subunit are likely important for binding of several classes of drugs. The side chains of 

the two residues are orientated towards the large central cavity of the channel. More 

importantly, these two residues are not conserved in other Kv channels in which an Ile and a 

Val are found in homologous positions. It was suggested that the eight aromatic side chains 

per channel are arranged in two concentric rings to accommodate drug-channel interactions 

(Sanguinetti & Tristani-Firouzi, 2006). 

 

V. Experimental Models in the Study of Cardiac K
+
 Channel Function 
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 A variety of experimental animal models have been used over the years in studies 

detailing the time- and voltage-dependent properties and the physiological roles of the many 

K
+
 channels expressed in the mammalian heart (Barry & Nerbonne, 1996). Similar to 

functional analysis of other types of ion channels, the mouse models began to be used 

increasingly in the mid-1990s to explore the molecular determinants of native myocardial K
+
 

channels primarily owing to the ease and speed with which molecular genetic strategies can 

be exploited, functional assays can be completed, and molecular mechanisms can be probed 

in the mouse, particularly when compared with other mammalian species. These efforts 

quickly led to the detailed biophysical characterization of the voltage-gated and non-voltage-

gated K
+
 channels expressed in mouse myocardium, as well as the identification of the genes 

encoding the pore-forming (α) subunits, as well as many of the accessory subunits of these 

channels (Nerbonne et al., 2001). There were also suggestions that the mouse might be used 

as a model system for investigating congenital and acquired arrhythmogenic cardiovascular 

disease mechanisms, particularly the “ion channelopathies” (Ravens & Cerbai, 2008; Brenyo 

et al., 2012; Abriel & Zaklyazminskaya, 2013) linked to ion channel dysfunction (London, 

2001; Charpentier et al., 2004), as well as for pre-clinical testing of the anti-arrhythmic 

efficacy and the pro-arrhythmic potential of drugs (Fabritz et al., 2007).  

Although there are multiple repolarizing K
+
 currents in both human and mouse cardiac 

myocytes, there are clear differences in the properties and the molecular identities of the K
+ 

channels expressed (Nerbonne & Kass, 2005). The two prominent delayed rectifier Kv currents, 

IKr and IKs, in human ventricular myocytes, for example, are not prominent in mouse cardiac 

myocytes and three distinct delayed rectifier Kv currents, IK,slow1, IK,slow2 and Iss, are expressed 

(Nerbonne & Kass, 2005). The genes, KCNQ1 and KCNH2, that encode the Kv  subunits, 

Kv7.1 and Kv11.1, that generate human cardiac IKr and IKs channels, and identified as loci of 



 

 

 
This article is protected by copyright. All rights reserved. 

26 
 

mutations in familial LQT1 and LQT2 (Ravens & Cerbai, 2008; Brenyo et al., 2012; Abriel & 

Zaklyazminskaya, 2013) and transgenic and targeted deletion strategies in mice have been 

used to probe the functioning of Kcnq1 and Kcnh2, as well as of the (Kcne1) gene, which 

encodes the IKs channel accessory subunit, mink (Nerbonne et al., 2001). As might be 

expected, given that IKs and IKr are barely detectable in adult mouse cardiomyocytes, the 

cardiac effects of manipulating the Kcne1, Kcnq1 or Kcnh2 genes on myocardial K
+
 currents 

and myocardial functioning in the mouse heart are quite subtle (Nerbonne et al., 2001).  

 In several of the Kv channel transgenic and gene targeted mouse lines that have been 

generated, however, ECG abnormalities, including QT prolongation, as well as increased 

inducibility of ventricular arrhythmias, have been described and, in some cases, the observed 

abnormalities structurally resemble those seen in humans. Quite dramatic ECG phenotypes 

and spontaneous arrhythmias, for example, have been reported in some Kv channel 

transgenics (Nerbonne et al., 2001). In the Kcnq1-isoform-2-expressing mouse, for example, 

QT prolongation, P wave abnormalities and TdP were reported. The severity of the cardiac 

phenotype, however, was correlated with the amount of the mutant protein expressed, 

observations that suggest non-specific in vivo cardiac effects of “over-expression” of the 

Kcnq1-isoform-2 transgene. Overall, the incidence of spontaneous and/or inducible 

arrhythmias, particularly lethal arrhythmias that mimic those in humans, in mice with altered 

K
+
 channel expression is very low, observations that are interpreted as reflecting an inherent 

limitation of the mouse, perhaps owing to the small size of the mouse heart and the very rapid 

heart rate.  

 In spite of these limitations, important insights into the relationships between individual 

K
+
 channel subunits and functional K

+
 currents, as well as about the mechanisms underlying 

the electrical remodeling observed in association with alterations in the expression or 
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functioning of individual K
+
 channel α and β subunits, have been provided through the 

application of in vivo molecular genetic strategies in the mouse. Together, these insights will 

guide the design, execution and interpretation of future experiments focused delineating the 

molecular, cellular and systemic mechanisms underlying electrical remodeling and 

reprogramming in the myocardium. The mouse is expected to be a widely used model system 

in these efforts.  

Large Animal Models of Congenital and Acquired Cardiac Arrhythmias  

 It has long been recognized that the electrophysiological properties of the hearts of 

large mammals, including the types of K
+
 channels expressed, more closely resemble those in 

the human heart, particularly compared with the mouse. Consistent with this, 

electrophysiological studies have detailed the distributions and the properties of the various 

K
+
 (and other) channels expressed in cardiac cells from cat, rabbit, canine and pig heart 

(Nerbonne & Kass, 2005). These large animal models are also more amenable (than the 

mouse) to studies focused on probing conduction, propagation and arrhythmias in the intact 

heart, although the inability to manipulate these systems genetically compromised their utility 

for studying human cardiac disease mechanisms.   

 This barrier to progress was broken with the development of the first transgenic rabbit 

models of LQT1 and LQT2, produced by Koren and colleagues with the cardiac specific 

expression of pore mutants of the human genes KCNQ1 (KvLQT1-Y315S) and KCNH2 

(HERG-G628S), respectively (Brunner et al., 2008). These pore mutants were shown to 

function in a dominant negative fashion, eliminating IKs and IKr, and resulting in AP and QT 

prolongation (Brunner et al., 2008). Importantly and unexpectedly, the detailed 

electrophysiological characterization of ventricular myocytes from the transgenic KvLQT1-

Y315S and HERG-G628S rabbits revealed co-regulation of IKs and IKr (Brunner et al., 2008). 
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In addition, the LQT2 rabbits show a high incidence of sudden death, attributed to increased 

dispersion of repolarization and polymorphic ventricular tachycardia. These transgenic rabbit 

models have enabled further studies focused on detailing arrhythmia mechanisms, as well as 

in efforts to explore the effects of drugs and hormones on conduction, dispersion and 

arrhythmia susceptibility (Ziv et al., 2009; Odening et al., 2010; Odening et al., 2012; 

Odening et al., 2013; Ziupa et al., 2014; Kim et al., 2015). More recently, a novel transgenic 

rabbit LQT5 model, produced by cardiac specific expression of a KCNE1 mutant that 

functions as a dominant-negative, was described with markedly altered repolarization reserve 

attributed to changes in both IKs and IKr (Major et al., 2016).  

 Although developing transgenic rabbit models to explore the functional effects of 

different mutations in the KCNQ1, KCNH2, KCNE1 and other ion channel subunit genes to 

explore genotype-phenotype relations is certainly a reasonable one, a clear limitation is the 

time and cost involved in generating and characterizing each transgenic rabbit line. In 

addition, phenotypic effects might well be variable across animals owing to genetic 

heterogeneity, a complication that can be avoided with transgenic mice, but not rabbits. 

Further limitations are expected to be realized given that, in spite of the similarities in K
+
 

currents such as IKr and IKs, there are differences in the expression and properties of other 

repolarizing K
+ 

currents in rabbit and human cardiomyocytes (Nerbonne & Kass, 2005). 

Given this, it seems reasonable to suggest that there should also be increased emphasis on 

electrophysiological studies of human myocardial K
+
 channels. Several previous reports have 

characterized native human cardiac K
+
 currents (Iost et al., 1998; Magyar et al., 2000; Virag 

et al., 2001; Jost et al., 2005; O'Hara et al., 2011), however, a significant number of studies is 

limited to atrial samples from patients undergoing open heart surgery (Van Wagoner et al., 

1997) and ventricular samples from explanted hearts from end-stage HF patients undergoing 

transplantation (Beuckelmann et al., 1993; Wettwer et al., 1994; Nabauer et al., 1996) 
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reflecting the availability. One way to expand these efforts might be to acquire non-failing 

human hearts deemed unsuitable for transplantation for non-cardiac reasons (Glukhov et al., 

2010). Even with expanded efforts, sample heterogeneity, reflecting genetics, prior history, 

health status, as well as previous and present medications, however, will still be a 

complicating factor to consider when analyzing/interpreting electrophysiological data from 

human myocytes.  

Cellular Models to Study Cardiac Arrhythmia Mechanisms  

 Cell-based systems have also been utilized to study the biophysical properties of 

genes/proteins involved in the generation of cardiac K
+
 channels, as well as functional effects 

of mutations in K
+ 

channel subunit genes linked to congenital arrhythmias on channel 

expression, assembly, trafficking, targeting and biophysical properties. Heterologous 

expression systems offer several clear advantages in this regard, all of which are related to the 

ease and the speed with which constructs can be generated, expressed and functionally 

characterized. Expression systems can also be used for drug screening of potential channel 

blockers or activators (Haraguchi et al., 2015) because of the ease with which experimental 

manipulations can be made and high-throughput screening methods can be applied. There 

are, however, also potential problems with interpreting results obtained in experiments 

conducted in heterologous cells for the simple reason that the detailed properties of K
+
 (and 

other) channels depend on the cellular environment in which they are expressed owing to cell 

type-specific differences in RNA processing, protein-protein interactions, post-translational 

modifications and membrane lipid composition, etc., all of which could influence the 

properties of expressed K
+
 channels.  

An alternative cellular approach being used to detail the properties, functioning and 

regulation of human cardiac K
+
 (and other) channels emphasizes “native” K

+
 channels 
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expressed in human embryonic stem cell-derived cardiac myocytes (hESC-CMs) or human 

induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) (Itzhaki et al., 2011) 

(Blazeski et al., 2012; Sallam et al., 2015). The clear advantages of using hESC-CMs and 

hiPSC-CMs is that the cells are of human origin, sample availability is not an issue, and, in 

addition, these preparations are amenable to electrophysiological and molecular 

manipulations and can also be used for high throughput screening. In addition, hiPSC-CMs 

are generated from adult fibroblasts making it possible to generate patient specific hiPSC-CM 

lines and to study the effect(s) of identified mutations in genes encoding K
+
 channels or other 

proteins linked to LQTS or SQTS, BrS, catecholaminergic polymorphic ventricular 

tachycardia, sick sinus syndrome, hypertrophic cardiomyopathy and other congenital 

arrhythmogenic cardiac disorders (Itzhaki et al., 2011; Dirschinger et al., 2012; Lahti et al., 

2012; Sinnecker et al., 2013; Tanaka et al., 2015). Importantly, the fact that these cells can be 

readily modified means that gene mutations can be corrected, allowing direct comparisons 

between the properties of cells with and without mutations, in the same genetic background 

(Itzhaki et al., 2011; Sallam et al., 2015). One major limitation of hiPSC-CMs at present is 

that the cells are immature both electrically and structurally and considerable effort is focused 

on developing methods to manipulate and improve cell maturation (Bett et al., 2013; 

Veerman et al., 2015).  

 

VI.  Computational modeling and simulation approaches to study the mechanisms of 

K
+ 

channel linked acquired cardiac arrhythmias 

“To evaluate the full impact of quantitative systems pharmacology, one must 

remember that the mechanisms of action of most drugs are not fully understood and the 

origins of patient-to-patient variability in therapeutic and adverse responses are often 
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obscure …. And drugs that fail at late stages of clinical trials are rarely investigated further 

to determine the reasons for their failure.”, wrote the quantitative systems pharmacology 

workshop group in an NIH white paper (Sorger & Allerheiligen, 2011). These statements 

aptly describe the driving biomedical challenges facing scientists, regulators and clinicians in 

trying to determine safety and efficacy of drugs.   

History has shown that safety or toxicity of drug treatments cannot be observed or 

readily predicted via study of component elements alone. This is especially clear in the 

longstanding failure to anticipate cardiotoxicity in drug development (Roden, 2004).  

Cardiotoxicity is one of the most common risks for drugs in development, manifesting as 

prolongation of the QT interval and potential for fatal ventricular arrhythmias.     

As described earlier, cardiac rhythm disturbances are most commonly a side effect 

from unintended block of the promiscuous drug target Kv11.1, the pore-forming domain of IKr 

in the heart. But, not all Kv11.1 blockers are proarrhythmic. There is an urgent need to 

develop new approaches for selective and sensitive prediction of how drugs with complex 

interactions and multiple subcellular targets will alter the emergent electrical activity in the 

heart. Mathematical modeling and simulation constitute some of the most promising 

methodologies to reveal fundamental biological principles and mechanisms, model effects of 

interactions between system components and predict emergent treatment effects. There are no 

reasonable, efficient and cost-effective experimental alternatives that can achieve these goals. 

Application of new computational and simulation methods may in the next decade usher in an 

era that allows for integration of data in physiological networks to reveal emergent drug 

effects at the cellular, tissue and organ levels and to facilitate prediction and development of 

safer therapeutic interventions. Quantitative systems pharmacology approaches are currently 
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being developed in conjunction with high efficiency computational processes for probing the 

mechanisms of action of prototypical drugs in the setting of cardiac electrical disorders.      

While the crystal structure of the Kv11.1 channel is not yet available, multiple in silico 

approaches including homology modeling, de-novo protein design and molecular dynamics 

simulations have been undertaken to link structural determinants of Kv11.1 to its function 

(Stary et al., 2010). Sequence conservation is substantial between Kv11.1 and other Kv 

channels with known structures and new studies suggest that computer-based homology 

models based on solved KV based on the available crystal structures of KcsA, MthK, Kv1.2 

and KvAP pore domains can successfully be utilized to study the human K
+
 channels 

(Mitcheson et al., 2000; Perry et al., 2004; Stansfeld et al., 2007). The predictions from 

molecular modeling studies based bacterial KcsA and MthK (Perry et al., 2004; Stansfeld et 

al., 2007) channels or the mammalian channel Kv1.2 (Durdagi et al., 2010; Stary et al., 2010) 

concur with the experimental findings that have revealed two key residues responsible for 

drug stabilization in the Kv11.1 cavity, e.g. Y652 and F656 (Lees-Miller et al., 2000; 

Mitcheson et al., 2000). Model studies reproduced this feature in studies of Kv11.1 blockers 

such as dofetilide, KN-93 and other common high-affinity blockers (Durdagi et al., 2011; 

Durdagi et al., 2012).  

Because it is so difficult to predict how ion channel modification, studied in isolation, 

alters the functioning of the whole heart, computationally based modeling and simulation 

approaches have been developed and widely applied to link deviations in ion channel 

function to emergent electrical activity in cells, tissue and even simulated whole hearts.  In 

the last twenty years, an explosion in development of sophisticated models has occurred, 

concomitant with improved experimental techniques that have allowed identification and 

characterization of numerous ion channel subtypes and their regulation in the heart from 
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multiple species (Romero et al., 2010; Bett et al., 2011; Romero et al., 2011; Moreno & 

Clancy, 2012; Qu et al., 2013; Verkerk & Wilders, 2013; Bueno-Orovio et al., 2014; Glynn 

et al., 2014; Greenstein et al., 2014; Onal et al., 2014; Ramirez et al., 2014; Pathmanathan et 

al., 2015) (Besse et al., 2011). Sophisticated ion channel models have even been developed 

that account for various genetic defects that alter the behavior of ion channels. These 

complex ion channel representations have been incorporated into numerous cardiac model 

“cells” from multiple species. The cellular level models have been widely replicated and 

coupled, creating mathematical representations of cardiac tissue in one, two or three 

dimensions, with incorporation of complex anatomical heterogeneities including anisotropy, 

structural features and distinct cells with specifically associated electrophysiological 

characteristics (Trenor et al., 2007; Romero et al., 2009; Bers & Grandi, 2011; Niederer & 

Smith, 2012; Roberts et al., 2012; Sugiura et al., 2012; Trayanova et al., 2012; Zhang et al., 

2012; Zhou & O'Rourke, 2012; Polakova & Sobie, 2013; Quail & Taylor, 2013; Romero et 

al., 2013; Sato & Clancy, 2013; Tobon et al., 2013; Ferrero et al., 2014; Gomez et al., 2014; 

Henriquez, 2014; Ramirez et al., 2014; Trayanova & Boyle, 2014; Duncker et al., 2015).  

Simulation studies have revealed plausible experimentally testable mechanisms for 

how perturbations to ion channels and associated processes alter emergent electrical behavior 

at higher system scales. For example, computer simulations have revealed that the APD 

prolongation exerted by most mutant channels related (IKr, IKs and INa) to acquired LQTS 

(aLQTS) were shorter than those produced by mutations producing congenital LQTS (Itoh et 

al., 2006). In another study, the role of the R1047L polymorphisms in KCNH2 in dofetilide-

induced TdP was investigated (Sun et al., 2004). The R104L missense mutation was linked to 

TdP in fibrillation patients treated with dofetilide. The mutation caused a positive shift of the 

activation curve and slowed the activation and inactivation kinetics. Simulation of these 
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abnormalities resulted in prolongation of the APD, which suggests that 1047L may contribute 

to a higher incidence of TdP in the presence of IKr blockers (Sun et al., 2004).   

Investigation of drug-induced or acquired LQTS (aLQTS) resulting from Kv11.1 

block is critical to identify individuals who are susceptible to aLQTS, which is crucial for 

reducing the risk of cardiac arrhythmias. Experiments have shown that the functional changes 

of most mutations are mild and most drug sensitivities for mutant channels are similar to that 

of the WT channels (Itoh et al., 2006). Nevertheless, approximately 40% of patients with 

aLQTS have been shown to exhibit allelic variants that disrupt the function of cardiac ionic 

channels (Itoh et al., 2006).   

More recently, a systematic and comprehensive computational study has been 

conducted to reveal new insights into the impact of latent IKr channel kinetic dysfunction on 

IKr time course during the AP, susceptibility to aLQTS and the potential for adjunctive 

therapy with IKr channel openers (Romero et al., 2014). Specifically, this study predicted the 

most potentially lethal combinations of kinetic anomalies and drug properties and the ideal 

inverse therapeutic properties of IKr channel openers that would be expected to remedy a 

specific defect. The simulations predicted that drugs with disparate affinities to conformation 

states of the IKr channel markedly enhanced the susceptibility to aLQTS, especially at slow 

pacing rates.  

In the same study, Romero et al. simulated the M54T latent mutation in KCNE2, 

which has been related to aLQTS and arrhythmias, in the presence of dofetilide, which 

drastically prolonged the QT interval duration in the M54T mutation in KCNE2 compared to 

wild-type. The study also predicted that application of a virtual potassium channel opener that 

only slows deactivation would be the ideal adjunctive therapy that could normalize the effect 

of dofetilide-induced AP prolongation in the presence of the M54T hMiRP1 mutation. 
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Simulation of the addition of the IKr activator PRP260243, which slows the deactivation and 

increases the current magnitude by positively shifting the inactivation curve (Perry et al., 

2007) was predicted to correct the APD and QT interval prolongation, but it introduced the 

risk of developing SQTS (Romero et al., 2014).  

Finally, computational modeling has also been used to yield insights into the 

relationship between Kv11.1 1a/1b channels, drug sensitivity, and arrhythmia proclivity (Sale 

et al., 2008). These simulations showed that altered channel kinetics may explain reduced 

rectification and an increase in current during repolarization. The model also predicted that 

drugs that block 1a homomers of Kv11.1 are more arrhythmogenic than those that block the 

heteromer. 

Questions/Controversies: 

- Can K
+
 channel diversity be exploited to target specific cell types for anti-arrhythmic 

therapy? 

- Are M-cells present in human ventricle? 

- During pathophysiological remodeling, are K
+
 channel sub-types impacted similarly 

throughout the different regions of the heart? 

- Given the proarrhythmic potential of both increased and decreased K
+
-channel 

function, what changes in K
+
 currents are adaptive and which are maladaptive in a 

given disease? Of note, the lack of highly selective blockers and activators for most of 

the myocardial K
+
 channels makes it difficult to assess their specific roles in 

arrhythmias. 

- What can we learn from the species-specific differences in the roles of K
+
 channels in 

cardiac arrhythmias? 
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- Through which mechanisms are different K
+
 currents co-regulated with the 

counteracting depolarizing currents (i.e. Ca
2+

 currents) to ensure stable 

electrophysiological behavior under a wide range of conditions? How are these 

mechanisms perturbed under diseases conditions? 

- Which K
+
 channels, in addition to IK1, control the RMP in different regions of the 

heart? 

- What are the (mal)adaptive responses to chronic modulation of K
+
-channel expression 

and/or function? 

 

 

 

Summary 

 A variety of cellular and animal based model systems have been, and continue to be, 

used in studies focused on defining the functional properties of myocardial K
+
 channels and 

the impact of diseased-link mutations in the genes that encode K
+
 channel subunits on cardiac 

myocyte membrane excitability and arrhythmia susceptibility. Nevertheless, the physiological 

roles of the various K
+ 

channels expressed in human heart and the cellular, molecular and 

systemic mechanisms linking congenital and acquired changes in K
+
 expression and/or 

functioning to increased risk of arrhythmias and sudden death remain rather poorly 

understood. It seems clear that increased efforts, focused on delineating mechanisms that link 

changes in the expression and functioning of cardiac K
+
 (and other) channels to 

arrhythmogenic cardiovascular disease, are needed to provide new insights. Accomplishing 

this will, almost certainly, require the continued development and application of multiple 
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model systems that allow multiscale and multidisciplinary experimental investigation and 

analyses. 

Importantly, our understanding how disruption in cardiac K
+
 channels leads to 

arrhythmias is continually improving due to the development and implementation of 

computational modeling and simulation approaches. These approaches span scales from the 

single atomistic ion channel scale to the high-resolution reconstruction of the heart. These 

new computational strategies may be applied to improve preclinical screening of compounds 

to detect possible proarrhythmic effects and/or predisposition from underlying genetic causes. 

Computer-based approaches can help to determine the mechanisms of drug actions. 

Expansion and development of new approaches may help to reveal why drugs that are non-

specific K
+
 channel blockers and interact with many targets, like amiodarone, seem to be less 

proarrhythmic than selective blockers like d-sotalol. Finally, models might eventually be used 

to guide therapy for specific clinical situations and to identify optimal “polypharmacy” to 

inform the common practice of clinical empirical mixing and matching of drugs to create 

multidrug therapeutic regimens (Yang et al., 2016). Central to the success of modeling and 

simulation approaches for predictive safety pharmacology is the development of models that 

are informed and validated via tightly planned integration of experiments and simulations at 

every stage (Clancy et al., 2016). It will be critical to demonstrate usefulness of the 

frameworks and to validate their utility and reproducibility.  Finally, although we have 

endeavored to be as thorough and timely as possible in this review, this is a rapidly moving 

and expanding field. We have prioritized specific areas of emphasis at the expense of being 

comprehensive. We have, however, attempted to circumvent this limitation by including 

several published review articles in the references.  
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Figure 1: Heterogeneity of canine ventricular repolarization and K
+
 current distribution.  A, 

Epicardial, M-cell, and endocardial APs from the RV and LV of the canine heart at basic 

cycle lengths (BCLs) of 300 and 5000 ms.  Redrawn with permission from (Antzelevitch et 

al., 1999).  B, Relative distribution of major K
+
 currents in the heart (see text for details and 

references). 
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Figure 2. β-adrenergic regulation of K
+
 channels during cardiac AP.  

A, AP-clamp Sequential Dissection experiments were performed as followed: steady-state 

APs were recorded at a pacing rate of 1 Hz (upper panel), and used as the voltage command 

to obtain AP-clamp recordings of the (three distinct) K
+
 currents in the same cell (middle 

panel) and the Ca
2+

 transients (lower panel) under physiological conditions. B, The effects of 

isoproterenol (ISO) on the AP waveform and the evoked K
+
 currents. At 30 nM, ISO 

significantly enhanced IKs, moderately increased IK1, but slightly decreased IKr. C, D, E, 

Dose-dependent effects of ISO on the peak densities of IKs, IKr, IK1.  F, G, The three K
+
 

currents, measured in the same cell, were summed and each current was then normalized to 

this sum to calculate its relative contribution of each to the total K
+
 influx.  The normalized 

current values at membrane potential of +20 mV and −20 mV are shown in F and G, 

respectively.  The ISO dose-response curves show how the relative contribution of each 

current shifts with various levels of β-adrenergic stimulation. H, Total K
+
 charge movement 

for individual K
+
 current and the sum of the currents during the AP.  (Adapted from Banyasz 

et al. (Banyasz et al., 2014) with permission). 
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Figure 3. Schematic representation of the role of K
+
 channels in inherited and acquired 

cardiac arrhythmias. Numerous inherited (genetic), acquired and drug-induced conditions 

involve alterations in a wide range of ion channels. Loss of K
+
-channel function can promote 

ectopic activity by reducing the repolarizing current offsetting delayed afterdepolarizations 

(DADs) thereby increasing DAD amplitude, by promoting APD prolongation and associated 

early afterdepolarizations (EADs), or by accelerating phase-4 depolarization and abnormal 

automaticity. K
+
-channel gain of function, on the other hand, produces a vulnerable substrate 

in which ectopic activity can initiate reentry, by shortening action potential duration (APD) 

and effective refractory period (ERP). Abbreviations: AF: atrial fibrillation; BrS: Brugada 

sydrome; ERS: early repolarization syndrome; HF: heart failure; LQTS: long-QT syndrome; 

SQTS: short-QT syndrome. 
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Figure 4. An integrated approach to studying K
+
 channel remodeling in heart disease. 

Information from next generation sequencing (blue), proteomics (green) and metabolomics 

(red) will need to be integrated using bioinformatics and multi-scale computer modeling to 

establish a systems wide understanding of electrical remodeling. 

 

 

 

 


