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Highlights 
 

 Microfluidic substrates were characterized by inverse gas chromatography. 

 Recovery time of plasma treated PDMS was precisely determined. 

 Hydrophobic and hydrophilic properties of PDMS surface. 

 

Abstract 

The effect of air plasma exposure time on the surface energies and acid-base characteristics of 

polydimethylsiloxane (PDMS) particles was studied. Polymerized PDMS powder was radio 

frequency induced air plasma irradiated for 2-10 seconds with the power of 500 W. The effi-

ciency of the plasma treatments was investigated by a new generation inverse gas chromato-

graph, a surface energy analyzer. The dispersive component of surface energy was determined 

by the Dorris-Gray method describing the van der Waals interactions, while the specific com-

ponent of surface energy expressed the surface ability for Lewis acid-base interactions. It was 

demonstrated that the air plasma treatment did not affect the dispersive and acidic parts of the 

surface energy and the change of surface hydrophilicity was caused by the raise of the electron-

donor ability of the PDMS surface, characterized by van Oss-Good-Chaudhury’s base number. 

The optimal plasma treatment time was found to be 5 second. Analysis of the specific surface 

energy and acid-base characteristics with respect to exposure time showed that partial to com-

plete hydrophobic recovery occurred within 38 hours.  

 

Abbreviations: PDMS – polydimethylsiloxane; IGC – inverse gas chromatography; XPS - X-

ray photoelectron spectroscopy; 

 

Keywords: PDMS, inverse gas chromatography, surface characterization, plasma treatment, 

hydrophobicity 
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1. Introduction 

Microfluidic devices play important roles in the analytical and life science fields. This technol-

ogy, also known as-lab-on-a-chip approach, makes to integrate analytical measurements easier, 

and do measurements faster amenable to use in high-throughput screening. Advantages of mi-

crofabricated devices include, but are not limited to, requirement for low sample volume, small 

reagents consumption, short processing time and easy integration [1-3]. Poly(dimethylsiloxane) 

(PDMS) is a commonly used material in fabrication of microfluidic devices due to its advanta-

geous properties, such as elastomericity, transparency, chemical inertness, simple handling and 

manipulation as well as low electrical conductivity [4, 5]. PDMS is an appropriate catalyst sup-

port [6] and a very effective and low-cost air cathode catalyst binder in microbial fuel cells [7]. 

However, application of PDMS has limitations in microfabrication, e.g., its hydrophobic sur-

face characteristics restricts the application of PDMS microfluidic devices with aqueous solu-

tion. Numerous methods have been developed to irreversibly or temporarily make the PDMS 

surface hydrophilic such as plasma treatment, UV treatment, surfactant treatment, protein ad-

sorption, chemical vapor deposition, layer-by-layer deposition preparation of chemical coatings 

and their combinations [8-14]. Plasma treatment is by far the most commonly used method for 

PDMS surface modification [15-17]. The PDMS surface modification by plasma treatment has 

particular importance in the derivatization of microchips i.e. this is the initial step of many 

immobilization chemistries. Traditionally used analytical methods for the characterization of 

surface modification are contact angle measurement, scanning electron microscopy, x-ray pho-

toelectron spectroscopy (XPS) and atomic force microscopy [18-23]. Despite of use of these 

characterization tools, it is still difficult to compare the effect of surface modification methods, 

as all of them have limitations and are not able to provide quantitative differences. For instance, 

the contact angle measurement of a water droplet is not taking the surface heterogeneity into 

account [24] and only provides a generalized measure of the sum of molecular interactions, 

without selective information about the strength of the dispersive and specific components of 

surface energy. Furthermore, this single phenomenological parameter of the surface supplied 

by sessile water contact angle measurement possesses a so called “observer effect” that unfor-

tunately affects the measured surface characteristics itself. It is well known that water molecules 

slow the hydrophobic recovery of the PDMS surface [22] because they prefer to interact with 

the hydroxyl groups found on the modified surface and cover the silanol interface as a thin layer 

[25]. XPS determines only the ratio of the chemical elements at a small area. Please note that 
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most of these methods require complex instrumentation with highly trained operators. In addi-

tion, it has been demonstrated in the above cited works that the hydrophobicity and hydrophilic-

ity represent a more complex phenomena than simple oil or water wettings. Inverse gas chro-

matography (IGC) has recently been implemented in numerous parts of the analytical fields as 

it enables investigation of samples in various forms of fibers, films, powders in crystalline and 

amorphous state. Polymers, pharmaceuticals and composite constituents are the most exten-

sively investigated materials using IGC, but clays and other minerals have also been analyzed 

[26-30]. The advent of IGC offers a fast and accurate technique for the necessary physicochem-

ical measurements. The rapid adsorption-desorption process makes it an effective analytical 

method to quantitatively determine a wide range of physicochemical properties such as solu-

bility parameter component [31], Flory-Huggins interaction parameter [32], miscibility [33], 

activity coefficient [34], dispersive surface energy [35], specific (acid-base) interaction [36], 

surface area [37], sorption enthalpy [38], sorption entropy[39], sorption free energy [40], 

acid/base number [41], surface energy heterogeneity [42], etc. of surfaces of diverse solid ma-

terials in various forms and morphologies [24, 43].  

The aim of this paper is to characterize the surface energy changes induced on the PDMS sur-

face by air plasma treatments in order to enhance its ability to form specific interactions. Surface 

energy analysis method using IGC was applied to measure the surface energies of untreated and 

air plasma treated real PDMS samples and to follow up the recovery time of the PDMS surface 

after the modification in inert atmosphere. Respective chromatograms are listed in the Supple-

mentary material. The significant novelties of this paper are the quantitative characterization 

option of the effect of air plasma treatment on dispersive and specific surface energies and on 

the electron acceptor-donor nature of PDMS surface. Furthermore, the Lewis acid-base inter-

pretation of hydrophilicity and hydrophobic recovery of PDMS surface was also accomplished.  

 

2. Experimental 

2.1 Sample preparation and treatment 

A two-component silicon elastomeric polydimethylsiloxane (PDMS) kit (SYLGARD 184) 

from Dow Corning (Midland, MI, USA) was used as base material of the samples. The molar 

mass of the repeating monomer is 207.4 g/mol while the number-average mass of the polimer 

is 27000 [44]. The melting point of PDMS is ~241 K [45]. The PDMS base polymer and the 

curing agent were vigorously mixed with 10:1 ratio and degassed in vacuum to remove bubbles 

from the bulk phase. The mixture was cured at 70 °C for 1 hour. The fabricated PDMS was 
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subject to cryogenic grinding at liquid nitrogen temperature (–196 °C) by a CryoMill (Retsch, 

Haan, Germany). The cryomilling procedure included a precooling and pre-milling phase at 5 

Hz vibration frequency during 5 min, and afterwards three milling steps, which were performed 

at 25 Hz vibration frequency for 2 min grinding time with 1.5 min intermediate cooling. The 

surfaces of cryomilled sample particles (mean diameter 309 μm) were treated by synthetic air 

plasma for 2-10 s at 500 W using a custom-made microwave plasma reactor under vacuum (3 

μbar) by a G1099-80024 vacuum pump (Agilent Technologies, Santa Clara, CA, USA). Syn-

thetic air (20.5% (V/V) oxygen, 79.5% V/V nitrogen) of 40 ml/min was introduced into the 

plasma reactor, controlled by a precision flow regulator (Model 5850TR, Brooks Instrument 

Hatfield, PA, USA). The duration of the treatment time, measured as the contact time of the 

sample with the plasma, was determined by an electronic stopwatch. 
 

2.2 Inverse gas chromatographic (IGC) measurements 

The treated and untreated PDMS samples were investigated by a second generation inverse gas 

chromatograph (Surface Energy Analyzer (IGC-SEA) of Surface Measurement Systems Ltd., 

London, UK) equipped with a flame ionization detector (FID). IGC-SEA utilizes the so called 

Automated Probe Vapor Injection System, which ensures robust and highly reproducible 

injection. This gas phase injection system excludes the sampling errors of liquid injection 

method in traditional IGCs, which may result in low accuracy of retention data or exceeding 

the limit of concentration range. This imperfection is eliminated using the unique injection 

manifold and organic vapor partial pressure control of the fully Automated Probe Vapor 

Injection System. The probe molecules are injected in gas phase, directly from saturated 

headspace of solvents reservoir through a sample loop. The amount of injected vapor phase is 

controlled by the sample loop based on the required surface coverage and physical-chemical 

properties of solvents.  

The powdered PDMS samples were filled into silanized cylindrical Pyrex glass tubes of 

I.D. = 3 mm under gentle vibration. The column packaging and the experimental setup took 80 

minutes before each measurements. Surface energies were measured in dry helium gas for 36 

hours in order to assess the aging of the samples and the recovery of their hydrophobicity under 

inert water-free conditions. A measurement cycle contained a series of eight injections and one 

sequence lasted 270 minutes. In each injection series all the probe compounds were injected, 

one after the other, in quasi-infinite dilution, at low surface coverage (Θ=0.05). IGC measure-

ments were conducted at 303.15 K, which is well above the reported glassification temperature 

of PDMS (Tg~148 K) [45, 46]. This relative high temperature difference ensures the PDMS 
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has total amorphous structure allowing to use conventional thermodynamics. The standard flow 

rate of IGC technique is 10 cm3/min. However according to our preliminary experiments the 10 

cm3/min flow rate resulted in high retention times and excessive asymmetric peak shape. Fur-

thermore our study attempts to follow the dynamics of surface recovery with high-resolution, 

which requires relative short retention time i.e. the applied flow rate was 20 cm3/min. Methane 

gas was used as marker for the hold-up time and high-purity-grade n-alkanes (n-hexane, n-

heptane, n-octane, n-nonane), toluene and chloroform were as probe compounds. The synthetic 

air (5.0) for the FID detector was produced by Zero Air 1500-EU VWR (Radnor, Pennsylvania, 

USA), the helium gas (quality 6.0) and methane gas (5.0) were from Messer Hungarogáz Ltd. 

(Budapest, Hungary). The probe-compounds for IGC-SEA were reagent grade chemicals from 

Sigma-Aldrich (St. Louis, MO) with stated purity of 99 % and were applied as received. The 

data were recorded and analyzed by the Cirrus Plus Analysis Software (version 1.2.1.2), which 

is the SEA data analysis software designed and created by SMS Ltd (London, UK).  

 

2.3 Theory 

Surface energy calculations reported below were based on actual measured IGC data for each 

PDMS sample. Proper surface characterization required repeated injection of numerous probe 

molecules resulting in 48 chromatograms for a given sample. Due to page restriction, one 

representative chromatogram is shown in Figure 1, while the rest of the measured IGC traces 

can be found in the supplementary data file. Please note, in this study a total of 192 

chromatograms were generated and evaluated for untreated and plasma treated PDMS samples. 

 

. 

The retention time of each peak was determined at the center of mass of the retention 

peak. The characteristic reproducibility of a derived thermodynamic property calculated from 

the retention time was reported to be less than 1 % [47]. The intermediate precisions of the 

retention time measurements of methane is RSD = 0.7%. The precision in determining the re-

tention times and the specific retention volumes of the test samples were RSD = 0.2% and RSD 

= 0.5%, respectively [48]. Dispersive and specific surface energies were determined at quasi-

infinite dilution with the precision of RSD = 0.3% and RSD = 1.0%, respectively [26]. The net 

retention volume Vw of a probe is directly related to the thermodynamic interaction with the 

surface. Based on the chromatograms the net retention volume can accurately be determined 

from the flow-rate at the column exit (F) and the residence times of the marker gas (methane) 

ACCEPTED M
ANUSCRIP

T



6 
 

(t0) and the probe (tR), respectively. The net retention volume is obtained from the measured 

parameters given using Equation 1: 

Vw =
j

m
F𝑚

0  (tR − t0)
T

273,15
 (1) 

where T is the column temperature, m is the sample mass, F𝑚
0  is the exit flow rate at 1 atm and 

273,15 K, tR is the retention time for the adsorbing probe molecule, t0 is the mobile phase hold-

up time (dead-time), j is the James-Martin correction factor for gas compressibility. More 

details are described in the Supplementary material. 

Dispersive (Lifshitz – van der Waals) surface energies ( d

s ) of PDMS sample surfaces has been 

calculated from the dispersive part of the adsorption free enthalpy change using the Dorris-Gray 

method [49]:  
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where Vw,n is the IGC measured specific retention volume of the n-alkane probe with the carbon 

number nC, 
2CHa
 
is the cross sectional area of an adsorbed methylene group (610-20 m2), N 

stands for Avogadro’s number, 
2CH  is the surface energy of a methylene group, as constituted 

by close packing CH2 groups in a structure analogous to polyethylene: 

  )/293(058.06.35/ 2

2
KTmmJCH   .     (3) 

The non-polar n-alkane probes interact with the surface of PDMS samples by dispersive forces 

only thus the free enthalpy change of adsorption of the n-alkanes is assumed to be equal to the 

dispersive component of the free energy change of adsorption. The specific retention volumes 

of n-alkane vapors have been measured by IGC-SEA in quasi-infinite dilution. When plotting 

RTln(Vw,nC) versus carbon number nC for the series of n-alkane probes, a line is obtained and 

the dispersive surface free energy of the PDMS samples, d

s , can be calculated from slopes. 

The specific (Lewis acid-base) surface energies ( ab

s ) have been estimated from the base 

number (γs
-) and the acid number (γs

+) of the PDMS surface: 

 ss

ab

s  2          (4) 

The base number or electron-donating parameter (γs
-) and the acid number or electron-accepting 

parameter (γs
+) of the PDMS surface were determined from the specific parts of free enthalpy 

changes of adsorption (
ab

iadsG , ) of polar probes i: 
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   sisii

ab

iads aNG 2,
       (5) 

using the van Oss-Good-Chaudhury approach [50] and applying the Della Volpe scale [51] . 

The specific parts of free energy changes of adsorption for polar probes i on PDMS surface 

were calculated from the difference between their total adsorption free enthalpy and their 

dispersive references:   

refw

iwd

iads

tot

iads

ab

iads
V

V
RTGGG

,

,

,,, ln       (6)

 

where Vw,i is the specific retention volume of polar probe i, Vw,ref  is the specific retention volume 

of a hypothetical n-alkane having the same selected physico-chemical property as that of the 

polar probe i, for example vapor pressure, normal boiling point or molar deformation 

polarization, PD: 
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where  is the polarisability, nr is the refractive index, M is the molar mass and  is the liquid 

density of the probe. The specific free energy changes of adsorption of the polar probes were 

obtained as the vertical distances between the polar data points and their vertical projections to 

the reference line of the n-alkanes on the plot of RTln(Vw,) versus PD, as suggested by Dong et 

al. [52] and Donnet et al. [53]. Chloroform and toluene were used in this work as acceptor 

(monopolar Lewis acid) probe and donor (monopolar Lewis base) probes, respectively, to 

determine the base and acid numbers of the surface according to the van Oss concept [50].  

 

3. Result and discussion 

3.1 Effects of treatment time  

The actually measured surface energies of the untreated PDMS sample are given in Table 1. 

Supplementary material contains all chromatograms and raw data of the IGC measurements 

along with the detailed calculation tables. The dispersive surface energy value obtained was 

apparently close to that was previously found by Higgins et al. [54]. The Lewis acid/base ratio 

was less than unity, in agreement with the report of Larsen [55] for untreated PDMS layers. 

 

 

The effects of air plasma treatments on the PDMS surface can be well demonstrated by the 

changes of its surface energy and chemical character. Figure 2 shows the limiting values of the 

differences in the specific surface energies and base numbers of the PDMS surface before and 

ACCEPTED M
ANUSCRIP

T



8 
 

after the air plasma treatments. The limiting values have been obtained by extrapolation of the 

measured surface energies at various storage times to zero time. The increase in specific parts 

of the surface energy and in Lewis base sites of surface energy indicated that the surface has 

become more hydrophilic after air plasma treatment. Our results are in agreement with the 

observations of other authors that the treatment of plasma on PDMS introduces polar functional 

groups, which are mainly silanol groups (Si-OH) [17]. Therefore, the hydrophilic nature of the 

modified PDMS surface can be attributed to the silanol group formation on the plasma treated 

sample as reported earlier by Bodas et al. [56]. Figure 2 clearly indicates that the 2 sec treatment 

was not sufficient enough to appreciably modify the PDMS surface. On the other hand, the 10 

sec treatment was less effective for surface modification than the 5 sec treatment. The optimal 

treatment time to activate the surface has been found as 5 sec. 

 

3.2 Investigation of recovery time  

Plasma treatment causes a temporary change in the molecular structure of the PDMS surface. 

As reported by several authors, the hydrophilicity of plasma treated PDMS without any further 

modification is not sustained long, as it quickly regains its original hydrophobic character [20, 

22, 56, 57]. Therefore, in terms of the usage of PDMS, it is essential to understand the required 

recovery time. The hydrophilic stability of the modified surfaces was monitored as a function 

of time elapsed after treatment and quantified by IGC surface energy analysis. The samples 

were not exposed to air during the IGC measurements, but they were performed in inert 

atmosphere of helium. The specific surface energy of the samples was determined by the 

method of van Oss et al. [51]. 

Figure 3 and 4 illustrate the variation of the specific part of surface energy and the base number 

of the PDMS surface with time for the modification studied. Immediately after the plasma 

treatment, the specific part of surface energy and the base number of the PDMS surface 

increased probably due to the presence of polar groups at the surface.  

. 

 

. 

The surface energy values proved that the 2 sec and 10 sec air plasma treatments had minimal 

effect on the PDMS surface. Maximum hydrophilicity of PDMS surface was observed after 5 

sec treatment with 500 W power, which significantly increased both the specific part of surface 
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energy and the base number of the PDMS surface. Our observations are in agreement with those 

of Wohl et al. [25], who reported that the oxygen plasma treatment on silicone rubbers (such as 

PDMS) increased its Lewis base surface energy component. However, the surface 

hydrophobicity was fully recovered after 38 hours in helium gas, corresponding to the 

experiences of others, who have shown that partial to complete hydrophobic recovery occurs 

independently of the exposure conditions [22]. The reason of complete hydrophobic recovery 

was probably due to the thinness of the oxidized PDMS layer, because the main reasons for 

hydrophobic recovery are assumedly the reorientation of the polar groups from the surface to 

the bulk, diffusion of pre-existing low-molecular-weight (LMW) species from the bulk to the 

surface [58, 59] and condensation of the hydroxyl groups [17]. Air plasma treated PDMS stored 

in helium gas stream recovered its hydrophobicity faster that of oxidized PDMS films stored in 

water [22].   

However, the air plasma treatment has no or negligible effect on the dispersive and the acidic 

part of the surface energy of the PDMS samples, therefore, their values did not show any 

changes in the time elapsed after treatment as shown in Figure 5. These interesting phenomena 

corresponded with the surface chemical modification, as the air plasma treatment was able to 

transform the interface silane molecules to silanol functional groups within a short reaction time 

as it was also experienced by Tan et al. [17] Due to these surface reactions, the air plasma 

treatment showed practically no effect on the dispersive component and the acid number of the 

PDMS surface energy, independently of the duration of the treatment. Consequently, the so 

called “hydrophobic recovery” process is actually considered as not a rise of hydrophobic sites 

of the PDMS surface, not the growth of the electron-acceptor ability (γs
+) of PDMS surface to 

bind hydrophobic molecular interactions, but the decrease of the hydrophilic sites of the PDMS 

surface, the lowering of its electron-donor ability (γs
-) to form specific interactions.  

 

These results agree well with the observations of other authors as follows. Van Oss [60] 

reported that when the negatively charged biosurfaces of electron-donor and hydrophilic 

biopolimers were neutralized, their electron-donor parameter (γs
-) severely diminished, which 

then caused these surfaces to became hydrophobic. Van der Mei et al. [61] recognized that 

differences in acid–base character of microbial cell surfaces formed the basis for differences in 

cell surface hydrophobicity among strains: the organism surfaces having low electron-donating 

parameter (γs
-) were hydrophobic, while organism surfaces with sizeable electron-donating 

parameter were hydrophilic. Hamadi and Latrache [62] obtained a good correlation between 

the degree of hydrophobicity and Lewis acid properties of bacteria surfaces. 
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4. Conclusion 

IGC technique was proven as an excellent method to characterize the changes in the physico-

chemical properties of PDMS surfaces after air plasma treatment. A total of 192 measurements 

were accomplished and all the respective data is listed in the Supplementary material. Surface 

energy analysis quantitatively proves that the plasma irradiation raised the hydrophilicity in 

terms of specific surface energy and its base component of the PDMS surface when exposed to 

air plasma. The inverse gas chromatography measurements provided an excellent proof for the 

optimal treatment time for activating the PDMS surface. These emphasized the need to accept 

IGC based surface energy analysis as one of the universal standard for surface hydrophilic-

ity/hydrophobicity measurements. The IGC results were interpreted on the basis of van Oss-

Good-Chaudhury approach, which showed that the changes of Lewis base or electron donor 

nature of air plasma treated PDMS surface were responsible for hydrophilicity and hydrophobic 

recovery of the PDMS surface.  

 

Acknowledgment 

This work was supported by the MTA-PE Translational Glycomics program (#97101), the 

NKFIH K116263 grant and the BIONANO_GINOP-2.3.2-15-2016-00017 project. 
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[42] L. Lapčík, E. Otyepková, B. Lapčíková, M. Otyepka, Surface energy analysis (SEA) 

study of hyaluronan powders, Colloids and Surfaces A: Physicochemical and Engineering 

Aspects, 436(2013) 1170-4. doi: http://dx.doi.org/10.1016/j.colsurfa.2013.08.059 

[43] A. Kondor, C. Quellet, A. Dallos, Surface characterization of standard cotton fibres 

and determination of adsorption isotherms of fragrances by IGC, Surface and Interface 

Analysis, 47(2015) 1040-50. doi: 10.1002/sia.5811 

[44] A. Santiago-Alvarado, A. Cruz-Felix, F. Iturbide, B. Licona-Morán, Physical-chemical 

properties of PDMS samples used in tunable lenses2014. 

[45] A. Podzorov, G. Gallot, Density of states and vibrational modes of PDMS studied by 

terahertz time-domain spectroscopy, Chemical Physics Letters, 495(2010) 46-9. doi: 

https://doi.org/10.1016/j.cplett.2010.06.050 

[46] X. Jin, M. Deng, S. Kaps, X. Zhu, I. Hölken, K. Mess, et al., Study of Tetrapodal ZnO-

PDMS Composites: A Comparison of Fillers Shapes in Stiffness and Hydrophobicity 

Improvements, PLOS ONE, 9(2014) e106991. doi: 10.1371/journal.pone.0106991 

[47] A. Kondor, Reproducibility of the BET Specific Surface Area and the Dispersive 

Component of Surface Energy Measured by Inverse Gas Chromatography. 

Part I: Energetically Homogenous Powders, IGC-SEA Technical Note, 806(2015). doi:  

[48] A. Kondor, A. Dallos, Adsorption isotherms of some alkyl aromatic hydrocarbons and 

surface energies on partially dealuminated Y faujasite zeolite by inverse gas 

ACCEPTED M
ANUSCRIP

T

http://dx.doi.org/10.1016/j.chroma.2013.11.044
http://dx.doi.org/10.1016/j.chroma.2007.02.110
http://dx.doi.org/10.1016/j.colsurfa.2004.03.009
http://dx.doi.org/10.1016/S0021-9673(02)00465-X
http://dx.doi.org/10.1016/S0021-9673(02)00369-2
http://dx.doi.org/10.1016/S0021-9673(02)00369-2
http://dx.doi.org/10.1016/j.colsurfa.2013.08.059


14 
 

chromatography, Journal of Chromatography A, 1362(2014) 250-61. doi: 

https://doi.org/10.1016/j.chroma.2014.08.047 

[49] G.M. Dorris, D.G. Gray, Adsorption of n-alkanes at zero surface coverage on cellulose 

paper and wood fibers, Journal of Colloid and Interface Science, 77(1980) 353-62. doi: 

10.1016/0021-9797(80)90304-5 

[50] C.J. Van Oss, R.J. Good, M.K. Chaudhury, Additive and nonadditive surface tension 

components and the interpretation of contact angles, Langmuir, 4(1988) 884-91. doi: 

10.1021/la00082a018 

[51] C.D. Volpe, S. Siboni, Some Reflections on Acid–Base Solid Surface Free Energy 

Theories, Journal of Colloid and Interface Science, 195(1997) 121-36. doi: 

10.1006/jcis.1997.5124 

[52] S. Dong, M. Brendlé, J.B. Donnet, Study of solid surface polarity by inverse gas 

chromatography at infinite dilution, Chromatographia, 28(1989) 469-72. doi: 

10.1007/BF02261062 

[53] J.B. Donnet, S.J. Park, H. Balard, Evaluation of specific interactions of solid surfaces 

by inverse gas chromatography, Chromatographia, 31(1991) 434-40. doi: 

10.1007/BF02262385 

[54] B.A. Higgins, D.L. Simonson, E.J. Houser, J.G. Kohl, R.A. McGill, Synthesis and 

characterization of a hyperbranched hydrogen bond acidic carbosilane sorbent polymer, 

Journal of Polymer Science Part A: Polymer Chemistry, 48(2010) 3000-9. doi: 

10.1002/pola.24078 

[55] R.T. Larsen, Microblood Analyzers for the Sensitive and Portable Detection of 

Clinically Relevant Cardiac Markers, Ann Arbor, Michigan, USA: ProQuest; 2007. 

[56] D. Bodas, C. Khan-Malek, Formation of more stable hydrophilic surfaces of PDMS by 

plasma and chemical treatments, Microelectronic Engineering, 83(2006) 1277-9. doi: 

10.1016/j.mee.2006.01.195 

[57] S. Pinto, P. Alves, C.M. Matos, A.C. Santos, L.R. Rodrigues, J.A. Teixeira, et al., 

Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its 

characteristics towards biomedical applications, Colloids and Surfaces B: Biointerfaces, 

81(2010) 20-6. doi: 10.1016/j.colsurfb.2010.06.014 

[58] H. Makamba, J.H. Kim, K. Lim, N. Park, J.H. Hahn, Surface modification of 

poly(dimethylsiloxane) microchannels, ELECTROPHORESIS, 24(2003) 3607-19. doi: 

10.1002/elps.200305627 

[59] J.M. Dechene, Surface Modifications of Poly(dimethylsiloxane) for Biological 

Application of Microfluidic Devices, London, Ontario, Canada: The University of Western 

Ontario; 2010. 

[60] C.J. van Oss, Hydrophobicity of biosurfaces — Origin, quantitative determination 

and interaction energies, Colloids and Surfaces B: Biointerfaces, 5(1995) 91-110. doi: 

10.1016/0927-7765(95)01217-7 

[61] H.C. van der Mei, R. Bos, H.J. Busscher, A reference guide to microbial cell surface 

hydrophobicity based on contact angles, Colloids and Surfaces B: Biointerfaces, 11(1998) 

213-21. doi: 10.1016/S0927-7765(98)00037-X 

[62] F. Hamadi, H. Latrache, Comparison of contact angle measurement and microbial 

adhesion to solvents for assaying electron donor–electron acceptor (acid–base) properties 

of bacterial surface, Colloids and Surfaces B: Biointerfaces, 65(2008) 134-9. doi: 

10.1016/j.colsurfb.2008.03.010 

 

  

ACCEPTED M
ANUSCRIP

T



15 
 

 

 

Biographies 

 

 

 

 

 

 

 

Brigitta Mészáros received her MSc in chemical engineering (2016) at University of Pannonia. During 
her studies, she participated in the work of Department of Physical Chemistry, University of Pannonia, 
where she learned the bases of inverse gas chromatography. She started her PhD studies at University 
of Debrecen, Research Centre for Molecular Medicine in 2016. She also participates in the work of 
Horváth Csaba Memorial Institute of Bioanalytical Research. Her research interest is microfluidic 
devices for cell capturing and culturing and analysis of proteins by developing a high-resolution SDS 
separation gel for CGE-MS.  

 

 

 

Gábor Járvás received his MSc in chemical engineering (2007) and PhD in chemistry (2012) at University 
of Pannonia. In 2013 he joined the collaboration project of Bioanalytical Instrumentation Group (Brno, 
Czech Republic) and MTA-PE Translational Glycomics Research Group (Veszprém, Hungary) as 
postdoctoral research fellow. Currently, his research interest is capillary electrophoresis based 
glycomics and glycoinformatics, simulation and modeling of microfabricated bioanalytical devices and 
development of novel CE-ESI-MS interfaces. ACCEPTED M

ANUSCRIP
T



16 
 

 

Márton Szigeti received his MSc in environmental engineering (2014) at University of Pannonia. In 
2014, he became a PhD student at University of Debrecen, Research Centre for Molecular Medicine. 
He also participates in the work of MTA-PE Translational Glycomics Research Group (Veszprém, 
Hungary) as a research fellow. His main research interest is glycan analysis development and 
automation for CE and CE-ESI-MS platforms.  

 

 

 

László Hajba holds a PhD in analytical and environmental chemistry from University of Pannonia, 
awarded in 2008. Later he carried out research in the field of biospectroscopy and chemometrics at 
the university. In 2010 he joined the biotechnology research group at Research Institute of Chemical 
and Process Engineering, University of Pannonia. In 2013 he started his work in the field of 
microfluidics and bioseparations at the MTA-PE Translational Glycomics Research Group under the 
supervision of Prof. András Guttman. 

 

 

András Dallos PhD has served as associate professor of physical chemistry at the University of Pannonia 
(1995-2017). He has his expertise in experimental and computational physical chemistry: 
measurement and modelling of bulk and surface properties of pure compounds, mixtures, 

ACCEPTED M
ANUSCRIP

T



17 
 

macromolecules, nanomaterials and composites. His research activities focus to the inverse gas 
chromatographic and calorimetric determination of intermolecular interactions, which are relevant to 
the design of nanocomposites and to the calculations of phase equilibria and separation processes. He 
is author and co-author of 57 scientific publications and presented 185 scientific conference papers 
and posters. He is a consultant of 10 companies and government agencies and a reviewer for leading 
academic periodicals. 

 

 

 

András Guttman, external member of the Hungarian Academy of Sciences, holds the MTA-PE Lendulet 
professorship of Translational Glycomics, heads the Horvath Laboratory of Bioseparation Sciences in 
University of Debrecen (Hungary) and leads the separation application efforts at Sciex. He held visiting 
professorships at Northeastern University (Boston, MA), The Scripps Research Institute (La Jolla, CA) 
and UCSD (San Diego, CA). The industrial background of Dr Guttman includes positions at Novartis, 
Genetic BioSystems, and Beckman Instruments, working on capillary and microfluidics based 
electroseparation methods. Dr. Guttman graduated from the University of Veszprem (Hungary) in 
chemical engineering, where he also received his doctoral degree. 

 

  

ACCEPTED M
ANUSCRIP

T



18 
 

 

Figure 1 Representative IGC chromatogram of n-hexane probe molecule on the untreated 

PDMS sample at low surface coverage (Θ=0.05), 303.15 K temperature with a helium carrier 

gas flow of 20 cm3/min 
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Figure2. Effects of air plasma treatments on the changes of the specific part of the surface 

energy and the base number of the PDMS surface at 303.15 K 

 

Figure 2. Specific surface energy curves on the PDMS surface at 303.15 K as a function of 

exposure time in helium gas 
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Figure 3.  The base number curves of the PDMS surface at 303.15 K as a function of exposure 

time in helium gas 

 

Figure 5. Effects of air plasma treatments on the changes of the dispersive part of the surface 

energy and of the acid number of the PDMS surface at 303.15 K 

Time elapsed after plasma treatment [h]

0 10 20 30 40

 s
-  [

m
J
/m

2
] 

20,0

20,5

21,0

21,5

22,0

22,5

23,0

s

-
 untreated

s

-
 2 sec treated

s

-
 5 sec treated

s

-
 10 sec treated

fitted curves

Time elapsed after plasma treatment [h]

0 10 20 30 40

D
is

p
e

rs
iv

e
 s

u
rf

a
c
e

 e
n

e
rg

y
  
 s

 d
[m

J
/m

2
]

24

26

28

30

32

34

A
c
id

ic
 p

a
rt

 o
f 

th
e

 s
u

rf
a

c
e

 f
re

e
 e

n
e

rg
y
  
 s

+
 [

m
J
/m

2
] 

15

16

17

18

19

20

s

d

 untreated

s

d

 2 sec treated

s

d

 5 sec treated

s

d

 10 sec treated

s

+
 untreated

s

+
 2 sec treated

s

+
 5 sec treated

s

+
 10 sec treated

ACCEPTED M
ANUSCRIP

T



21 
 

Table 1. Surface energies of the untreated PDMS sample at 303.15 K 

Dispersive  

surface energy 
d

s  [mJ/m2] 

Specific  

surface energy  
ab

s   [mJ/m2] 

Base number 

of the surface  

γs
-[mJ/m2] 

Acid number 

of the surface  

γs
+ [mJ/m2] 

Lewis acid/base 

ratio 

33.38 35.17 20.29 15.24 0.75 
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