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Highlights  

 

A revised approach for conducting vitamin D randomized controlled trials is presented. 

 

The trails should be based on 25-hydroxyvitamin D concentrations. 

 

Vitamin D doses should be adjusted for various 25-hydroxyvitamin D concentrations. 
 

Abstract  

Many health benefits are attributed to vitamin D, with those findings supported mostly by 

observational outcome studies of relationships to serum 25-hydroxyvitamin D [25(OH)D]. 

However, many randomized controlled trials (RCTs) aiming to confirm those findings have 

failed, perhaps because serum 25(OH)D is an index of UVB exposure and non–vitamin D 

mechanisms or because disease reduces serum 25(OH)D content. But the most likely reason for 

that failure is inappropriate design, conduct, analysis, and interpretation of RCTs. Most RCTs 

used principles designed to test pharmaceutical drugs; that design incorporates the assumptions 

that the RCT is the sole source of the agent and that dose–response relationships are linear. 

However, neither assumption is true for vitamin D, since neither vitamin D dose–responses or 

health outcome–serum 25(OH)D concentration relationships are linear—larger changes being 

induced with low rather than high baseline 25(OH)D values. Here, we propose a hybrid 

observational approach to vitamin D RCT design, based primarily on serum 25(OH)D 

concentration, requiring an understanding of serum 25(OH)D concentration–health outcome 

relationships, measuring baseline 25(OH)D values, recruiting non-replete subjects, measuring 

serum 25(OH)D during the trial for adjustment of supplemental doses for achievement of pretrial 

selection of target 25(OH)D values, where possible, and analyzing health outcomes in relation to 

those data rather than solely to vitamin D dosages. 
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Introduction 

 Many health benefits are attributed to higher 25-hydroxyvitamin D [25(OH)D] 

concentrations. Examples include reduced risk of musculoskeletal disorders, infectious diseases, 

autoimmune diseases, cardiovascular disease (CVD), diabetes mellitus, several types of cancer, 

neurocognitive dysfunction, adverse pregnancy and birth outcomes, and all-cause mortality rates 

[1], [2], [3]. Most such attributions are based on observational studies of health outcomes with 

respect to 25(OH)D concentrations, with others are based on geographical ecological studies 

with respect to solar UVB doses [4] or temporal geographical ecological studies [5]. 

Unfortunately, randomized controlled trials (RCTs) of vitamin D supplementation often fail to 

support those beneficial findings [6],[7],[8],[9],[10]. One reason for those discrepancies may be 

that UVB dosage in ecological studies and 25(OH)D concentrations in observational studies act 

as indexes for non–vitamin D-related mechanisms of solar UVB exposure, as seems to be the 

case for cardiovascular disease [11],[12] 

 Another reason for those discrepancies may be inappropriate RCT design, conduct, 

analyses and interpretation. Vitamin D RCTs are usually based on guidelines designed for 

pharmaceutical drugs—the underlying assumptions being that the RCT is the only source of the 

agent and that dose–response relationships are linear. But neither assumption is true for vitamin 

D RCTs since 25(OH)D concentrations have nonlinear relationships to both baseline 25(OH)D 

concentration and vitamin D dosages [13], whereas 25(OH)D concentration–health outcome 

relationships are also nonlinear (e.g., for breast cancer incidence) [14]. The conversion from 
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intact vitamin D (provided by oral intake or by UVB exposure), to 25(OH)D also varies [13],[15] 

(e.g., with genetic polymorphisms, intestinal absorption, and body mass). Genetic 

polymorphisms of CYP24A1 [16]. CYP2R1 and GC genes [17] play important roles, since  

vitamin D dose-25(OH)D concentration relationships vary from individual to individual 

[13],[18]. Thus, intact vitamin D having no direct health effects, vitamin D supplemental intake 

alone is an inadequate index for how vitamin D affects health outcomes.  

 Robert Heaney proposed guidelines for trials of nutrient effects [19]. Those guidelines 

include basing RCT design on 25(OH)D concentrations, not vitamin D dosing, which makes 

baseline and achieved 25(OH)D concentrations important in examining vitamin D–health 

outcomes, as discussed recently (e.g., for cancer incidence, where results from three vitamin D 

RCTs were modeled using baseline and achieved [in relation to baseline] 25(OH)D 

concentrations, vitamin D dosing, expected cancer incidence rates in the population, and number 

of participant years) [20]. 

 The primary goal of vitamin D RCTs should be to determine relationships between 

25(OH)D concentrations achieved with appropriate adjustment of  supplementation over time 

and health outcomes. A secondary goal is to determine whether any adverse effects are 

associated with increased vitamin D status upon supplementation.  

 In this paper, therefore, we propose that vitamin D RCTs should be designed, conducted, 

analyzed, and interpreted based on changes in 25(OH)D concentrations, the role of vitamin D 

dosing being solely to achieve the targets set for achieved 25(OH)D concentrations. 

 The approach we propose for vitamin D RCTs is based on 25(OH)D concentrations, so 

that health outcome relationships to baseline and achieved 25(OH)D concentrations can be 

determined. In general, expected relationships have been identified by referring to results from 



5 

 

observational studies, including available meta-analyses. As an example, data from a meta-

analysis of breast cancer incidence risk in relation to 25(OH)D concentration at diagnosis [14] 

was used to predict all-cancer incidence, using a geographical ecological study showing that 

breast cancer and all-cancer mortality rates had similar relations to solar UVB dose [21],[20]. 

Then, from that relationship, and the average rate of the chosen health outcome in the population, 

power calculations were made to determine the number of participant-years required to be likely 

to detect significant relationships between 25(OH)D concentration and health outcomes, an 

approach incorporating the assumption that vitamin D status will be always be raised to target 

25(OH)D concentrations, and using traditional power calculations (e.g., [22]). However, in [20], 

we developed a different approach to power calculation, based on population distributions of 

25(OH)D concentrations, where numbers of cancer cases predicted were used to calculate 

participant-years necessary for the likely achievement of significant risk reduction through 

supplementation to target 'achieved' 25(OH)D values; which were noted to be higher for higher 

baseline 25(OH)D concentrations. Thus, there would be a tradeoff between the effort required to 

enroll people with low 25(OH)D concentrations and that required to manage larger numbers of 

participants for longer periods. 

 In support of this approach to RCT design, previous vitamin D RCTs have clearly been 

shown to be more likely to find significant benefits of vitamin D supplementation when baseline 

25(OH)D concentrations were relatively low, as for cancer incidence [23], respiratory tract 

infections [24], and blood pressure [25]. 

 A key element of the proposed approach to conducting vitamin D supplementation trials 

is checking 25(OH)D concentrations periodically during the trial, as well as at baseline, since 

prospective observational studies with long follow-up periods have shown reduced benefits of 



6 

 

supplementation with higher basal 25(OH)D concentrations, in comparison with case–control 

studies where 25(OH)D concentration was measured near the time of diagnosis, as is predictable 

since 25(OH)D concentration changes over time as a result of seasonal and lifestyle variation, 

and with public and health care views on vitamin D [26]—as has been shown for cancer [14] and 

all-cause mortality rate [27]. Such variations would be expected in vitamin D RCTs, though their 

magnitude in the treatment arms should be attenuated. Furthermore, trial compliance is never 

100%, and periodically checking serum 25(OH)D concentrations through such RCTs would 

allow adjustment of supplemental dosages in order to achieve desired target values, as well as 

yielding data on compliance. 

 Periodic measurement of 25(OH)D concentration during vitamin D RCTs can be 

arranged in several ways. Immunoassays are inexpensive and can be run in the laboratories of the 

researchers conducting the trials. For large-scale trials, where it is difficult to see all participants, 

blood spot assays are inexpensive and convenient because they can be organized by mail; e.g. 

Heartland Assays LLC (Ames, IA) offers blood spot 25(OH)D assays using liquid 

chromatography–tandem mass spectrometry methodology – (interassay coefficient of variation 

4.0%; intra-assay coefficient of variation <2.5%; A.J. Makowski, Heartland Assays, LLC, 

personal communication, Jan. 30, 2017) [20]. Thus, 25(OH)D assessments could be included in 

RCT planning, as budgets permit, across seasons, and near times of diagnosis of any adverse 

health outcome. Analyses of health outcome risks with 25(OH)D concentrations (basal, 

achieved, and over various intervals of time before diagnosis) could then be computed, and the 

question as to whether disease development reduces 25(OH)D concentrations could also be 

clarified. As we suggested earlier, “Using basal and achieved vitamin D status [25(OH)D data] in 

RCT design might appear to make such studies ‘observational’, but the proposed design strategy 
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simply targets supplementation to chosen baseline status, whilst ensuring achievement of the 

desired ‘target’ vitamin D status; thus, such RCTs would clearly continue to be interventional, 

but with an increased potential for detecting causality.” [28] 

 

Proposed approach 

1. Obtain data on achieved 25(OH)D concentration for vitamin D supplementation by 

baseline 25(OH)D for the population of interest [13]. 

2. Obtain data on known population distributions of serum 25(OH)D concentrations, e.g., 

for Canadians aged 50–79 yrs [29]. 

3. Calculate expected achieved 25(OH)D concentration as a function of estimated baseline 

25(OH)D concentrations of the population studied, for the planned vitamin D starting 

doses. 

4. Obtain data for relevant observational 25(OH)D concentration–health outcome 

relationships for the outcomes of interest or related outcomes, e.g., from earlier meta-

analyses. 

5. Obtain the expected incidence of the disease of interest from the average incidence rates 

for the age distribution of the population to be studied, data for their baseline 25(OH)D 

concentration distribution, and the predicted increases in serum 25(OH)D from different 

amounts of vitamin D supplementation reported in the literature.  

6. Calculate the power of the planned trial by using two approaches:(a) using the number of 

participants and incident cases required to achieve significant reduction of relative risk 

(RR) (p<0.05) using, e.g., http://www.vassarstats.net/odds2x2.html, adding suitable 

numbers of participants to cover poor compliance and dropouts; and estimate trial 

http://www.vassarstats.net/odds2x2.html
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duration from expected lag times for achieving repletion, and for the time taken for 

disease development; in addition, (b) calculate the “power” (total numbers needed to 

treat) by using the expression for standardized difference (St Diff) for binary variables: St 

Diff = (P1–P2)/ √[P0(1 – P0)],where P0 is the estimate of prevalence (proportion)in the 

total study population [= (P1+P2)/2], and P1 and P2 are the proportional incidence, seen or 

predicted, (i.e., the fraction of participants expected to develop the health outcome of 

interest) for the control [P1] and treatment arms [P2] of the study. Then, use the 

calculated St Diff to estimate the number of participants (or the person-years) required 

(total) for desired “power” and p-value (e.g., power 80% [0.8]; p=0.05, e.g. by  using the 

Altman nomogram [22]), noting that numbers per arm = Total numbers/2. 

7. Where possible, compare the estimates with those already reported in risk reducing 

vitamin D RCTs, e.g., for cancer  [20]. 

 

Examples of analyzing trial results based on 25(OH)D concentrations from the literature 

 Two vitamin D supplementation RCTs were conducted with pregnant women in South 

Carolina (ClinicalTrials.gov #NCT00292591 and #NCT00412087).When those results were 

reanalyzed to look at maternal 25(OH)D concentrations within 6 weeks of birth, rather than by 

vitamin D supplementation, preterm births decreased steadily as 25(OH)D concentration 

increased [30]. The gestational week at birth varied from 37.3 weeks for 25(OH)D concentration 

of 8 ng/mL to 38.9 weeks at 40 ng/mL, with no significant change above 40 ng/mL, whereas 

raising the 25(OH)D concentration from 20 to 40 ng/mL with supplementation reduced preterm 

birth risk by 59%. However, the original statistical analysis of those data sets, based solely on 
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“intention to treat” for vitamin D supplementation, showed no significant reductions in risk 

[31],[32]. 

 A vitamin D RCT of 4400 versus 400 IU/d of vitamin D3 was conducted on pregnant 

women with a high risk of atopic disease in their family, at three centers in the U.S. 

(ClinicalTrials.gov NCT00920621). The women were supplemented from gestational weeks 10–

18, under the hypothesis that a higher dose of supplemental vitamin D3 would reduce the risk of 

developing preeclampsia. However, no difference in preeclampsia risk was found by “intention-

to-treat”; but the risk of preeclampsia was strongly predicted by baseline serum 25(OH)D 

concentration, dropping from 11% for values of ~10 ng/mL to <2% for values of ~70 ng/mL 

[33],[34] another good example of how traditional vitamin D RCT approaches, looking only at 

vitamin D dosing, cannot be considered reliable in the provision of data suitable for making 

public health policy decisions.  

 A recent report of results from a vitamin D plus calcium supplementation RCT reported 

near-significant reductions in cancer risks based on intention to treat (p = 0.06); [35]. However, 

the authors noted that “the achieved 25(OH)D level was significantly associated, inversely, with 

cancer incidence (p=0.03, coeff=–0.02). Compared with 25(OH)D concentrations of 30 ng/mL at 

baseline, the estimated HR for cancer incidence for basal 25(OH)D concentrations between 30 

ng/mL and 55 ng/mL was 0.65 (95% CI, 0.44 to 0.97) (eFigure 2 in Supplement 2." [35]. 

 Furthermore, with these points in mind,  if vitamin D dose were titrated so as  to 

achieve certain specified target 25OHD concentrations after determination of baseline 

concentrations and rechecking concentrations after a few months of dosing, then the study would 

be a clinical trial of health outcomes with respect to achieved 25OHD concentration. For 

example, in reporting the recent Lappe clinical trial, the JAMA editors disallowed reporting of 

http://clinicaltrials.gov/show/NCT00920621
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findings in relation to 25OHD concentrations because they had not been specified in the trial 

description submitted to the registry of clinical trials. Thus, when the RCT design is specified as 

being based on outcomes related to 25OHD concentrations achieved using oral supplementation 

(rather than by  UV exposure), it can be used to study the effects of vitamin D supplementation.  

 

 

Additional points to consider in designing, conducting, analyzing, and interpreting RCTs of 

vitamin D 

1. Seek participants with low baseline serum 25(OH)D values.  

2. Use vitamin D3, not vitamin D2 [36] and at sufficiently high doses, 1000–4000 IU/d. 

3. Consider giving a modest loading dose of vitamin D3 to reach target 25(OH)D 

concentrations rapidly [37]; [38]. 

4. Measure baseline serum 25(OH)D concentrations and repeat at suitable intervals to assess 

compliance and the achievement of target 25(OH)D values (e.g., using blood spot assays, 

where acceptable, affordable, convenient, and sufficiently accurate). 

5. If calcium and magnesium are given, give them in both RCT arms [20]. 

6. Monitor participants’ UVB exposure [39], as well as dietary and supplemental intakes of 

vitamin D3 and potential confounders, including obesity and genetic variants. 

7. Allow for the natural history of disease development in planning RCT duration and 

dosing, and for subject age. 

8. Analyze results in terms of 25(OH)D values at baseline, at completion, and at intervals 

before disease diagnosis, rather than solely with vitamin D3 dose. 
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9. Carefully consider vitamin D3 dosing interval with respect to compliance and 

physiological effect [40],[41],[42]. 

10. If, for ethical reasons, participants in the control are given 400 IU/d vitamin D3, the 

resulting increase in 25(OH)D concentration should be factored into the selection of 

participants and into outcome analyses.  

 

Conclusion 

 Hopefully, the hybrid approach for vitamin D clinical trials outlined here, involving 

vitamin D supplementation but based primarily on 25(OH)D concentrations, will improve the 

ability of such trials to assess more accurately how long term 25(OH)D concentrations affect 

health outcomes,  

  The 20th Workshop on Vitamin D (Orlando March 28-31, 2017), held a constructive 

debate on observational studies [43] vs. RCTs [44] as the most appropriate way to demonstrate 

roles of vitamin D in health, concluding that RCTs are, in principle, more reliable indicators of 

the effectiveness of vitamin D, but are more difficult to conduct properly. We hope, therefore, 

that the  design modifications we suggest can  contribute to improving the value of vitamin D 

RCTs to the point where they can provide definitive answers. 
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