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Abstract 

Palladium-catalyzed cross-couplings of O-peracylated and O-permethylated 2,6-anhydro-

aldose tosylhydrazones with aryl halides were studied under thermic conditions in the 

presence of LiOtBu and phosphine ligands. The reactions gave the corresponding aryl 

substituted exo-glycals as mixtures of diastereomers in 11-75% yields. The transformations 

represent a new access to these types of glycomimetic compounds. The double bond of some 

aryl substituted exo-glycals was saturated to give good yields of benzylic C-glycosyl 

derivatives.  

Keywords: Cross coupling; Pd-catalysis; Anhydro-aldose tosylhydrazones; Carbenes; 

Substituted exo-glycals. 
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1. Introduction 

 

Formation of a carbon-carbon bond at the anomeric position of carbohydrates has received 

great attention due to the versatile applicability of such sugar derivatives as chiral synthons in 

syntheses of complex natural products as well as to manyfold biological activities of C-

glycosyl compounds [1-3]. As a part of a program targeting the systematic study of 

applications of anhydro-aldose tosylhydrazones (compounds H in Scheme 1) as coupling 

partners in metal-free [4, 5] and transition metal-catalyzed coupling reactions we have been 

interested in the Pd-catalyzed coupling of H with bromobenzenes. According to general 

mechanistic considerations, such coupling reactions [6-8] are expected to result in substituted 

exo-glycals (compounds E in Scheme 1). Aryl substituted pyranoid exo-glycals represent 

valuable starting compounds for the syntheses of benzylic C-glycosyl derivatives [9-11], also 

elaborated to porphyrine glycoconjugates [12], C-glycosyl benzyl alcohols used to get 

glycosidase inhibitors [13], ketopyranose derivatives [14] including disaccharides [15], and 

spiro-oxazolines [16]. 

 

In the literature only a few methods have been published for the preparation of aryl 

substituted exo-glycals with a pyranoid ring. In the earliest report O-perbenzylated exo-glucal 

A was applied as the starting material (Scheme 1) in a Pd(II)-catalyzed reaction with 

arylmercury(II) acetate to yield substituted exo-glucal E [17]. (Z)-Configured iodo-exo-

glycals B of the D-gluco-, D-manno- and D-galacto- series underwent Suzuki or B-alkyl 

Suzuki cross-coupling reactions with boronic acids or boranes to yield aryl and hetaryl 

functionalized exo-glycals E in a stereoselective manner [18]. O-Permethylated (Z)-exo-glucal 

E could be conveniently prepared in a convergent way by a Stille cross-coupling of (Z)-iodo-
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exo-glucal B with tetraphenyl stannane [19]. Stereoselective palladium-catalyzed Suzuki 

cross-couplings of acetal-protected bromo methoxycarbonyl-exo-mannals C with boronic 

acids were carried out to obtain phenyl methoxycarbonyl-exo-glycals E [20]. Wittig reactions 

of an anomeric mixture of the O-perbenzylated 2-deoxy-D-galactopyranosyl phosphonium salt 

D with arenecarboxaldehydes gave mixtures of E/Z-isomers of E [11, 15, 16]. Ramberg-

Bäcklund rearrangement of protected glycosyl sulfones G yielded the corresponding E/Z-

isomeric mixtures of phenyl- or diphenyl substituted exo-glycals E [12, 21]. A gold-catalyzed 

ring-closure reaction of alkyne F was developed for the synthesis of O-perbenzylated (Z)-

phenyl-exo-glucal E [10]. Phosphine-mediated cycloisomerization of alkynyl-substituted 

hemiketals I resulted in acetal-protected phenyl-substituted exo-glycals E as single Z-

diasteromers with a 2-keto functionality in the pyranoid ring [22]. 

 

In most of the above methods base stable protecting groups had to be applied and/or the 

reagents like boronic acids [23] or stannanes [24] needed be prepared from aryl halides. In the 

present work we have investigated the formation aryl substituted exo-glycals E in the first Pd-

catalyzed cross coupling reactions of ester or ether protected anhydro-aldose tosylhydrazones 

H with easily available aryl bromides. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

4 
 

Scheme 1. Strategies for the synthesis of aryl-substituted exo-glycals. 

 

 

2. Results and discussion 

 

Optimal reaction conditions were sought for by applying literature conditions [25] to 

tosylhydrazone 1 [26-28] and bromobenzene (1,4-dioxane, 70 oC with 2 mol% 

tris(dibenzylideneacetone)dipalladium(0) (Pd2(dba)3) catalyst in the presence of LiOtBu and 

XPhos, Table 1). Both short and longer reaction times resulted in moderate yields with the 

XPhos ligand (entries 1 and 2). Other ligands such as SPhos, RuPhos and P(4-F-C6H4)3 were 

found to be also effective (entries 3-5, respectively), however, the yield did not improve 

significantly. On the other hand, P(2-furyl)3 proved ineffective in this reaction (entry 6). It 

was observed that 4 mol% of CataCXium A gave the better result both in short and longer 

times (entries 7 and 8), however, application of 10 mol% did not affect the yield (entry 9). 
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The application of toluene as the solvent was not favourable in this reaction (entry 10). 

Reducing the reaction temperature to 60 oC (entry 11) resulted in the formation of exo-

galactal 3 only, while raising the temperature to 100 oC did not improve the the yield as 

compared to that of the reaction at 70 oC (entry 12). Reducing the amount of LiOtBu resulted 

in a diminished yield (entry 13). Performing the reaction with 1-bromo-chlorobenzene or 4-

bromoanisole gave only low yields of the expected products (entries 14, 15). The target 

compounds 2 were always obtained as inseparable mixtures of diastereoisomers and the 

formation of the by-product exo-galactal 3 could never be avoided.
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Table 1. Optimization of the reaction conditions and coupling of tosylhydrazone 1 with aryl bromides 

 

Entry  R 
R-C6H4-Br 

equiv. 
LiOtBu 
equiv. 

Ligand (mol%) Solvent T (°C) t (h) 
Yield (%)a 

2 E:Z for 2 3b 

1 a H 3 2.2 XPhos (4) 1,4-Dioxane 70 2 31  + 

2 a H 3 2.2 XPhos (4) 1,4-Dioxane 70 18 24 1:4 31 

3 a H 3 2.2 SPhos (4) 1,4-Dioxane 70 18 40  + 

4 a H 3 2.2 RuPhos (4) 1,4-Dioxane 70 18 28  + 

5 a H 3 2.2 P(4-F-C6H4)3 (4) 1,4-Dioxane 70 18 34  + 

6 a H 3 2.2 P(2-furyl)3 (4) 1,4-Dioxane 70 18 - - + 

7 a H 3 2.2 CataCXium A (4) 1,4-Dioxane 70 3 44 1:3 22 

8 a H 3 2.2 CataCXium A (4) 1,4-Dioxane 70 18 44 1:3 19 

9 a H 3 2.2 CataCXium A (10) 1,4-Dioxane 70 18 44  + 

10 a H 3 2.2 CataCXium A (4) Toluene 70 18 10 1:4 18 

11 a H 3 2.2 CataCXium A (4) 1,4-Dioxane 60 18 -  + 
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12 a H 3 2.2 CataCXium A (4) 1,4-Dioxane 100 18 42 1:3 25 

13 a H 6 1.5 CataCXium A (4) 1,4-Dioxane 70 20 17 1:6 3 

14 b 4-Cl 6 2.2 CataCXium A (4) 1,4-Dioxane 70 16 6 1:3 2 

15 c 4-CH3O 3 2.2 CataCXium A (4) 1,4-Dioxane 70 3 21 1:4 16 
a Yields calculated on the basis of the proton NMR spectra of the worked-up reaction mixture. 
b Observation of exo-glycal 3 without determination of its proportion is denoted by +. 
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The examinations were extended to the D-gluco configured tosylhydrazone 4 [27, 28] (Table 

2). The corresponding phenyl substituted exo-glucal 5a was isolated in moderate yields 

(entries 1, 2). The coupling was found to be not significantly affected by the substituents on 

the aromatic ring; both electron-rich (entries 3, 4) and electron-deficient (entries 5-8) 

bromobenzenes gave more or less similar yields of the expected products. The exo-glucal by-

product 6 always formed in significant quantitities.  

 

 

Table 2. Pd-catalyzed coupling of tosylhydrazone 4 with aryl bromides  

 

Entry  R 
R-C6H4-Br 

equiv. 
LiOtBu 
equiv. 

t (h) 
Yield (%) 

5 E:Z for 5 6b 

1 a H 3 2.2 1.5 24a 1:2 36a 

2 a H 6 1.5 20 17a 1:2.5 20a 

3 b 4-CH3 6 2.2 15 41a 1:2 19a 

4 c 4-CH3O 3 2.2 2.5 11 1:2 27 

5 d 4-F 6 2.2 15 32a 1:2 16a 

6 e 4-NO2 6 1.5 16 33 1:2 24 

7 f 4-CN 6 2.2 15 46 1:2 4 

8 g 3-CN 6 1.5 16.5 20 1:2 + 
a Yields calcdulated on the basis of the proton NMR spectra of the worked-up reaction mixture. 
b Observation of exo-glycal 6 without determination of its proportion is denoted by +. 

 

 

To get an insight into the effect of an ether type protecting group on the outcome of the 

studied coupling reaction, the known β-D-galactopyranosyl cyanide [29] (7, Scheme 2) was 
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O-permethylated under Hakomori conditions to give 8 [30]. Reduction of 8 in the presence of 

tosylhydrazine under literature conditions [26-28] furnished the O-methyl protected anhydro-

aldose tosylhydrazone 9 in medium yield. Coupling of 9 with aryl bromides gave the 

substituted exo-galactals 10 in good yields. The corresponding unsubstituted exo-glycal by-

product was not present in the reaction leading to 10a, and a very minor amount of it could be 

detected in the 1H NMR spectrum of the crude mixture giving 10b. 

 

 

Scheme 2. Preparation of an ether protected anhydro-aldose tosylhydrazone and its coupling 
with aryl bromides.  

 

In the case of compounds 5f nuclear Overhauser effects were observed between the ortho 

protons of the phenyl ring and the olefinic hydrogen as well as H-2 allowed to assign the E-
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configuration of the double bond while only the ortho protons and the olefinic one were in the 

vicinity of each other in the Z-isomer (Fig. 1). In addition, a significant difference in the 

chemical shift of the olefinic proton was observed for the isomers which proved to be general 

and was used as a diagnostic means to determine the configuration of the double bond in these 

series of compounds (D-galacto series: 6.54-6.46 ppm for (E)-2, 5.76-5.70 ppm for (Z)-2, 

6.34, 6.30 ppm for (E)-10, 5.83, 5.82 ppm for (Z)-10; D-gluco series: 6.68-6.57 ppm for (E)-5, 

5.98-5.85 ppm for (Z)-5). 

 

 

Figure 1. Characteristic NMR data for the configuration of the double bond in E/Z isomers of 
compounds 5f (↔ denotes observed n. O. e.). 
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Scheme 3. Plausible mechanism of the transformations. 

 

The formation of mixtures of substituted and unsubstituted exo-glycals in the studied 

transformations can be explained by considering the mechanistic possibilities outlined in 

Scheme 3. Tosylhydrazones I upon deprotonation and loss of a sulfinate ion may lead to the 

diazo intermediate IV which can give rise to carbene V by eliminating a nitrogen molecule. 

Carbene V may either undergo an intramolecular C‒H insertion to form the exo-glycal II [27, 

28] or enter the usual catalytic cycle to produce VI by coordinating to the arylpalladium 

species X formed by an oxidative addition of ArBr to IX. Migration of the Ar moiety leads to 

VII which, upon β-hydride elimination, furnishes the substituted exo-glycal III and the Pd-

complex VIII which loses HBr to complete the catalytic cycle. Since the intramolecular 

carbene insertion (V→II) competes with the intermolecular complexation (V→VI) the 

formation of II is practically unavoidable. 
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In order to assess the synthetic utility of these exo-glycals, the mixtures 2a + 3 and 5a + 6 

were subjected to catalytic hydrogenation over Pd/C (Scheme 4). These reactions gave good 

yields of the expected benzylic C-glycosyl derivatives 11 and 13, as well as the by-products 

12 and 14, respectively (isolated yields refer to the substituted vs unsubstituted exo-glycal 

components of the respective mixtures). The configuration of the „anomeric” carbon in these 

compounds was assigned as β on the basis of the vicinal proton-proton coupling constanst 

(11: J 9.6 Hz, 12: J 9.0 Hz, 13: J 9.8 Hz, 14: J 9.7 Hz). The very high stereoselectivity of 

these reductions is in accord with previous literature results [9-11]. 

 

 

Scheme 4. Hydrogenation of the double bonds of the exo-glycals. 

 

In conclusion, this study on the Pd-catalyzed couplings of O-peracylated 2,6-anhydro-aldose 

tosylhydrazones with bromobenzenes revealed that the reactions gave the expected aryl 

substituted exo-glycals as mixtures of diastereomers in low to good yields. The method 

resulted in very good yields with O-permethylated sugar tosylhydrazones. The sugar 

configuration seemed not to have any effect on the outcome of the transformations. Thus, 
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such coupling reactions provide a new general method for the preparation of aryl substituted 

exo-glycals whose synthetic utility was demonstrated by their reduction to give benzylic C-

glycosyl compounds. 

 

3. Experimental 

 

3.1. General methods 

Optical rotations were determined with a Perkin–Elmer 241 polarimeter at room temperature. 

NMR spectra were recorded with Bruker Avance 250 II (250/63 MHz for 1H/13C), Bruker 

Avance 300 III (300/75 MHz for 1H/13C), Bruker 360 AM Avance (360/90 MHz for 1H/13C) 

or Bruker DRX 400 (400/100 MHz for 1H/13C) spectrometers. Chemical shifts are referenced 

to TMS as the internal reference (1H), or to the residual solvent signals (1H, 13C). The 

assignments of the 1H and 13C NMR signals of compounds 2, 5, 10-13 were performed by 

their NOE (5f), COSY (2a, 5a-c, 5e-g, 10a, 10b, 11-13), HSQC (2a, 5a-c, 5e-g, 11-13), 

HMBC (2a, 5a-c, 5g) and NOESY (10a) spectra. Mass spectra were obtained by an Agilent 

HP GC / MS 5890 / 5973 instrument (EI, 70 eV) by GC inlet or by a MX-1321 and Finnigan 

MAT 95 XP (Thermo Electron Corp., San Jose, CA, USA) instruments (EI, 70 eV) by direct 

inlet or by an Agilent 1969A Time-of-Flight LC-MS or by a Thermo Scientific LTQ XL 

(Thermo Electron Corp., San Jose, CA, USA) LC-MS. LC-MS mass spectrometers operated 

in a full scan positive ion ESI mode. TLC was performed on DCAlurolle Kieselgel 60 F254 

(Merck). TLC plates were visualized under UV light, and by gentle heating. For column 

chromatography Kieselgel 60 (Merck, particle size (0.063–0.200 mm) or Al2O3 neutral 

(Across Organics, particle size: (0.050–0.200 mm, 60A) was applied. 1,4-Dioxane and THF 

was distilled from sodium benzophenone ketyl and stored over sodium wires. 
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3.2. General procedure I for the reaction of anhydro-aldose tosylhydrazones with aryl 

bromides 

A bromobenzene, LiOtBu, (in a ratio relative to 1 or 4 indicated in Tables 1 and 2, 

respectively) CataCxium A (4 mol% toward 2 and 5) or XPhos (4 mol% toward 10) and 

Pd2(dba)3 (2 mol%), was added to abs. 1,4-dioxane (3 mL). The suspension was stirred and 

heated to 70 °C (bath temp) under an argon atmosphere, and then a solution of a 

tosylhydrazone 1 [26-28] (0.1 g, 0.19 mmol), 4 [27, 28] (0.1 g, 0.13 mmol) or 9 (0.1 g, 0.24 

mmol) in abs. 1,4-dioxane (2 mL) was added dropwise in 15 minutes. When TLC (1:1 

EtOAc–hexane or 1:1 EtOAc–heptane for 1, 1:2 EtOAc–hexane or 1:2 EtOAc–hexane for 4, 

1:1 EtOAc–heptane for 9) indicated complete consumption of the starting compound (1 h–1 

day), the mixture was cooled and the insoluble material filtered off through a pad of celite and 

washed thoroughly with abs. 1,4-dioxane (3 × 3 mL). The solvent was removed under 

reduced pressure, and the residue was purified by column chromatography (neutral Al2O3) 

with eluents indicated for the particular compounds to give aryl substituted exo-glycals. 

 

3.2.1. 3,4,5,7-Tetra-O-acetyl-2,6-anhydro-1-deoxy-1-phenyl-D-galacto-hept-1-enitol (2a) 

Prepared from tosylhydrazone 1 (0.1 g, 0.19 mmol), 4-bromobenzene (3 equiv., 0.06 mL, 0.09 

g, 0.57 mmol) and LiOtBu (2.2 equiv., 0.03 g, 0.41 mmol) according to General procedure I. 

Purified by column chromatography (1:1 EtOAc–heptane) to yield 49 mg yellow amorphous 

product containing 2a (E:Z = 1:3) and 3 in 2 : 1 ratio. Rf: 0.45 (1:1 EtOAc–hexane). NMR: E 

isomer: 1H NMR (360 MHz, CDCl3) δ 7.26–7.18 (m, 3H, aromatics), 7.13 (d, 2H, J 7.6 Hz, 

aromatics), 6.54 (s, 1H, H-1), 5.84 (dd, 1H, J1,3 0.7, J3,4 7.3 Hz, H-3), 5.55 (pseudo t, 1H, J5,6 

3.3 Hz, H-5), 5.22 (dd, 1H, J4,5 3.4 Hz, H-4), 4.39 (dd, 1H, J6,7a 7.5, J7a,7b 11.1 Hz, H-7a), 

4.36–4.07 (m, 2H, H-6, H-7b), 2.13, 2.11, 2.04, 2.00 (4s, 12H, 4×CH3). 
13C NMR (75 MHz, 

CDCl3) δ 170.7, 170.0, 169.6, 169.5 (4×CO), 145.5 (C-2), 134.5–126.6 (aromatics), 118.1 (C-
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1), 75.2 (C-6), 70.2 (C-4), 66.7 (C-3, C-5), 61.5 (C-7), 21.1–20.3 (4×CH3). Z isomer: 1H 

NMR (360 MHz, CDCl3) δ 7.62 (d, 2H, J 8.7 Hz, aromatics), 7.35–7.19 (m, 3H, aromatics), 

5.81 (dd, 1H, J1,3 1.6, J3,4 10.0 Hz, H-3), 5.76 (d, 1H, H-1), 5.58 (dd, 1H, J5,6 1.6 Hz, H-5), 

5.13 (dd, 1H, J4,5 3.3 Hz, H-4), 4.32 (dd, 1H, J7a,7b 11.7 Hz, H-7a), 4.23 (dd, 1H, H-7b), 4.16 

(ddd, 1H, J6,7a 4.7, J6,7b 7.8 Hz, H-6), 2.20, 2.19, 2.10, 2.03 (4s, 12H, 4×CH3). 
13C NMR (90 

MHz, CDCl3) δ 170.5, 170.1, 170.0, 169.5 (4×CO), 146.8 (C-2), 134.5–126.6 (aromatics), 

111.2 (C-1), 75.8 (C-6), 71.5 (C-4), 67.7 (C-5), 67.4 (C-3), 62.4 (C-7), 21.0, 20.8, 20.7 

(4×CH3). HR-ESI-MS positive mode (m/z): calcd. for [M+Na]+=443.1313, found: 

[M+Na]+=443.1316, C21H24O9 (420.14). 

 

3.2.2. 3,4,5,7-Tetra-O-acetyl-2,6-anhydro-1-(4-chlorophenyl)-1-deoxy-D-galacto-hept-1-

enitol (2b)  

Prepared from tosylhydrazone 1 (0.5 g, 0.95 mmol), 1-bromo-4-chlorobenzene (6 equiv., 1.09 

g, 5.68 mmol) and LiOtBu (2.2 equiv., 0.17 g, 2.08 mmol) according to General procedure I. 

Purified by column chromatography (1:8 EtOAc–hexane) to yield 34 mg yellow amorphous 

product containing 2b (E:Z = 1:3) and 3 in 3 : 1 ratio. Rf: 0.41 (1:1 EtOAc–hexane). NMR: E 

isomer:1H NMR (400 MHz, CDCl3) δ 7.30–7.23 (m, 2H, aromatics), 7.07 (d, 2H, J 8.2 Hz, 

aromatics), 6.46 (s, 1H, H-1), 5.80 (strongly coupled, 1H, H-3), 5.55 (pseudo t, 1H, J5,6 3.1 

Hz, H-5), 5.21 (dd, 1H, J4,5 3.3 Hz, H-4), 4.39 (dd, 1H, J6,7a 7.6, J7a,7b 12.2 Hz, H-7a), 4.36–

4.11 (m, 2H, H-6, H-7b), 2.13, 2.11, 2.09, 2.02 (4s, 12H, 4×CH3). 
13C NMR (90 MHz, CDCl3) 

δ 170.7, 170.0, 169.6, 169.5 (4×CO), 146.2 (C-2), 133.4–127.9 (aromatics), 116.9 (C-1), 75.2 

(C-6), 70.1 (C-4), 66.7, 66.6 (C-3, C-5), 61.4 (C-7), 21.1–20.3 (4×CH3). Z isomer: 1H NMR 

(400 MHz, CDCl3) δ 7.55 (d, 2H, J 8.4 Hz, aromatics), 7.26 (d, 2H, J 8.1 Hz aromatics), 5.80 

(dd, 1H, J1,3 1.6, J3,4 9.8 Hz, H-3), 5.71 (d, 1H, H-1), 5.57 (dd, 1H, J5,6 1.5 Hz, H-5), 5.13 (dd, 

1H, J4,5 3.1 Hz, H-4), 4.29 (dd, 1H, J7a,7b 11.4 Hz, H-7a), 4.24 (dd, 1H, H-7b), 4.16 (ddd, 1H, 
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J6,7a 4.5, J6,7b 8.3 Hz, H-6), 2.20, 2.19, 2.10, 2.03 (4s, 12H, 4×CH3). 
13C NMR (100 MHz, 

CDCl3) δ 170.5, 170.2, 170.0, 169.5 (4×CO), 147.4 (C-2), 133.2–128.1 (aromatics), 110.0 (C-

1), 75.9 (C-6), 71.3 (C-4), 67.6 (C-5), 67.3 (C-3), 62.4 (C-7), 21.0, 20.9, 20.8 (4×CH3). ESI-

MS positive mode (m/z): calcd. for [M+Na]+=477.09, found: [M+Na]+=477.25, C21H23ClO9 

(454.10).  

 

3.2.3. 3,4,5,7-Tetra-O-acetyl-2,6-anhydro-1-deoxy-1-(4-methoxyphenyl)-D-galacto-hept-

1-enitol (2c)  

Prepared from tosylhydrazone 1 (0.1 g, 0.19 mmol), 1-bromo-4-methoxybenzene (3 equiv., 

0.07 mL, 0.11 g, 0.57 mmol) and LiOtBu (2.2 equiv., 0.03 g, 0.41 mmol) according to 

General procedure I. Purified by column chromatography (1:1 EtOAc–heptane) to yield 15 

mg (18%) of 5c (E:Z = 1:4) as a grey amorphous product. Rf: 0.39 (1:1 EtOAc–hexane). 

NMR: E isomer: 1H NMR (250 MHz, CDCl3) δ 7.06 (d, 2H, J 8.2 Hz, aromatics), 6.90–6.79 

(m, 2H, aromatics), 6.48 (s, 1H, H-1), 5.82 (dd, 1H, J1,3 0.8, J3,4 6.6, Hz, H-3), 5.55 (pseudo t, 

1H, J5,6 3.5 Hz, H-5), 5.24 (dd, 1H, J4,5 3.5 Hz, H-4), 4.47–4.08 (m, 3H, H-6, H-7a, H-7b), 

3.79 (1s, 3H, O–CH3), 2.11, 2.04, 2.01, 1.99 (4s, 12H, 4×CH3). 
13C NMR (75 MHz, CDCl3) δ 

170.7, 170.0, 169.6, 169.5 (4×CO), 144.3 (C-2), 158.9–113.4 (aromatics), 118.7 (C-1), 75.1 

(C-6), 69.8 (C-4), 66.8, 66.5 (C-3, C-5), 61.4 (C-7), 55.4 (O–CH3), 21.1, 20.9, 20.8 (4×CH3). 

Z isomer: 1H NMR (250 MHz, CDCl3) δ 7.57 (d, 2H, J 8.9 Hz, aromatics), 6.83 (d, 2H, J 8.9 

Hz, aromatics), 5.79 (dd, 1H, J1,3 1.5, J3,4 9.7 Hz, H-3), 5.70 (d, 1H, H-1), 5.57 (dd, 1H, J5,6 

1.6 Hz, H-5), 5.11 (dd, 1H, J4,5 3.4 Hz, H-4), 4.31 (dd, 1H, J7a,7b 11.6 Hz, H-7a), 4.23 (dd, 1H, 

H-7b), 4.14 (ddd, 1H, J6,7a 4.6, J6,7b 8.0 Hz, H-6), 3.81 (1s, 3H, O–CH3), 2.19, 2.18, 2.10, 2.02, 

(4s, 12H, 4×CH3). 
13C NMR (75 MHz, CDCl3) δ 170.6, 170.3, 170.1, 169.6 (4×CO), 145.0 

(C-2), 158.9–113.4 (aromatics), 110.9 (C-1), 75.7 (C-6), 71.5 (C-4), 67.8 (C-5), 67.5 (C-3), 
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62.4 (C-7), 55.4 (O–CH3), 21.1, 20.9, 20.8 (4×CH3). HR-ESI-MS positive mode (m/z): calcd. 

for [M+Na]+=473.1418, found: [M+Na]+=473.1414, C22H26O10 (450.15). 

 

3.2.4. 2,6-Anhydro-3,4,5,7-tetra-O-benzoyl-1-deoxy-1-phenyl-D-gluco-hept-1-enitol (5a) 

Prepared from tosylhydrazone 4 (0.1 g, 0.13 mmol), bromobenzene (3 equiv., 0.04 mL, 0.06 

g, 0.39 mmol) and LiOtBu (2.2 equiv., 0.02 g, 0.28 mmol) according to General procedure I. 

Purified by column chromatography (1:5 EtOAc–heptane) to yield 48 mg yellow amorphous 

product containing 5a (E:Z = 1:2) and 6 in 1 : 1.5 ratio. Rf: 0.42 (1:2 EtOAc–hexane). NMR: 

E isomer: 1H NMR (400 MHz, CDCl3) δ 8.19–7.03 (m, 25H, aromatics), 6.67 (s, 1H, H-1), 

6.16 (dd, 1H, J1,3 0.4, J3,4 3.6 Hz, H-3), 5.94–5.74 (m, 1H, H-4), 5.72 (dd, 1H, J4,5 7.8, J5,6 3.0 

Hz, H-5), 4.86–4.82 (m, 1H, H-6), 4.81–4.55 (m, 2H, H-7a, H-7b). 
13C NMR (100 MHz, 

CDCl3) δ 166.4, 165.0, 164.7 (4×CO), 146.4 (C-2), 134.5–125.2 (aromatics), 116.6 (C-1), 

74.8 (C-6), 70.1 (C-4), 69.1 (C-5), 67.6 (C-3), 63.4 (C-7). Z isomer: 1H NMR (400 MHz, 

CDCl3) δ 8.19–7.03 (m, 25H, aromatics), 6.06 (dd, 1H, J1,3 0.8, J3,4 7.5 Hz, H-3), 5.92 (d, 1H, 

H-1), 5.87 (pseudo t, 1H, J4,5 7.3 Hz, H-4), 5.94–5.74 (m, 1H, H-5), 4.80 (dd, 1H, J6,7a 2.5, 

J7a,7b 12.2 Hz, H-7a), 4.77–4.55 (m, 2H, H-6, H-7b). 
13C NMR (100 MHz, CDCl3) δ 166.3, 

165.6, 165.3, 165.0 (4×CO), 145.9 (C-2), 134.5–125.2 (aromatics), 112.2 (C-1), 76.3 (C-6), 

73.1 (C-4), 70.5 (C-3), 69.4 (C-5), 63.7 (C-7). HR-ESI-MS positive mode (m/z): calcd. for 

[M+Na]+=691.1939, found: [M+Na]+=691.1935, C41H32O9 (668.21). 

 

3.2.5. 2,6-Anhydro-3,4,5,7-tetra-O-benzoyl-1-deoxy-1-(4-methylphenyl)-D-gluco-hept-1-

enitol (5b) 

Prepared from tosylhydrazone 4 (0.3 g, 0.39 mmol), 1-bromo-4-methylbenzene (6 equiv., 

0.29 mL, 0.40 g, 2.32 mmol) and LiOtBu (2.2 equiv., 0.07 g, 0.85 mmol) according to 

General procedure I. Purified by column chromatography (1:8 EtOAc–heptane) to yield 152 

mg yellow amorphous product containing 5b (E:Z = 1:2) and 6 in 2 : 1 ratio. Rf: 0.42 (1:2 
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EtOAc–hexane). NMR: E isomer: 1H NMR (400 MHz, CDCl3) δ 8.18–6.89 (m, 24H, 

aromatics), 6.65 (s, 1H, H-1), 6.16 (dd, 1H, J1,3 0.4, J3,4 3.9 Hz, H-3), 5.85–5.75 (m, 1H, H-4), 

5.71 (dd, 1H, J4,5 7.7, J5,6 2.6 Hz, H-5), 4.85–4.82 (m, 1H, H-6), 4.81–4.49 (m, 2H, H-7a, H-

7b), 2.21 (s, 3H, CH3). 
13C NMR (90 MHz, CDCl3) δ 166.2, 165.0, 164.7 (4×CO), 145.9 (C-

2), 143.5–125.4 (aromatics), 116.6 (C-1), 74.8 (C-6), 70.5 (C-4), 69.1 (C-5), 67.3 (C-3), 63.6 

(C-7), 21.1 (CH3). Z isomer: 1H NMR (400 MHz, CDCl3) δ 8.18–6.89 (m, 24H, aromatics), 

6.05 (dd, 1H, J1,3 0.8, J3,4 7.6 Hz, H-3), 5.90 (s, 1H, H-1), 5.87 (pseudo t, 1H, J4,5 7.3 Hz, H-

4), 5.85–5.75 (m, 1H, H-5), 4.78 (dd, 1H, J6,7a 2.5, J7a,7b 12.2 Hz, H-7a), 4.75–4.61 (m, 1H, H-

7b), 4.60–4.49 (m, 1H, H-6), 2.26 (s, 3H, CH3). 
13C NMR (90 MHz, CDCl3) δ 166.2, 165.5, 

165.3, 165.0 (4×CO), 145.2 (C-2), 143.5–125.4 (aromatics), 112.2 (C-1), 76.3 (C-6), 73.2 (C-

4), 70.5 (C-3), 69.5 (C-5), 63.7 (C-7), 21.3 (CH3). HR-ESI-MS positive mode (m/z): calcd. 

for [M+Na]+=705.2095, found: [M+Na]+=705.2089, C42H34O9 (682.22). 

 

3.2.6. 2,6-Anhydro-3,4,5,7-tetra-O-benzoyl-1-deoxy-1-(4-methoxyphenyl)-D-gluco-hept-

1-enitol (5c) 

Prepared from tosylhydrazone 4 (0.1 g, 0.13 mmol), 1-bromo-4-methoxybenzene (3 equiv., 

0.05 mL, 0.07 g, 0.39 mmol) and LiOtBu (2.2 equiv., 0.02 g, 0.28 mmol) according to 

General procedure I. Purified by column chromatography (1:8 EtOAc–heptane) to yield 10 

mg (11%) of 5c (E:Z = 1:2) as a brown amorphous product. Rf: 0.41 (1:2 EtOAc–heptane). 

NMR: E isomer: 1H NMR (300 MHz, CDCl3) δ 8.22–6.86 (m, 22H, aromatics), 6.73 (d, 2H, J 

8.8 Hz, aromatics), 6.62 (s, 1H, H-1), 6.14 (d, 1H, J1,2 0.4, J3,4 4.0 Hz, H-3), 5.90–5.64 (m, 

2H, H-4, H-5), 4.83–4.42 (m, 3H, H-6, H-7a, H-7b), 3.69 (1s, 3H, O–CH3). 
13C NMR (75 

MHz, CDCl3) δ 166.2, 165.0, 164.7, 164.5 (4×CO), 143.5 (C-2), 161.0–110.3 (aromatics), 

114.2 (C-1), 75.6 (C-6), 71.7 (C-4), 69.5 (C-5), 68.4 (C-3), 62.7 (C-7), 55.3 (O–CH3). Z 

isomer: 1H NMR (300 MHz, CDCl3) δ 8.22–6.86 (m, 22H, aromatics), 6.65 (d, 2H, J 8.9 Hz 
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aromatics), 6.03 (dd, 1H, J1,3 1.2, J3,4 7.5 Hz, H-3), 5.85 (d, 1H, H-1), 5.90–5.64 (m, 2H, H-4, 

H-5), 4.83–4.42 (m, 3H, H-6, H-7a, H-7b), 3.71 (1s, 3H, O–CH3). 
13C NMR (75 MHz, CDCl3) 

δ 166.2, 165.4, 165.2, 164.9 (4×CO), 144.1 (C-2), 161.0–110.3 (aromatics), 113.9 (C-1), 76.3 

(C-6), 73.3 (C-4), 70.5 (C-3), 69.5 (C-5), 62.7 (C-7), 55.3 (O–CH3). HR-ESI-MS positive 

mode (m/z): calcd. for [M+Na]+=721.2044, found: [M+Na]+=721.2041, C42H34O10 (698.22). 

 

3.2.7. 2,6-Anhydro-3,4,5,7-tetra-O-benzoyl-1-deoxy-1-(4-fluorophenyl)-D-gluco-hept-1-

enitol (5d) 

Prepared from tosylhydrazone 4 (0.3 g, 0.39 mmol), 1-bromo-4-fluorobenzene (6 equiv., 0.25 

mL, 0.41 g, 2.32 mmol) and LiOtBu (2.2 equiv., 0.07 g, 0.85 mmol) according to General 

procedure I. Purified by column chromatography (1:4 EtOAc–heptane) to 122 mg yellow 

amorphous product containing 5d (E:Z = 1:2) and 6 in 2 : 1 ratio. Rf: 0.39 (1:2 EtOAc–

hexane). NMR: E isomer: 1H NMR (400 MHz, CDCl3) δ 8.25–7.01 (m, 24H, aromatics), 6.68 

(s, 1H, H-1), 6.17 (dd, 1H, J1,3 0.4 Hz, J3,4 3.6 Hz, H-3), 5.87–5.74 (m, 1H, H-4), 5.73 (dd, 

1H, J4,5 7.8, J5,6 2.5 Hz, H-5), 4.87–4.81 (m, 1H, H-6), 4.74 (dd, 1H, J6,7a 3.1, J7a,7b 7.9 Hz, H-

7a), 4.87–4.49 (m, 1H, H-7b). 
13C NMR (90 MHz, CDCl3) δ 166.2, 165.0, 164.7 (4×CO), 

146.4 (C-2), 143.7–123.2 (aromatics), 116.5 (C-1), 74.8 (C-6), 70.5 (C-4), 69.2 (C-5), 67.2 

(C-3), 63.6 (C-7). Z isomer: 1H NMR (400 MHz, CDCl3) δ 8.25–7.01 (m, 24H, aromatics), 

6.07 (dd, 1H, J1,3 1.0, J3,4 7.5 Hz, H-3), 5.93 (d, 1H, H-1), 5.88 (pseudo t, 1H, J4,5 7.4 Hz, H-

4), 5.87–5.74 (m, 1H, H-5), 4.80 (dd, 1H, J7a,7b 12.2 Hz, H-7a), 4.76 (dd, 1H, H-7b), 4.49 (dd, 

1H, J5,6 9.1 J6,7a 2.3, J6,7a 6.6 Hz, H-6). 13C NMR (90 MHz, CDCl3) δ 166.2, 165.5, 165.3, 

165.0 (4×CO), 145.9 (C-2), 143.7–123.2 (aromatics), 112.3 (C-1), 76.3 (C-6), 73.2 (C-4), 

70.5 (C-3), 69.5 (C-5), 63.7 (C-7). ESI-MS positive mode (m/z): calcd. for [M+H]+=687.20, 

found: [M+H]+=686.25, C41H31FO9 (686.20). 
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3.2.8. 2,6-Anhydro-3,4,5,7-tetra-O-benzoyl-1-deoxy-1-(4-nitrophenyl)-D-gluco-hept-1-

enitol (5e) 

Prepared from tosylhydrazone 4 (0.3 g, 0.39 mmol), 1-bromo-4-nitrobenzene (6 equiv., 0.47 

g, 2.32 mmol) and LiOtBu (1.5 equiv., 0.05 g, 0.58 mmol) according to General procedure I. 

Purified by column chromatography (1:8 EtOAc–heptane) to yield 90 mg (33%) of 5e (E:Z = 

1:2) as a yellow amorphous product. Rf: 0.39 (1:2 EtOAc–hexane). NMR: E isomer: 1H NMR 

(400 MHz, CDCl3) δ 8.19–7.14 (m, 24H, aromatics), 6.63 (s, 1H, H-1), 6.18 (strongly 

coupled, 1H, H-3), 5.84–5.76 (m, 2H, H-4, H-5), 4.89–4.77 (m, 1H, H-6), 4.75–4.60 (m, 2H, 

H-7a, H-7b). 
13C NMR (100 MHz, CDCl3) δ 166.2, 165.0, 164.8, 164.5 (4×CO), 149.1 (C-2), 

147.0–123.2 (aromatics), 114.0 (C-1), 75.2 (C-6), 71.0, 69.1 (C-4, C-5), 67.1 (C-3), 60.4 (C-

7). Z isomer: 1H NMR (400 MHz, CDCl3) δ 8.19–7.14 (m, 24H, aromatics), 6.07 (dd, 1H, J1,3 

0.7, J3,4 7.0 Hz, H-3), 5.98 (d, 1H, H-1), 5.88 (pseudo t, 1H, J4,5 6.7 Hz, H-4), 5.84–5.76 (m, 

1H, H-5), 4.88–4.77 (m, 1H, H-7a), 4.75–4.60 (m, 2H, H-6, H-7b). 
13C NMR (100 MHz, 

CDCl3) δ 166.1, 165.4, 165.3, 164.9 (4×CO), 149.5 (C-2), 147.0–123.2 (aromatics), 110.3 (C-

1), 76.5 (C-6), 72.6 (C-4), 70.3 (C-3), 69.2 (C-5), 63.4 (C-7). HR-ESI-MS positive mode 

(m/z): calcd. for [M+Na]+=736.1789, found: [M+Na]+=736.1781, C41H31NO11 (713.19). 

 

3.2.9. 2,6-Anhydro-3,4,5,7-tetra-O-benzoyl-1-(4-cyanophenyl)-1-deoxy-D-gluco-hept-1-

enitol (5f) 

Prepared from tosylhydrazone 4 (0.3 g, 0.39 mmol), 4-bromobenzonitrile (6 equiv., 0.42 g, 

2.32 mmol) and LiOtBu (2.2 equiv., 0.07 g, 0.85 mmol) according to General procedure I. 

Purified by column chromatography (1:4 EtOAc–heptane) to yield 122 mg (46%) of 5f (E:Z = 

1:2) as a pale yellow amorphous product. Rf: 0.33 (1:2 EtOAc–hexane). NMR: E isomer: 1H 

NMR (400 MHz, CDCl3) δ 8.16–7.16 (m, 24H, aromatics), 6.60 (s, 1H, H-1), 6.14 (strongly 

coupled, 1H, H-3), 5.82–5.71 (m, 2H, H-4, H-5), 4.86–4.75 (m, 1H, H-6), 4.74–4.60 (m, 2H, 
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H-7a, H-7b). 
13C NMR (90 MHz, CDCl3) δ 166.2, 165.0, 164.8, 164.6 (4×CO), 148.7 (C-2), 

139.4–118.5 (aromatics), 114.4 (C-1), 110.7 (CN), 75.2 (C-6), 71.0 (C-4), 69.1 (C-5), 67.1 

(C-3), 63.4 (C-7). Z isomer: 1H NMR (400 MHz, CDCl3) δ 8.16–7.16 (m, 24H, aromatics), 

6.05 (dd, 1H, J1,3 0.5, J3,4 7.00 Hz, H-3), 5.91 (d, 1H, H-1), 5.86 (pseudo t, 1H, J4,5 6.9 Hz, H-

4), 5.82–5.71 (m, 1H, H-5), 4.85–4.77 (m, 1H, H-7a), 4.74–4.60 (m, 2H, H-6, H-7b). 
13C NMR 

(90 MHz, CDCl3) δ 166.1, 165.4, 165.2, 164.9 (4×CO), 149.0 (C-2), 139.4–118.5 (aromatics), 

110.7 (C-1), 110.4 (CN), 76.4 (C-6), 72.7 (C-4), 70.4 (C-3), 69.2 (C-5), 63.4 (C-7). HR-ESI-

MS positive mode (m/z): calcd. for [M+Na]+=716.1891, found: [M+Na]+=716.1887, 

C42H31NO9 (693.20). 

 

3.2.10. 2,6-Anhydro-3,4,5,7-tetra-O-benzoyl-1-(3-cyanophenyl)-1-deoxy-D-gluco-hept-1-

enitol (5g) 

Prepared from tosylhydrazone 4 (0.2 g, 0.26 mmol), 3-bromobenzonitrile (6 eqiuv., 0.28 g, 

1.54 mmol) and LiOtBu (1.5 equiv., 0.03 g, 0.39 mmol) according to General procedure I. 

Purified by column chromatography (1:7 EtOAc–hexane) to yield 36 mg (20%) of 5g (E:Z = 

1:2) as a yellow amorphous product. Rf: 0.33 (1:2 EtOAc–hexane). NMR: E isomer: 1H NMR 

(400 MHz, CDCl3) δ 8.18–7.08 (m, 24H, aromatics), 6.57 (s, 1H, H-1), 6.09 (strongly 

coupled, 1H, H-3), 5.82–5.73 (m, 2H, H-4, H-5), 4.82–4.75 (m, 1H, H-6), 4.72–4.61 (m, 2H, 

H-7a, H-7b). 
13C NMR (100 MHz, CDCl3) δ 166.2, 165.0, 164.6, 164.5 (4×CO), 148.5 (C-2), 

135.5–118.3 (aromatics), 113.8 (C-1), 112.8 (CN), 75.2 (C-6), 71.1 (C-4), 69.1 (C-5), 67.1 

(C-3), 63.4 (C-7). Z isomer: 1H NMR (400 MHz, CDCl3) δ 8.18–7.08 (m, 24H, aromatics), 

6.04 (dd, 1H, J1,3 0.8, J3,4 6.6 Hz, H-3), 5.89 (d, 1H, H-1), 5.84 (pseudo t, 1H, J4,5 6.5 Hz, H-

4), 5.82–5.73 (m, 1H, H-5), 4.93–4.83 (m, 1H, H-7a), 4.78 (d, 1H, H-7b), 4.72–4.61 (m, 1H, 

H-6). 13C NMR (100 MHz, CDCl3) δ 166.1, 165.4, 165.2, 164.9 (4×CO), 148.1 (C-2), 135.5–

118.3 (aromatics), 112.6 (CN), 110.3 (C-1), 76.3 (C-6), 72.6 (C-4), 70.4 (C-3), 69.2 (C-5), 
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63.3 (C-7). ESI-MS positive mode (m/z): calcd. for [M+Na]+=716.19, found: 

[M+Na]+=716.67, C42H31NO9 (693.20). 

 

3.3. 2,6-anhydro-3,4,5,7-tetra-O-methyl-D-glycero-L-manno-heptononitrile (8) 

2,6-anhydro-D-glycero-L-manno-heptononitrile 7 (0.1 g, 0.53 mmol) and sodium hydride (3 

equiv. / OH, 0.15 g, 6.34 mmol) were added to abs. dimethyl sulfoxide (1.4 mL). The 

suspension was stirred and cooled to 0 °C, iodomethane (3 equiv. / OH, 0.39 mL, 0.90 g, 6.34 

mmol) was added dropwise, then the reaction mixture was allowed to warm up to rt. When 

TLC (1:1 EtOAc–hexane) indicated complete consumption of the starting compound (1 day), 

a few drops methanol was added to the suspension. The reaction mixture was diluted with 

diethyl ether, washed with water (3 × 3 mL) and dried on anhydrous magnesium sulfate. The 

solution was concentrated under reduced pressure. The residue was purified by silica gel 

column chromatography (eluent: 1:2 EtOAc–hexane) to give 60 mg (46%) of 8 as a yellow 

amorphous product. Rf: 0.53 (1:1 EtOAc–hexane); [α]D +21 (c 0.55, CHCl3). 
1H NMR (400 

MHz, CDCl3) δ 3.90 (d, J2,3 9.9 Hz, H-2), 3.74–3.64 (m, 2H, H-3, H-6), 3.59–3.46 (m, 3H, H-

5, H-7a, H-7b), 3.67, 3.57, 3.53, 3.39 (4s, 12H, 4×CH3), 3.13 (dd, 1H, J3,4 9.3, J4,5 2.7 Hz, H-

4). 13C NMR (90 MHz, CDCl3) δ 116.8 (C-1), 84.9 (C-4), 78.0 (C-3, C-5), 74.8 (C-6), 70.5 

(C-7), 67.8 (C-2), 61.6, 59.4, 58.3 (4×CH3). C11H19NO5 (245.13). Spectral data correspond to 

the published values.[30] 

 

3.4. 2,6-Anhydro-3,4,5,7-tetra-O-methyl-D-glycero-L-manno-heptose tosylhydrazone (9)  

Raney-nickel (6.0 g, an aqueous suspension, Merck) was added at room temperature to a 

vigorously stirred solution of pyridine (23 mL), acetic acid (14 mL), and water (14 mL). Then 

sodium hypophosphite (2.96 g, 33.6 mmol), tosylhydrazine (1.49 g, 8.00 mmol), and nitrile 8 

(0.98 g, 4.00 mmol) were added to the mixture. When TLC (1:1 EtOAc–hexane) indicated 
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complete consumption of the starting compound (5 h), the insoluble material was filtered off 

through a pad of celite and washed with dichloromethane (3 × 40 mL). The organic layer of 

the filtrate was separated, washed with water (12 mL), 10% aqueous hydrogen chloride 

solution (2 × 12 mL), cold, saturated sodium hydrogencarbonate solution (2 × 12 mL), water 

(12 mL), and then dried on anhydrous magnesium sulfate. The solution was concentrated 

under reduced pressure, and traces of pyridine were removed by repeated co-evaporations 

with toluene. The residue was purified by silica gel column chromatography (eluent: 2:1 

EtOAc–hexane) to give two unidentified isomers 9a and 9b.  

9a 526 mg (32%); Rf: 0.33 (2:1 EtOAc–hexane).1H NMR (400 MHz, CDCl3) δ 8.55 (bs, 1H, 

NH), 7.79 (d, 2H, J 8.3 Hz, aromatics), 7.29 (d, 2H, J 8.1 Hz, aromatics), 7.10 (d, 1H, J1,2 6.2 

Hz, H-1), 3.69 (dd, 1H, J2,3 9.6 Hz, H-2), 3.66 (dd, 1H, J5,6 0.8 Hz, H-5), 3.58–3.42 (m, 3H, 

H-6, H-7a, H-7b), 3.36 (pseudo t, 1H, J3,4 9.4 Hz, H-3), 3.21 (dd, 1H, J4,5 3.0 Hz, H-4), 3.53, 

3.51, 3.35, 3.18 (4s, 12H, 4×CH3), 2.40 (s, 3H, CH3). 
13C NMR (100 MHz, CDCl3) δ 146.4 

(C-1), 144.4–126.6 (aromatics), 85.1, 78.5, 77.8, 76.7, 75.5 (C-2–C-6), 71.1 (C-7), 61.4, 60.2, 

59.1, 58.1 (4×CH3), 21.6 (CH3). ESI-MS positive mode (m/z): calcd. for [M+H]+=417.17, 

found: [M+H]+=417.58, C18H28N2O7S (416.16). 

9b 202 mg (12%); Rf: 0.74 (2:1 EtOAc–hexane).1H NMR (400 MHz, CDCl3) δ 9.38 (bs, 1H, 

NH), 7.81 (d, 2H, J 8.2 Hz, aromatics), 7.31 (d, 2H, J 8.0 Hz, aromatics), 6.81 (d, 1H, J1,2 4.6 

Hz, H-1), 3.99 (dd, 1H, J2,3 10.1 Hz, H-2), 3.69 (dd, 1H, J5,6 0.7 Hz, H-5), 3.63–3.34 (m, 4H, 

H-3 H-6, H-7a, H-7b), 3.55, 3.51, 3.39, 3.31 (4s, 12H, 4×CH3), 3.26 (dd, 1H, J4,5 2.7 Hz, H-4), 

2.42 (s, 3H, CH3). 
13C NMR (100 MHz, CDCl3) δ 146.7 (C-1), 144.5–127.5 (aromatics), 85.9, 

79.1, 77.1, 74.9, 74.1 (C-2–C-6), 70.8 (C-7), 61.4, 61.0, 59.2, 57.8 (4×CH3), 21.6 (CH3). ESI-

MS positive mode (m/z): calcd. for [M+H]+=417.17, found: [M+H]+=417.58, C18H28N2O7S 

(416.16) 
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3.5 2,6-Anhydro-1-deoxy-3,4,5,7-tetra-O-methyl-1-phenyl-D-galacto-hept-1-enitol (10a)  

Prepared from tosylhydrazone 9 (0.1 g, 0.24 mmol), bromobenzene (3 equiv., 0.08 mL, 0.11 

g, 0.72 mmol) and LiOtBu (2.2 equiv., 0.04 g, 0.53 mmol) according to General procedure I. 

Purified by column chromatography (1:1 EtOAc–heptane) to yield 45 mg (61%) of 10a (E:Z 

= 1:3) as a white amorphous product. E isomer: 11 mg (15%); 1H NMR (300 MHz, DMSO-

d6) δ 7.41–7.30 (m, 2H, aromatics), 7.28–7.19 (m, 3H, aromatics), 6.34 (s, 1H, H-1), 4.29 

(ddd, 1H, J5,6 5.3, J6,7a 8.1, J6,7b 2.4 Hz, H-6), 4.22 (dd, 1H, J1,3 0.4, J3,4 3.9 Hz, H-3), 3.85 

(dd, 1H, J4,5 3.1 Hz, H-5), 3.75 (pseudo t, 1H, H-4), 3.69 (dd, 1H, J7a,7b 11.3 Hz, H-7a), 3.45 

(dd, 1H, H-7b), 3.37, 3.36, 3.29, 3.12 (4s, 12H, 4×CH3). 
13C NMR (75 MHz, DMSO-d6) δ 

147.5 (C-2), 135.5–126.2 (aromatics), 117.6 (C-1), 76.8, 76.7, 74.0, 73.3 (C-3–C-6), 69.5 (C-

7), 58.3, 58.1, 57.5, 55.2 (4×CH3). HR-EI-MS positive mode (m/z): calcd. for 

[M] +=308.1618, found: [M]+=308.1620, C17H24O5 (308.16). Z isomer: 34 mg (46%); 1H NMR 

(300 MHz, DMSO-d6) δ 7.66 (d, 2H, J 8.6 Hz, aromatics), 7.33–7.22 (m, 2H, aromatics), 

7.19–7.10 (m, 1H, aromatic), 5.83 (s, 1H, H-1), 4.04 (ddd, 1H, J5,6 2.9, J6,7a 2.7, J6,7b 5.3 Hz 

H-6), 3.89 (dd, 1H, J1,3 0.9, J3,4 7.8 Hz, H-3), 3.85 (pseudo t, 1H, J4,5 2.9 Hz, H-5), 3.62 (dd, 

1H, J7a,7b 12.0 Hz, H-7a), 3.57 (dd, 1H, H-7b), 3.50 (dd, 1H, H-4), 3.43, 3.42, 3.41, 3.27 (4s, 

12H, 4×CH3). 
13C NMR (75 MHz, DMSO-d6) δ 149.9 (C-2), 135.3–126.0 (aromatics), 109.8 

(C-1), 81.3, 78.3, 77.3, 74.7 (C-3–C-6), 71.0 (C-7), 59.4, 58.3, 58.0, 57.5 (4×CH3). HR-EI-

MS positive mode (m/z): calcd. for [M]+=308.1618, found: [M]+=308.1617, C17H24O5 

(308.16). 

 

3.6. 2,6-Anhydro-1-deoxy-3,4,5,7-tetra-O-methyl-1-(4-methylphenyl)-D-galacto-hept-1-

enitol (10b)  

Prepared from tosylhydrazone 9 (0.1 g, 0.24 mmol), 1-bromo-4-methylbenzene (3 equiv., 

0.09 mL, 0.12 g, 0.72 mmol) and LiOtBu (2.2 equiv., 0.04 g, 0.53 mmol) according to 
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General procedure I. Purified by column chromatography (1:1 EtOAc–heptane) to yield 58 

mg (75%) of 10b (E:Z = 1:3) as white amorphous products. E isomer: 15 mg (19%); 1H NMR 

(300 MHz, DMSO-d6) δ 7.30–7.10 (m, 4H, aromatics), 6.30 (s, 1H, H-1), 4.25 (ddd, 1H, J5,6 

5.3, J6,7a 8.1, J6,7b 2.4 Hz, H-6), 4.22 (dd, 1H, J1,3 0.4, J3,4 3.9 Hz, H-3), 3.85 (dd, 1H, J4,5 3.1 

Hz, H-5), 3.73 (pseudo t, 1H, H-4), 3.68 (dd, 1H, J7a,7b 12.0 Hz, H-7a), 3.45 (dd, 1H, H-7b), 

3.38, 3.36, 3.28, 3.10 (4s, 12H, 4×CH3), 2.31 (s, 3H, CH3). 
13C NMR (63 MHz, DMSO-d6) δ 

146.8 (C-2), 135.8–128.0 (aromatics), 117.7 (C-1), 76.7, 76.6, 73.9, 73.2 (C-3–C-6), 69.4 (C-

7), 58.2, 58.1, 57.4, 55.1 (4×CH3), 20.7 (CH3). HR-EI-MS positive mode (m/z): calcd. for 

[M] +=322.1775, found: [M]+=322.1770, C18H26O5 (322.18). Z isomer: 43 mg (56%); 1H NMR 

(300 MHz, DMSO-d6) δ 7.58–7.48 (m, 2H, aromatics), 7.15–7.08 (m, 2H, aromatics), 5.82 (s, 

1H, H-1), 4.02 (ddd, 1H, J5,6 2.9, J6,7a 2.7, J6,7b 5.3 Hz H-6), 3.90 (dd, 1H, J1,3 0.9, J3,4 7.8 Hz, 

H-3), 3.84 (pseudo t, 1H, J4,5 2.9 Hz, H-5), 3.60 (dd, 1H, J7a,7b 12.0 Hz, H-7a), 3.54 (dd, 1H, 

H-7b), 3.50 (dd, 1H, H-4), 3.43, 3.42, 3.41, 3.27 (4s, 12H, 4×CH3), 2.30 (s, 3H, CH3). 
13C 

NMR (63 MHz, DMSO-d6) δ 149.0 (C-2), 135.5–128.1 (aromatics), 109.8 (C-1), 81.2, 78.3, 

77.2, 74.7 (C-3–C-6), 71.0 (C-7), 59.3, 58.3, 57.9, 57.4 (4×CH3), 20.7 (CH3). HR-EI-MS 

positive mode (m/z): calcd. for [M]+=322.1775, found: [M]+=322.1772, C18H26O5 (322.18). 

 

3.7. General procedure II for catalytic hydrogenation 

A degassed, vigorously stirred suspension of 10 % Pd/C (75 weight % of 2a and 3; 50 weight 

% of 5a and 6) in abs. EtOAc (3 mL) was saturated with H2 (3 ×), and a solution of 2a and 3 

(0.17 mmol + 0.02 mmol) or 5a and 6 (0.12 mmol + 0.15 mmol) in abs. EtOAc (3 mL) was 

added. The reaction mixture was stirred overnight under H2 atmosphere at rt. The insoluble 

materials were filtered off through a pad of celite and washed thoroughly with EtOAc (3 × 3 

mL). The solvent was removed under reduced pressure, and the residue was purified by silica 

gel column chromatography with eluents indicated for the particular compounds. 
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3.7.1. 3,4,5,7-Tetra-O-acetyl-2,6-anhydro-1-deoxy-1-phenyl-D-glycero-L-manno-heptitol 

(11) 

Prepared from 2a (0.07 g, 0.17 mmol), according to the General procedure II. Purified by 

column chromatography (1:9 EtOAc–toluene) to yield 60 mg (83%) of 11 as a white 

amorphous product. Rf: 0.38 (1:1 EtOAc–hexane); [α]D +11 (c 0.78, CHCl3). 
1H NMR (400 

MHz, CDCl3) δ 7.34–7.15 (m, 5H, aromatic), 5.41 (dd, 1H, J5,6 0.8 Hz, H-5), 5.19 (pseudo t, 

1H, J3,4 10.0 Hz, H-3), 5.02 (dd, 1H, J4,5 3.4 Hz, H-4), 4.14 (dd, 1H, J7a,7b 11.2 Hz, H-7a), 4.01 

(dd, 1H, H-7b), 3.80 (ddd, 1H, J6,7a 6.4, J6,7b 7.0 Hz, H-6), 3.63 (ddd, 1H, J1a,2 3.7, J1b,2 8.4, 

J2,3 9.6 Hz, H-2), 2.86 (dd, 1H, J1a,1b 14.5 Hz, H-1a), 2.79 (dd, 1H, H-1b), 2.16, 1.98, 1.97 (4s, 

12H, 4×CH3). 
13C NMR (100 MHz, CDCl3) δ 170.5, 170.4, 170.3, 170.0 (4×CO), 138.1–

126.2 (aromatics), 79.1 (C-2), 74.2 (C-6), 72.4 (C-4), 69.7 (C-3), 67.9 (C-5), 61.7 (C-7), 38.2 

(C-1), 20.8, 20.7 (4×CH3). ESI-MS positive mode (m/z): calcd. for [M+Na]+=445.15, found: 

[M+Na]+=445.33, C21H26O9 (422.16). 

 

3.7.2. 3,4,5,7-Tetra-O-acetyl-2,6-anhydro-1-deoxy-D-glycero-L-manno-heptitol (12) 

Prepared from 3 (0.008 g, 0.02 mmol), according to the General procedure II. Purified by 

column chromatography (1:9 EtOAc–toluene) to yield 7 mg (83%) of 12 as a white 

amorphous product. Rf: 0.33 (1:1 EtOAc–hexane); [α]D +9 (c 0.26, CHCl3). 
1H NMR (400 

MHz, CDCl3) δ 5.42 (dd, 1H, J5,6 1.0 Hz, H-5), 5.06 (pseudo t, 1H, J3,4 10.1 Hz, H-3), 5.00 

(dd, 1H, J4,5 3.2 Hz, H-4), 4.11 (dd, 1H, J7a,7b 11.7 Hz, H-7a), 4.07 (dd, 1H, H-7b), 3.87 (ddd, 

1H, J6,7a 6.6, J6,7b 6.8 Hz, H-6), 3.53 (dq, 1H, J1,2 6.2, J2,3 9.0 Hz, H-2), 2.16, 2.06, 2.05, 1.98 

(4s, 12H, 4×CH3), 1.24 (d, 3H, H-1). 13C NMR (100 MHz, CDCl3) δ 170.6, 170.5, 170.4, 

170.0 (4×CO), 74.8, 74.2 (C-2, C-6), 72.2 (C-4), 70.9 (C-3), 68.0 (C-5), 62.0 (C-1), 21.0, 
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20.9, 20.8 (4×CH3), 17.8 (C-1). ESI-MS positive mode (m/z): calcd. for [M+Na]+=369.12, 

found: [M+Na]+=369.33, C15H22O9 (346.13). 

 

3.7.3. 2,6-Anhydro-3,4,5,7-tetra-O-benzoyl-1-deoxy-1-phenyl-D-glycero-D-gulo-heptitol 

(13) 

Prepared from 5a (0.08 g, 0.12 mmol), according to the General procedure II. Purified by 

column chromatography (1:99 EtOAc–toluene) to yield 34 mg (42%) of 13 as a white 

amorphous product. Rf: 0.36 (1:2 EtOAc–hexane); [α]D +18 (c 0.57, CHCl3). 
1H NMR (400 

MHz, CDCl3) δ 8.06–7.75 (m, 8H, aromatics), 7.64–7.08 (m, 17H, aromatics), 5.89 (pseudo t, 

1H, J4,5 9.7 Hz, H-4), 5.61 (pseudo t, 1H, J5,6 9.6 Hz, H-5), 5.47 (pseudo t, 1H, J3,4 9.5 Hz, H-

3), 4.59 (dd, 1H, J7a,7b 12.1 Hz, H-7a), 4.42 (dd, 1H, H-7b), 4.04 (ddd, 1H, J6,7a 2.8, J6,7b 6.3 

Hz, H-6), 4.00 (ddd, 1H, J1a,2 4.8, J1b,2 6.8, J2,3 9.8 Hz, H-2), 2.96 (dd, 1H, J1a,1b 12.3 Hz, H-

1a), 2.92 (dd, 1H, H-1b). 
13C NMR (100 MHz, CDCl3) δ 166.3, 166.1, 165.6, 165.4 (4×CO), 

138.3–126.0 (aromatics), 79.2 (C-2), 76.2 (C-6), 74.7 (C-4), 72.6 (C-3), 70.2 (C-5), 63.6 (C-

7), 38.0 (C-1). ESI-MS positive mode (m/z): calcd. for [M+Na]+=693.21, found: 

[M+Na]+=693.50, C41H34O9 (670.22).  

 

3.7.4. 2,6-Anhydro-3,4,5,7-tetra-O-benzoyl-1-deoxy-D-glycero-D-gulo-heptitol (14) 

Prepared from 6 (0.09 g, 0.15 mmol), according to the General procedure II. Purified by 

column chromatography (1:99 EtOAc–toluene) to yield 38 mg (43%) of 14 as a white 

amorphous product. Rf: 0.41 (1:2 EtOAc–hexane); [α]D +43 (c 0.59, CHCl3). 
1H NMR (400 

MHz, CDCl3) δ 8.10–7.76 (m, 8H, aromatics), 7.61–7.06 (m, 12H, aromatics), 5.87 (pseudo t, 

1H, J4,5 9.7 Hz, H-4), 5.67 (pseudo t, 1H, J5,6 9.8 Hz, H-5), 5.36 (pseudo t, 1H, J3,4 9.5 Hz, H-

3), 4.61 (dd, 1H, J7a,7b 12.2 Hz, H-7a), 4.45 (dd, 1H, H-7b), 4.11 (ddd, 1H, J6,7a 3.0, J6,7b 5.1 

Hz, H-6), 3.90 (dq, 1H, J1,2 6.1, J2,3 9.7 Hz, H-2), 1.36 (d, 3H, H-1). 13C NMR (100 MHz, 
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CDCl3) δ 166.4, 166.1, 165.6, 165.4 (4×CO), 133.6–127.2 (aromatics), 76.2 (C-6), 75.0 (C-2), 

74.5 (C-4), 74.1 (C-3), 70.1 (C-5), 63.6 (C-7), 18.0 (C-1). ESI-MS positive mode (m/z): calcd. 

for [M+Na]+=617.18, found: [M+Na]+=617.42, C35H30O9 (594.19).  
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