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Abstract 19 

We determined micafungin, caspofungin and amphotericin B (AMB) MICs and killing 20 

rates in RPMI-1640 with and in RPMI-1640 without 50% serum against three C. krusei 21 

bloodstream isolates. MIC ranges in RPMI-1640 were 0.125-0.25, 0.25 and 0.125-0.5 22 
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mg/L, respectively; in RPMI-1640 with 50% serumwith serum, MICs were 64-128-, 8- and 23 

4-16-fold higher, respectively. In RPMI-1640 micafungin and caspofungin at 1, 4, 16 and 24 

32 mg/L as well as AMB at 2 mg/L were fungicidal against all isolates in ≤3.96, ≤4.42 and 25 

14.96 hours, respectively. In RPMI-1640 with 50% serum, caspofungin was fungicidal for 26 

all three isolates only at 32 mg/L, micafungin and AMB were fungistatic. In a neutropenic 27 

murine modelmice 5 mg/kg caspofungin and 1 mg/kg AMB were ineffective against two 28 

of the three isolates. Thus, in vivo efficacy of echinocandins and AMB is weak or absent 29 

against C. krusei. Prescribers treating C. krusei infections with echinocandins should be on 30 

the watch out for clinical resistance and therapeutic failure. 31 

1. Introduction 32 

The primarily fluconazole resistant Candida krusei is one of the most important non-33 

albicans Candida species causing life-threatening infections among severely ill patients. 34 

Haematological malignancies, neutropenia, solid tumors and recent gastrointestinal surgery 35 

are well-known risk factors for invasive infections caused by C. krusei, it is a major 36 

pathogen in breakthrough fungemia in patients with fluconazole chemoprophylaxis.1,2 For 37 

many decades, amphotericin B was the only systematically used antifungal agent for the 38 

treatment of invasive C. krusei infections; however, in vitro and in vivo data suggest that 39 

efficacy of amphotericin B is strongly questionable against C. krusei.3-6 As echinocandins 40 

(anidulafungin, caspofungin and micafungin) show relatively low MIC values and 41 

concentration-dependent fungicidal activity against C. krusei in vitro, currently 42 

echinocandins are among the preferred antifungals against C. krusei, besides amphotericin 43 

B and voriconazole.7,8 However, mortality rate due to invasive infections by C. krusei 44 

among intensive care unit patients is still unacceptably high (50-70%) even with the widely 45 

used echinocandin therapy.9-11 46 
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We cultured 43 C. krusei bloodstream isolates from thirteen patients between 2011 and 47 

2016 in our laboratory serving an 1665-bed tertiary care center. After initiation of 48 

micafungin or caspofungin therapy, C. krusei repeatedly cultured from the bloodstream of 49 

four echinocandin-treated patients for up to 18 days (persistent candidemia) suggesting 50 

insufficient eradication of this fungus by echinocandins. Notably, all isolates were fully 51 

susceptible to echinocandins and amphotericin B by the routinely used Etest interpreted 52 

using the CLSI breakpoints.12,13 53 

As echinocandins are highly protein-bound antifungal drugs, the free (thus active) drug 54 

concentration may be low, which may, at least partly, be responsible for the poor 55 

sterilizing ability of echinocandins.7,13,14 This inspired this study in which we determined 56 

the in vivo efficacy of micafungin, caspofungin and amphotericin B in a neutropenic 57 

murine model against C. krusei clinical isolates and compared it to in vitro activity using 58 

killing rates in RPMI-1640 and RPMI-1640 plus 50% serum to model protein binding. 59 

 60 

2. Materials and methods 61 

2.1. Strains 62 

We used three C. krusei isolates, all three isolated prior to antifungal administration from 63 

three different intensive care unit patients from different units and years. The first patient 64 

(isolate 22910) with acute pancreatitis was treated with caspofungin (Cancidas ®) followed 65 

by micafungin (Mycamine ®) for 28 days, and died on day 29 from the first isolation of C. 66 

krusei from his bloodstream. After the initial isolation of C. krusei, positive follow-up 67 

cultures were found on four different days within the first 15 days. The total number of the 68 

positive blood cultures was eight. The second patient (isolate 26513) with ileus and colon 69 

resection was treated with caspofungin (Cancidas ®) for 31 days and survived. His follow-70 



4 

 

up blood cultures in the next 18 days were positive on five different days. The total number 71 

of the positive blood cultures was eight. The third patient (isolate 25193) was neutropenic, 72 

suffering from acute myelogeneous leukaemia, and she died on the day the blood was 73 

collected and received no antifungals. The first and second patients were not neutropenic at 74 

the time of blood culture obtained and they were given standard doses of micafungin or 75 

caspofungin (100 mg per day and 70 mg on the first day followed by 50 mg daily, 76 

respectively). Isolates were identified with conventional methods (Micronaut-Candida and 77 

API ID32C) and MALDI Biotyper (Bruker, Bremen, Germany).15  78 

 79 

2.2 Susceptibility testing 80 

Micafungin pure powder was kindly provided by Astellas while caspofungin and 81 

amphotericin B pure powders were purchased from Sigma (Budapest, Hungary). MICs in 82 

RPMI-1640 and RPMI-1640 plus 50% serum (serum from a human male, type AB, Sigma, 83 

Budapest, Hungary) were determined using the standard broth macrodilution method at 35 84 

°C.16-20 For caspofungin and micafungin in RPMI-1640 and in RPMI-1640 plus 50% 85 

serum, drug concentrations ranged between 0.015-8 and 0.5-32 mg/L, respectively. 86 

Amphotericin B concentrations were 0.125-8 mg/L for both media. MIC values were read 87 

visually after 24 h.12 For micafungin and caspofungin we used the partial inhibition 88 

criterion (the lowest concentration that produced a prominent decrease in turbidity 89 

compared to the drug-free control). In case of amphotericin B the total inhibition criterion 90 

was used. C. parapsilosis ATCC 22019 and C. krusei ATCC 6258 strains were used as 91 

quality control strains.12 92 

 93 

2.3. Time-kill studies 94 
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Activity of micafungin and caspofungin against C. krusei clinical isolates were determined 95 

in RPMI-1640 with and without 50% human serum at 1, 4, 16 and 32 mg/L concentrations 96 

using a starting inoculum of ~105 cells/ml in a final volume of 10 ml.17-20 Activity of 97 

amphotericin B was determined at 0.5, 1 and 2 mg/L in both media as well.3,21 Aliquots of 98 

100 l were removed after 0, 4, 8, 12, 24 and 48 hours of incubation, tenfold serial 99 

dilutions were prepared, and samples of dilutions (4x30 l) were plated onto a single 100 

Sabouraud dextrose agar (SDA) plate and incubated at 35 °C for 48 hours.16-20 All 101 

experiments were performed twice in both media.  102 

 103 

2.4. Analysis of in vitro data 104 

Antifungal activity was defined as fungicidal when at least 99.9% reduction in viable cell 105 

count was observed as compared to the starting inoculum.6  106 

Killing kinetics was analysed in both media (RPMI-1640 and RPMI-1640 plus 50% 107 

serum), as described previously.6,18,19 Briefly, an exponential equation was fitted to the 108 

mean data at each time point: Nt = N0 × e−kt, where Nt is the number of viable yeasts at time 109 

t, N0 is the number of viable yeasts in the initial inoculum, k is the killing rate, and t is the 110 

incubation time. Negative and positive k values indicate growth and killing, respectively. 111 

The goodness of fit for each isolate was assessed by the r2 value (r2>±0.8). The mean times 112 

to achieve the fungicidal endpoint (T99.9=3/k) were calculated from the k values for each 113 

isolate and concentrations in both media.6,18,19 114 

Killing kinetics for different isolates was compared using one-way ANOVA with Tukey’s 115 

post-testing in RPMI-1640 or RPMI-1640 plus 50% serum. The effect of the same drug 116 

concentration in RPMI-1640 and RPMI-1640 plus 50% serum was analyzed using paired T 117 

tests (with Welch's correction, where appropriate).18,19 118 
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2.5. In vivo studies  119 

Groups of seven to nine male BALB/c mice (23-25 g) were immunosuppressed with four 120 

doses of cyclophosphamide, i.e. 4 days before infection (150 mg/kg), 1 day before 121 

infection (100 mg/kg), 2 days postinfection (100 mg/kg) and 5 days postinfection (100 122 

mg/kg).17-19 The Guidelines for the Care and Use of Laboratory Animals was strictly 123 

followed during maintenance of the animals; experiments were approved by the Animal 124 

Care Committee of the University of Debrecen (permission no. 12/2014). Mice were 125 

inoculated intravenously through the lateral tail vein with an infectious dose of 4-4.5x106 126 

CFU/mouse. Inoculum density was confirmed by plating serial dilutions onto SDA plates. 127 

At the beginning of the therapy (day 1) fungal kidney burden was determined after 128 

dissection of 4-5 untreated mice in case of each isolate (day 1 control burden).19 129 

Five-day intraperitoneal treatment with daily 5, 10 and 1 mg/kg caspofungin (Cancidas®), 130 

micafungin (Mycamine®) and amphotericin B (Fungizone), respectively, against wild-type 131 

clinical isolates were started after 24 hours postinfection. Five and 10 mg/kg caspofungin 132 

and micafungin correspond to 70 mg and 200-300 mg daily doses in humans, respectively, 133 

which are higher than the currently recommended daily doses.22-29  134 

On day six after infection, all mice were sacrificed; both kidneys were removed, weighed 135 

and homogenized aseptically. Homogenates were diluted tenfold; aliquots of 0.1 ml of the 136 

undiluted and diluted (1:10) homogenates were plated onto SDA plates and incubated at 35 137 

°C for 48 h. The lower limit of detection was 50 CFU/g of tissue. Statistical analysis of the 138 

kidneys tissue burden was performed using the Kruskal-Wallis test with Dunn’s post-test 139 

for multiple comparisons.17-19 140 

3. Results 141 

3.1. In vitro studies 142 
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3.1.1. MIC results in RPMI-1640 and RPMI-1640+50% serum  143 

In RPMI-1640 MIC values for the quality control strains were within the published 144 

acceptable ranges.12 MICs for clinical isolates are presented in Table 1. In RPMI-1640 all 145 

three isolates were susceptible to micafungin and caspofungin (susceptibility breakpoints 146 

for C. krusei are ≤0.25 mg/L for both drugs).13 In RPMI-1640 plus 50% serum, micafungin 147 

and caspofungin MICs were 64-128 and 8 times higher than in RPMI-1640, respectively.  148 

In RPMI-1640, MIC ranges for amphotericin B were 0.12-0.5 mg/L which is lower than 149 

the suggested susceptibility break-point (1 mg/L).8,12 In RPMI-1640 plus 50% serum, 150 

amphotericin B MIC values were increased 4-16-fold (Table 1).  151 

 152 

3.1.2. Killing activity of micafungin in RPMI-1640 and RPMI-1640+50% serum 153 

Growth rate (i.e. the times to achieve 1 log increase in CFU compared to the starting 154 

inoculum) for the control isolates in RPMI-1640 and RPMI-1640 plus 50% serum was 155 

similar (P>0.05). The mean times to achieve 99.9% (T99.9) growth reduction from the 156 

starting inocula at different antifungal concentrations are shown in Table 2.  157 

In RPMI-1640, at 1, 4, 16 and 32 mg/L micafungin was rapidly fungicidal against clinical 158 

isolates (all three were killed ≤3.96 hours) (Table 2). Killing activity of micafungin was 159 

concentration independent in cases of isolates 26513 and 25193 (p>0.05). Numerically, the 160 

highest k value (1.536 1/h) was found in case of isolate 22910 at 16 mg/L (Fig. 1).  161 

In RPMI-1640 plus 50% serum, growth curves were similar to controls at 1 mg/L. At 4 and 162 

16 mg/L micafungin produced only transient CFU decreases, but the mean k values were 163 

always negative. Positive k values were noticed only at 32 mg/L (CFU decreases were -164 

1.48-2.78 CFU/mL) (Fig. 1).  165 

 166 
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3.1.3 Killing activity of caspofungin in RPMI-1640 and RPMI-1640+50% serum 167 

Caspofungin in RPMI-1640 was fungicidal within 4.42 hours against clinical isolates 168 

(Table 2). Killing activity of caspofungin against isolate 22910 was concentration 169 

independent. For isolates 25193 and 26513 the highest k values were measured at 1 and 4 170 

(1.23 1/h for both concentrations) and 4 mg/L (1.30 1/h), respectively. In RPMI-1640 plus 171 

50% serum, with the exception of 1 mg/L, killing rates were positive and increased with 172 

concentrations (concentration-dependent killing). Killing activity of caspofungin in RPMI-173 

1640 plus 50% serum decreased at 4, but increased at 32 mg/l compared to RPMI-1640 for 174 

all clinical isolates.  175 

 176 

3.1.4. Killing activity of amphotericin B in RPMI-1640 and RPMI-1640+50% serum 177 

In RPMI-1640, 0.5 mg/L amphotericin B produced positive k values for isolates 22910 and 178 

25193. Though k values at 1 mg/L were positive (0.07-0.14 1/h) the CFU decreases were 179 

weak (1.06-1.48 CFU/mL). At 2 mg/L, amphotericin B was fungicidal within 14.69 hours 180 

against all three isolates (Table 2, Fig. 1). 181 

In RPMI-1640 plus 50% serum, at 1 mg/L positive k value was observed only in case of 182 

isolate 25193 (0.014 1/h), while at 2 mg/L k values for all three isolates were positive 183 

(0.109-0.168 1/h). However, the k values are much lower than in case of echinocandins. In 184 

RPMI-1640, amphotericin B killing activity at 2 mg/L was significantly higher than in 185 

RPMI-1640 plus 50% serum (Table 2, Fig. 1). 186 

 187 

3.2. In vivo experiments 188 

All three isolates showed weak replication ability in the untreated neutropenic mice. In 189 

cases of isolates 22910 and 26513, the mean fungal tissue burdens decreased on day 6 as 190 



9 

 

compared to day 1; the decreases were higher than one log in case of isolate 26513. In case 191 

of isolate 25193, the mean fungal tissue burdens on day 6 increased only slightly (less than 192 

1 log) comparing to day 1 (Fig 2).  193 

Caspofungin and amphotericin B were effective against isolate 25193 (p<0.05); the CFU 194 

decreases were lower than 1 log compared to untreated controls (on day 6) and were 195 

similar to day 1 control burden. Micafungin did not show any activity in this model 196 

system. Against isolates 22910 and 26513 none of the tested drugs showed activity.  197 

198 
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4. Discussion 199 

Theoretically, the in vitro fungicidal activity of echinocandins and amphotericin B against 200 

Candida species is considered advantageous as they expected to eradicate fungal cells 201 

rapidly from infected tissues and the bloodstream.3,6-8,13,14,30 This drives their increasing 202 

preference for treating severe fungal infections. However, the high protein binding 203 

decreases the unbound, thus active drug concentration in the blood and tissues, leading to 204 

lower drug exposure and potentially to therapeutic failure.7,13,14,21,30,31 Previous in vitro data 205 

support this hypothesis, because in the protein-free RPMI-1640 medium used in standard 206 

susceptibility testing, echinocandins as well as amphotericin B are more frequently 207 

fungicidal at low drug concentrations than in RPMI-1640 plus 50% serum, indicating the 208 

clinical relevance of the protein binding.5,16-20,30,31 Moreover, in a preclinical study with 209 

micafungin, in vivo efficacy showed poorer correlation with MICs by standard RPMI-1640 210 

than by serum-based susceptibility tests.32 211 

It was previously suggested that determination of MIC alone in case of caspofungin is 212 

misleading and may misclassify wild-type C. krusei or C. glabrata clinical isolates as non-213 

wild-type or resistant.33 Therefore, currently micafungin or anidulafungin MICs in RPMI-214 

1640 are recommended as best predictors for the clinical efficacy of all three 215 

echinocandins against Candida species, not excepting C. krusei. However, in our 216 

experiments standard MICs and killing studies with micafungin in RPMI-1640 yielded 217 

misleading results, falsely suggesting efficacy against C. krusei in vivo.  218 

In our study adding 50% serum to RPMI-1640 did not influence the growth rate of the 219 

three C. krusei isolates, indicating that 50% serum did not inhibit C. krusei. In contrast, 220 

other authors noticed very poor growth of three C. krusei isolates (as well as of C. glabrata 221 

and C. lusitaniae) in RPMI-1640 plus 50% serum even after seven days.34 The explanation 222 

for this difference is unknown. However, the cited study used the CLSI broth microdilution 223 

formázott: Betűtípus: Dőlt, Betűszín: Automatikus
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method for MIC determination, and the smaller final volume (0.2 mL) in their experiment 224 

may have influenced the growth of fungi. 225 

In this study we have found significant differences in the killing rates of echinocandins in 226 

RPMI-1640 and RPMI-1640 plus 50% serum against C. krusei. RPMI-1640 plus 50% 227 

serum more profoundly decreased killing activity of micafungin than that of caspofungin 228 

as compared to RPMI-1640 (Fig. 1., Table 2). The difference is probably due to the 229 

difference between the protein binding for micafungin (99.9%) and caspofungin 230 

(97.5%).8,13,14 Our in vitro results in RPMI-1640 plus 50% serum (negative k values at ≤16 231 

mg/L) proved to be a good predictor for the lack of in vivo efficacy even of elevated daily 232 

micafungin dose, as micafungin never decreased the fungal tissue burden against any of the 233 

tested C. krusei isolates. This result is concordant to our previous in vitro findings with 234 

different C. krusei bloodstream isolates.16  235 

In RPMI-1640 plus 50% serum, in vitro activity of caspofungin decreased less markedly as 236 

positive k values were noticed even at 4 mg/L which is the trough concentration using the 237 

standard or elevated daily doses.22-24 However, the efficacy of caspofungin was found to be 238 

unreliable against C. krusei in vivo in the neutropenic murine model (i.e. only one of three 239 

isolates responded to the 5 mg/kg daily dose). A previous study of our group with two 240 

different isolates showed a statistically demonstrable efficacy of caspofungin 5 mg/kg 241 

daily in a similar model system.18 However, in the present study the two isolates derived 242 

from persistent candidemia showed weak in vivo replication ability (as indicated by 243 

comparison of fungal tissue burdens on day 1 and 6), and weak efficacy of echinocandins 244 

against slowly replicating cells is a well known phenomenon.7,13,14 Moreover, other factors 245 

(i.e. neutropenia, slow drug penetration into inflamed tissues, etc.) may strongly influence 246 

therapeutic outcome.8,35  247 
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Amphotericin B used at clinically attainable concentration showed weak in vitro killing 248 

activity against C. krusei regardless of test media, which was confirmed in vivo as well.3-6 249 

Our results correlate with previous in vitro and in vivo findings that amphotericin B is not 250 

superior to echinocandins for the treatment of invasive infections caused by C. krusei.8 251 

However, currently there is no alternative in echinocandin resistant cases.3,10,13 252 

In conclusion, standard RPMI-1640-based susceptibility tests did not provide reliable 253 

information on the in vivo efficacy of micafungin or caspofungin against wild-type C. 254 

krusei clinical isolates. Serum based susceptibility testing methods were good predictors of 255 

the in vivo efficacy of micafungin, while neither the standard not the serum based method 256 

were good predictors in case of caspofungin. Our in vivo results strongly correlate with the 257 

currently reported experience that efficacy of echinocandins may be poor against C. krusei 258 

in some clinical situations. This does not mean echinocandin resistance, but reflects the 259 

lower activity of the cell-wall active echinocandins on a fungal species slowly replicating 260 

in vivo. Our results suggest that prescribers treating C. krusei infections with echinocandins 261 

should be on the watchout for clinical resistance and therapeutic failure. 262 

 263 
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Figure legends 377 

 378 

Figure 1 379 

Killing rates of micafungin (MICA), caspofungin (CAS) and amphotericin B (AMB) and the 380 

corresponding adjusted regression lines (dashed lines) against three Candida krusei 381 

bloodstream isolates in RPMI-1640 (RPMI) and RPMI-1640 plus 50% serum (Serum). 382 

Positive and negative k values indicate the decreases and increases, respectively, in viable cell 383 

numbers. 384 

 385 

Figure 2 386 

Kidney tissue burden of severely neutropenic BALB/c mice infected intravenously with 387 

three C. krusei isolates. Intraperitoneal caspofungin (CAS), micafungin (MICA) and 388 

amphotericin B (AMB) (5, 10 and 1 mg/kg, respectively) daily treatments were started 24 389 

hours after the infection. The bars represent the medians. Level of statistical significance 390 

compared to the control population (day six) is indicated at P<0.05 (*). 391 

392 
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  393 

Table 1.  Candida krusei isolates and MICs of micafungin (MICA), caspofungin (CAS) and 394 

amphotericin B (AMB) in RPMI-1640 and RPMI-1640 plus 50 % serum (50% serum) 395 

 396 

 

Isolates 

 

Media 

MIC (mg/L) 

MICA CAS AMB 

22910 RPMI-1640 0.25 0.25 0.5 

50% serum 16 2 2 

26513 RPMI-1640 0.12 0.25 0.5 

50% serum 16 2 2 

25193 RPMI-1640 0.25 0.25 0.12 

50% serum 16 2 2 
 397 

 398 

399 
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Table 2. Time (h) to reach 99.9% (T99.9) growth reduction from the starting inocula at 400 

different micafungin, caspofungin and amphotericin B (AMB) concentrations (mg/L) in 401 

RPMI-1640 (RPMI) and RPMI-1640 plus 50 % serum (serum). NR means that fungicidal 402 

effect (99.9% growth reduction) was not reached.  403 

 

Isolate 

 

Media 

Time (hours) 

Micafungin (mg/L) Caspofungin (mg/L) AMB (mg/L) 

1 4 16 32 1 4 16 32 0.5 1 2 

22910 RPMI 3.04 3.03 1.95 3.96 2.94 2.59 2.59 3.04 NR NR 8.67 

Serum NR NR NR NR NR NR 2.71 2.71 NR NR NR 

26513 RPMI 2.72 2.76 2.85 2.84 4.25 2.31 2.74 3.81 NR NR 9.18 

Serum NR NR NR NR NR NR 3.22 3.12 NR NR NR 

25193 RPMI 3.38 3.91 3.07 2.95 2.43 2.43 4.42 3.04 NR NR 14.69 

Serum NR NR NR NR NR NR NR 3.04 NR NR NR 

 404 

 405 

 406 


