Determination of auxine content of soft wood cutted
'Marianna GF8/1' (Prunus cerasifera x P. munsoniana)
by High Performance Liquid Chromatography during
rooting period

Végvári, G. and László, H.

BUESPA, Faculty of Horticultural Science, Department of Fruit Science
H-1118 Budapest, Villányi út 29–43., Hungary

Summary: The content of different auxins of soft-wood cutted plum rootstock 'Marianna GF8/1' (Prunus cerasifera x P. munsoniana) was determined during the rooting period. The level of auxin-concentration (exogenous and endogenous) of basic and internodal part of cuttings was determined by WATERS HPLC equipment every 7 days during rooting period. The lengths soft wood cuttings were app. 30 cm long. The basal part of shoots were treated with 2000 μg/g concentrated indole-butiric acid in talcum powder. After treatment the cuttings were placed in propagation green-house under intermittent mist. The plant hormones were extracted by methanol. The solution was cleaned by paper-filter, and further cleaned by centrifuge. The effluent was examined by reversed phase High Performance Liquid Chromatography, with WATERS 2487 dual detector at 220 nm on Symmetry C18 4.6x150 column. Recovery and reproducibility assessment indicates good accuracy and acceptable relative standard deviation (RSD) 5%. Linear response (r=0.997) for calibration curve was obtained with IAA, IPA and IBA standard in range, with a limit of quantification of 0.15 g-m1. The concentration of IAA, IPA and IBA in the basal part of cuttings were measured, during the rooting period. We proved the external IBA was taken up by the plants. In the plants were found the IBA, and the IAA concentration of IBA treated cuttings was higher, than the untreated one.

Key words: HPLC, plum rootstock, auxin, 'GF 8/1', rooting

Introduction

The propagation technique of rootstocks has important role in the fruit growing, because it is common to use grafted plants. The rootstock could be propagated by seeds, or one kind of vegetative propagation and the science will be budded or grafted on it. Nowadays, in the modern fruit growing, the vegetative propagation of the rootstock is spreading.

The part of vegetative propagation, as well the autovegetative propagation is used to produce true-to-type plant material. In the fruit nursery the new roots are generated on the stems.

The plant hormones have significant influence on plant vigour, growth and development of new organs, as like the roots formation too. The plant hormones are formed in different places. The cytokinins are in the top of the roots, and the auxins in the top of the shoots, and in the young leaves. In the horticultural praxis, in the case of vegetative propagation the most important group is the auxins, because the content of it could indicate the root formations too.

In the nursery practice the hard-wood cutting propagation method is a cheap and fast method to get true to type plum rootstocks (Szecskó et al., 2003). The plum rootstocks, like 'GF 8/1' can be propagated by hard-wood cutting and soft-wood cuttings too. The problem of plum rootstock was examined by many researchers (Howard and Ridout, 1994, Reighard et al., 1990), the 'Marianna GF 8/1' proved to be promising one in Hungary (Hrotko et al., 2002).

To induce adventitious roots before using of synthetic root-promoting growth regulators in rooting stem cuttings, many chemicals were tried with limited success (Kefford, 1973). The discovery of natural auxins, such as indoleacetic acid (IAA), and synthetic one indolebutyric acid (IBA), could stimulate the promotion of adventitious roots on different part of plants. Hence auxins is not always the limiting chemical component in rooting (Harimana et al. 1990).

The analysis of IAA, as plant growth factors mostly is difficult, because the low account of hormones, easy oxidation and the photodecomposition (Archbold and Dennis, 1984). The HPLC method is the highest sensitive possibility to determine the quality and quantity of plant hormones (Rodriguez and Tames, 1984). Gum et al. (1986) used HPLC-method to determine abscisic acid and indole acetic acid concentration of young fruit cotton (Gossypium hirsutum) and leaves of grapefruit (Citrus paradisi), mulberry (Morus alba) and ash (Fraxinus uhdei). Blazkova et al. (1997) examined how can the IBA treatments exercise influence on root produce in young and mature clones of Sequoia sempervirens.
Materials and methods

1. Plant material:

The 'Marianna' plum originated in Texas, as an open-pollinated seedling of the myrobolan plum and supposedly, *P. munsoniana*. It can be propagated true to type by hardwood cuttings and softwood cuttings too. This variety could be rootstock of different kind of stone fruits. 'GF 8/1' mostly used as rootstock for plum, apricot, and partly peach. Some plum has grown well on it; others have not (Hartmann et al., 1990). The studied variety ‘Marianna GF 8/1’ was selected in France.

2. Propagation conditions:

The experiment was carried out in June, in the Research field of the Department of Fruit Science in Soroksár, when the mother plants shoot-length were 40–50 cm long. The 35–40 cm long, 3–4 mm thick shoots were collected in the morning, and the soft top of those were cut, and the leaves on the basal part of shoots were removed too. The basal parts of the shoots were treated with 2000 μg/g indole-butyric acid on talcum-powder.

The rooting media was composed by mixture of 30% sphagnum moss and 70% perlite. During the rooting period the cuttings were in a plastic-foil covered specialized propagation greenhouse equipped with automatic fog-generator. During the rooting period, the relative humidity was kept at 90%. The temperature of the house was 20–27 °C. The rooting period was taken 4 weeks.

The HPLC analysis was carried out every 3 days during the rooting period. The IAA and IPA content in the new collected, and in the rooting plants the IBA, IAA and IPA until the developing of well functioning roots we determined by HPLC. The different auxins content of cuttings was determined in the basic parts of cuttings (cca. 1 cm).

2. Analytical conditions:

Chemicals:

Analytical grade 3-Indoleacetic acid: IAA [87-51-4], Indole-3-propionic acid: IPA [830-96-6] and Indole-3-butyric acid: IBA [133-32-4], 2,6-Di-tert-butyl-p-cresol: BHT [128-37-0], ethanol, methanol and acetic acid (HPLC-grade) were purchased from Sigma Aldrich Chemical Co. The double distilled water was further cleaned by Millipore-filter until the HPLC-grade. The standards of IAA, IPA and IBA were used in a methanolic stock solution (0.01 g/50 ml) and a 50X dilution of those were used as working standard in HPLC.

Sample preparation

The plants were collected, and cca. 1 cm long bottom and internodal parts were cutted from them. The weights were 2.7–4.5 g. The IAA, IPA, and IBA was extracted from the fresh plants with 10 ml ethanol in one day, added BHT in

HPLC conditions:

A WATERS High Performance Liquid Chromatograph equipped 2487 Dual Detector, and 1525 Binary HPLC Pump, controlled with BREEZE software. A SYMMETRY C18 5 μm 4.6 x 150 mm column was installed. Mobile phase methanol: water 60:40 v/v% containing 0.05% acetic acid. The flow rate 1 cm²·min⁻¹, the pressure on the column was 1800±15 psi. The each injected volume was 20 μl.

The plant hormones were monitored at a wavelength of 280 nm. The retention time of IAA in standard solution was 2.736, the IPA 3.497 and IBA 4.542 min.

Results and discussion

The aim of this work was to consider to which extent softwood-cuttings 'Marianna GF 8/1' (*P. cerasifera* x *P. munsoniana*) are able to take up IBA from the root-promoting substance.

There were only few hints in relevant literature pertaining the auxin content of softwood-cutted plants.

Figure 1 shows the chromatogram of 20 μl injected mixture of IAA, IPA and IBA. The chromatogram is clear,
and the peaks show the retention time of different plant-hormones. On the Figure 2 it can be see the chromatogram of untreated softwood-cuttings 'GF 8/1'. It shows the native IAA and IPA concentration in the plants. The Figure 3 shows the chromatogram of 20 μl plant extract of IBA-treated cuttings. On the derived from 0.267 μg/g IBA content of plant. During the study of chromatograms, can be stated, the plants can take up IBA from the root-promoting substance. When we make a comparison between the chromatograms of treated and not treated cuttings, it can be see the IAA concentration of treated one is higher than the untreated one. The Table 1 summarizes the different auxin (IAA, IPA and IBA) content measured on the 1st, 2nd, 3rd, 4th... etc., until 20th day. The RSD value of the determination was about 5% (n=5).

It can be stated, that the cuttings can take up the IBA. The IBA content until the 1st–6th day increases, following this on the 30th day significant decrease can be observed.

Composed the treated plants chromatogram and to the non treated one it can be ascertained that in the plants treated

Table 1 The tendency of plant hormone concentration during the rooting period

<table>
<thead>
<tr>
<th>Day</th>
<th>IAA (μg/g)</th>
<th>IPA (μg/g)</th>
<th>IBA (μg/g)</th>
<th>IAA (μg/g)</th>
<th>IPA (μg/g)</th>
<th>IBA (μg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0345</td>
<td>0.0331</td>
<td>–</td>
<td>0.0348</td>
<td>0.029</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.1002</td>
<td>0.0444</td>
<td>–</td>
<td>0.101</td>
<td>0.046</td>
<td>0.133</td>
</tr>
<tr>
<td>6</td>
<td>0.1342</td>
<td>0.0555</td>
<td>–</td>
<td>0.185</td>
<td>0.099</td>
<td>0.287</td>
</tr>
<tr>
<td>9</td>
<td>0.164</td>
<td>0.0649</td>
<td>–</td>
<td>0.225</td>
<td>0.125</td>
<td>0.267</td>
</tr>
<tr>
<td>12</td>
<td>0.175</td>
<td>0.0685</td>
<td>–</td>
<td>0.241</td>
<td>0.129</td>
<td>0.252</td>
</tr>
<tr>
<td>15</td>
<td>0.182</td>
<td>0.0691</td>
<td>–</td>
<td>0.246</td>
<td>0.126</td>
<td>0.241</td>
</tr>
<tr>
<td>18</td>
<td>0.163</td>
<td>0.0733</td>
<td>–</td>
<td>0.222</td>
<td>0.099</td>
<td>0.22</td>
</tr>
<tr>
<td>21</td>
<td>0.166</td>
<td>0.0681</td>
<td>–</td>
<td>0.193</td>
<td>0.094</td>
<td>0.135</td>
</tr>
<tr>
<td>24</td>
<td>0.143</td>
<td>0.0711</td>
<td>–</td>
<td>0.184</td>
<td>0.085</td>
<td>0.101</td>
</tr>
<tr>
<td>27</td>
<td>0.138</td>
<td>0.0662</td>
<td>–</td>
<td>0.152</td>
<td>0.071</td>
<td>0.085</td>
</tr>
<tr>
<td>30</td>
<td>0.135</td>
<td>0.0653</td>
<td>–</td>
<td>0.144</td>
<td>0.060</td>
<td>0.052</td>
</tr>
</tbody>
</table>

Figure 2 Characteristic chromatogram of untreated 'GF 8/1' cuttings

Figure 3 Characteristic chromatogram of 2000 ppm IBA treated 'GF 8/1' cuttings

Figure 4 Changes of hormon content during the rooting-periode 'GF 8/1' cutting

Figure 5 Changes of hormon content during he rooting-periode in IBA treated 'GF 8/1' cutting
with IBA the content of the native auxin is increased, so we
could measure a higher concentration of IAA.

Our results lead us to believe that the synthetic auxin treated
in exogenous way, helps to increase the concentration of the
native auxin in the plant organism. In our opinion it can’t be
happened by a direct way, so the synthetic IBA surely not
encourages the synthesis of the native auxins. Our measurements
were accurate and it shows a higher level of the IAA content in
the treated plants. From our experimental results, we have to
conclude, that the explanation of the higher native auxin
concentration can be the synthetic IBA, which links stronger to
the auxin dissimilation enzymes, so the decomposition of the
natural auxins slows down and this results a higher concentration
and a higher activity. Another explanation for the higher IAA
concentration in treated plants is also possibility: the level of the
auxin decomposition enzymes does not grow dramatically, so
the level of the native auxins is less reduced.

To understand a better for the problem, it’s important to
make carry out further experiments. This confirms the
opinion of Breen and Muraoka (1974).

Acknowledgement

Financial support by the OTKA (Hungarian Scientific
Research Foundation, Budapest, Hungary), projects numbers
T34951 and M36652, is gratefully acknowledged.

References

ABA and conjugated IAA in strawberry achene and receptacle

Blazkova, A., Sotta, B., Tranvan, H., Maldiney, R., Bonnet, M.,
metabolism and rooting in young and mature clones of Sequoia

carbohydrate content and movement of CI4 assimilate in plum

and Measurement of Abscisic Acid and Indoleacetic Acid by High
Performance Liquid Chromatography. Plant Physiology 81:
997–1002.

Propagation, Principles and Practices. New Jersey. (199–219,
256–286.)

Howard, B. H. & Ridout, M. S. (1994): Partitioning sources of
rooting potential in plum hardwood cuttings. J. Hort. Sci. 69:
735–745.

of rootstocks on growth and yield efficiency of plum cultivars. Acta
Horticulturae 577: 105–110.

Kefford, N. P. (1973): Effect of a hormone antagonist on the

Rooting and survival potential of hardwood cuttings of 406 species,

Rodriguez, A. & Tames, R. S. (1984): Analysis of 3-Indoleacetic
Acid and Abscisic Acid by High-Performance Liquid Chroma-
tography and Gas-Liquid Chromatography. Analytical Bio-
chemistry 146: 184–190.

rootstocks by hardwood cuttings. Int. Journal of Hort. Sci. 9: (1):
23–28.