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1. INTRODUCTION

Land change and land change modelling have key importance in
a constantly changing world where the activity of mankind results in
enormous transformations and an accelerating modification of natural
environment. All these changes have a diverse range of purposes — either
disadvantageous damages, like illegal logging or beneficial changes in
favor of natural habitat, like creating a landscape corridor for certain
species. It is essential to be able to monitor changes and to project these
changes forward as precisely as possible in order to reveal scenarios that
also provide realistic visions of the future landscape. Land change
modelling is a practical and abstract approach of the real land changes
where the success of a model depends on an enormous number of
possible parameters. Even if the model matches the main land
characteristics of reality, the validation process may substantially distort
the interpretation of results. Therefore, the modeler may be misled by
unrealistic validation results and may support further erroneous land
management decisions based on a wrong model.

In my dissertation | aim to reveal (1) how exactly wrong
practices, which are still widely used among scientists and are frequently
published, may have a bad impact on model performance interpretation;
(2) what good practices there are in literature and how their
appropriateness could be confirmed in a large set of land change models;
(3) how results can vary with some additional circumstances apart from
the parameters of the model itself, like aggregation of land categories
and real change dynamics in the landscape. In this research three sets of
study sites were applied, where three different approaches were
illustrated based on the same cellular automaton-Markov (CA-Markov)
model.

In the first set, a CA-Markov model was run in one specific study
site and intensity analysis was applied for analyzing changes in reference
and simulation data. Intensity analysis is a framework for land change
monitoring. Along with this detailed change monitoring, Figure of Merit
(FOM) and its components were calculated to have an insight to model
performance. FOM is a metric that mainly focuses on the comparison of
reference and simulated changes in a landscape and FOM components
reveal detailed information about correctly and erroneously simulated
pixels. In this case, the effect of the consistency of real landscape change
dynamics on validation results was illustrated.

In the second set of study sites, 114 CA-Markov models were run
with the same model parameters and the same input data, but with
various sizes of study sites and various manners of aggregations of land
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categories. In this case, the effect of various aggregation methods on
model performance was investigated, while illustrations and findings
derived from the comparison of bad and good practices of model
performance validation were presented.

In the third set of study sites, 6 CA-Markov simulation models
were run with the same model parameters in two study sites, focusing on
sprawl-like change dynamics specifically. In this case, the differences in
FOM and FOM component values related to the second set of study sites
were enhanced, and an investigation on the purport of stationarity of land
changes across time was presented.

The research uses remotely-sensed data either directly by
processing Landsat satellite images or indirectly by using Corine Land
Cover data that is also produced based on various remotely-sensed
datasets.

Based on the preliminary literature study, | hypothesized the followings:

e intensity analysis could help the validation process by giving a
deeper insight into changes in the landscape;

e wrong model performance approaches (Kappa Index of
Agreement and Overall Accuracy) mislead the interpretation and
result in high correlation with persistence in the data;

e aggregation of land use/land cover categories does not data affect
model performance;

o the temporal stability in the reference and simulated data affect
model performance.

The innovations of my research are the followings:

e | use intensity analysis in the model validation process;

e | investigate the possible effects of aggregation methods on
model performance;

e | use a large set of model runs to present the ideas above and to
prove some specific results concerning land change modeling
published in scientific literature before.

I have published partial results of this research concerning the
application of intensity analysis in model validation process (Varga et
al., 2019) and the effect of aggregation methods on model performance
(Varga et al., 2020) as part of my Ph.D. publication requirements.

Based on the results of research conducted in the three different
sets of study sites, | developed my theses. My general purpose was to
provide expressive cases that enlighten a deeper correspondence in
validation process and help land change modelers to choose correct and
suitable methods. | hope for a better understanding of possible mistakes
throughout model validation process.



2. LITERATURE REVIEW
2.1. Definitions of Land

It is important to review definitions and approaches of landscape
in order to define the study design appropriately and clearly. There are
several definitions of landscape that have developed with the time
passing by. Alexander von Humboldt was the first to think of a unique
character related to landscapes and characterized landscape as “the total
character of a region” (Farina, 2013). In modern landscape ecology,
Turner et al. (2015) defined landscape as “an area that is spatially
heterogeneous in at least one factor of interest”. According to the
definition in the European Landscape Convention (Council of Europe,
2000), “landscape means an area, as perceived by people, whose
character is the result of the action and interaction of natural and/or
human factors”. In Hungarian literature, Kerényi (2007) defined
landscape as an individuum, a unique part of the geosphere and a spatial
unit whose basic character and boundaries were results of natural
processes, but were modified as a result of anthropogenic activities in
various measures. These definitions point to the fact that landscape has
its own character which helps to discriminate it from other landscapes
and this character is a result of a combination of natural and
anthropogenic processes.

Turner et al. (2015) created a synthetic review of landscape
ecology definitions and applications where the authors summarize the
thoughts of main representatives of this field. According to this
synthesis, Forman (1983) described landscape ecology as dealing with
the relationships and dynamics — like the movement or flow of species,
energy and mineral nutrients — among elements or ecosystems of the
landscape. Risser et al (1984) determined landscape ecology as focusing
on the aspects of spatial heterogeneity of the landscape, mainly the
dynamics, spatial and temporal interactions, management of spatial
heterogeneity, moreover its effects on biotic and abiotic processes.
Forman (1995) published the patch-matrix-corridor model, which
introduced essential terms in landscape science up to this day. This work
determines the following definitions:

e apatch was defined as an area differing from its surroundings in
nature or appearance;

e acorridor was defined as a narrow strip of a particular type which
connects patches and is different from its neighboring areas;

e a matrix was defined as the background land cover type of a
landscape which embraces and involves the other elements in the
landscape.



Turner et al. (2015) also described the landscape ecology definition of
Urban et al (1987) as it states that the motivation of landscape ecology is
a need to comprehend ecological processes and phenomena in terms of
dynamics, spatial scales, temporal scales and role of disturbance.

According to McGarigal (2002), one of the founders of landscape
metrics theory, land cover types are relevant examples of a certain basic
data type of landscape pattern analysis. This data type is categorical map
pattern, named also as thematic or choropleth map, where the subject is
represented as a mosaic consisting of discrete patches. This character is
in accordance with the ecological approach of patches where the patches
are discrete areas of homogeneous conditions from an ecological aspect
(McGarigal, Kevin, 2002).

It is important to summarize the definitions and units which may
occur in the analysis context. Scientists examine land change in a pretty
wide range of researches and publications (Abd El-Kawy et al., 2011;
Kim, 2016; Mallinis et al., 2014; Mallupattu and Reddy, 2013) which
suggests that land change monitoring and land change analysis are really
popular topics. We can find several examples which describe Land Use
(LU) change analyses, Land Cover (LC) change analyses, but more often
these terms are used interchangeably in literature, as land use / land cover
(LULC) change analyses. Even there is abbreviation focusing on
specifically the change of Land Use / Land Cover, which is LULCC
meaning Land Use / Land Cover Change (Naschen et al., 2019; Ozsahin
et al., 2018) and LUCC meaning Land Use/Cover Change (Mas et al.,
2014).

However, there is fundamental difference between definitions of
land use and land cover. DiGregorio and Jansen (2000) defined land
cover as ,,the observed (bio)physical cover on the earth's surface”.
DiGregorio and Jansen (2000) defined land use as it ,,iS characterized by
the arrangements, activities and inputs people undertake in a certain
land cover type to produce, change or maintain it”. Soesbergen (2016)
stated that land cover characterize the physical surface, e.g. presence of
vegetation, and this character is directly observable, but land use
characterize the economic and social functions of land or the purposes of
human exploitation. These definitions all point to the fact that land cover
refers to natural units of the surface which can be visually observed,
while land use is determined by the purpose that the land is utilized for,
and there is a direct relationship between them. Land use and land cover
may even show different characteristics in a given unit of land. For
instance, a residential area is homogeneous in a sense of land use
category, since it is used as mainly permanent residence of the
population, but it is heterogeneous in a sense of land cover category,
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because it may consist of either buildings, roads or green areas (Ver6né
Wojtaszek, 2010).

In this dissertation, land change is in focus in a manner that
different categories of LULC are simulated to a future state by a LULC
change model. The investigation is mainly based on a ready-to-use
LULC database (Corine Land Cover, henceforth referred to as CLC) that
has a well-defined category scheme. This category scheme is consistent
through different versions of Corine databases and this consistency has
substantial importance in the modelling phase of the research. The
Corine category scheme itself has possible shortcomings due to the
various national methods of production (Martinez-Fernandez et al.,
2019) or problems when applied in local scale analyses (Diaz-Pacheco
and Gutiérrez, 2014). These shortcomings are not in the focus of this
research, because CLC Level 3 datasets were aggregated according to
various category aggregation methods, and the possible general
shortcomings of the circumstances of CLC data production may affect
the study design uniformly, if any.

Within this research, there was an individual group of two study
sites where specific land cover categories were determined via
segmentation of remotely-sensed images (Section 3.1.3.). In these cases,
classes were determined based on specific characteristics of the
examined phenomena and visually interpretable objects, which latter
condition is in accordance with the cited definitions of land cover.
Therefore, these cases can be considered more specifically as land cover
(LC) change models, instead of LULC change models.

2.2. Land Change Analysis

Land change monitoring has the opportunity for revealing the
patterns of change and dynamics of change in the landscape (Lambin,
Eric F. etal., 2003; Madrigal-Martinez and Garcia, 2019). Some of these
opportunities are based on crosstabulation matrices of different land
cover maps. Post-classification comparison of remote-sensed land cover
data follows this logic, since this method overlays independently
classified maps originated from remotely sensed data, and creates a
crosstabulation matrix based on this comparison. It can provide a basis
for calculations of LULC changes from one time period to another, and
help to determine the changing areas and what category they turned into
(Jensen, 1996). Many scientists used post-classification comparison for
the change detection analysis of remotely sensed data from various
sources, such as historical aerial photographs or Landsat and ASTER
satellite images (Alo and Pontius Jr, 2008; Alphan et al., 2009; El-
Hattab, 2016; Halls and Kraatz, 2006). This method of establishing a
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crosstabulation matrix and calculating changes of LULC classes can not
only be used in case of remotely sensed data but raster land cover data
derived from any sources, e.g. results of field measurements or maps
generated via visual interpretation, after rasterization.

Intensity Analysis is another approach of describing land cover
change, also based on crosstabulation matrices of maps from initial and
end dates of a time interval. Intensity Analysis is a quantitative
framework to characterize change among categories through time and to
characterize patterns of changes in more and more detailed levels. It has
been used recently in an increasing number of researches worldwide, for
the purpose of analyzing changes in landscape through more time
intervals and even through time intervals with different durations
(Aabeyir et al., 2017; Castro and Rocha, 2015; Quan et al., 2017,
Raphael John et al., 2014; Rocha et al., 2017; Teixeiraet al., 2016; Yang,
Y. et al., 2017). It could have been used for the analysis of other
phenomena as well, such as dynamics of solar radiation (Li et al., 2017).
It has not been widely used in simulation model evaluation issues so far,
although there were papers including the analysis of gains, persistence
and losses of urban and non-urban classes in various urban growth
scenarios (Liu and Feng, 2016). Another example of application was the
examination of the temporal pattern of urban land changes across time
intervals in order to get insight to the dynamics of the study area, right
before setting up a predictive model for urban land changes (Subasinghe
et al., 2016). These examples point to the fact that Intensity Analysis has
started to become a widely used method for monitoring landscape
changes, but it has not been used for monitoring the landscape changes
simulated by a land change model. The first example was our
publication, which is a basis for my dissertation and a practical
application of this theory (Varga et al., 2019).

Landscape and land change analysis are also fundamental and
popular research topics in Hungarian scientific literature or Hungarian
study sites, and the science of the background of land changes has long
traditions in Hungarian science. Landscape in general (Loczy, 2015),
landscape ecology, human transformation (Csorba and Szabd, 2009) or
examination of driving factors (Deék et al., 2016; Ladanyi et al., 2016)
of land change are all research topics of interest among Hungarian
scientists as well.

2.3. Category Aggregation

When establishing a process of land change analysis, it is a relevant
need to aggregate land classes that the scientist intends to analyze.
Handling too many categories may make the analysis complicated to
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perform and interpret. Moreover, the change analysis of too many
categories may distract the focus from outstandingly important changes
in the landscape. The categories in a land change analysis also need to
be comparable, because we cannot analyze appropriately the land change
in a time interval where the definition and membership rules of
categories of the initial and final dates are different. The problem of
category aggregation dates back to the definition of Modifiable Areal
Unit Problem, frequently referred to as MAUP. The problem had been
partly discovered before by Gehlke and Biehl (1934), and was later
thoroughly analyzed and published by Openshaw and Taylor (1979). The
MAUP has two sub-problems (Wong, 2004):

(1) the zoning effect which means whether the number of zones in a
given area is constant and new boundaries are drawn in order to
set up a new zoning system, then the analytical result of the
different datasets gained based on the different zoning systems
will be also inconsistent;

(2) the scale effect is present when spatial aggregation or
disaggregation of data occurs, or the spatial resolution of the data
changes and at least one of these effects leads to inconsistent
analytical results (Wong, 2004).

A typical example of the zoning effect is the phenomenon of
gerrymandering, which is a certain way of drawing the boundaries of
constituencies in order to gain particular political advantages (Johnston,
2002). More papers investigated the scale effect in connection with its
importance in land change monitoring and land change modelling
applications (Jelinski and Wu, 1996). Category aggregation is an
important factor in land change modelling as well, since usually LULC
maps are used as inputs in land change models. The aggregation of
LULC map categories affects if a specific change is present or hidden in
the map, i.e. aggregation of two categories can relevantly change the
pattern of the land mosaic; therefore, the outcome will be biased by the
method itself. According to Olmedo et al. (2018), MAUP is relevant in
land change modelling in a manner that vector-to-raster conversions or
resampling operations have a significant effect on the initial map of the
simulation model, since it influences the cell neighborhood. Mas et al.
(2015) examined deforestation in a case where they aggregated the
information concerning driving factors based on spatial units. They
found that MAUP produced variation, but did not have substantial effect
in most cases, except for some variable pairs and specific cases where
the effect was substantial. Pham (2005) stated that not many researches
focused on the effects of grid size and aggregation on simulation models
despite MAUP’s known effects. Moreover, evidence of MAUP in grid-
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based modelling approach, even theoretical or empirical, is missing
(Pham, 2005).

Pontius and Malizia (2004) introduced a theory called category
aggregation problem (CAP) which states that the category definition is
important due to the fact it has a substantial influence on change in the
map. However, it seems to be obvious that category aggregation affects
the changes in the map somehow, they also introduced 5 principles that
drive the effects of category aggregation and proved them
mathematically. Pontius and Malizia (2004) proved that category
aggregation has a tremendous effect on the confusion matrix used for
accuracy assessment. It means that the accuracy results we interpret,
based on traditional accuracy assessment methods, can vary with the
change of actual categorization. Aldwaik and Pontius (2015) delineated
a possible method for aggregation, the behaviour-based category
aggregation, which intend to aggregate two categories in each step in
order to maintain change as much as possible. They provided a Visual
Basic for Applications (VBA) macro for performing the analysis in
Microsoft Excel environment.

Generalized nomenclatures cannot express the conditions of reality
in details, thus, their suitability is questionable during practical
applications and actions concerning land use. The multidimensional
approach of land use classification dates back to the middle of the
twentieth century and emerged from urban planning due to providing an
opportunity on more project-specific classifications (Guttenberg, 2002).
There are different schemes for aggregating LULC categories in order to
reduce the influence of LULC change examinations on the results as least
as possible. According to Congalton and Green (1999), a classification
scheme should be mutually exclusive and totally exhaustive. Anderson
(1976) suggested the usage of a uniform classification framework with
two levels for LULC data interpreted based on remote-sensing
techniques. He aimed to establish a classification system which can be a
basis for a uniform categorization for satellite and aerial images. There
are even several other classification systems in literature — and practice
— S0 as to represent land cover data by assigning appropriate
grouping/alignment for land cover objects and types, either at global,
continental or local scales (Di Gregorio and Jansen, 2000; Fosberg, 1961,
Herold et al., 2009; Kiichler and Zonneveld, 1988; UNESCO, 1973).
While there are many available category schemes in literature, there is
not any uniformly accepted category scheme, partly because they are
inappropriate for uniform purposes or that the schemes are based on
outdated information (Di Gregorio and Jansen, 2000). However, in many
cases, the scientists perform classification in accordance with a specific
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purpose, because they want to investigate a certain land cover, and a
process like this does not need a comprehensive, but a focused category
scheme (Abriha et al., 2018; Burai et al., 2015; Deak, M. et al., 2017;
Gulacsi and Kovacs, 2018; Kristof et al., 2002).

As CLC data is a Pan-European LULC map and had five releases
with a nomenclature consistent over time, it is a popular source for land
change monitoring issues. This research used the most detailed CLC
Level 3 data with its original classes and the classes were aggregated into
various datasets according to various aggregation methods. The methods
of category aggregation are described in Section 3.4.

2.4. Measurement of Stationarity

Usage of the words “pattern” and “dynamics” in context of land
change are not necessarily related to uniformly accepted definitions.
These words are used in literature characterizing various approaches of
land change issues, like using a dedicated spatial index for the analysis
of land change patterns (Dadashpoor et al., 2019) or studying the
determinants of changes (Verburg et al., 2004b). It is important to have
an insight into the patterns of land change in order to understand the
changes that occur in the landscape. In case of land change, spatial and
temporal considerations are equally important, since land change is a
transition located in a definite place and change process has a beginning
and end in time. There are a few measurements which address land
change pattern analysis. According to Aldwaik and Pontius (2012), if the
change in a landscape is stationary, then the changes in a given time
interval show the same pattern as the pattern in another time interval
(Aldwaik and Pontius Jr, 2012). They published calculations for
determining stationarity in this sense. In their concept, the definition of
stationarity depends on the level of analysis, because it has different
conditions in case of the whole spatial extent, in case of the categories’
gains and losses and in case of transitions between the categories. Sang
et al. (2019) applied this method to analyze stationarity and change
intensity throughout 20 years based on Landsat TM and OLI images.
Runfola and Pontius Jr (2013) used the term temporal stability, which
they describe as the measurement of stationarity, and define as “the
degree to which the rate of land change is consistent over a given
temporal extent”. Markov models predict based on transitional
probabilities and according to Mertens and Lambin (2000) (Mertens and
Lambin, 2000; Runfola and Pontius Jr, 2013) if a Markov model has to
deal with land change process that is not stationary, then it loses its
predictive ability, unless the transitional probabilities are modified.
Pontius Jr and Neeti (2010) stated that it is a good chance for uncertainty
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in land change processes that these processes include human decisions,
which increases the presence of non-stationary changes, while the model
tries to extrapolate stationary changes. Runfola introduced Runfola’s R
value (Runfola and Pontius Jr, 2013) for measuring temporal stability,
also known as stationarity.

This research applies Runfola’s R value for measuring the
temporal stability between time intervals which are used for calibration
and validation of Markov models. This research considers also the
stationarity of calibration changes and changes simulated by the Markov
model and how the difference between these stationarity values
addresses model performance in a large set of simulation models.

2.5. Land Change Models

There is a really wide range of simulation model types in
literature. It is important to position the model used in this study design
in order to have an insight to the purposes and logic of the model.

Lambin et al. (2000) published a paper in the topic of agricultural
land-use models in which they stated that land change processes should
have the purpose of addressing the following questions, at least one of
them:

e WHY? — the question addresses environmental and cultural
variables which explain land change the most;

e WHERE? — the question addresses the locations affected by land
change;

e WHEN? — the question addresses the rate of land change.

Lambin et al. (2000) also published a classic grouping of land change
models where they grouped the models based on addressing these
questions, as follows:

e Empirical-statistical models: these models aim to identify the
causes of changes via mainly multiple linear regression analyses.
These models are able to predict changes which are represented
in the training data and had been measured through a long period
before.

e Stochastic models: these models are based on transitional
probability information which is statistically estimated from
transitions that have been observed in the past.

e Optimisation models: these models are specific for agriculture,
since they are based on land rent theories and the models aim to
approach a status where the land earns the highest rent.
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Dynamic simulation models: these models are based on
biophysical and socio-economic processes and their interaction,
while aiming to simulate these processes. Therefore it is a
system-focused approach and demands the a priori understanding
of the driving forces.

Soesbergen groups models into the following categories based on the
work of Heistermann et al. (2006), as follows:

Geographic models: these models use local characteristics and
suitability to allocate land. The availability of geographic
information systems (GIS) made it possible to develop
geographic models, and they are capable of simulating
phenomena mainly at regional or local scales (van Soesbergen,
2016).

Economic models: these models focus on demand and supply of
land-intensive commodities to allocate land. Computable
General Equilibrium and Partial Equilibrium models (De Rosa et
al., 2016) are examples of this approach, since in case of these
models the allocation is based on market conditions.

Integrated models combine the features of the former two model
types. It combines geographic approach, where geographic
analysis determine the allocation of land, with economic
approach, where world market analysis determines demand and
supply characteristics (van Soesbergen, 2016)

Brown et al. (2013) determined five types of modeling approaches

which are grouped according to both if they emphasize process or pattern
and if they emphasize projection or explanation, as follows:

machine learning: this approach focuses on patterns of change.
The approach uses algorithms for finding relationships between
changes and characteristics of locations where the changes are
observed and derive this information from spatial variables.
Brown et al. (2013) mentions artificial neural network, CART
(classification and regression trees) and logistic regression as
examples of methods used for variable selection in this approach;
cellular approach: this approach focuses on either process or
pattern, since it simulates changes based on combining likelihood
maps with spatial interactions;

sector-based economic models: this approach is purely
economical and addresses demand for land while focusing on the
equilibrium of the market based on demand and supply relations;
spatially disaggregated economic models: this approach is about
to understand land changes as a result of individual decisions in
accordance with microeconomic theories;
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e agent-based approach: this approach focuses on establishing
observed land change via design and content determined by the
user, based on interactions by which the user assumes to
influence the processes.

Van Schrojenstein Lantman et al. (2011) identified further
concepts of land use change in literature in their review, based on
practical considerations: cellular automata, statistical analysis, Markov
chains, artificial neural networks, economics-based models and agent-
based systems. This grouping is a result of a slightly different approach,
but it has a substantial overlap with the ideas of the groupings above.

Models can belong to a combination of groups according to the
cited grouping approaches. In this research, | used CA-Markov model
that simulates transitions among categories and combines the features of
cellular automaton approach and Markov approach. They are also used
separately. Many land change models use Markov extrapolation, like
Idrisi’s Land Change Modeller, Idrisi’s CA-Markov (Eastman, 2012a)
and DINAMICA model (Filho et al., 2002). Cellular automaton is
integrated into model applications individually as well, like it is used in
the SLEUTH model (Clarke et al., 1997; Silva and Clarke, 2002). CA-
Markov belongs to the group of stochastic models and answers the
question of WHEN?, according to Lambin et al (2000), in a manner that
it focuses on the rate of land change based on the past status of land while
does not necessarily consider the reasons for the change. This latter
feature depends on the exact model in which this approach is integrated,
e.g. Idrisi’s Land Change Modeler is capable of involving spatial
variables. The CA-Markov model can implement various weighting
factors (El-Hallag and Habboub, 2015; Myint and Wang, 2006) and has
been applied to specific fields of land change, such as urban growth
(Jalerajabi and Ahmadian, 2013; Sang et al., 2011) and historical land
use research (Clarke et al., 1997; lacono et al., 2015). Previous studies
dealt with the behavior of land change models in terms of quantity and
allocation of land changes, such as in GEOMOD and TerrSet’s Land
Change Modeller applications (Olmedo et al.,, 2015; Pontius and
Malanson, 2005).

CA-Markov is a cellular approach according to the grouping of
Brown et al (2013) and the authors warn about that “these models are
limited in their ability to represent decision making processes” due to
their logic behind the modelling process. In general, land change models
and scenarios are useful inputs for landscape planning and management
and there are researches for the possibilities and circumstances of
utilization in practice (Convertino and Valverde Jr, 2013; Lippe et al.,
2017). I use this model in a large set of model runs in various study areas
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across Europe, North and South America. The driving forces could be so
diverse that managing various forces implemented into spatial variables
would distract the focus of the research. In this research mainly the
metrics and influencing factors of simulation performance are relevant
and the driving forces of land change are irrelevant. The utilization of
the results is relevant in practical aspects, i.e. the validation of a land
change model. The CA-Markov model makes it possible to run the
models without determining driving factors of change in the study areas
and simulate future land changes based on purely the characteristics of
land changes in the past. Furthermore, the model can be run with the
exact same variables throughout the study design, except for the cases of
American study areas, therefore these latter examples were interpreted
separately.

2.6. Land change model validation

When running a simulation model, it is a fundamental need to
characterize the agreement between reference and simulated change.
Turner et al. (1989) published a paper of possible evaluation methods for
spatial simulation models. The author examined metrics for spatial
pattern, spatial predictability and goodness-of fit analyses (Turner et al.,
1989). There are various approaches for simulating a model, depending
on the model itself as well. It is an an extremely widely used method to
compare the simulated LULC map to the map representing the reference
LULC of the same date, and the agreement is characterized by an index
used for accuracy assessment in remote sensing applications, like the
Kappa Index of Agreement or overall accuracy (Grigorescu et al., 2011;
Halmy et al., 2015; Keshtkar and Voigt, 2016; Mishra and Rai, 2016;
Popovici et al., 2018; Singh et al., 2015; Yang et al., 2014). In these
cases, the metrics of agreement between the two maps were used to
evaluate model performance, but these indices evaluate persistent areas
as agreement, and they are capable of returning high agreement values
even if the agreement between reference and simulated changes is low.
Another metric in literature, the Figure of Merit — also referred to as
critical success index (Jollife and Stephenson, 2003; Klug et al., 1992;
Perica and Foufoula-Georgiou, 1996; Pontius Jr, R. G. et al., 2011),
focuses on the intersection of reference and simulated change, making it
possible to approach model performance based on the success of
simulating the changes, not the persistence. Pontius Jr et al. (2011)
examined simulation models from cases published in scientific literature
where the authors derived and presented possible combinations of
comparisons between the relevant maps. Figure of Merit has components
that characterize pixels according to being simulated erroneously or
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correctly, based on a three-map comparison approach of the reference
map, simulated map and a reference map from the previous date which
the simulation was based on. This concept also appears in other scientific
fields, like behavioral analysis (Lerman et al., 2010).

A further approach of model validation is the Kappasimulation
published by Hagen-Zanker (Hagen-Zanker, 2006), which was defined
as ,the coefficient of agreement between the simulated land-use
transitions and the actual land-use transitions”. This index focuses on
whether the changes are explained more by the simulation than they
would be explained by a random distribution. Pontius Jr (2000) revised
the shortcomings of Kappa and advised using further variations of the
index. Pontius Jr et al (2011) later discouraged using Kappa and its
variations due to its baseline of randomness and warned about
misleading results when interpreting this metric while comparing two
maps. They presented a new idea of map comparison via crosstabulation
matrix, by introducing alternatives for measuring disagreement between
the maps, namely quantity and allocation disagreement. While Hagen-
Zanker’s validation method accounts for the transitions in reference and
simulated data, this approach possibly involves a baseline of randomness
as well, due to applying Kappa. Among other indices, Kappa variations
are available in multi-purpose Map Comparison Toolkit software as well
(Visser and de Nijs, 2006).

There have already appeared more complex methods for the
assessment of land cover change simulation models in literature, which
mainly serve the purpose of validating models that involve spatial
variables. One of them is Total Operating Characteristic, as known as
TOC, which monitors the results in term of location and quantity, as it
compares a Boolean variable versus a rank variable and assesses
prediction accuracy at several diverse threshold levels (Pontius Jr, R. G.
and Si, 2014). The TOC shows more extended information compared to
the Relative Operating Characteristic, as known as ROC (Jamal, 2012;
Pontius Jr, R. G. and Batchu, 2003; Pontius Jr, R. G. and Parmentier,
2014). Sensitivity analysis is another method widely used in model
assessment that aims to answer which of the input factors can be
relatively helpful in reducing the uncertainty of the output and which of
them should be eliminated in order to reduce the variance of the output
(Saltelli et al., 2004). Sensitivity Analysis was used in a wide range of
practical applications, such as for parametrization of logistic regression
equations (Van Dessel et al., 2011) and sensitivity analysis of Markovian
models (Cao, X. R. and Wan, 1998; Chan and Darwiche, 2005; Charitos
and van der Gaag, 2006; Renooij, 2010).
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By presenting trends of model validation in literature | aimed to
highlight either the wrong approaches or underline the reasons for their
failures. | also revised the alternatives, by which the modeler can get a
more appropriate insight to model performance. In the following section,
| present the methods | used in this research, along with descriptions
focusing on a methodological aspect, therefore enabling reproducibility
as well.

3. METHODS AND STUDY DESIGN
3.1. Dataset

3.1.1. Corine Land Cover data

In this research Corine Land Cover data (Coordination of
Information on the Environment, henceforth referred to as CLC) was
used, which is a LULC database produced by the European Environment
Agency, managed by the Copernicus Land Monitoring Service recently
(Feranec et al., 2016). In the frame of CLC program, a geographic
information system was established that contains information about land
cover status of years 1990, 2000, 2006, 2012 and 2018. It was produced
at a 1:100 000 scale based on the interpretation of various data sources
by the time and available technological opportunities passing by, e.g.
Landsat-TM, Landsat-MSS, SPOT (HRV XS), IRS, RapidEye and
Sentinel-2 images (Biittner and Kosztra, 2017). A minimal mapping unit
of 25 hectares and 100 m width (latter in case of linear objects) was
applied. The databases were reported as having a thematic accuracy of
85% at least (Biittner et al., 2004; Biittner, 2014; Biittner and Kosztra,
2017). CLC data is a frequently used dataset for various landscape
analysis purposes and land monitoring issues, such as hemeroby studies
or landscape pattern analysis, also in Hungarian study areas (Csorba and
Szabd, 2009; Tari, 2010). Corine Land Cover data is an extremely widely
used data source for a range of subfields of environmental monitoring
(Bielecka and Jenerowicz, 2019; Stathopoulou et al., 2007; Yague and
Garcia, 2004).

CLC datasets were used as input data in study site groups 1 and
2, as described in Sections 3.2.1 and 3.2.2., CLC has the advantage that
it has a nomenclature consistent over time and the manner of data
acquisition represents an approximately regular sampling over time,
since CLC is published every 6 years. However, the images used for data
processing showed a slight deviation from 6 years’ time interval. CLC
nomenclature consists of 3 standard levels in a nested hierarchical order
and the most detailed third level assigns 44 LULC categories (Kosztra et
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al., 2019). Standard level 2 and 1 has a maximum of fewer categories,
therefore aggregating classes into ones with broader definition. This
standard level system was used as an approach for category aggregation.
This approach is described in Section 3.3. in detail. CLC nomenclature
is presented in Appendix 1 in detail.

3.2. Study sites

3.2.1. Study Site Group 1

Study site group 1 (Figure 1) consists of one specific study site
located around Tokaj city and the estuary of Tisza and Bodrog rivers in
the west neighborhood of the settlement. It is a junction of 5
microregions (Tokaji-hegy, Bodrogkoz, Loszos-Nyirség, Hajduhat,
Taktak6z) and is located on the common administrative boundaries of
two counties (Borsod-Abatj-Zemplén, Hajda-Bihar) and two NUTS2
regions (Northern Hungary, Northern Great Plain). Tokaj Wine Region
Historic Cultural Landscape, a UNESCO World Heritage site, and its
traditional vineyards also intersect the study area (Kerényi, 2015; Varga
et al., 2019) This intersection and presence of Natura 2000 sites also
contributes to the protected status of particular parts of the study area.
Lowland chernozem and alluvial meadow soils are dominant, based on
loess coverage, which are appropriate for arable and pasture land use as
well as viniculture. Latter could have been cultivated for centuries due
to favorable local aspect features, however, the area is charged with
intense erosion (Kerényi, 2015). Deciduous forest coverage is typical
mainly in areas with brown forest soil and relatively higher altitude,
alongside the rivers or as afforestation patches sparsely within the S and
SE part of the study site (Dovényi, 2010). Therefore, the land cover
structure is quite heterogeneous, even related to a nationwide scale,
because either forest coverage, extended built-up areas, water bodies,
arable and pasture lands appear together. However, the partly protected
status is an obvious limit for possible land cover changes, and under this
circumstance, the study area shows an extremely low ratio of changing
areas throughout the 12 year-long study time interval.

The maps of the study site were derived from CLC vector data
concerning years 2000, 2006, and 2012, were rasterized into 25 m
resolution maps and the categories were aggregated according to CLC
Level 1 nomenclature (5 categories). The CLC data was available at the
website of the Institute of Geodesy, Cartography and Remote Sensing
(FOMI), Hungary. The maps of 2000 and 2006 were inputs for
calibrating the model, while 2012 served as an input only for validation.
The model simulated a LULC map for 2012, and by calculating FOM

22



and its components, furthermore performing intensity analysis, a
comprehensive study of land changes in the study site was conducted.
FOM, FOM components, and intensity analysis are described in Sections
3.6.2.1 and 3.5.2 in detail.
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Figure 1. Location of study site group 1, consisting of one study site, an area
located around Tokaj, NE Hungary.

3.2.2. Study Site Group 2

In this study site group, models were set up in eight different
landscapes across Europe. The landscapes were selected solely based on
the quantity of changing areas according to CLC change layers for 2000-
2006 and 2006-2012. CLC change layers have been produced with a
finer minimal mapping unit (5 ha; Biittner, 2014)), therefore change
layers contain more detailed information related to a simple comparison
of CLC LULC map layers from different dates. The selected landscapes
were subject to as high ratio of changes as possible in at least one of the
time intervals of the analysis (2000-2006 or 2006-2012). Further
condition for selection was that the study sites must have had 20
categories as a maximum in each relevant date (2000, 2006 and 2012)
according to CLC Level 3 classification, and must have had exactly the
same number of categories in at least the first two dates (2000 and 2006).
The CA-Markov model can handle only the cases where the category
numbers are equal in the calibration interval (interval between 2000 and
2006), therefore the study areas must not have change concerning the
number of categories in the calibration interval. It points to the fact that
the model cannot handle newly appearing or vanishing categories.
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Under the described conditions 24 areas were selected in 8
different landscapes, because in each landscape three zoom levels were
applied. Large (L) zoom level consisted of the whole selected landscape
and two further zoom level were assigned completely within the large
area: medium (M) and small (S) subareas. Therefore, the small subarea
was always a subset of the medium subarea, and the medium subarea
was always a subset of the large subarea. Selected subareas were clipped
from CLC’s 100 m resolution raster layers. The 8 landscapes were named
after the closest cities (Figure 1) in order to identify them more easily.
Finally, all the selected subareas had the following characteristics:

e the subareas had the exact same area by zoom level (L = 62500
ha, M = 15625 ha, S = 2500 ha), therefore the subareas had the
exact same pixel number by zoom level;

e all the subareas had the exact same 100 m pixel resolution,
independently from zoom levels;

e the subareas had the exact same category numbers in 2000 and
2006;

e the subareas had the largest ratio of changing area possible.
Classes of all the 24 areas were aggregated according to various
aggregation methods described in Section 3.3. and Figure 5 in detail.
Therefore, five LULC maps were created in all the 24 areas — original
data and further four ways of aggregation — which increased the number
of observations to 120 (= 8 landscapes * 3 zoom levels * 5 aggregation
methods). There were 6 exceptions in case of one aggregation method
where the aggregation did not make sense — reasons detailed in Section
3.3. — which resulted in 114 cases altogether. For all these 114 cases,
CA-Markov models were run, and further variables were calculated
concerning model performance (FOM, FOM components, quantity and
allocation disagreement of simulation), comparison of reference and
simulated 2012 maps (Overall Agreement, Kappa index of Agreement),
simple metrics of changing areas and temporal stability.
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Figure 2. Study sites of study site group 2. The sites are located across Europe, specifically across the area of EEA
countries, covered by Corine Land Cover dataset. The figure also presents zoom levels (large, medium and small)
assigned with squares with different colors inside the study sites, in CLC 2012 LULC maps. The original figure was
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3.2.3. Study Site Group 3

This group consists of two study extents (Atchafalaya Bay area,
Amazonian area) and 4 more subareas, generated by stepwise zooming
into the extents, similar to the process in study site group 2. Altogether
there were six areas in this group, two large (L), two medium (M) and
two small areas (S). These study extents are located in America (Figure
3) and they have several characteristics that discriminate them against
the other two study site groups.

These two extents were assigned in order to specifically test the
performance of the model in areas where the changes show a sprawl-like
pattern, i.e. change that is concentrated in the areas neighboring the
original categories. In Atchafalaya Bay the main accelerator of changes
is delta accumulation (Atchafalaya River delta and Wax Lake Outlet).
Studies about the delta accumulation dates back to the 1980°s (DeLaune
et al.,, 1987; Tye and Coleman, 1989). In the Amazon, the main
accelerator of dramatic changes is deforestation, which is a long-term
problem in Brazil (Carvalho et al., 2019), but the problem has renewed
in the last years partly due to the new governmental attitude (Carvalho et
al., 2019; de Area Ledo Pereira, E. J. et al., 2019). Both described
environmental changes can be regarded as clear examples of sprawl-like
phenomena.

The processing scheme of these study extents was also different,
because the maps were derived from Landsat Thematic Mapper images.
These images were downloaded from Earth Explorer website of the
United States Geological Survey, as known as USGS (U.S. Geological
Survey, 2016). Landsat images are widely used in scientific researches
(Almeida et al., 2016; Ruelland et al., 2008; Viana et al., 2019; Zhu and
Woodcock, 2014), partly due to their long-term availability, since it has
provided continuous data from the 1970’s. This long-term availability
and relatively dense — 16 days — revisit time makes it possible to perform
long-term monitoring studies. These two study sites are not covered by
CLC area of interest, thus it was impossible to use the same dataset for
the analysis as in the other two study site groups. Since these two areas
were also subjects for running CA-Markov models, they had to meet the
requirements of running CA-Markov, e.g. equal number of categories in
all maps. These two areas’ analysis also had the special purpose of
modelling sprawl-like phenomena. That is why the LULC maps were
evolved by determining 2 categories in both study sites, enhancing the
relevant phenomena. First category determines the category that would
potentially sprawl in terms of the examined phenomenon, and the other
category functions as the background and target of the change generated
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by the phenomenon. Therefore the first category, e.g. deforestation in the
Amazonian study site, is presumed to show a large amount of gain, while
the other category (forest) loses area along with the spread of
deforestation, thus suffering the change.

Three Landsat images were processed in each study area from
three different dates with quasi-equal time intervals between them. It was
a requirement when downloading the images that they must have been
acquired in the same season (or with a maximum of 2 months difference
within the same period of the year). The images were acquired in 1990,
2000 and 2010 with almost equally 10 years between them in case of the
Amazonian site. The images were acquired in 1990, 2003 and 2016 with
almost equally 13 years between them in case of the Achafalaya Bay site.
They were processed in Trimble eCognition software via segmenting the
images by a multiresolution segmentation ruleset and the segments were
classified into two categories based on visual interpretation. The
segmentation process was supported by using NDVI layer in case of
forest and MDNWI layer in case of water, in order to identify forest and
water land covers more effectively. These indices could be computed
based on the original bands of Landsat images (Baret et al., 1989;Xu,
2006). The accuracy assessment procedure was performed in accordance
with Congalton’s (1991) and Cochran’s (1977; Olofsson et al. 2014)
recommendations. The reported overall accuracy was over 85% in each
map. The same processing scheme was used in this case as in a study
area in Nyirség, NE Hungary before, where we achieved high
classification accuracy related to a pixel-based classification approach.
Furthermore, a pixel-based classification approach frequently results in
salt and pepper effect that would be disadvantageous when analyzing a
sprawl-like phenomenon. We reported the accuracy results of this
processing scheme in Varga et al. (2014). In order to match the resolution
of study site group 2 maps, the two-class LULC maps were resampled
from the original 30 m spatial resolution of Landsat to 100 m by the
nearest neighbor resampling method.

Based on the CA-Markov simulations, further variables were
calculated, similar to study site group 2, concerning either model
performance (FOM, FOM components, quantity and allocation
disagreement of simulation), comparison of relevant reference and
simulated maps of 2010 and 2016 (Overall Agreement, Kappa index of
Agreement), simple metrics of changing areas or stationarity (Runfola’s
R values).
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Figure 3. Study sites of study site group 3. One site is located around Atchafalaya Bay

and Wax Lake Outlet, one site is located in Amazonia, Brazil. The overview map is
presented based on an Open Street Map layer (CC-BY-SA).

3.3. Aggregation methods

In this section, the summary of aggregation methods used in study
site group 2 are described. To provide a clear overview of these
aggregation methods, an example of the classification schemes applied
in a specific study site is presented in Figure 5 at the end of Section 3.3.

3.3.1. Corine Standard Levels

CLC classification scheme has a nested hierarchical
nomenclature with 3 standard levels. The CLC dataset basically classify
all the areas of EEA countries into 44 categories, processed with respect
to match a thorough technical guideline (Biittner et al., 2004). When
updating CLC datasets, new remotely-sensed datasets and technologies
with more developed features were involved in the processing workflow,
keeping up the pace with continuously developing technological
innovations (Biittner and Kosztra, 2017). Although the processing
methods and the base data varied in case of different CLC datasets over
time, there are uniform characteristics that remained consistent over
time, namely the 25 ha minimal mapping unit and the guaranteed 85%
thematic accuracy. These uniform characteristics ensure a relatively
common basis for analyses of the datasets (Biittner, 2014).
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In this research, all the three hierarchical levels of CLC datasets
were used. The areas determined by study site group 2 were clipped from
CLC Level 3 dataset, with respect to equal category numbers in 2000 and
2006, and with a maximum of 20 categories in all study sites. CLC Level
3 is a category scheme that was used in the analysis as a basis and no
aggregation was performed in the data at all. However, all the
aggregations were based on this data. Throughout the analysis, this
scheme is referred to as CLC Level 3 (L3) method.

CLC Standard Level 2 is a superior hierarchy level related to
Level 3, and classifies Level 3 categories into a maximum of 15
categories. The categories were aggregated based on the hierarchical
nomenclature scheme by a reclass procedure. Throughout the analysis,
this aggregation is referred to as CLC Level 2 (L2) aggregation.

CLC Standard Level 1 is a superior hierarchy level related to
Levels 2 and 3, and classifies all categories into a maximum of 5
categories. The categories were aggregated based on the hierarchical
nomenclature scheme by a reclass procedure. Throughout the analysis,
this aggregation is referred to as CLC Level 1 (L1) aggregation.

3.3.2. Behavior-based category aggregation

The main aim of this type of aggregation method is to maintain
net change, which is the change originating from quantity differences
between two dates (Aldwaik et al., 2015). This information can be
derived from an error matrix set up between the maps of the two dates.
There is a Visual Basic for Applications (VBA) macro published by the
authors of the concept for extracting this information and to follow step-
by-step whether various types of change starts to decrease when
aggregating a pair of classes. The macro advises pairs of classes to
aggregate while shows the actual net and swap change for the user
(Figure 4 and Table 1).

29



Percentage of
Swap and Net Change

1.60
1.40
1.20
1.00

0.80 = Swap (%)

0.60 m Net change (%)

0.40

0.20

0.00

[as B |
— e

L= e e N~ o TR S o o'
—

—
—

Number of categories

Figure 4. Diagram produced by behavior-based category aggregation VBA macro
when performing aggregation of study site Malung, zoom level L. The diagram shows
different types of change metrics and the decrease in change metrics when reaching
different numbers of categories. Net change is change originating from quantity
differences between two dates, swap change is a type of change originating from
location.

Swap change is a type of change attributed to location (Pontius Jr
et al., 2004). The user can decide in each step if they want to continue
with aggregation. The macro does not perform the aggregation, just show
a possible scenario for aggregations and their consequences regarding
net change. This macro was used for executing the aggregation for all
the study sites and all zoom levels, 24 areas altogether. However, this
aggregation concept has not been capable of managing more than one
time interval simultaneously in a manner that considers the changes in
both time intervals. That is why the L3 classes of the calibration interval
were aggregated dictated by the behavior-based aggregation method,
then the classes of validation interval were aggregated similarly to the
aggregation rules of the calibration interval. In this way, the categories
of the two time intervals became comparable and were influenced by
hidden changes the least as possible. Throughout the analysis, this
aggregation is referred to as behavior-based (BB) aggregation.
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Table 1. Table edited on the basis of information provided by behavior-based category
aggregation VBA macro when performing aggregation of study site Malung, zoom level
L. The table shows different types of change metrics and their decrease while advising

aggregation of certain pairs of categories.

Number Total Swa Net Type of Aggregated
of Change (% )p change Order of Aggregation yp Cate gogrieg
Categ. (%) 0 (%) g
Pastures N/Dormant
13 1.36 1.25 0.10 & &
Inland marshes N/Dormant
Aggregated 13 N/Dormant
12 1.36 1.25 0.10 & &
Broad-leaved forest N/Dormant
Non-irrigated arable land N/Dormant
11 1.36 1.25 0.10 & &
Aggregated 12 N/Dormant
Aggregated 11 N/Dormant
10 1.36 1.25 0.10 & &
Water courses N/Dormant
Aggregated 10 N/Dormant
9 1.36 1.25 0.10 & &
Complex cultivation patterns N/Dormant
Discontinuous urban fabric N/Dormant
8 1.36 1.25 0.10 & &
Aggregated 9 N/Dormant
Aggregated 8 N/Dormant
7 1.36 1.25 0.10 & &
Water bodies N/Dormant
Land principally occupied by
agriculture, with significant L/Loser only
6 1.36 1.25 0.10 areas of natural vegetation &
& L/Net losing
Peat bogs
Aggregated 6 L/Net losing
5 1.36 1.25 0.10 & &
Coniferous forest L/Net losing
Mixed forest G/Net Gaining
4 1.35 1.25 0.10 & &
Transitional woodland-scrub G/Net Gaining
3 1.32 121 0.10 -

3.3.3. Threshold-based category aggregation

This aggregation is an arbitrary manner of aggregating the
categories, where the user can determine a threshold which they respect
as being important. Here, a 0.1% of changes of the total actual study area
was determined to be the threshold, and all categories that showed a
change less than 0.1% of the actual study area, were aggregated into a
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collective category. This collective category was called Other, referring
to its character of collecting every category that did not meet the
requirement. Therefore, this category can be thematically diverse. If in a
specific study area there were only categories which show larger changes
than 0.1% of that study area, respectively, then neither of them would be
aggregated into a category called Other. This situation occurred in 6
areas from the 120 areas altogether, consequently there were 114 model
runs at all. Throughout the analysis, this aggregation is referred to as
threshold-based (TB) aggregation.

Figure 5 is a comprehensive summary of category aggregations,
presented via the example of study site Malung, zoom level L. This area
originally consisted of 13 categories in CLC Standard Level 3, and these
categories were aggregated into Standard Level 2 and Standard Level 1
according to the CLC hierarchical scheme. L2 has broader definitions of
categories than L3, and L1 has even general categories with basic LULC
definitions that opens the door for categories with mixed characteristics.
BB aggregation aggregated classes into thematically extremely diverse
categories, e.g. aggregating urban areas and water in acommon category,
while focusing on maintaining changes in the area. TB also focused on
enhancing the changes in the area, but with determining a strict threshold
of changes that they cannot exceed. However, the aggregations could
vary with modifying this strict threshold.
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Figure 5. Flowchart of various aggregation methods in study site Malung,
Zoom level L.
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3.4. CA-Markov Model

In this research, a combined CA-Markov modelling method was
applied in Idrisi Selva software environment. Markov-chain models are
stochastic models, their output is distribution among states, which is
based on the probability of transitions (Baker, W., 1989). They can
model the future state of a system based purely on its preceding states
(Eastman, 2012a). Markovian models are often used for projections of
land cover in GIS workflows, based on transition probability tables,
which are set up by gaining information about transitions concerning the
areas of land cover categories (Mas, J. F. and Vega, 2012).

Markov analysis in land cover change prediction is based on the
state of a system at time #1 and time #2. During the Markov analysis,
transition probability matrix, transition area matrix and conditional
probability maps are produced based on the input data, which can be
considered as the training data. The transition probability matrix gives
the likelihood of change of a pixel of a given class in the next time
interval (between time #2 and time #3) and provides information about
the probability of that a pixel characterized with a certain category
transitions into a different category (Bruzzone and Serpico, 1997; Loczy,
2010; Schweitzer, 1968; Singh et al., 2015). A collection of transition
probability matrices shows the probabilities of all relevant combinations
of transition.

The transition area matrix gives the number of pixels expected to
change from a given class to all other classes. The conditional probability
maps give the probability that each pixel will belong to the designated
class in the next time interval, reporting the probability that each class
type would be found in each pixel, as a projection from the time#2 map
(Eastman, 2012a; Eastman, 2012b).

The cellular automaton was introduced by Neumann and Ulam in
the 1940’s through the problem whether self-reproduction of biological
systems can be described only by mathematical formulas and logical
rules in case of driving factors (Benenson and Torrens, 2004). Cellular
automata consist of a regular grid of cells which sets out a dynamical
system considering time and space as being discrete. The neighboring
cells’ previous states determine the state of the cell itself, and it is
updated in discrete time steps based on identical rules (Sipper, 1997).

The CA-Markov model is a combination of the cellular
automaton and the Markov chain analysis, implementing the capability
of Markov analysis to project forward in time and also the cellular
automaton’s sensitivity to the neighborhood. Thus, the module is capable
of projecting a state for time #3 based on states of time #1 and time #2,
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according to the matrices of Markov analysis step, while considering the
states of neighboring cells and suitability of pixels for each category of
the map. Therefore, the Markov analysis helps to determine the quantity
of change and CA-Markov analysis step helps to determine the spatial
allocation of change (Eastman, 2012a; Mas, Jean-Frangois et al., 2014).
There are specific transition rules for the model, which can be
mathematically expressed, and they govern the changes of cell
characteristics during the projection, i.e. the simulation process (Mitsova
etal., 2011).

It is important to declare the following references that | use while
describing the study design:

o | refer to the time interval between time #1 reference map and
time #2 reference map as calibration interval, which is used for
training or calibrating the model;

o | refer to the time interval between time #2 reference map and
time #3 reference map as validation interval, which is used for
the validation of the model;

o | refer to the time interval between time #2 reference map and
time #3 simulation map as simulation interval, where time #3
map assigns the map produced by the simulation model.

In study site groups 1 and 2, as in these cases CLC data is applied, the
following statements are true:
e the time #1 map is the LULC categorical map of 2000;
e the time #2 map is the LULC categorical map of 2006;
e the time #3 map is the LULC categorical map of 2012;
e the time #3 simulation map is the 2012 LULC map simulated by
the CA-Markov model.
Therefore, the following time intervals are used in these study site
groups:
o calibration interval is the interval between 2000 reference map
and 2006 reference map;
e validation interval is the interval between 2006 reference map
and 2012 reference map;
e simulation interval is the interval between 2006 reference map
and 2012 simulation map.

In study site group 3, the following statements are true for the site located

in Amazonia:
e the time #1 reference map is the LULC categorical map of 1990;
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e the time #2 reference map is the LULC categorical map of 2000;
e the time #3 reference map is the LULC categorical map of 2010;
e the time #3 simulation map is the 2010 LULC map simulated by
the CA-Markov model.
Therefore, the following time intervals are used in the study site located
in Amazonia:
o calibration interval is the interval between 1990 reference map
and 2000 reference map;
e validation interval is the interval between 2000 reference map
and 2010 reference map;
e simulation interval is the interval between 2000 reference map
and 2010 simulation map.

In study site group 3, the following statements are true for the site located
in the Atchafalaya Bay:
e the time #1 reference map is the LULC categorical map of 1990;
e the time #2 reference map is the LULC categorical map of 2003;
o the time #3 reference map is the LULC categorical map of 2016;
Therefore, the following time intervals are used in the study site located
in the Atchafalaya Bay:
e calibration interval is the interval between 1990 reference map
and 2003 reference map;
o validation interval is the interval between 2003 reference map
and 2016 reference map;
e simulation interval is the interval between 2003 reference map
and 2016 simulation map.

The models were solely based on preceding states, and no driving factor
was included. Besides the input time#1 and time#2 categorical maps, an
iteration number and contiguity filter are further obligatory parameters
in the model. Iteration number is advised to be the number of years that
the modeler wishes to project forward (Eastman, 2012a), so an iteration
number of 6 in study site group 1 and 2, and iteration numbers of 10 and
13 in study site group 3. The contiguity filter is a 5x5 spatial filter as
default, with a possibility to change, but there was no specific or obvious
reason to change this parameter.

3.5. Change analysis

3.5.1. The error matrix

The definition of error matrix was introduced by Congalton
(1991). “An error matrix is a square array of numbers set out in rows
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and columns which express the number of sample units (i.e., pixels,
clusters of pixels, or polygons) assigned to a particular category relative
to the actual category as verified on the ground.” (Congalton, 1991).
Error matrix is also known as either crosstabulation matrix, confusion
matrix or contingency table. Crosstabulation matrix is a commonly used
tool as a basis for accuracy assessment in remote sensing and various
metrics can be derived from the values of the matrix (Foody, 2002).
Frequently derived values are commission and omission errors, also
known as user’s and producer’s accuracy (Story and Congalton, 1986).
Gopal and Woodcock (1984, 2010) advised a fuzzy approach, where the
interpretation of the matrix exceeds the idea of simple agreement and
disagreement, but extends to a larger set of possible responses, like
acceptable or understandable situations.

In Table 2 and 3 different interpretation options of the
crosstabulation matrix are presented. Table 2 shows the interpretation of
a crosstabulation matrix used in accuracy assessment of remote sensing
applications, for the purpose of the comparison of reference and
classified image data. In these cases, columns assign the reference data,
rows assign the comparison data.

Table 2. The interpretation of a crosstabulation matrix with an approach of
comparison of reference and classified image data, based on the published
theoretical description of Congalton (1991).

REFERENCE DATA

Class A

Class B

Class C

Class A

pixels classified

correctly

number of pixels
that belong to class
B in reference data
and belong to class
A in comparison
data

number of pixels
that belong to class
C in reference data
and belong to class
A in comparison
data

Class B

number of pixels
that belong to class
A in reference data
and belong to class
B in comparison
data

pixels classified

correctly

number of pixels
that belong to class
C in reference data
and belong to class
B in comparison
data

Class C

COMPARISON DATA

number of pixels
that belong to class
A in reference data
and belong to class
C in comparison
data

number of pixels
that belong to class
B in reference data
and belong to class
C in comparison
data

pixels classified

correctly
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Table 3 shows the interpretation of a crosstabulation matrix used
in change analysis, for the purpose of the comparison of categorical maps
from different dates. In LULC change analysis, maps can be compared
on the basis of a confusion matrix from different dates, and unlike
thematic accuracy assessment, there is no reference in this case. Rows
(first date) and columns (second date) have equal role and the result is
not the error, but the quantified change. The raw information are the pixel
quantities in the matrix diagonal which indicate the persistent areas
(Pontius Jr et al., 2004) that corresponds the overall accuracy in thematic
accuracy assessment (Congalton, 1991). We can also calculate the
changes of the first map against the other one, or vice versa, and can
reveal what class another one turned into, therefore we can also reveal
what was the previous land class before the conversion.

Table 3. The interpretation of a crosstabulation matrix with an approach of
changes in the landscape between two categorical maps of different dates (Time
1 and Time 2), based on the published theoretical description of Pontius et al.
(2004)

TIME 2 MAP
Class A Class B Class C
Class A | persistence pixels changed from | pixels changed from
class A to class B class A to class C
Class B | pixels changed from | persistence pixels changed from
class B to class A class B to class C

TIME 1 MAP

Class C | pixels changed from | pixels changed from | persistence
class C to class A class C to class B

3.5.2. Intensity analysis

A deeper change analysis was performed in study site group 1
based on the error matrices. Intensity analysis is a method to quantify the
change intensity of a categorical variable at interval, category and
transition levels across different time intervals. The method was applied
to examine LULC changes with a Microsoft Excel VBA macro
introduced by Aldwaik and Pontius (2012). We can use different error
matrices as inputs according to the number of time intervals we intend to
investigate. Aldwaik and Pontius (2012) published an equation which
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gives the uniform rate of change for the entire time extent of
investigation, and this uniform rate would exist if the rate of overall
change would be perfectly stationary through the entire temporal extent
of investigation. The relation of actual changes in a specific time extent
and uniform change is a key factor in intensity analysis.

Interval level shows that during the temporal extent of
examination the change of land cover was slow or fast according to the
uniform intensity. This uniform intensity can be expressed by a
hypothetical value that concerns a perfectly stationary change pattern
during overall change. If the annual change value exceeds this uniform
intensity value, then change can be regarded as fast for that time interval.
If annual change value is less than uniform intensity value, then change
can be regarded as slow for that time interval.

Category level shows whether a category is active or dormant
within a given time interval, based on a uniform intensity value as well
— for that specific interval. This level concerns the annual gain and loss
of each categories and relates them to the uniform intensity value of that
time interval. If the annual gain or loss intensity value is less than
uniform intensity, then the category’s gain or loss is dormant concerning
that time interval. If the annual gain or loss intensity value is more than
uniform intensity, then the category’s gain or loss is active concerning
that time interval. If the change was uniform across the landscape, then
all the categories’ annual gain and loss intensity value would equal the
uniform intensity. We can regard a category as being stationary in terms
of losses or gains if its intensity value is more or less than the uniform
intensity across all the examined time intervals.

Transition level focuses on given transitions from one category
to another. This level focuses on which category gains the loss of another
one, and vice versa, and based on these observations, we can determine
which categories are targeted or avoided by another category’s loss or
gain (Aldwaik and Pontius Jr, 2012; Aldwaik and Pontius Jr, 2013).

It is useful to highlight that intensity analysis determines the followings:
e the changes in a certain time interval are fast or slow related to
uniform change;
e acategory is active or dormant in terms of gains and losses;
e a category is targeted or avoided by transitions in the actual
spatial extent.
For performing intensity analysis the equations of Pontius et al (2013)
(Pontius Jr et al., 2013) were used, because the durations of time intervals
are identical throughout the time extent in this case. Aldwaik and Pontius
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(2012) equations concerning intensity analysis focus on time intervals
with different durations.

3.6. Model validation

3.6.1. Approaches that does not distinguish land persistence and model
performance

3.6.1.1. Kappa Index of Agreement

Kappa Index of Agreement, henceforth referred to as KIA, is
often called as Kappa statistics or Kappa coefficient as well. KIA
originates from Galton (1982), but its origin was frequently associated
with Cohen (1960). It was later invoked for the purposes of accuracy
assessment of remotely sensed data (Rosenfield and Fitzpatrick-Lins,
1986), on the grounds of Congalton et al. (1991) and Congalton and
Mead (1983) articles. The exact calculation is often cited from Bishop et
al. (1975), but it can be found in literature in a way easier to interpret as
well (Banko, 1998). Equation 1 gives the formula of Kappa coefficient
based on Bishop (1975), published by Mather (2004):

' T
K = N Yi—qXii — Xj=1 Xit+ X4i
- NZ_ZT it Xowi
=1 M+ +1

(Eqg. 1.)

where K = Kappa coefficient; x;i = diagonal entries of the error matrix;
Xi+ = sum of row i of the error matrix; x+i = sum of column i of the error
matrix; N = total number of elements in the error matrix.

There are more Kappa variations which were introduced by
Pontius (2000), but Pontius and Millones (2011) advised to use quantity
and allocation disagreement indicators instead of these kappa variations.
There is no uniform scale to interpret Kappa value, however, several
approaches exist for assessing the results e.g. Viera and Garrett (2005)
or Fleiss (1981).

| used KIA for the purpose of measuring the agreement between
the reference 2012 and simulation 2012 maps. As it is described above,
it is an often used method for validation of a land change model, but it is
an incorrect approach to the problem. By calculating KIA, | intend to
present the flaw of this index in case of using it for model validation.

3.6.1.2. Quantity and allocation disagreement as a tool for accuracy
assessment in remote sensing applications

Quantity and allocation disagreements are indices introduced for
accuracy assessment purposes instead of Kappa variations and give a
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more reliable insight of disagreement between the maps concerning
errors of quantity and allocation differences. Pontius and Millones
(2011) defined quantity disagreement as ,,the amount of difference
between the reference map and a comparison map that is due to the less
than perfect match in the proportions of the categories”. Pontius and
Millones (2011) defined allocation disagreement as “the amount of
difference between the reference map and a comparison map that is due
to the less than optimal match in the spatial allocation of the categories,
given the proportions of the categories in the reference and comparison
maps ”. Both of them can be calculated by values derived from the error
matrix of the comparison and reference maps, and their sum returns the
total disagreement of the comparison and reference map, which is equal
to the complement of the proportion of pixels that belong to the same
class in both maps (Pontius and Millones, 2011). The following formulas
of quantity disagreement (Eq. 2.) and allocation disagreement (Eq. 3.)
were published by (Warrens, 2015a) based on (Pontius Jr, R. G. and
Millones, 2011):

1
Q= 2 §=1|p+i — Di+l (Eq.2.)

where Q = quantity disagreement; pi+ and p+i are row and column total
of the error matrix; c=number of categories; C=number of units (pixels)
classified correctly.

C C C
Z MIN(PH»PH)] - Z Pii = [Z MIN(P+irPi+)] —-C
i=1 im1 im1

(Eq.3.)

where A = allocation disagreement; pi+ and p+i are row and column total
of the error matrix; c=number of categories; C=number of units (pixels)
classified correctly.

A=

The sum of quantity and allocation disagreement gives the total
disagreement (Pontius Jr, R. G. and Millones, 2011). The calculations in
Equation 2 and 3 can be conducted automatically by a macro called the
PontiusMatrix, which is freely available at Dr. Robert Gilmore Pontius
Jr's website (http://www2.clarku.edu/~rpontius/) and was developed
especially for this purpose. The spreadsheet returns the components of
these calculations (quantity, exchange, shift) which gives the quantity
disagreement (quantity component), allocation disagreement (sum of
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exchange and shift component) and total disagreement (sum of quantity
and allocation disagreement) (Pontius and Santacruz, 2014). Warrens,
(2015b) also published formulas for relative quantity and allocation
disagreement indices which are category-level variants of original
quantity and allocation disagreement indices. The complement of total
disagreement is the overall agreement (OA), also referred to as overall
accuracy, which is the sum of correctly classified pixels in the
crosstabulation matrix. | did not calculate quantity, allocation or total
disagreement values, only their complement, the overall agreement
between reference and simulation time#3 maps. Using these metrics for
calculating disagreement between reference and simulation time #3
maps would be just as misleading as calculating Kappa and overall
accuracy. | presented quantity and allocation disagreement to underline
the differences between them and their namesake: the quantity and
allocation errors used for determining quantity and allocation errors of a
simulation (Section 3.6.2.2). | calculated overall agreement in case of
study site groups 2 and 3 in order to present the flaw of this concept in
model validation applications.

3.6.2. Approaches that distinguish land persistence and model
performance

3.6.2.1. Figure of merit and components

The figure of merit (FOM) is a measurement which characterizes
the match of observed and simulated change, latter projected by a
simulation model. The FOM is calculated as dividing the intersection of
observed and predicted change by the sum of observed and predicted
change (Pontius et al, 2008; Klug et al. 1992; Perica and Foufoula-
Georgiou 1996). If the observed and simulated change did not match at
all, the FOM would return a value of 0%. If the observed and simulated
change matched perfectly, the FOM would return a value of 100%. By
calculating FOM components, we can get the various types of errors and
agreements expressed as a ratio of the actual study area. The FOM
components provide a deeper insight into the errors of changes, as
follows:
e Hits = area of reference change simulated as change to the right
category (agreement);
e Misses = area of reference change simulated as persistence (error)
e Wrong Hits = area of reference change simulated as change to a
wrong category (error)
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o False Alarms = area of reference persistence simulated as change
(error)

FOM can be calculated based on FOM components (Pontius Jr, R. G. et
al., 2011) as expressed in Equation 4:

Hits(100%)
Misses+Hits+Wrong Hits+False Alarms

FOM =

(Eq.4.)

FOM components were calculated by ‘lulcc’ package (Moulds et al.,
2015) available in R software. A further component interpretable as
agreement, called Correct Rejection, can be described as the persistence
simulated as persistence. These metrics were calculated in case of all
study site groups.

FOM components can be visualized for each pixel of the LULC
map by a raster calculator command, in softwares where the
implementation of conditions is possible when performing raster
calculations. | visualized FOM maps by applying the following nested
conditional expression in ArcGIS raster calculator:

Con((SIM2 == REF2)&(REF2 == REF1),1,Con((REF1 ==
REF2)&(REF2 != SIM2),2,Con((REF1 != REF2)&(REF1 =
SIM2)&(REF2 = SIM2),3,Con((REF1 != REF2)&(REF2 ==

SIM2),4,Con((REF1 != REF2)&(REF1 == SIM2),5,0)))))

where REF1 = time #2 reference map; REF2 = time#3 reference map;
SIM2 = time #3 simulation map, and the numbers return the FOM
components according to the conditions.

3.6.2.2. Quantity and allocation disagreement as a tool for validation of
a simulation model

There are two other metrics with a different purpose, but with an
identical name of quantity and allocation disagreement. These two
metrics aim to determine the error of simulation due to quantity of
predicted change (quantity disagreement) and due to allocation of
predicted change (allocation disagreement). | aim to distinguish these
two metrics from quantity and allocation disagreement of Pontius and
Millones (2011) unambiguously, by adding the abbreviation of the word
simulation (As and Qs) when referring to them. These metrics were
described by Liu et al. (2014) and Chen and Pontius (2010). According
to Chen and Pontius (2010), quantity disagreement in terms of observed
and predicted change, measures “how much less than perfect is the match
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between observed and predicted quantity of change”. According to Chen
and Pontius (2010), allocation disagreement in terms of observed and
predicted change, measures “how much less than optimal is the match in
the spatial allocation of the changes, given the specification of the
quantities of the changes in the observed and predicted change maps.”
Equation 5, 6 and 7 determine these metrics based on Chen and Pontius
(2014) presenting the calculation of these metrics based on FOM
components, as follows:

Qs = |Predicted Change — Observed Change| =
|(False Alarms + Hits) — (Misses + Hits)| = |False Alarms —

Misses]| (Eq 5)
Ag = (False Alarms + Misses) — Qg =

2 x MIN(False Alarms, Misses) (Eq 6)
Ts = False Alarms + Misses = Qs + Ag (Eq. 7)

where Qs= error due to quantity of predicted change; As= error due to
allocation of predicted change; Ts = total error in predicted change; FOM
components are as defined in section 3.6.2.1., and all the variables are
expressed as a percent of the study area.

These metrics were calculated in case of study site groups 2 and 3.

3.7. Variables concerning Stationarity

We measured Runfola’s R index in the relation of either
calibration and validation intervals or calibration and simulation
intervals. R index characterizes the temporal instability between time
intervals by returning a proportion of change to be reallocated to the
other time interval in order to achieve a uniform change during the whole
time extent. If R index is 0, then change is perfectly stable. If R is
increasing, the change is getting more unstable (Runfola and Pontius Jr,
2013). This measurement is influenced by three factors, one is the
duration of the investigated time interval and another one is the temporal
extent. Since this research includes models that use calibration and
validation time intervals with the same durations, these two factors were
constant throughout most of the research. One further factor, the annual
change during each time interval, may influence Runfola’s R value. Also
based on Runfola and Pontius (2013) Runfola’s R index is calculated as
in Equation 8:

44



_ Y- HMAXIMUMI[O,(Se=U)]*(Yer1—Ye)}
Ux(Yr—Y1)

R

(Eq. 8)

where St = annual change; U = uniform annual, observed in case of
change was perfectly stable during the whole examined time extent; Yt
= year at time point assigned with t.

3.8. Other variables concerning change

Other simple metrics were calculated concerning the number of
categories and overall change between reference maps, or between
reference and simulation maps used in the analysis. These simple metrics
can give insight from different aspects into the variation of changes with
applying various category aggregations. These variables were the
followings:

e number of categories;
e calibration, validation and simulation interval changes;
e (ifference between calibration and validation interval annual

changes in each case of study site groups 2 and 3;

o difference between calibration and simulation interval annual

changes in each case of study site groups 2 and 3;

o difference between errors of simulation due to quantity (Qs) and
errors of simulation due to allocation (As) in each case of study

site groups 2 and 3.

3.9. Statistical analysis

First of all, statistical analysis aimed to reveal the effects of
category aggregation. A Tukey test was applied to investigate this issue
in study site group 2. The distribution in the data did not follow normal
distribution according to a preliminary Shapiro-Wilk test. An analysis
with the same purpose was performed in Varga et al. (2020), but with a
two-way ANOVA, with the median as an estimator and with
bootstrapping (599 repetitions), where Ho of the analysis were the
followings:

e the medians of the five different aggregation approaches were
equal;
e the medians of the eight study sites were equal;
e there was no interaction between aggregation approaches and
study sites in a statistical sense;
Here, the difference between the aggregation methods was in focus,
ignoring the possible effects of study sites, and ignoring it as a factor.
Here, the Ho of the analysis was purely that the medians of the five

45



different aggregation approaches were equal. Tukey analysis was
performed which gave opportunity for pairwise comparisons, as full-
factorial comparison between each of the aggregation methods. If
medians of datasets related to different aggregations were significantly
different based on the statistical test besides a 95% confidence interval,
then they were assigned with different letters in the boxplots used for
visualization (Piepho, 2004). Statistical analysis was performed in R
software (R Core Team, 2020), with the following packages:
‘multcomp’(Hothorn et al., 2008),"WRS2’ (Mair and Wilcox, 2019) and
‘ggplot2’ (Wickham, 2016).

In order to test the correlation between model performance and
all other variables calculated concerning changes and stationarity, a
correlation matrix was set up in Past Statistics software. The correlation
matrix was produced along with applying a 95% confidence interval and
Spearman’s rs non-parametric rank-order test that does not have an
assumption of normal distribution (Hammer et al., 2001). Spearman’s
correlation coefficient applies a Pearson’s equation, after ranking the
data (Field, 2013).

In Figure 6, there is a comprehensive visualization of the
workflow used in the whole dissertation. The figure summarizes the
characteristics of the study site groups, the model approach and the full
analysis after running the models. Hopefully, this figure supports the
overview and comprehension of the whole analysis workflow.
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Figure 6. Full summary of the workflow of the research as described in Methods section.
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4. RESULTS AND DISCUSSION

In this section, the results are described according to study site
groups. Since the applied methodology was partly different in the study
site groups, it is critically important to interpret the results separately.
While reporting the results, | discuss the importance of the results as
well. The main conclusions are summarized in the Conclusions section.

4.1. Results FOM components and Intensity analysis in Study Site
Group 1

In study site group 1, FOM and components were calculated in
order to characterize model performance and intensity analysis was
performed in order to characterize change. It is important to highlight
that the ratio of changing areas was extremely low in the study area,
therefore the ratio of correctly simulated change (meaning Hits) in the
area must have been low. The overall change was 1.7% in the calibration
interval, 1.1% in the validation interval, and 1.5% in the simulation
interval. The annual change (overall change divided by the number of
years in the time interval) is presented in Figure 7. Figure 7 shows that
the change decelerated from the calibration to the validation interval,
since the annual change in the validation interval was much less than in
the calibration interval. The annual change of calibration and simulation
interval shows more similarity than calibration and validation interval.

FOM is calculated as Hits divided by the sum of Hits and erroneously
simulated pixels in the study area. Figure 8 shows the FOM components
visualized in a map of the study site, where the colored pixels represent
Hits and erroneously simulated pixels due to various reasons, such as
persistence simulated as change or change simulated as persistence. Hits
added up to only 0.02% of the study area. False Alarms were present
mainly on the edges of the original categories. Misses were present in
the form of compact patches in the landscape. Correct Rejections added
up to 97.41% of the study area. Overall FOM was equal to 0.007% in the
study area that refers to an extremely low model performance.

On the category level of intensity analysis, the gains and losses
of each category were investigated in case of either calibration,
validation or simulation intervals. This approach made it possible to
observe the dynamics of changes per category in each time interval and
to compare the validation and simulation changes on the basis of a more
detailed collection of information. The relevant barplots (Figure 9 A, B
and C) show annual gains and losses on the left side and show gain and
loss intensities and dormant or active status on the right side, per
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category. A category’s gain or loss is active if its gain or loss intensity
exceeds the uniform intensity that is assigned with a dashed line. A
category’s gain or loss is dormant if its gain or loss does not exceed the
uniform intensity.
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Figure 7. Annual change in calibration, validation and simulation intervals in

study site Tokaj, NE Hungary.
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Figure 8. Annual change in calibration, validation and simulation intervals in
study site Tokaj, NE Hungary. Certain areas are highlighted in boxes 1,2 and
3, where Hits could be observed. FOM components are assigned with different
colors. Category borders of 2006 reference map are assigned with lines in the
map. This figure was originally published in Varga et al. (2019).
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Figure 9. Summary figure of the result of intensity analysis in the calibration
(A), validation (B) and simulation (C) intervals, in terms of either annual
change area expressed in pixels (left side) or gain and loss intensity values
(right side) (D = dormant ; A = active). Blue dashed lines assign uniform
intensity. The results presented in this figure were partly published with a
different design in Varga et al. (2019)

In Figures 9A and 9C, representing calibration and simulation
intervals, either the annual gain/loss or gain/loss intensities were similar
to each other. In both plots, the Agricultural areas showed the largest
annual losses, and two categories — Forest and semi-natural areas and
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Artificial surfaces — showed the largest annual gains. Category
intensities and active/dormant status characteristics also showed similar
patterns in calibration and simulation intervals.

In Figures 9A and 9B it can be clearly observed that Artificial
surfaces’ gain and Water bodies’ loss showed a much larger value from
the calibration to the validation interval. The active and dormant status
of the categories were similar, except for Water bodies’ loss, but with
much different intensity values. These results suggest quite different
change dynamics between calibration and validation interval. The
common point of the results in this case was that the Agricultural areas
category sustained a large loss in terms of size, but its intensity was close
to uniform. In addition, Forest and semi-natural areas also showed large
gain sizes and intensities, similarly to the simulation data as. In the
validation interval, wetlands had a high intensity of loss, but with a high
intensity of gain, meaning it was an active gainer and loser at the same
time, but this dynamic did occur in neither calibration nor simulation
intervals (Figure 9).

Transition level of intensity analysis revealed that the gain of
Artificial surfaces category, which was the largest gainer in the
calibration interval, targetted Agricultural areas in calibration and
simulation interval. However, Artificial surfaces’ gain targetted Forest
category, according to validation interval analysis. It means that the
simulation’s dynamics on transition level matched the calibration’s
dynamic in terms of targeting a certain category, in case of this particular
category. Further analysis could reveal further results of the dynamics of
transition between every category pairs.

4.2. Discussion of FOM components and Intensity analysis in Study
Site Group 1

In the study area an extremely low FOM value was calculated,
meaning extremely weak model performance. A low value of Hits
(0.02%) is not surprising, since the ratio of changing areas is also low,
and Hits metric means the ratio of correctly simulated changes in the
area. Therefore, Hits value could not exceed the ratio of the intersection
of changing areas in the validation and simulation interval, expressed as
a ratio of the study area. While ratio of Hits was low, Figure 8 showed
that False Alarms and Misses were relatively higher than Hits, with
values over 1%. False Alarms were mostly located around the patches of
the original categories which refers to the fact that the model simulated
changes on the edges of the original category patches, while these areas
were persistent in the reference data. Misses were located in compact
patches characteristically, which refers to the fact that the model did not
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match larger changes in sparsely located areas. In this example, the
quantity disagreement of simulated changes were less than the allocation
disagreement, according to Equations 5 and 6. Quantity disagreement of
the simulation was 0.41%, as calculated by taking the absolute value of
the difference between Misses and False Alarms. Allocation
disagreement of the simulation was 2.12%, calculated by choosing the
lower of Misses and False Alarms and multiplying by 2. It means that in
CA-Markov model CA caused more error than Markov, since CA is
responsible for the allocation control of the simulation and Markov is
responsible for quantity control of the simulation. The larger allocation
error can be a result of this characteristic placement of simulated changes
on the edges.

In this case, ratio of Misses were lower than False Alarms, which
means that more error originated from simulating persistence as change
than the opposite. It is possible when reference change is less than
simulated change, and this situation was also clearly visible in Figure 9
barplots in case of this study site. Wrong Hits means that a pixel changed
according to both reference and simulation data, but to a wrong category.
Wrong Hits and Hits converged to zero, which means that the simulation
hardly matched reference changes in the landscape, neither in a sense
that the pixel exactly change to a certain category nor the poor presence
of the change to any category.

Intensity Analysis revealed the pattern of real and simulated
changes in the landscape, but changes were not in accordance with each
other. The analysis also revealed that the change decelerated from the
calibration to the validation interval. In this case, if the model followed
the pattern of changes in the calibration data exactly, it would not match
the validation interval changes, since there is a strong difference between
calibration and validation interval changes. Intensity analysis and
consideration of both calibration and validation interval changes helped
to reveal this reason for weak model performance. Only by calculating
the overall metric of FOM, this reason and any other information
concerning quantity and allocation errors would have remained hidden.
Therefore the intensity analysis provided essential information for the
model validation process. A simple assessment of model performance
together with applying intensity analysis is a new practical perspective,
but considering calibration interval changes is an innovation. It can help
to evaluate the LULC change simulations’ predictive power while
getting to know how much the trends of changes relate to real changes
in the landscape. These results have been reported in Varga et al (2019).
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4.3. Results concerning Study Site Group 2 analysis

After performing category aggregations, 114 models were run
altogether in study site group 2. Due to the reasons described above, TB
aggregation was not performed in six cases. Therefore, 24 models were
run based on the maps aggregated according to L3, L2, L1 and BB rules,
respectively, and 18 models were run based on maps aggregated
according to TB rules. In all figures presented in this section, boxplots
are based on these 114 models. In each one of Figures 10-20, boxplots
present the median as a vertical line, the lower and upper quartiles as the
upper and lower boundaries of the boxes and the minimum and
maximum values as the ends of whiskers.

4.3.1. Results of Study Site Group 2 analysis concerning number of
categories and change

After aggregation of categories according to various aggregation
methods, the number of categories could vary with the applied methods.
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Figure 10. Number of categories as observed in reference 2000 and reference
2006 maps, grouped by aggregation method (BB=Behavior-based
aggregation; L1 = CLC Level 1 aggregation; L2 = CLC Level 2 aggregation;
L3 = CLC Level 3 aggregation; TB = Threshold-based aggregation). This
figure was originally published in Varga et al. (2020) with a slightly different
design.

Figure 10 shows the numbers of categories by aggregation
methods in study site group 2. L3 had the largest numbers of categories,
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which is trivial, since all the other aggregations are aggregations of L3
data (L3 maximum = 18). Therefore, the datasets aggregated according
to other aggregation methods must not consist of more categories than
L3 data. CLC L2 category scheme has a maximum of 15 categories, and
the L2 dataset had a maximum of 12 categories, meaning that there was
no study area where all the L2 categories were present. L1 data had the
lowest numbers of categories in general, with a maximum of 5
categories, matching the maximum of CLC L1 category scheme (Figure
10).

BB and TB aggregations does not have a determined maximum,
their theoretical maximum equals the number of categories of the data
aggregated. In this case, BB dataset had a maximum of 13 categories, TB
dataset had a maximum of 9 categories. TB and BB are both aggregation
methods where the user has the opportunity to control the aggregation,
while CLC standard levels have strict rulesets for aggregation. BB
decreased the number of categories more than TB, in general. L3, L2 and
L1 had less and less categories, in accordance with their decreasing
determined maximum by standard levels.

The changes in the calibration, validation and simulation interval
were presented in Figure 11, where the letters assign if the median of
change values in a dataset processed according to a certain aggregation
method was significantly different from the median of another dataset
which was processed according to another aggregation method. This
statistical difference between medians was proved by Tukey analysis
(p<0.05). In case of all time intervals, L1 had the lowest change values,
expressed as a percent of the study area, and L1 dataset was significantly
different from all other datasets, while other datasets were not
significantly different from each other. Since L1 had the lowest ratios of
changing areas, L1 hid an enormously larger ratio of changes in the study
areas related to other aggregation methods. Therefore, L1 eliminated
significantly more changes in the study area than other aggregation
methods. In the calibration interval BB, L2 and L3 experienced the most
changes based on the similar medians. Since all aggregations are based
on L3 data, it means that among all other aggregation methods, BB and
L2 methods eliminated the less changes.

Already when investigating changes in the study area, it is clear
that BB, L2, L3 and TB experienced more changes in the validation
interval than in the calibration interval, in general. Also, simulation
interval experienced much less changes according to either calibration or
validation intervals with almost identical medians of BB, L2, L3 and TB
datasets.
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Figure 11. Changes in the study areas expressed as percent of the study area,
grouped by aggregation method (1) in the calibration interval, between
reference 2000 and reference 2006 maps (I1) in the validation interval, between
reference 2006 and reference 2012 maps and (I11) in the simulation interval,
between reference 2006 and simulation 2012 maps. The groups with
significantly different medians are assigned with different letters.
(BB=Behavior-based aggregation; L1 = CLC Level 1 aggregation; L2 = CLC
Level 2 aggregation; L3 = CLC Level 3 aggregation; TB = Threshold-based
aggregation). This figure was originally published in Varga et al. (2020).

Further comparison concerning annual changes in the calibration,
validation and simulation intervals gave an opportunity to have an insight
to the acceleration or deceleration of changes from one time interval to
another (Figure 12). Annual changes were calculated as dividing overall
changes in the time interval by the years of duration in the same time
interval. The difference of annual changes was determined by subtracting
validation interval annual changes from calibration interval annual
changes in each individual case, which determines if the calibration or
validation interval annual changes were larger in a particular case (Cal-
Val. annual ch.).
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Figure 12. Difference of annual changes in the study areas expressed as
percent of the study area, based on the comparison of calibration and
validation interval changes (Cal-Val. annual ch., left side) and based on the
comparison of calibration and simulation interval changes (Cal-Sim annual
ch., right side), grouped by aggregation method. The groups with significantly
different medians are assigned with different letters (BB=Behavior-based
aggregation; L1 = CLC Level 1 aggregation; L2 = CLC Level 2 aggregation;
L3 = CLC Level 3 aggregation; TB = Threshold-based aggregation).
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The same procedure was performed in the relation of calibration and
simulation interval changes, by subtracting simulation interval annual
changes from calibration interval annual changes in each individual case
(Cal-Sim. annual ch.). In case of calibration and validation interval, the
values were mainly negative, meaning that the rate of validation interval
changes was higher than the rate of calibration interval changes, so the
changes accelerated from the calibration to the validation interval. On
the contrary, in case of calibration and simulation interval, the values
were always positive, meaning that the rate of simulation interval
changes was lower than the rate of calibration interval changes, so the
changes decelerated from the calibration to the simulation interval in
each particular case. In some cases of L1 annual changes, the change did
not accelerate but decelerated from the calibration to the validation
interval, since there were many positive values in the dataset, and the
median was close to zero. In relation of calibration and simulation
interval changes, the median of L1 dataset was significantly different
from all other datasets in terms of aggregation methods and the median
was close to zero again. It means that the change decelerated in L1
dataset, similar to all other datasets, but had a really slight difference
related to the calibration interval, meaning a rate of change quite similar
to the calibration interval. In Tables 4-8, examples for crosstabulation
matrices of the calibration and validation intervals are presented,
together with the transition area and transition probability matrices
concerning the simulation model of the same study site. Table 8 provides
information about the probabilities of each possible inter-category
transition in the model based on the calibration interval changes.

Table 4. Crosstabulation matrix of the time interval between 2000 and 2006, in
study site Borovany, zoom level S. Row and column headings assign the L3
categories in accordance with Appendix 1.

112 211 231 243 312 313

112 46 0 0 0 0 0
211 0 868 26 4 0 0

8 | 231 0 7 310 0 0 0

K | 243 0 0 9 154 |0 0
312 0 0 0 0 997 0
313 0 0 0 0 0 79

Sum of persistent pixels (matrix diagonal pixels) 2454
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Table 5. Crosstabulation matrix of the time validation interval (2006-2012), in
study site Borovany, zoom level S. Row and column headings assign the L3
categories in accordance with Appendix 1.

112 211 231 243 312 313

112 46 0 0 0 0 0
211 0 541 325 0 9 0

8 | 231 0 0 345 0 0 0

K | 243 0 0 0 158 |0 0
312 0 0 1 0 996 0
313 0 0 0 0 0 79

Sum of persistent pixels (matrix diagonal pixels) 2165

Table 6. Crosstabulation matrix of the simulation interval (2006-2012), in
study site Borovany, zoom level S. Row and column headings assign the L3
categories in accordance with Appendix 1.

112 211 231 243 312 313

112 46 0 0 0 0 0
211 0 851 18 6 0 0

8 | 231 0 0 345 0 0 0

K | 243 0 0 12 146 |0 0
312 0 0 0 0 997 0
313 0 0 0 0 0 79

Sum of persistent pixels (matrix diagonal pixels) 2464

Table 7. Transition area matrix generated by the Markov component of CA-
Markov simulation model in study site Borovany, zoom level S. Row and column
headings assign the L3 categories in accordance with Appendix 1.

2012
112 211 231 243 312 313
112 46 0 0 0 0 0
211 0 846 25 4 0 0
8 | 231 0 8 337 0 0 0
& | 243 0 0 9 149 |0 0
312 0 0 0 0 997 0
313 0 0 0 0 0 79
Sum of persistent pixels (matrix diagonal pixels) 2454
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Table 8. Transition probability matrix generated by the Markov component of
CA-Markov simulation model in study site Borovany, zoom level S. Row and
column headings assign the L3 categories in accordance with Appendix 1.

112 211 231 243 312 313

112 1.0000 | 0.0000 | 0 0 0 0

211 0 0.9666 | 0.0290 | 0.0045 | 0 0

© | 231 0 0.0221 [ 0.9779 | 0 0 0

Q | 243 0 0 0.0552 | 0.9448 | 0 0

312 0 0 0 0 1.0000 | O
313 0 0 0 0 0 1.0000

The similarity of the sum of persistent pixels in Tables 4 and 7
shows that the transition area matrix determined the exact same quantity
of persistence as the calibration data did, therefore the matrix dictated
the exact same quantity of overall change as well. However, the quantity
of persistent pixels in categories 211 and 231 were substantially different
while the changes of each categories were similar, when comparing the
calibration data and the transition area matrix. The sum of persistent
pixels in the simulation interval was larger, meaning less changes in the
simulation interval, than in the calibration interval. The sum of persistent
pixels was much less in the validation interval, than in the calibration
interval. These dynamics also refer to decelerating changes from the
calibration to the simulation interval and accelerating changes from the
calibration to the validation interval.

4.3.2. Results of Study Site Group 2 analysis concerning FOM, FOM
components, and quantity and allocation disagreements of the
models

In terms of Figure of merit (FOM) values, there was no
significant difference between datasets of various aggregation methods
(Figure 13). While Figure 13 shows insignificant difference, effect sizes
indicated a larger effect in case of L1 (L1-BB: 0.30; L1-L2: 0.29; L1-L3:
0.31; L1-TB: 0.30; where the numbers are effect sizes which determine
the magnitude of differences between each pair of datasets). In some
cases, L1 dataset showed larger FOM values related to other aggregation
methods, but its median was close to zero, meaning many cases with
extremely low model performances. FOM provides an overall
characterization of model performance, and all other datasets showed
FOM values similar to each other, meaning quite similar performance.
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Figure 13. Figure of merit values in Study site group 2, grouped by aggregation
method. The groups with indistinguishable medians are assigned with similar
letters (BB=Behavior-based aggregation; L1 = CLC Level 1 aggregation; L2 =
CLC Level 2 aggregation; L3 = CLC Level 3 aggregation; TB = Threshold-based
aggregation). This figure was originally published in Varga et al. (2020), with a
slightly different design.

FOM components (False Alarms, Misses, Wrong Hits, Hits) had
similar characteristics concerning L1 dataset, since L1 showed the lowest
values in case of all FOM components (Figure 14). Since L1 had the
lowest values in case of each component, it means that it had the lowest
ratio of correctly simulated pixels (Hits), but it had the lowest ratio of
erroneously simulated pixels (False Alarms, Misses, Wrong Hits) as
well. In case of False Alarms, L1 was significantly different from BB
and L3 datasets. In case of Misses, L1 was significantly different from
all other datasets. In case of Wrong Hits, L1 was significantly different
from BB, L2 and L3 datasets. Finally, in case of Hits, L1 was
significantly different from BB, L2 and L3 datasets again.
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Figure 14. Figure of merit (FOM) components values in Study site group 2,
grouped by aggregation method. The groups with significantly different
medians are assigned with different letters. The Wrong Hits and Hits values are
highlighted on the right side of the figure with a different scale, in order to
make the differences between datasets visible. (BB=Behavior-based
aggregation; L1 = CLC Level 1 aggregation; L2 = CLC Level 2 aggregation;
L3 = CLC Level 3 aggregation; TB = Threshold-based aggregation). This
figure was originally published in Varga et al. (2020), with a different design.

Quantity (Qs) and allocation (As) disagreement of the simulation,
derived from False Alarms and Misses, were calculated for each
particular model. Quantity disagreement, Allocation disagreement and
Wrong Hits were reported together (Figure 15), since the sum of these
three values is equal to the Total disagreement (Ts) of the model. By this
way of visualization, it may be clearer how different types of
disagreement contribute to the Total disagreement of the model. In
general, L1 showed the lowest values of disagreement in terms of either
quantity or allocation. Since these values are calculated from Misses and
False Alarms, it was somewhat presumed that L1 would show the lowest
values, because L1 showed the lowest values in case of False Alarms and
Misses as well.
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Figure 15. Different types of simulation disagreement (Quantity disagreement,
Allocation disagreement and Wrong Hits) in Study site group 2, grouped by
aggregation method. The groups with significantly different medians are
assigned with different letters. (BB=Behavior-based aggregation; L1 = CLC
Level 1 aggregation; L2 = CLC Level 2 aggregation; L3 = CLC Level 3
aggregation; TB = Threshold-based aggregation).

In case of BB, L2, L3 and TB aggregation methods, allocation
disagreement values were generally lower than quantity disagreement
values. The allocation disagreement median of L1 was slightly lower
than quantity disagreement median of L1. Since Wrong Hits had
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extremely low values related to quantity and allocation disagreement,
Wrong Hits contributes to the Total disagreement the less from all
disagreement components. In Figure 16, the difference between quantity
and allocation disagreement was visualized for each cases. By
calculating this metric for each case, it is possible to investigate if the
quantity or allocation disagreement is larger in each case.
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Figure 16. Difference between quantity (Qs) and allocation (As) disagreement
of the simulation in each case in Study site group 2, grouped by aggregation
method. If the value is positive, then Qs is larger. If the value is negative, then
As is larger. (BB=Behavior-based aggregation; L1 = CLC Level 1
aggregation; L2 = CLC Level 2 aggregation; L3 = CLC Level 3 aggregation;
TB = Threshold-based aggregation).

It is clear that in most cases of BB, L2, L3 and TB datasets,
quantity disagreement (Qs) was larger than Allocation disagreement (As)
which means that the model had more error originating from quantity
than from allocation issues. However, in case of L1, many cases were
negative, meaning that allocation disagreement was larger than quantity
disagreement. Median is close to zero, suggesting that these two
alternatives occurred evenly in L1 cases.
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4.3.3. Results of Study Site Group 2 analysis concerning stationarity

Temporal instability, also known as stationarity, was measured
by Runfola R values, calculated between calibration and validation
interval (Runfola R REF), and between calibration and simulation
interval (Runfola R SIM). Figure 17 presents the temporal instability in
these terms. The more the value is close to 1, the more change should be
reallocated between the two intervals in order to achieve a uniform
change throughout the whole time interval — in this study design it means
between the whole time interval from 2000 to 2012.

The temporal instability concerning calibration and validation
interval was the highest in case of L1 dataset (Runfola R REF). The
median of all the other datasets were close to each other, meaning a
similar temporal instability. The statistical analysis did not prove
significant difference of L1 dataset. According to the boxplots, there are
cases of almost all values of temporal instability in the datasets.

On the contrary, the temporal instability concerning calibration
and simulation interval was the lowest in case of L1 dataset (Runfola R
SIM), also significantly different from BB, L2 and L3 datasets. It means
that L1 dataset cases showed high stability of changes concerning
calibration and simulation interval changes.

Finally, the difference between Runfola R values concerning
reference and simulation data (Runfola R DIFF) for each individual case
was the largest in case of L1 dataset, significantly. The instability of L1
literally dropped when comparing Runfola R REF and Runfola R SIM
values. In case of the other aggregation methods, the medians were not
significantly different from each other. It means that the difference of
stability throughout calibration and validation, and throughout
calibration and simulation intervals were extremely large in most L1
cases and it points to the fact that the model simulated much more stable
changes in the landscape than the real situation. In case of all other
aggregation methods, the Runfola R DIFF medians are negative,
meaning that in many cases, the model simulated less stable changes
related to the real situation.
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Figure 17. Runfola’s R values measuring temporal instability between time
intervals. R values concerning temporal instability between calibration and
validation intervals [Runfola R (REF)], concerning temporal instability between
calibration and simulation intervals [Runfola R (SIM)], and the difference between
the two Runfola R values calculated for each case [Runfola R DIFF = Runfola R
(REF) - Runfola R (SIM)]. If Runfola R DIFF value is positive, then Runfola R
(REF) is larger. If Runfola R DIFF value is negative, then Runfola R (SIM) is
larger. Values of all three variables are grouped by aggregation method. The
groups with significantly different medians are assigned with different letters.
(BB=Behavior-based aggregation; L1 = CLC Level 1 aggregation; L2 = CLC
Level 2 aggregation; L3 = CLC Level 3 aggregation; TB = Threshold-based
aggregation).

65



4.3.4. Results of Study Site Group 2 analysis concerning Kappa Index of
Agreement and Overall Agreement

As discussed in literature review, there are validation approaches
frequently reported in contemporary literature, where the modeler
compares time #3 reference map to time #3 simulation maps by
calculating metrics used in accuracy assessment of remotely sensed
images. Two popular metrics for this purpose are Kappa coefficient and
overall agreement.
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Figure 18. Kappa Index of Agreement values in each case in Study site group
2, grouped by aggregation method (BB=Behavior-based aggregation; L1 =
CLC Level 1 aggregation; L2 = CLC Level 2 aggregation; L3 = CLC Level 3
aggregation; TB = Threshold-based aggregation).

In Figure 18, Kappa coefficient values are presented for each
model, based on the comparison of 2012 reference maps and 2012
simulation maps in each case. Kappa returned high values (around 0.85)
in L1 dataset, while all other aggregation methods returned values
around 0.6-0.7, indicating a lower agreement between the two maps.
Overall agreement also characterized the agreement between 2012
reference and 2012 simulation maps in each case. Overall agreement
values are presented in Figure 19 along with the ratio of persistent areas
in the validation interval and with correctly simulated persistent areas,
also known as Correct Rejections. The differences of the medians are
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seemingly similar in all four metrics, which is in accordance with the
hypothesis that Kappa and overall agreement return large values if the
ratio of persistent areas is large, because large ratio of persistent areas
result in high ratio of pixels that belong to the same category in both
maps.

Val. int. pers. Overall Agr. Correct Rej.

- m N

60-

Percent of the study area

40-
@ O PR P DIOR PO OR
Aggregation method
Figure 19. Ratio of persistent areas in the validation interval (left), overall
agreement (middle) and Correct Rejections (right), grouped by aggregation
method. (BB=Behavior-based aggregation; L1 = CLC Level 1 aggregation; L2

= CLC Level 2 aggregation; L3 = CLC Level 3 aggregation; TB = Threshold-
based aggregation).

4.3.5. Results of statistical analysis in Study Site Group 2

In order to reveal the correlations between variables used in the
analysis, a comprehensive statistical analysis was conducted. In this
analysis, the correlation between variables was checked for all pairs of
variables and the results are presented in Figure 20. The correlations
concerning variables characterizing model performance are highlighted.
The thinner the ellipses, the larger the correlation is between the
variables of which the ellipse is intersected.

During the interpretation, the trivial correlations were ignored.
For instance, a strong correlation between allocation disagreement of the
simulation (As) and False Alarms was presumed, since allocation
disagreement is equal to the double of the minimum of False Alarms and
Misses, thus in many cases, the double of False Alarms is equal to
allocation disagreement. This relation establishes a strong correlation
between these two variables.
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FOM did not show a strong correlation, in a statistically
significant manner, with any other variables that are not used for
calculating FOM. Among FOM components, Misses returned strong
correlation with validation interval changes (R?=0.95) and validation
interval persistence (with the same correlation, since persistence and
change complement each other in the study area). False Alarms returned
moderate correlation with calibration changes (R?=0.56), calibration
persistence, and temporal instability between calibration and validation
interval (R?=0.72). Quantity disagreement values of the simulation
showed strong correlation with validation interval changes (R?=0.82),
and mild correlation with the temporal instability between calibration
and simulation interval (R?=0.38) and with the difference between
calibration and validation annual changes (R?=0.65) (which latter means
the acceleration or deceleration of changes). Allocation disagreement
values of the simulation showed moderate correlation with the temporal
instability between calibration and validation interval (R?=0.67) and with
the calibration interval persistence (R?=0.61) and change. Overall
agreement and Kappa showed a high correlation with validation interval
persistence and change (OA R?=0.92; Kappa R?=0,85), and with Correct
Rejections (OA R?=0,96; Kappa R?=0,87) as well.
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Figure 20. Correlation table of variables based on study site 2 data, created in Past statistics software. Correlations are assigned to colors and
ellipse width, according to Spearman’s rs correlation statistic (p<0.05). Correlations concerning FOM and quantity, allocation and total
disagreement of the simulations are highlighted with black boxes. Correlations that are not significant are assigned with a cross. Variables are
assigned with abbreviations referring to the complete variable name. Abbreviations are described in detail in Appendix 2.
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The difference between the rate of change of the calibration and
validation intervals (Cal-Val annual ch.) also showed strong correlation
with the difference between quantity and allocation disagreement of the
simulation (Qs-As, R?=0.76).

4.4. Discussion of Study Site Group 2 analysis results

After a comprehensive analysis of number of categories, changes, model
performance metrics and stationarity metrics, this section discusses the
scientific importance of the results presented. The statistical analysis
results are discussed together with the detailed discussion of the relevant
variables.

4.4.1. Discussion concerning number of categories and changes in the
landscape

It was clear throughout the study that L1 dataset dissevered from
other aggregation methods in almost all manners, whether proved by
statistical analysis or by simple visual interpretation of the boxplots. It is
important to interpret the number of categories together with the changes
in the landscape, according to various aggregation methods. In this way,
the effect of aggregation methods on category numbers becomes clear,
while the extent of the elimination of changes also becomes clear. When
aggregating categories, the user should pay attention for not eliminating
important changes in the area, because the model cannot simulate the
changes which are not present in the study area anymore. However, by
decreasing the number of categories in the study area, the interpretation
of land changes gets much easier (Aldwaik et al., 2015). Furthermore,
running a model which needs to handle fewer categories, meaning fewer
combinations of category interactions, demands much less computing
capacity. As Figure 10 showed, the number of categories decreased the
most in the case of L1, related to all other aggregation methods, however,
L1 had the lowest possible maximum of the number of categories, with
a maximum of 5. BB had the second less categories with a maximum of
9, and then L2, TB and L3 in increasing order. While BB and TB
aggregation methods are change-focused in a manner that the
aggregation is performed with respect to the presence of change in the
study area, the L1, L2 and L3 category schemes are dominated by a
thematic ruleset, not comprehending changes at all. All the other
aggregation methods dissevered from L1 in terms of changes in all three
time intervals: calibration, validation and simulation, based on the
statistical analysis. It means that, in a statistical sense, BB, L2, L3 and
TB did not differ from each other, but all of them differed from L1. While
all BB, L1, L2 and TB was an aggregation of L3 data, L1 showed the
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less changes, meaning it definitely eliminates a large ratio of changes in
the study area. BB showed the least maximum number of categories after
L1, meanwhile not eliminating the changes from the study area, due to
the characteristics of the applied behavior-based aggregation process.
When aggregating the categories according to BB method, it was a
critical condition to maintain total change in the area, thus the
aggregation process stopped before an upcoming aggregation step would
have decreased the total change. This process scheme resulted in the
phenomenon that BB and L3 had the exact same ratio of changing areas
in the calibration and the validation interval in each individual case,
while BB had much less categories in each individual case. Therefore,
BB eliminated zero change from the study areas, while decreasing the
number of categories, thus making an opportunity for easier
interpretation and less computing demand of a possible simulation. TB
is also a change-focused aggregation method, but applies an arbitrary
threshold when assigning the categories subject for aggregation. TB was
less effective in either reducing the number of categories or maintaining
changes, because the changes not meeting the requirement were not
taken into account.

The analysis of annual changes makes it possible to see the
deceleration or acceleration of changes in the landscape. From the
calibration to the validation interval, the change accelerated in most
cases, while from the calibration to the simulation interval the change
decelerated in all cases. It means that the model always simulated less
changes than the change observed in both the calibration and the
validation interval. The simulation quantity of change matched neither
calibration nor validation interval quantities of change, which leads to
the following conclusions:

- the simulation models underestimated the changes related to the

calibration interval data, based on which the model is trained;

- the rate of change simulated by the models did not match the rate

of change observed in the validation time interval, because the
dynamics of changes were reverse.

Olmedo et al. (2015) found in three examples of CA-Markov models
trained with CLC data that the change accelerated from the calibration
to the validation interval, while the CA-Markov output simulated less
change than the Markov matrix would extrapolate. In the example
presented in Table 4-8, the exact same phenomenon could be observed,
where the simulation returned less change than the Markov’s transition
area matrix would have dictated. Study site group 1 also showed a
deceleration of changes in the simulation interval, meaning the same as
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the findings of Olmedo et al. (2015), and the cases of Study site group 2
proves a similar pattern in a large dataset of models. However, in case of
L1, the aggregation affected the changes in the study area so much that
in some L1 cases the rate of changes even turned into a deceleration from
the calibration to the validation interval, while other aggregation
methods showed acceleration. L1 showed values closest to zero,
meaning really slight differences in general, between calibration and
validation interval rates of changes, and also between calibration and
simulation interval rates of changes. The changes in the landscape
correlated with various metrics concerning model performance or
temporal stability, discussed in the following sections.

4.4.2. Discussion concerning FOM and FOM components

Model performance metrics aimed to characterize whether the
model could simulate changes in accordance with real landscape
changes. In Figure 13 and 14, the FOM and FOM components were
presented along with the statistically significant difference between the
medians of the datasets of each aggregation method. In terms of FOM,
there was no significant difference between the aggregation methods,
although the median of L1 was zero, meaning a complete error of the
model in half of the L1 cases. Hypothesis testing succeeded in a limited
way in this case, however with an effect size larger in case of L1, but
contemporary results also supported the idea that a clearly significance-
focused interpretation can turn out to be misleading (Baker, M., 2016;
Kim, J. and Bang, 2016; Szab¢ et al., 2016; Szucs and Ioannidis, 2017).

In case of FOM components L1 also showed the lowest values,
but again, L1 was significantly different from all other aggregation
methods in terms of Misses only. In a statistical sense, L1 was not
different from TB in all other cases. False Alarms and Misses showed
enormously larger values related to Wrong Hits and Hits (Figure 14),
and Wrong Hits and Hits values did not exceed 3% of the study areas in
any of the cases. It means that the errors originating from simulating
persistence instead of change, and the opposite, were much more
characteristic than the error of matching the change but to wrong
category or than the ratio of correctly simulated changes.

It is important to consider changes when interpreting FOM
components, because these components are calculated based on changes
in the study area, as described in Section 3.6.2.1. Therefore, if a study
area shows less changes, then it will probably show a lower ratio of FOM
components in the study area, like less erroneously or less correctly
simulated pixels, as it could be observed in L1 cases. While L1
aggregation eliminated changes, it lost the ability to extrapolate the
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eliminated changes, and the elimination of changes also led to less ratio
of FOM components in the study areas. In Varga et al (2019) it was stated
that FOM is not enough to qualify model performance, and in Varga et
al (2020) it was stated that all four FOM components were lower in L1
dataset. In this research, a further statistical analysis supports the
correlation between False Alarms and simulation interval changes
(R?=0.91) and between Misses and validation interval changes
(R?=0.95). In Study site group 1, False Alarms concentrated around the
patches of existing categories, while Misses could be observed in
sparsely located patches. In Study site group 1, mainly the spatial filter
of the model caused False Alarms — persistence simulated as change —
around the existing patches. If the simulated change is large, and the
simulated changes are influenced by the spatial filter to locate around the
existing patches while real changes are not located around the existing
patches, that phenomenon can result in a large ratio of False Alarms. In
Study site group 1, the Misses —change simulated as persistence — were
located in compact patches in sparsely located areas, meaning that the
real changes were also not located around the existing patches but in
sparsely located areas. If the validation interval change is large, and the
simulated changes are influenced by the spatial filter to locate around the
existing patches while real changes are not located around the existing
patches, that situation can result in a large ratio of Misses. The
correlations concerning False Alarms and Misses suggests that the same
pattern may influence the models in Study site group 2. According to a
set of models, Pontius et al. (2018) suspected that smaller amounts of
change is associated with lower predictive accuracy, but significant
correlation between calibration or validation interval changes and FOM
was not found in this research (Figure 20).

4.4.3. Discussion concerning quantity and allocation disagreement of
the simulation (Qs and As)

Quantity and Allocation disagreement (Qs and As) of the
simulation models were derived from False Alarms and Misses
components, as described in Section 3.6.2.2. According to Figure 16,
Quantity disagreements were larger than Allocation disagreement, in
general, and Wrong Hits were the lowest in all aggregation methods,
related to As and Qs. L1 dissevered unambiguously from the other
aggregation methods again, in a statistically significant manner,
however, L1 median was not significantly different from TB in case of
Wrong Hits. L1 dissevered in a way that either Qs, As and Wrong Hits
values were lower than in case of other aggregation methods. Since these
metrics were derived from FOM components, the effect of changes on
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these metrics is obvious again. Figure 16 showed if Qs or As was larger
in each individual cases, and in most cases, Qs was larger, which means
more error originated from the Markov than from the CA part of the
model, since Markov controls quantity and CA controls allocation of the
simulation. In case of L1, CA caused more error than Markov, because
mostly the allocation error was larger and the median was around zero,
referring to an almost equal relation between the two types of errors. In
case of Study site group 1, the allocation error was larger as well, where
an L1 dataset was the subject of research, too. The difference between
quantity and allocation error (Qs-As) showed a strong inverse correlation
with the difference between annual changes of calibration and validation
interval, meaning that it is sensitive of the rate of changes. Moreover, it
is sensitive in a way that whether the changes accelerate from the
calibration interval to the validation interval, than the quantity of changes
will be larger than allocation error. This result is in accordance with the
systematic deceleration pattern of simulated changes, since the quantity
error would possibly be larger, if the rate of changes move in the opposite
way in the validation and in the simulation interval.

4.3.3. Discussion concerning temporal stability in the landscape

Temporal instability was measured by Runfola R values,
concerning either stability between calibration and validation intervals
or between calibration and simulation intervals. Temporal instability is
also related to the quantity of change in the landscape by definition.
Olmedo et al (2015) claimed that non-stationarity of the changes was the
most obvious reason for a lower model performance, since the changes
in CLC data accelerated from the calibration to the validation interval.
Temporal instability, stationarity and the difference of the annual
changes between the time intervals all characterize the acceleration or
the deceleration of the data, from a slightly different aspect. Temporal
instability was the largest in case of L1 according to Figure 17,
concerning the calibration and validation intervals (Runfola R REF),
while it was the lowest concerning the calibration and simulation
intervals (Runfola R SIM). Therefore, it is not surprising that the
difference between these two variables (Runfola R DIFF) was the largest
in case of L1, in a statistically significant manner in this case. The
temporal stability of BB, L2, L3 and TB datasets were similar in case of
Runfola R REF. The temporal stability of BB, L2, L3 and TB datasets
were similar in case of Runfola R SIM as well, with a slightly more stable
character in L2, L3 and TB in increasing order. These results refer to the
fact that the model simulated more stable changes from the calibration
to the simulation interval, which is in accordance with the fact that the
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model simulates decelerating changes. Runfola R REF also showed a
strong inverse correlation with False Alarms (R?=0.72), and Allocation
disagreement of the simulation (As, R?=0.67), suggesting that the more
instable the changes are throughout the reference time intervals, the less
False Alarms and Allocation disagreement are present in the simulation.
According to some examples in literature (Mertens and Lambin, 2000;
Runfola and Pontius Jr, 2013) the land change in reality does not match
the idea of stationarity, that is a reason for predictive inability of Markov
models.

4.3.3. Discussion concerning Overall Agreement and Kappa Index of
Agremeent

In Figures 18 and 19, Kappa Index of Agreement and Overall
Agreement were presented in a comparison with Correct Rejections and
validation interval changes. As already presented when analyzing
changes in different time intervals, L1 had the lowest ratios of changes
in the study area, consequently, it is trivial that L1 had the largest ratios
of persistence in the study areas. Here, L1 had also the largest Correct
Rejections, as known as correctly simulated persistence in the area. Due
to the fact that in case of a simulation, overall agreement and Kappa
Index of Agreement measures the agreement between a pair of time #3
maps, they does not distinguish correctly simulated changes and simple
persistence, because they are incapable of comprehending this
information. Traditional agreement index results of this research
between simulation 2012 and reference 2012 maps, were in accordance
with previous researches’ modelling results concerning CA-Markov
method (Memarian et al., 2012; Singh et al., 2015). However, high ratio
of persistent area between the two dates could be a considerable reason
for a seemingly successful model performance, as previous researches
delineated (Kityuttachai et al., 2013; Subedi et al., 2013). Scientists
warned to take into account that the high agreement in the models can be
a consequence of high persistence and/or meaning small changes in
landscape over time (Pontius Jr, R. G. et al., 2011; van Vliet, 2009).
Correlation study also showed that OA and KIA had an outstandingly
strong correlation with validation interval persistence (OA R? = 0.92;
KIA R?=0.83). L1 cases showed large OA and KIA values, while Hits,
also known as correctly simulated changes, were under 3% of the study
areas. OA and KIA does not have a strong inverse correlation with Hits,
but the results mean that these metrics show large agreement even if the
ratio of correctly simulated pixels is extremely low. These examples
reveal that the usage of these metrics for model validation is
systematically misleading and their usage can seriously make the
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modeler believe that the model performance is acceptable even when a
model is totally incapable of simulating the real changes.

4.5. Results concerning Study Site Group 3

The study design of study site group 3 is different from study site groups
1 and 2 in the following relations:

e the input data is different, since the models are not based on CLC
datasets, but Landsat images;

e the input data had only 2 LULC categories in all models in this
study site group, since the classification was performed with the
goal of creating categories that focus on the phenomenon that is
the specific subject of modelling;

e the overall number of cases in study site group 3 (6 cases) is much
lower than in any datasets grouped by aggregation method in
study site group 2.

e the model parameter, which is determined by the duration of the
time intervals, was different, because the time intervals did not
matched the duration between CLC datasets (6 years), since they
were mainly determined by the accessibility of cloud-free
images.

All these differences resulted in the situation that the models
performed in study site 3 are not comparable to study site 1 and 2 in a
statistical sense. Although, they are not comparable on a ground where
statistical correlation information can be derived under appropriate
circumstances, but a comparison on the ground of empirical observations
was conducted. The same variables were calculated in this study site
group as well, but I will present selectively those variables which
demonstrate substantial differences related to study site group 1 and 2.

Figure 21 shows the results of FOM components presented in
maps of the study areas where the pixels represent the erroneously
simulated, correctly simulated and persistent areas in accordance with
the legend of Figure 8. It can be observed that the Hits were concentrated
on the edges of original patches in either the Amazonian or the
Atchafalaya Bay cases. Misses were located as larger, more concentrated
patches again in case of the Amazonian site. Misses in the Atchafalaya
Bay example are more distant from the location of the initial changes in
the area. False Alarms are sparsely located areas in the Amazonian
example, and they follow the leads of the rivers in the Atchafalaya
example. In 2012 simulation map in the Atchafalaya example, the rivers
were literally closed as a result of the sprawl of changes. In both areas a
relatively larger ratio of changes were characteristic, while the changes
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were presumed to sprawl around the edges of the original category, due
to the nature of the causes of these phenomena.
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Figure 21. Figure of merit component values of study site group 3, zoom level L areas. The
figure presents the time #1, time #2 and time #3 maps in both areas.
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Figure 22. Presentation of difference of annual changes in study site group 2
and study site group 3, expressed as percent of the study area, based on the
comparison of calibration and validation interval changes (Cal-Val. annual
ch., left side) and based on the comparison of calibration and simulation
interval changes (Cal-Sim annual ch., right side). The cases based on satellite
image analysis are separated with a dashed line and assigned with label
“SAT”. (BB=Behavior-based aggregation; L1 = CLC Level 1 aggregation; L2
= CLC Level 2 aggregation; L3 = CLC Level 3 aggregation; TB = Threshold-
based aggregation, SAT=satellite image-based analysis).

An important difference related to study site 2 is presented in
Figure 22, where the annual changes between calibration and validation
interval and the annual changes between calibration and simulation
interval were presented. The calculation of annual changes provides a
good basis for comparison of the results, since the study designs in study
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site 2 and 3 applied different durations of time intervals, and durations
are even different within Study site group 3 (13 years in Atchalaya Bay,
10 years in Amazonia), as labelled in Figure 21. If we compared the
overall changes, then the result would not be weighted by the duration of
the time intervals and this issue would be an appropriate basis for a
misleading interpretation. Figure 22 shows that the changes mostly
decelerated from the calibration to the validation interval, and the
changes decelerated in all cases from the calibration to the simulation
interval in study site group 3. The deceleration from calibration to the
validation interval could have been observed in only some cases of the
L1 dataset. According to the decelerating pattern of both reference and
simulation data, the patterns are matching in terms of the rate of changes.
Furthermore, the rate of deceleration was the most considerable in case
of the satellite-based dataset, related to other datasets, all derived from
CLC.
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Figure 23. Comparison of Figure of merit (FOM) values in study site groups 2
and 3, grouped by aggregation method. The cases based on satellite image
analysis are separated with a dashed line and assigned with label “SAT”.
(BB=Behavior-based aggregation; L1 = CLC Level 1 aggregation; L2 = CLC
Level 2 aggregation; L3 = CLC Level 3 aggregation; TB = Threshold-based
aggregation).
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Figure 23 reports the values of FOM as compared to study site
group 2 datasets again. In this context, FOM was outstandingly high,
since FOM median converged to 28%, which value could be achieved
by only outliers of the study site group 2. It means that model
performance was much better in these sites as compared to study site
group 2.

Figure 24 reports FOM components, as compared to Study site
group 2 results. There was no substantial difference in terms of False
Alarms and Misses, since the medians had similar values as compared to
BB, L2, L3 and TB datasets of study site group 2. However, Wrong Hits
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Figure 24. Different types of FOM components in study site groups 2 and 3,
grouped by aggregation method. The cases based on satellite image analysis
are separated with a dashed line and assigned with label “SAT”.
(BB=Behavior-based aggregation; L1 = CLC Level 1 aggregation; L2 = CLC
Level 2 aggregation; L3 = CLC Level 3 aggregation; TB = Threshold-based
aggregation).

and Hits were substantially different, as Wrong Hits were all zero and
Hits were all over 4%. It means that Hits values were all larger than in
all study site group 2 cases, but Wrong Hits were always zero, meaning
no error originating from the simulation of changes to wrong category.
In this sense, the study site group 3 cases are similar to L1 datasets.
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However, here the chance of simulating to wrong category was zero,
since there were only 2 categories in the landscape with a single
opportunity for changing into one another, meaning no opportunity for

changing to a wrong category.
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Figure 25. Difference between quantity (Qs) and allocation (As) disagreement of
the simulation in each case in study site groups 2 and 3, grouped by aggregation
method. If the value is positive, then Qs is larger. If the value is negative, then As is
larger. The cases based on satellite image analysis are separated with a dashed
line and assigned with label “SAT” (BB=Behavior-based aggregation; L1 = CLC
Level 1 aggregation; L2 = CLC Level 2 aggregation; L3 = CLC Level 3
aggregation; TB = Threshold-based aggregation).

In Figure 25, the difference between quantity and allocation
disagreement was visualized for each cases. Since some cases are over
zero, it suggests that quantity disagreement (Qs) was larger than
Allocation disagreement (As) which means that the model had slightly
more error originating from quantity than from allocation issues.
However, the median was close to zero, suggesting that Qs and As were
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approximately equal which means that almost equal error originated
from quantity and allocation issues.
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Figure 26. Runfola’s R values measuring temporal instability between time
intervals. R values concerning temporal instability between calibration and
validation intervals [Runfola R (REF)], concerning temporal instability between
calibration and simulation intervals [Runfola R (SIM)], and the difference between
the two Runfola R values calculated for each case [Runfola R DIFF = Runfola R
(REF) - Runfola R (SIM)]. If Runfola R DIFF value is positive, then Runfola R
(REF) is larger. If Runfola R DIFF value is negative, then Runfola R (SIM) is
larger. Values of all three variables are grouped by aggregation method. The cases
based on satellite image analysis are separated with a dashed line and assigned
with label “SAT” (BB=Behavior-based aggregation; L1 = CLC Level 1
aggregation; L2 = CLC Level 2 aggregation; L3 = CLC Level 3 aggregation; TB
= Threshold-based aggregation).

Temporal stability values are presented in Figure 26, where
variations of Runfola’s R values are compared to study site group 2
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values. According to Runfola R REF, the temporal instability was the
lowest in case of satellite-based dataset, meaning it had the most stable
changes from the calibration to the validation interval. On the contrary,
satellite-based datasets had the most instable changes from the
calibration to the simulation interval. Therefore, the instability increased
as compared the simulation to the reference data, presented by Runfola
R DIFF values. This metric also highlights that instability increased in
all cases of study site group 3 from the reference to the simulation data,
because Runfola R DIFF maximum value was zero, meaning that
Runfola R REF was lower than Runfola R SIM in all cases.

4.6. Discussion concerning Study Site Group 3

It is important to discuss study site group 3 results in the context of study
site group 2 results, because these cases highlight even more specific
relations between model performance and changes in the study area.
Study site group 3 presented sprawl-like changes, which are likely to
sprawl around the original categories, this type of change is in
accordance with the operation of the model. If the model simulates
changes around the edges of the original categories, it simulates a sprawl-
like change, even if the real change is not a sprawl-like phenomenon.

Figure 21 presented that the Hits concentrated on the edges of the
original categories, which were persistent pixels, while the Misses
concentrated into compact patches (Amazonian example) or near to Hits
(Atchafalaya example). This latter example clearly shows that the Hits
were located around the original category where the changes had been
expected to occur, and Misses were located besides the Hits as a result
of the model’s underestimation of changes. If the model did not
underestimate changes and simulated more changes, probably the Misses
would have become Hits as well. The model were likely to consider only
the spatial filter when allocating the changes, since it did not consider
the lead of the rivers, just simulated changes into all direction from the
original category Other, even closing up the rivers in simulation map
2012. Therefore, False Alarms followed the leads of the closed rivers,
where the model simulated changes instead of persistence.

The Amazonian example shows a slight salt-and-pepper effect in
case of Hits, Misses and False Alarms. Hits seemed to be located at the
edges of the original categories, since the logging in the forest is also a
sprawl-like phenomenon. However, there was a salt-and-pepper effect in
the real changes, since the deforestation advanced in a manner that some
individual forest patches sparsely remained in the area and sometimes
forest patches witnessed deforestation around them. Meanwhile the
model simulated a situation where the deforestation sprawls perfectly
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around the existing patches. Consequently, False Alarms were located
where these forest patches were still present, Misses were located where
the advance of deforestation concentrated in an area and Hits were
present where the advance of deforestation matched a perfectly
sprawling dynamic. Pontius Jr et al. (2007) used a simulation model for
projecting deforestation in the Amazon basin and found that the
phenomenon is likely to occur near the local main and secondary roads.
In this model there was no input information or driver in the model, only
the land changes in the calibration interval. It is logic to assume that the
deforestation occurs near the main roads in a harsh environment like
Amazonia, since the proximity of roads helps the accessibility of the
forests. However, in the model presented in Figure 21, the 1990
reference maps helps to identify the possible location of roads, but the
sprawl did not follow a uniform spreading pattern from the possible
location of roads towards the forests, since the deforestation left some
remaining forest patches while spreading. These patches caused the salt-
and-pepper effect in the FOM component map.

The FOM values of this study site group were especially high,
meaning especially high model performances related to study site group
2. However, it is really important to see how these FOM values evolved
on the ground of various FOM components. FOM is calculated based on
FOM components, where the Hits values are divided by the sum of Hits
and erroneously simulated pixels. These erroneously simulated pixels are
the bases for various errors, expressed as Misses, False Alarms and
Wrong Hits. If the Misses, False Alarms and Wrong Hits are high and
Hits are low, then the nominator of FOM calculation will be low and the
denominator will be high, consequently, FOM will be low. If Hits
increases, besides the same values of errors, the FOM will be higher. If
Hits increases, but the errors also increase, the FOM will not necessarily
increase. If Hits are the same, but errors increase, then FOM will
decrease. These combinations show why it is not enough to consider only
the correctly simulated changes, as known as Hits. In study site group 3,
the Hits increased substantially, but the False Alarms and Misses did not
increase, while Wrong Hits even decreased, all related to study site group
2. This combination resulted in higher FOM values related to study site
group 2.

Concerning the tendency of annual changes, the rate of annual
changes from the calibration to the validation interval matched the rate
of annual changes from the calibration to the validation interval,
regarding the fact that the changes decelerated from one interval to
another. However, the rate of deceleration was different, since the
changes decelerated more from the calibration to the simulation interval.
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It means that the model matched the tendency of deceleration, but
underestimated the quantity by which the change decelerates. It may be
the reason for the Runfola’s R values, where the Runfola’s R was larger
in case of the simulation indicating more instable changes. Runfola’s R
characterizes the changes that should be reallocated in order to achieve
a uniform change throughout the whole time interval (Runfola and
Pontius Jr, 2013). In order to achieve a uniform change throughout the
calibration and simulation intervals, more quantity of changes should be
reallocated, because the model simulated a dynamic deceleration.
Throughout the calibration and validation intervals, the real changes
decelerated more slowly, so less quantity of changes should be
reallocated to achieve a uniform change. It is a good example of that the
temporal stability does not necessarily reveal the tendency of changes
that the comparison of annual changes reveals, namely the acceleration
or deceleration of changes, because it does not inform about the
tendency, only about the necessary quantity of changes to reallocate in
order to achieve the uniformity.

5. DISCUSSION OF OVERALL RESULTS IN THE CONTEXT OF
CONTEMPORARY LITERATURE AND FUTURE PERSPECTIVES

In literature there are few examples of comprehensive analysis of
LULC change model performance. There were researches in
contemporary literature about the different modelling approaches, like
Dinamica EGO, CLUE, Land Change Modeler, CA-Markov (Mas, et al.,
2014; Olmedo, et al., 2018; Olmedo et al., 2015; Paegelow et al., 2014;
Paegelow and Olmedo, 2005) or specifically the Markovian matrix
(Takada et al., 2010). Mas et al. (2014) provided a comprehensive
overview of possible errors of the following simulation models: CA-
Markov, Land Change Modeler (LCM) and Dinamica. In that case, the
examined models all applied Markov chains in order predict the quantity
of changes, and used different approaches for spatial allocation of
changes. They found that although all models used Markov matrices
throughout the simulation, but the CA-Markov predicted substantially
less change than the other two models and that model was closer to null
hypothesis that showed only persistence in the relevant time interval.

In this research, all the models predicted a deceleration of
changes, meaning a decrease in annual change from the calibration to the
validation interval. In our article (Varga et al., 2019) that described the
analysis in study site group 1, we also discussed that the model
“simulated fewer and smaller transitions than an extrapolation of a
Markov chain would dictate”. However, in that case, the model
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simulated correctly the deceleration of the changes in the study area. The
allocation error was larger than the quantity error which could be
observed in some L1 cases in study site group 2, while study site group
1 can be considered as an L1 case, since it was a five-category
aggregation of L3 data, however, with a 25 m spatial resolution. Our
article (Varga et al.,, 2019) was the first example of using intensity
analysis and FOM components together for model validation purposes.
Intensity analysis helped to reveal the deceleration of changes and
important category-level and transition-level changes in the study area,
as compared to simulation. It would be an exciting future perspective of
the research to apply intensity analysis on all datasets of study site group
2 and 3 as well. There is an intensity analysis framework where the
scientists can perform the analysis on their own datasets, but in 2019 an
R software package was published with the name of ‘intensity.analysis’
package, by which intensity analysis could be performed en masse. It
creates a good basis for deeper insights into the category-level and
transition-level dynamics of the datasets.

Based on all the study site groups, the results enlightened that the
models always simulated a decelerating tendency. It refers to the fact that
study site group 1 simulation would have not matched the tendency in
the validation data, if the validation data had showed accelerating
changes. The model matches this kind of tendency in the changes only if
the real change decelerates. The cases of study site group 2 support this
finding, since the cases in study site group 2 showed that quantity
disagreement was mostly larger than allocation disagreement.
Furthermore, study site group 3 cases demonstrated the relation of the
contiguity filter and the mechanism of changes, while the map of FOM
components revealed the errors originating from this relation. In study
site 3, quantity and allocation errors were mostly even, but the change
decelerated more in the simulation than in the validation interval.

Mas et al. (2014) claimed that CA model was suitable for only
applications where there is a specific rule of neighborhood in changes,
since the model was designed for urban growth simulation. In the
Atchafalaya example, the Hits concentrated on the edges of the original
categories, in a great unison with the logic of contiguity filter. However,
the very presence of the contiguity filter caused land changes that would
be implausible in reality, like the close up of rivers.

For the best of my knowledge, there is not any study of running
a large set of CA-Markov models and examine the model performance
under similar circumstances. Our article (Varga et al., 2020) was the first
example of investigating the effect of category aggregation on model
performance, based on FOM and FOM components, in a large set of
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models. Our article (Varga et al 2019), based on study site group 1
results, revealed that FOM is not enough to qualify the model since it
does not distinguish quantity and allocation errors, and the interpretation
of a combination metrics can help to evaluate the reasons for errors.
There are quite few examples of using Figure of merit for the validation
of a simulation model in literature (Cao, M. et al., 2019; Memarian et al.,
2012; Tajbakhsh et al., 2018). The analysis of FOM components in
details or in context of allocation and quantity disagreements were
performed even more rarely, and it seems to be a really special and
focused subproblem of simulation modelling (Chen and Pontius Jr, 2010;
Feng et al., 2019; Mejean et al., 2019; Wang et al., 2019).

There is a model parameter in Idrisi’s CA-Markov model, where
the user can set a proportional error for the model that originates from
the input map error. In this research, the proportional error was set to
zero, because in a couple of previous empirical observations, the model
returned simulations with weaker model performance when setting this
parameter to a 85% accuracy of the input maps (set to a 0.15 proportional
error), compared to models with zero proportional error. Mas et al (2014)
reported that when this proportional error option was applied in CA-
Markov model approach, this action resulted in affecting area
estimations significantly. The effect of input map error could hardly be
checked in study site group 2 dataset, because all the input maps are
derived from CLC data, where the reported thematic accuracy is over
85%, and the exact same parameter should be set for all the models.
Consequently, the study design did not create an opportunity for testing
the systematic effects of various input map accuracies on model
performance.

Another model parameter is the iteration number of the model
which is advised to be the number of years of the duration of the analyzed
time interval (Eastman, 2012a). The spatial filter is also modifiable, and
the user can modify the default 5x5 spatial filter to a user-defined filter
in the analysis. There are various classic types of spatial filters that are
used for edge detection in image processing (Birchfield, 2016), even in
a combination of cellular automaton and spatial filter for a purpose
independent from LULC modelling (Sharma et al., 2013). Although
Deep and Saklani (2014) used Kappa coefficient for model validation in
their paper, which is a wrong approach for validation of the model, but
they tested the effects of iteration number and neighborhood on the
simulation and found that 12 iterations and a 17x17 neighborhood
returned models with the highest kappa values. In Varga et al. (2019) we
also tested spatial filter variations and we found that a larger filter would
allow changes to extend farther from the original patches, but still
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concentrate changes near the original patches. It was obvious throughout
this research design that the spatial filters caused a concentration of
changes on the edges of the original categories, and partly due to this
phenomenon, cases in study site group 3 resulted in better model
performance. If the modeler checked patch patterns of the calibration and
validation interval changes before running the model, it would possibly
provide a trace whether the simulation design match the changes that the
modeler wants to simulate. The whole dataset of study site group 2 could
be checked in FRAGSTAT (McGarigal, K. et al., 2012) that is capable
of calculating landscape metrics based on raster datasets, and shape-
focused indices (Haines-Young and Chopping, 1996) of changing
patches could lead to a useful pre-check in the analysis. There were
researches concerning the variability of land changes using landscape
metrics to characterize this feature of land change (Szilassi, 2017).

The issue of spatial resolution was not tested in this research,
since most of the models were derived from CLC dataset, thus the spatial
resolution applied in the study design was determined by the resolution
of the input dataset. There were a few investigations on the effects of
resolution on model performance in literature (Olmedo et al., 2018;
Pontius Jr, et al., 2011) and even on the scale-dependency of the driving
factors of change (Verburg et al., 1999), but this study design did not
create an opportunity for testing the systematic effects of spatial
resolution on model performance. If the models received input data
derived from satellite-images with various resolutions, then an analysis
on the effects of spatial resolution would make sense, which is an
interesting subject for future research.

The practical utilization of the results is not limited to scientists
who intend to run land change models. Due to the fact that the models in
this research did not integrate land change drivers, it is rather a research
focused on practical issues and provides insights in order to identify or
avoid possible errors in the CA-Markov model. It is really important to
know how the model works before integrating any drivers which could
complicate the model and then the exact origin of errors could not be
distinguished. According to Verburg et al. (2004a) we still do not have
enough information or understanding of land change processes to decide
which land change modelling approach suits our purposes the most. Land
change modelling is a good basis for setting up future scenarios in a
world where many recent changes concerning climate and habitat may
be irreversible. Land change policy and decision-makers need complex
information on the changing processes, and landscape ecology is in a
good position to investigate the causes and interactions of these
processes (Mayer et al., 2016). Schuwirth et al (2019) declared certain
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conditions that helps increasing usefulness of models for ecological and
land management, like sufficient predictive performance, among others.
They also claimed it is important to suit these requirements when the
policy-makers need models to support decisions presented to the public.
It is a substantial demand towards land change modelling science to
investigate possible errors in modelling issues in order to being capable
of recognizing, correcting or avoiding these errors. This dissertation
intended to take a step in this direction.

6. CONCLUSIONS

The analysis focused on CA-Markov models and their abilities of
predicting LULC changes in the study areas. A variety of metrics were
calculated in order to measure the numbers of categories, the ratio of
changes, the model performance and temporal stability under specific
circumstances. The following points summarize the most important
findings:

(1) Intensity analysis substantially contributed to the validation of the
simulation model, since it revealed the real and simulated changes
in detail, thus helped to reveal the reasons for the unsuccess of the
model.

(2) The combined usage of comparison of the calibration to the
validation interval and comparison of the calibration to the
simulation interval revealed patterns that the FOM and
components could not reveal, therefore it is recommended to
consider either calibration interval changes or usage of a
combination of metrics when validating a model.

(3) Category aggregation decreased changes in the study sites. In case
of Corine Land Cover (CLC) Standard Level 1 change decreased
the most and in a statistically significant manner, related to other
aggregation methods. Behavior-based category aggregation
maintained changes the most and absolutely, while model
performance did not decrease significantly and number of
categories decreased substantially. Therefore, CLC Level 1
aggregation is not recommended, and behavior-based aggregation
is recommended to use when aggregating categories.

(4) Quantity disagreement of the Cellular Automaton (CA)-Markov
models was mostly larger than allocation disagreement, meaning
that the quantity control of Markov caused more errors than the
allocation control of cellular automaton.

(5) The model simulated decelerating changes systematically,
meaning a systematic underestimation of changes, which resulted
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in large quantity errors of the models, because the changes were
mostly accelerating in the study sites.

(6) FOM values, characterizing model performance, were
substantially larger in case of modelling sprawl-like mechanisms.
However, the model had quantity errors due to underestimating the
changes and allocation errors due to the uneven sprawl mechanism.

(7) Kappa Index of Agreement and Overall Agreement showed a
strong correlation with validation interval changes, moreover
showed high agreements also in the cases where correctly
simulated changes were extremely low. This demonstration in a
large set of datasets clearly shows why the usage of these metrics
IS not recommended for the validation of simulation models in the
context of comparing reference and simulation time #3 maps.

These results may help scientists see behind the scenes of CA-
Markov model, its logic and operation, when it is free of any drivers or
influencing factors of change. I still hope that my dissertation helps a
better understanding of category aggregation consequences and model
validation approaches, and contributes to the dissemination and
propagation of good practices and possible errors in land change
modelling science.

SUMMARY

The main purpose of my research was to analyze land change
models that were also capable of demonstrating the capability or
incapability of certain model performance metrics. Furthermore, another
important purpose was to analyze the changes in the landscape in order
to reveal the detailed background of model performance. The analysis
was based on a large set of CA-Markov models, by which | drew
conclusions concerning the following issues:

e how the detailed change analysis help the analysis of model
performance;

e how certain category aggregation methods influence the model
performance;

e which methods are not suitable for a correct model performance
analysis;

e how the operation of the model influence model performance.
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The innovation of the research was that the research questions have
not been analyzed in a large set of models before. It is an innovation from
a methodological point of view that in the context of model performance
analysis, intensity analysis have not been used and the effect of category
aggregations have not been investigated.

The analysis was performed in 3 study site groups. Study site group
1 contained only one study site located around Tokaj city with an extent
of 25 x 25 km and a quite heterogeneous land character. The facts that it
is located at the joint of five microregions and all categories of the level
1 of Corine Land Cover standard nomenclature are present in the area,
also show its heterogeneity. The analysis was based on Corine Land
Cover (CLC) data concerning the years 2000, 2006 and 2012, using
subsets of the vector database resampled to 25 m raster datasets. 5
categories were used according to CLC standard nomenclature Level 1,
which were the followings: artificial surfaces, agricultural areas, forests
and semi-natural areas, wetlands and water bodies. Partly due to the
presence of protected areas, the changes in the area did not exceed 2%
of the study area in both time intervals examined (2000-2006 and 2006-
2012). CA-Markov models were run based on the 2000 and 2006 maps
as training data and the model simulated a map for the year 2012. The
model was validated based on 2006 and 2012 reference maps. Intensity
analysis was used for investigating the changes in the study area in detail
concerning either reference or simulated changes, then model
performance metrics (Figure of merit [FOM] and its components) were
calculated.

Study site group 2 consisted of 8 study sites that were chosen on
the basis of Corine Land Cover change layers concerning 2000-2006 and
2006-2012 time interval changes. The main aim was to find study sites
with as large ratio of changing areas as possible, so as to produce a
dataset with various quantities of changing areas in the study sites. In this
case, the CLC datasets of 2000, 2006 and 2012 were used, however,
using 100 m spatial resolution raster version instead of resampled vector
version. In each study site, two further subareas were assigned, so each
study sites consisted of three subareas according to their zoom level
(large = L, medium = M, small = S). The assignment of the study areas
was complicated, because the CA-Markov had specific requirements.
For instance, the study areas must not have had more than 20 categories
and the maps representing the first two dates (2000 and 2006 in this case)
must have had the exact same categories. The categories of the study
areas were aggregated according to the following schemes:
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e the basis of the maps were the categories of level 3 of CLC
standard nomenclature (L3);

e the categories of level 3 of CLC standard nomenclature were
aggregated based on the level 2 of CLC standard nomenclature
(L2);

e the categories of level 3 of CLC standard nomenclature were
aggregated based on the level 1 of CLC standard nomenclature
(L1);

e the categories of level 3 of CLC standard nomenclature were
aggregated based on the behavior-based category aggregation
method (BB), where the user may decide the degree of
aggregation based on a stepwise aggregation procedure and the
user can monitor the status of changes in every step of
aggregation;

e the categories of level 3 of CLC standard nomenclature were
aggregated based on the threshold-based category aggregation
(TB), where the user may decide which categories should be
aggregated into a new category based on an arbitrary threshold
of ratio of changes in the area. In 6 cases the changes did not meet
the applied threshold, therefore the aggregation was not
performed.

As a result of various study sites, zoom levels and category
aggregations, 114 models were run altogether in Study site group 2. After
running the models, metrics concerning model performance, changes
and other variables were calculated, they were analyzed by statistical
methods and then comprehensive conclusions were drawn.

The characteristics of Study site group 3 were substantially
different from the other two study site groups. | aimed to investigate
phenomena with sprawl-like dynamics where the changes affect the
neighboring areas of the original categories. Study sites with these
characteristics were selected in North and South America. In North
America, the study site was located in Atchafalaya Bay where a delta
accumulation could be observed. In South America, the study site was
located in Amazonia, where massive deforestation could be observed.
Since the study sites were located outside Europe, CLC could not be used
in this analysis, so time-series Landsat image datasets were processed.
By segmenting and classifying the images, 2-category maps were created
that enhanced the target phenomena and after performing resample
procedure they matched the 100 m spatial resolution of study site group
2 maps. In each study site, two further subareas were assigned, so each
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study sites consisted of three subareas according to their zoom level
(large = L, medium = M, small = S). In this case, CA-Markov models
were run again, and after running the models, metrics concerning model
performance, changes and other variables were calculated, similarly to
study site group 2. Due to the different input data and parameters of study
site group 3, a statistical comparison to study site group 2 cases could
not have been well-grounded, hence the conclusions of the comparison
were rather empirical.

The most important element of methodology was the CA-Markov
model, which is a land change model, and it is capable of simulating a
categorical land use/land cover (LULC) map based on input LULC maps
representing two different dates. | ran the models in Idrisi software
environment. The model consists of cellular automaton (CA) and
Markov components, where the latter is responsible for the quantity of
simulated changes and the cellular automation is responsible for the
allocation of changes. Throughout the dissertation, I referred to the time
interval used for training or calibrating the model as the calibration
interval. | referred to the time interval between the reference dates used
for validation as the validation interval, which was the time interval
between 2006 and 2012 in case of study site group 2. Finally, | referred
to the time interval between the reference and simulation dates, where
the latter date is the date to which the simulation model projects forward,
as the simulation interval. The model produces conditional probability
maps, and transition area and probability matrices based on the
calibration interval changes and then a contiguity filter determines the
allocation of changes. | did not include any specific drivers of changes
in the model.

Model performance was measured by the Figure of merit index and
its components (Hits = correctly simulated changes; Wrong Hits =
changes simulated as changes to wrong category; False Alarms =
reference persistence simulated as change; Misses = reference change
simulated as persistence), and by Quantity (Qs) and Allocation
disagreement (As) of the simulation that can be derived from Figure of
merit components. The FOM components reveal the agreement and
disagreement of reference and simulated changes. Moreover, | calculated
Kappa coefficient and overall accuracy metrics based on the comparison
of reference and simulated maps of time #3 maps (2012 in case of study
site group 2 and 2010 and 2013 in case of study site group 3). Further
variables were concerned, as follows:

e number of categories
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e quantity of changes in all examined time intervals

e quantity of annual changes in all examined time intervals

o difference of changes between time intervals

e temporal stability between the calibration and validation interval
changes, and between the calibration and simulation interval
changes

Statistical analysis was conducted in study site group 2
exclusively, by ANOVA and Tukey pairwise comparison tests.
Statistical analysis aimed to reveal whether there is significant difference
between the medians of aggregation groups concerning the variables
measured throughout the analysis. In order to measure correlation
between the variables and model performance, a correlation matrix was
set up where Spearman’s rs coefficient was applied (p<0.05).

In case of study site group 1, the ratio of changes remained under
2% in either the calibration, validation or simulation intervals, while the
annual changes decelerated in both validation and simulation intervals,
related to the calibration interval. The ratio of correctly simulated
changes (0.02%, expressed as a ratio of the study area) and model
performance (FOM=0.007%) were extremely low. However, the
allocation disagreement of the simulation (2.12%, expressed as a ratio of
the study area) was larger than quantity disagreement (0.41%, expressed
as a ratio of the study area). This refers to the fact that CA component of
the model caused more errors, than the Markov component. Based on the
location of False Alarms and Misses values, the model placed the
changing areas to the neighboring areas of the original categories, which
was probably an effect of the contiguity filter. Intensity analysis results
showed that more similarity could be observed between the calibration
and simulation interval change dynamics, than between the calibration
and validation interval change dynamics and that could partly lead to the
unsuccess of the model. Furthermore, intensity analysis revealed the
dynamics of changes in all three intervals that a comprehensive metric,
like FOM, could have not revealed.

The results of study site group 2 showed that the changes in L1
group were significantly lower than the other aggregation groups in
either calibration, validation or simulation intervals. The number of
categories drastically decreased in L1 group, but a substantial decrease
could be observed in BB group as well. However, in BB group, the
changes did not decrease at all, since an important aspect was to maintain
changes when performing BB aggregation. By analyzing annual
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changes, it became clear that the model always simulated decelerating
changes, although the validation interval changes showed mostly
accelerating tendencies.

There was no significant difference between the aggregation
groups concerning FOM, but L1 group FOM, Hits and Wrong Hits
medians converged to zero. In case of L1 group, all FOM components
were lower than other groups, but the ratio of these components is even
more important when interpreting model performance and FOM. Misses
and False Alarms were higher than Hits and Wrong Hits, which leads to
the assumption that the contiguity filter affected the results, such as in
case of study site group 1. The statistical analysis returned strong
correlation between Misses and validation interval changes (R2=0.95)
and between False Alarms and simulation interval changes (R2=0.91).
In study site group 2, the quantity disagreement of the simulation was
characteristically larger than the allocation disagreement, and
concerning both metrics, L1 group values were significantly lower than
other aggregation groups’ values. Regarding individual cases, quantity
disagreement was mostly larger than allocation disagreement again,
however, in L1 group, both cases were characteristically present. It refers
to the fact that Markov component of the model caused more errors, than
the CA component. The statistical analysis returned strong correlation
between Quantity disagreement and validation interval changes
(R2=0.82) and mild correlation between Quantity disagreement and the
difference between calibration and validation interval annual changes
(R2=0.65).

Based on the measurement of the difference comparison of the
instability between the calibration and validation intervals and the
instability between the calibration and simulation intervals, L1 group
showed substantial decrease from the reference to the simulation
instability. It means that the changes between the calibration and the
simulation intervals were much more stable than the changes between
the calibration and the validation intervals.

The map of the last reference date (2012, 2010 and 2016 in study
site group 2, Amazonian case and Atchafalaya Bay case, respectively)
and the relevant simulated map were compared by calculating Kappa
coefficient and Overall agreement metrics. Both metrics returned
significantly higher values in L1 group, where the less changes could be
observed. Statistical results supported the strong correlation between
either Kappa index of agreement or Overall agreement and validation
interval persistence and Correct Rejections, latter meaning the correctly
simulated persistent areas. Therefore the usage of these indices can be
seriously misleading when using for the purpose of model performance
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assessment, since they return large agreement values, even if the model
hardly matched reference changes. This idea has already been published
before, but a systematic relationship has not been proved in a large set of
models.

In case of study site group 3, Hits were present mainly around the
borders of the original patches, which is in accordance with the
mechanism of sprawl-like changes and the effect of contiguity filter. In
the case of Atchafalaya Bay, Misses were located near Hits frequently,
meaning the model did not simulate as much changes as the reference
data showed. This phenomenon is in accordance with the results of study
site group 2, where the model systematically underestimated the
changes. In the Amazonian study site, a salt-and-pepper effect could be
observed, due to the allocation of reference changes. Here, Hits were
located near the original patches again. The sites of study site group 3
returned drastically higher FOM values than sites of study site group 2.
However, among FOM components, only Hits were drastically higher
than study site group 2 cases. Wrong Hits always returned zero, because
the maps consisted of 2 categories only, therefore it was impossible to
simulate changes to a wrong category. The stability of changes in the
reference time intervals was substantially larger than in study site group
2 cases. The sprawl-like change mechanism was much more in
accordance with the logic of the model than sparsely located changes.

As summarizing the conclusions of the whole study, intensity
analysis and the investigation of calibration interval changes
substantially helped to reveal the reasons for the unsuccess of the model.
The CLC L1 category aggregation hid important changes in the
landscape that is a disadvantageous circumstance when performing land
change simulation model. Quantity disagreements were mostly larger
than Allocation disagreements of the simulation which means that
Markov component of the model caused more errors, than the cellular
automaton (CA) component. All the models in the study simulated
decelerating changes, even if the reference changes were mostly
accelerating changes, therefore the model is able to match the tendency
of reference changes only if it is decelerating as well. Contiguity filter
caused a concentration of changes to the neighboring areas, which is
advantageous when simulating sprawl-like changes. The research
presented systematic relations and errors based on a large set of
simulation models and these conclusions can help the work of the
modelers directly, and the workflows that support decision making
concerning land change issues indirectly.
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OSSZEFOGLALAS

Kutatdsom {6 célja olyan tajvaltozas modellek részletes vizsgalata
volt, amelyek képesek demonstralni egyes teljesitmény mérési
modszerek alkalmassagat, illetve alkalmatlansagat. Célom volt tovabba
a tajban lejatszodd valtozasok részletes vizsgalata annak érdekében,
hogy felfedjem a modell teljesitményének részletes okait. Vizsgalatom a
CA-Markov tipusi modell nagy esetszamon torténd futtatdsara épiil,
melynek alapjan kovetkeztetéseket vontam le a kovetkezdkre nézve:

e hogyan segiti a részletes valtozasvizsgalat a modell
teljesitményének vizsgalatat;

¢ hogyan befolyésoljdk az egyes kategoria aggregacios modszerek
a modell teljesitményét;

e mely modszerek nem alkalmasak a modell teljesitményének
érdemi vizsgalatara,

e a modell sajatos miikkddése hogyan befolyasolja a modell
teljesitményét.

Kutatdsom ujszeri megkdzelitését az adja, hogy a vizsgalt
Osszefliggéseket korabban nagyszami modellen még nem bizonyitottak.
Tovabba modszertani értelemben j megkozelités, hogy a vizsgalatban
alkalmazott intenzitds-vizsgalat nevii modszert korabban modell
teljesitmény mérésének kontextusdban nem alkalmaztak, és hogy a
foldhasznalati-felszinboritasi ~ kategéria  Osszevonasok  modell
teljesitményre vonatkoz¢ hatésait nem vizsgaltak.

A vizsgalatot 3 mintateriilet-csoport példajan végeztem el. Az 1.
mintateriilet-csoport konkrétan egy mintateriiletet tartalmaz, amely egy
Tokaj-kornyéki, 25 x 25 km kiterjedési, igen heterogén taji
adottsagokkal rendelkezd teriilet. Heterogenitasat mutatja, hogy ot kistdj
talalkozasanal helyezkedik el, illetve, hogy a Corine sztenderd
némenklatira 1. szintje szerinti 6sszes kategoria (mesterséges feliiletek,
mezdgazdasagi teriiletek, erddk €s természetkdzeli teriiletek, vizenyds
teriiletek, vizfeliiletek) megtalalhato a teriiletén. A vizsgalatot ebben az
esetben Corine Land Cover (CLC) adatbazis segitségével végeztem, és a
2000., 2006. és 2012. évi vektoros adatbazisok kivagatanak 25 méteres
térbeli felbontasu raszterizalt verzidjat hasznaltam. A vizsgalat soran 5
kategoriat alkalmaztam a CLC sztenderd nomenklatira 1. szintje szerint,
amely szintén maximum 5 kategoriat engedélyez. A mintateriileten a
védett teriiletek jelenléte miatt kismértékii valtozas volt megfigyelhetd:
a mintateriilet 2 szazalékanal kisebb aranyu valtozas mindkét vizsgalt
idészakban. CA-Markov modellt futtattam a 2000. és 2006. évi adatok
segitségével, melynek alapjan a modell 2012. évre egy becsiilt kategoria
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térképet hozott 1étre. A tajban bekovetkezd valtozasokat egy intenzitas-
vizsgélat nevli modszer segitségével azonositottam mind a referencia,
mind a szimulalt valtozasokat tekintve, valamint kiillonb6z6 mutatokat
szamoltam a modell teljesitményének mérésére (Figure of merit [FOM]
mutato és komponensei).

A 2. mintateriilet-csoport 8 mintateriiletbdl allt. A 8 mintateriiletet
a Corine Land Cover valtozasrétege alapjan valasztottam, amely
tartalmazza a valtozasokat tobbek kozott 2000-2006 és 2006-2012
kozotti idoszakokra. A 6 cél az volt, hogy a valasztott mintateriileteken
minél nagyobb mértékii valtozds menjen végbe, ezaltal tamogatva az
esetekben eldforduld valtozasok mértékének sokszinitiségét. Ebben az
esetben szintén a CLC 2000., 2006. és 2012. évi rétegeit hasznaltam,
azonban az adatbazisok 100 méteres térbeli felbontdsu raszter verzigjat.
Minden mintateriileten két tovabbi, egyre kisebb alteriiletet jeloltem ki,
igy minden mintateriileten 6sszesen harom nagyitasi szintnek megfeleld
teriilet jott 1étre (nagy = large [L]; kdozepes = medium [M]; kicsi = small
[S]). A mintatertiletek kijelolését nehezitette, hogy az alkalmazott CA-
Markov modell sajatossagai miatt egyik teriileten sem lehetett tobb, mint
20 kategoria, illetve hogy minimum az elsd két idopontban egyforma
szamu kategorianak kellett jelen lennie. A mintateriileteken jelenlévd
kategoriakat kiilonb6z0 megkozelitések alapjan aggregaltam, melyek a
kovetkezok:

e A CLC sztenderd nomenklatara 3. szintje (L3) volt a kategoria
térképek alapja, a tovabbi 0sszevondsok e beosztds kategoridit
vették alapul;

e aCLC sztenderd némenklatara 2. szintje (L2);

e aCLC sztenderd némenklatuara 1. szintje (L1);

o viselkedésalapu kategéria 6sszevonas (BB), amely a felhasznald
dontése alapjan lépésenként vonja dssze a kategoridkat, az egyes
Osszevonasok kovetkezményeként fellépd valtozasok figyelembe
vételével,

e hatarértékalapt kategoria 6sszevonas (TB), amely a felhasznalo
altal meghatarozott hatarérték alapjan vonja Ossze azokat a
kategoéridkat, amelyek valtozdsai a hatarérték szerint
meghatarozott minimalis valtozasi szintet nem haladjak meg. Ezt
az Osszevonasi modszert 6 esetben nem alkalmaztam, mert
minden kategoria meghaladta a minimalis valtozasi szintet, igy
nem volt sziikség a kevés valtozast mutatd kategoridkat tomoritd
Uj kategoria létrehozésara.

A kiilonb6z6 mintateriiletek, a mintateriiletek nagyitasi szintjeinek és az
Osszevonasi modszerek alkalmazasanak eredményeképp 114 esetet
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vizsgaltam. Ezekre az esetekre CA-Markov modellt futtattam, a modell
teljesitményét, a valtozasokat és egyéb ismérveket mér6 mutatokat
szamitottam, majd az eredményeket statisztikai modszerekkel
értékeltem, és az eredményekbdl atfogd kovetkeztetéseket vontam le.

A 3. mintateriilet-csoport merében eltér az els6é két mintateriilet-
csoport sajatossagaitol. Ebben az esetben olyan mintateriiletek
vizsgalatara torekedtem, amelyek terjedésszerti valtozast mutatnak, tehat
a valtozas jellemzden a meglévo kategoridkkal szomszédos teriileteket
érinti. Ilyen jellemzokkel biré mintateriiletet valasztottam Eszak- és Dél-
Amerika teriiletén, az Atchafalaya-6bolben és az Amazonas-vidéken. A
vizsgalt iddszakokban az Atchafalaya-6bolben taldlhato teriileten delta
akkumulacié ment végbe (érintett idopontok: 1990, 2003, 2016), mig az
Amazonas-vidéken taldlhaté teriileten nagyfoku erddirtds volt
tapasztalhatd (érintett idopontok: 1990, 2000, 2010). A mintateriiletek
nem Eurépaban talalhatoak, tehat CLC adatbazist nem alkalmazhattam
a vizsgalat soran, ezért Landsat-felvételek id6soros elemzésével
hidaltam &t az adathianyt. A felvételek szegmentélasa és osztalyozasa
révén 2 célkategoriabol allo térképeket hoztam 1étre, amelyek a vizsgalt
jelenségek valtozésait hangsulyoztdk, és ujramintavételezés utan 100
méteres térbeli felbontassal rendelkeztek. Minden mintateriileten két
tovabbi, egyre kisebb alteriiletet jeloltem ki, igy minden mintateriileten
Osszesen harom nagyitasi szintnek megfeleld teriilet jott 1étre (nagy =
large [L]; kozepes = medium [M]; kicsi = small [S]). Ebben az esetben
szintén CA-Markov modelleket futtattam, majd a 2. mintateriilet-
csoporthoz hasonléan a modell teljesitményét, a valtozasokat és egyéb
ismérveket mérd mutatdkat szamitottam. A statisztikai Osszevetés
lehetdsége a 2. mintateriilet-csoporttal az eltérd alapadatok ¢és
paraméterek miatt nem volt szakmailag megalapozott, ezért az
Osszehasonlitds a két mintateriilet-csoport tapasztalataibol levezetett
kovetkeztetéseket eredményezett.

A modszerek kozponti eleme a CA-Markov modell, amely egy
tajvaltozas szimulalasara alkalmas modell, és két bemeneti idépont
kategoria térképe alapjan 1étrehoz egy kategoria térképet egy harmadik
idopontra. A modellt Idrisi szoftverkdrnyezetben futtattam. A modell a
sejtautomata (cellular automaton = CA) és a Markov komponensekbdl
all, melyek koziil a Markov a szimulalt valtozas mértekét hatarozza meg,
mig a sejtautomata a valtozasok térbeli elhelyezkedéséért felel. A
dolgozatban a betanitasra hasznalt iddszakot kovetkezetesen kalibracios
idészaknak, a szimulalt valtozasokat jelzd iddszakot szimulacids
id6szaknak, mig a validaciora hasznalt valtozasokat jelzé iddszakot
validacios iddszaknak neveztem. A modell a kalibraciés iddszak
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valtozasaihoz igazitva atalakulasi matrixokat, valamint feltételes
valoszintiségeket jelzd térképeket hoz Iétre, melyek alapjan a
sejtautomata egy szomszédossagi sziird segitségével lokalizalja a valtozo
teriileteket. A modellekben tajvaltozast befolyasold tényezdket nem
hataroztam meg.

A modell teljesitményét a Figure of merit (FOM) mutatoval és
annak komponenseivel (talalatok=helyesen szimulalt valtozas; helytelen
taladlatok = helyesen szimulalt valtozas, de nem megfeleld kategoriaba;
téves riasztasok = referencia szerint nem valtozd teriiletek, valtozo
teriletként szimulalva; mulasztasok = referencia szerint valtozo
teriiletek, nem valtozo teriiletként szimulalva) mértem, illetve az ezekbol
levezetett mennyiségi és helyzeti eltérés mutatokkal. A FOM
komponensek betekintést engednek a referencia ¢és a szimulalt
valtozasok kozti egyezések ¢és eltérések részleteibe. Tovabba az utolso
referencia idépont (1. €s 2. mintateriilet-csoport esetében 2012, a 3.
mintateriilet-csoport esetében 2010 és 2016), illetve az utols6 szimulalt
id6pont kozti egyezés mérését végeztem el a teljes egyezés, illetve a
Kappa egyezési index mutatokkal. Mindemellett a kdovetkezd egyéb
valtozokat vizsgaltam:

e kategoridk szama,;
valtozas mennyisége a vizsgalt iddintervallumban,
évenkénti valtozas mennyisége a vizsgalt idéintervallumban,;
valtozasok kiilonbségei a vizsgalt iddintervallumok kozott;
id6beli stabilitdas a kalibracidés és wvalidacios id6szak kozott,
illetve a kalibracios és szimulacios idoszak kozott.

A statisztikai vizsgalatokat kizarolag a 2. mintateriilet-csoport
esetében végeztem el ANOVA-teszt és Tukey-féle paros 6sszehasonlités
segitségével. A statisztikai teszt annak feltarasara iranyult, hogy az egyes
kategoria aggregacidos modszerek medianjai kozott van-e szignifikans
kiilonbség a vizsgalt valtozok tekintetében. A vizsgalt valtozok és a
modell teljesitmény Osszefliggéseinek vizsgalatara korrelacidos matrixot
allitottam fel, ahol Spearman-féle korrelacios koefficienset hasznaltam
(p<0.05).

Az 1. mintateriilet-csoport esetében a valtozdsok a kalibraciods,
validacios és szimulacids idoszakban is 2% alatt maradtak, az évenkénti
valtozas a validacios €s a szimulacios idészakban is lassult a kalibracios
idészakhoz képest — bar eltérd mértékben. A helyesen szimulalt
valtozasok aranya (0,02%, a mintateriilet viszonylataban) és a modell
teljesitménye (FOM=0,007%) is extrém alacsony volt. Ugyanakkor a
helyzeti eltérés (2,12%, a mintateriilet viszonylataban) magasabb volt,
mint a mennyiségi eltérés (0,41%, a mintateriilet viszonylatdban), ami
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arra utal, hogy tobb eltérés szarmazott a modell sejtautomata
Osszetevjébol, mint a Markov 0OsszetevObol. A téves riasztas ¢és
mulasztas értékek és elhelyezkedésiik alapjan a modell a szomszédos
teriiletekre koncentralta a valtozd teriileteket, ami vélhetfen a
szomszédossagi sziird hatdsa. Az intenzitas-vizsgalat kimutatta, hogy
sokkal tobb hasonlosag mutatkozott a kalibracios és a szimulacios
1d6szak valtozasainak dinamikaja kozott, mint a kalibracios idészak és a
validacios id6szak valtozasainak dinamikaja kozott. Ez azt jelenti, hogy
nem feltétleniil a modell altal szimulalt valtozdsok térnek el a
kalibraciotol, hanem a valos valtozasok dinamikaja €s részben ez vezet
a modell alacsony teljesitményéhez. Az intenzitas-vizsgalat emellett
részletesen feltarta a harom iddszak valtozasait, amelyet egy egyszer
mérészam (FOM) nem tarhatott volna fel.

A 2. mintateriilet-csoport eredményei ravilagitottak, hogy az L1
csoport valtozasainak mennyisége szignifikdnsan alacsonyabb volt, mint
a tobbi aggregaciés modszer esetében, mind a kalibracidés, mind a
validacios és mind a szimulacios idészakban. Emellett az L1 csoportban
drasztikusan csokkent a kategéridk szdma, bar a kategéridk szdmanak
jelentés csokkenése a BB csoport esetében is megjelent. Ugyanakkor
utobbi esetében a valtozadsok mértéke egyaltalan nem csokkent, hiszen a
kategoridk e modszerrel torténd dsszevonasandl a valtozasok megdrzése
mérvadd szempont volt. Az évenkénti valtozasok vizsgalata alapjan
kideriilt, hogy a modell minden esetben csokkend valtozast szimulalt a
kalibraciés 1d6szakhoz képest, bar a validacios iddszak valtozasai sok
esetben gyorsulo tendenciat mutattak.

A FOM tekintetében nem volt szignifikdns kiilonbség az
aggregacios modszerek kozott, de az L1 esetében a FOM median a tobbi
csoporttdl eltérden nulldhoz kozelitett, valamint szintén nulla értékhez
kozelitett a talalatok és helytelen talalatok értéke. Az L1 esetében
minden FOM komponens értéke alacsonyabb értéket mutatott a tobbi
csoport értékeinél, de a FOM esetében e komponensek ardnya a
mérvadd. A téves riasztds és a mulasztas értékek minden esetben
jellemzbéen magasabbak voltak, mint a talalat és helytelen talalat értékek,
ami ebben az esetben is — az 1. mintateriilet-csoporthoz hasonléan — a
szomszédossagi szlird hatasat feltételezi. A statisztikai eredmények
alapjan a mulasztasok és a validacios idOszak valtozasai kozott
(R?=0,95), valamint a téves riasztasok és a szimulacios iddszak
véltozasai kozott (R?=0,91) szoros korrelacié allt fenn. A 2. mintateriilet-
csoport esetében a modell mennyiségi eltérései jellemzden magasabbak
voltak, mint a helyzeti eltérései, és mindkét mutatd esetében az L1
csoport értékei szignifikansan alacsonyabbak voltak a tobbi csoport
értekeinél. Az egyedi esetek tobbségében a mennyiségi eltérés magasabb
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volt, mint a helyzeti eltérés (az L1 csoport esetében mindkét lehetdség
jellemzd), ami arra utal, hogy altalaban t6bb hiba szdrmazott a modell
Markov 6sszetevdjébdl, mint a sejtautomata 6sszetevobol. A statisztikai
eredmények alapjan a mennyiségi eltérés és a validacios idészak
valtozasai kozott szoros (R?=0,82), valamint a mennyiségi eltérés és a
valtozas referencia idészakokban mutatott lassuldsa/gyorsulasa kozott
szamottevd (R?=0,65) korrelacios kapcsolat allt fenn.

A valtozéasok iddébeli stabilitdsanak mérése alapjan a kalibracids-
valid4cios 1ddszakok kozott fennalld stabilitds és a kalibracios-
szimulacids idészakok kozott fennallo stabilitds kozott az L1 szamottevd
kiilonbséget mutatott, amelybdl kideriil, hogy a szimuléacios iddszak
valtozasai sokkal stabilabbak voltak, mint a validacios id6észak
valtozasai, mindkét esetben a kalibracios iddszakhoz viszonyitva.

Az utolsé felhasznalt idopont (2012) referencia és szimulalt
térképének Osszehasonlitisa soran a Kappa egyezési index és a teljes
egyezes mutatd is szignifikdnsan és kiugréan magasabb értékeket adott
vissza az L1 csoportban, ahol a legkevesebb valtozas volt megfigyelhetd.
A statisztikai eredmények aladtdmasztottdk a Kappa egyezési index
(R?=0,85) és a teljes egyezés (R?=0,92) mutatok szoros korrelaciojat a
validacids id6szak perzisztens teriileteinek aranyaval, valamint a
helyesen perzisztens teriiletként szimulalt teriiletek aranyaval (R?=0,96).
Tehat ezen indexek alkalmazasa félrevezeto a szimulacio értékelésekor,
mert akkor is magas egyezést adnak, ha a valtozasok mértéke alacsony
és a helyesen szimulalt véltozasok talalati aranya is alacsony. Ez a
megallapitds a szakirodalomban leirtak alapjan ismert, de nagyszamu
modellen a szisztematikus Osszefliggést nem bizonyitottak.

A 3. mintateriilet-CSoport esetében a taldlatok javarészt az eredeti
kategoriahatarok mentén jelentek meg, ami 0sszhangban van a terjed6
jellegli valtozas mechanizmusaval és a szomszédossagi sziiré hatasaval.
Az Atchafalaya-6bolben talalhaté mintateriilet esetében a mulasztasok
sok esetben kozvetleniil a taldlatok szomszédsagaban helyezkedtek el,
ami azt jelzi, hogy a modell nem szimulalt annyi valtozast, mint amennyi
a referencia adat szerint tortént. Ez a jelenség Osszhangban van a 2.
mintateriilet-csoport eredményeivel, miszerint a modell
szisztematikusan aldbecsiilte a valtozasok mennyiségét. Az Amazonas-
vidéken talalhaté mintateriileten egyfajta so-bors hatas volt
megfigyelhetd, ami a referencia valtozasok hasonld elrendez6désébol
adodott. A talalatok ebben az esetben is jellemzden az eredeti
kategoriahatarok mentén voltak lathatéak. A 3. mintateriilet-csoport
mintateriiletei drasztikusan magasabb FOM értékeket produkaltak, mint
a 2. mintateriilet-csoport mintateriiletei. A FOM-komponensek koziil
ugyanakkor csak a talalat értékek kiilonboztek nagymértékben, amelyek
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sokkal nagyobb arany( helyesen szimulalt valtozast mutattak, mint a 2.
mintateriilet-csoport modelljei esetében. A helytelen talalatok minden
esetben nulla értéket adtak vissza, mert helytelen kategoriaba torténd
valtozas nem volt lehetséges, hiszen dsszesen két kategoria szerepelt a
térképeken. A valtozasok stabilitasa a referencia idészakban jellemzden
magasabb volt, mint a 2. mintateriilet-csoport mintateriiletei esetében. A
terjedd jellegli valtozas modellezése a vizsgalat alapjan sokkal inkébb
Osszhangban volt a modell mikédési mechanizmusaval, mint az elszort
elhelyezkedésii valtozasok.

A vizsgalatok tapasztalatai alapjan Osszefoglalva megallapithato,
hogy az intenzitis-vizsgalat és a kalibracios iddszak vizsgélatdnak
bevonasa nagyban hozzajarult a valtozasok megismeréséhez, és képes
volt felfedni a modell alacsony teljesitménye mdogott huzodod okokat.
Tovabba a kategoériak CLC sztenderd 1. szint szerinti aggregacidja
elrejtheti a tajban lejatsz6d6d fontos valtozasokat, ami tajvaltozas
modellezés esetén hatranyos koriilmény. A vizsgalt modellek esetében a
mennyiségi eltérések altaldban magasabbak voltak, mint a helyzeti
eltérések, ami azt jelzi, hogy a Markov komponens tobb hibat okozott,
mint a sejtautomata komponens. A vizsgalatban szereplé minden modell
lassul6 valtozasokat szimulalt, fiiggetleniil a valds valtozasok lassuld
valos tendenciat, ha az szintén lassuldo. A szomszédossagi sziird a
valtozasok koncentralodéasat okozza, ami a terjedd jellegli valtozasoknal
kifejezetten elényos. A kutatas nagyszamt modell segitségével mutatott
be szisztematikus Osszefiiggéseket és hibakat, amelyek nagyban
segithetik a modellezd szakemberek munkajat, €s ezen keresztil a
relevans dontéshozast timogatdé munkafolyamatokat.
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9. APPENDICES

Appendix 1

Nomenclature of Corine Land Cover Category based on the
guidelines of Copernicus Land Monitoring Service and Kosztra et al.
(2019). A nomenclature with detailed definitions of each category is
available at the website cited in the footnote. *

Standard CLC CLC
levels Standard | Standard CLC Standard Level 3
Level 1 Level 2

11 111. Continuous urban fabric
Urban fabric | 112. Discontinuous urban fabric
12 121 Industrial or commercial units
Industrial, 122 Road and rail networks and
commercial associated land

" and transport | 123 Port areas

[ units 124 Airports

% T 13 131 Mineral extraction sites

< Artificial | Mine,  dump 13, Dump sites

o surfaces and

2 construction | 133 Construction sites

= sites

s 14 141 Green urban areas

£ Atrtificial, non-

'g agricultural ] o

= vegetated 142 Sport and leisure facilities

2 areas

& 21 211 Non-irrigated arable land

g“ Arable land 212 Permanently irrigated land

g 213 Rice fields

3 22 221 Vineyards

g Permanent 222 Fruit trees and berry plantations

= crops 223 Olive groves

= 5

2 Agricultural | 23 231 Pastures

% areas Pastures

© 241 Annual crops associated with
24 permanent crops
Heterogeneous | 242 Complex cultivation patterns
agricultural 243 Land principally occupied by
areas agriculture, with significant areas of

natural vegetation

1 URL: https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-

nomenclature-guidelines/html
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244 Agro-forestry areas

311 Broad-leaved forest

21 312 Coniferous forest
orest 313 Mixed forest
32 321. Natural grasslands
3 Shrub and/or | 322 Moors and heathland
Forests and herbaceous 323 Sclerophyllous vegetation
. vegetation 324 Transitional dland-shrub
semi- associations . Transitional woodland-shru
natural
areas 331 Beaches, dunes, sands
33 332 Bare rocks
Open  spaces
with little or | 333 Sparsely vegetated areas
no vegetation - '334 Burnt areas
335 Glaciers and perpetual snow
41 411. Inland marshes
Inland
4 wetlands 412. Peatbogs
Wetlands 42 421 Salt marshes
Coastal 422 Salines
wetlands 423 Intertidal flats
51 511. Water courses
. Inland waters | 512 Wwater bodies
Water 521 Coastal lagoons
bodies 52

Marine waters

522 Estuaries

523 Sea and ocean
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Appendix 2

Abbreviations for variables used throughout the analysis, in an
order matching the variable order in Figure 20.

Abbreviation Description

CR Correct Rejections

FA False Alarms (Figure of merit component)

WH Wrong Hits (Figure of merit component)

H Hits (Figure of merit component)

M Misses (Figure of merit component)

QS Quantity disagreement of the simulation

AS Allocation disagreement of the simulation

TS Total disagreement of the simulation

QS-AS Difference between quantity and allocation disagreement of the
simulation

Cal pers. Ratio of persistent area in the calibration interval

Cal ch. Ratio of changing area in the calibration interval

Val pers. Ratio of persistent area in the validation interval

Val ch. Ratio of changing area in the validation interval

Sim pers. Ratio of persistent area in the simulation interval

Sim ch. Ratio of changing area in the simulation interval

FOM Figure of merit

Runf. (Ref) Runfola’s R value calculated for the stationarity of calibration and
validation interval

Runf. (Sim) Runfola’s R value calculated for the stationarity of calibration and
simulation interval

Runf. DIFF Difference between Runf. (Ref) and Runf. (Sim)

Cal-Val an. Difference between calibration and validation interval annual
changes

Cal-Sim an. Difference between calibration and simulation interval annual
changes

OA Overall Agreement

KIA Kappa Index of Agreement

Cat no. Number of categories in the actual study area
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