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1. INTRODUCTION 

Land change and land change modelling have key importance in 

a constantly changing world where the activity of mankind results in 

enormous transformations and an accelerating modification of natural 

environment. All these changes have a diverse range of purposes – either 

disadvantageous damages, like illegal logging or beneficial changes in 

favor of natural habitat, like creating a landscape corridor for certain 

species. It is essential to be able to monitor changes and to project these 

changes forward as precisely as possible in order to reveal scenarios that 

also provide realistic visions of the future landscape. Land change 

modelling is a practical and abstract approach of the real land changes 

where the success of a model depends on an enormous number of 

possible parameters. Even if the model matches the main land 

characteristics of reality, the validation process may substantially distort 

the interpretation of results. Therefore, the modeler may be misled by 

unrealistic validation results and may support further erroneous land 

management decisions based on a wrong model.  

In my dissertation I aim to reveal (1) how exactly wrong 

practices, which are still widely used among scientists and are frequently 

published, may have a bad impact on model performance interpretation; 

(2) what good practices there are in literature and how their 

appropriateness could be confirmed in a large set of land change models; 

(3) how results can vary with some additional circumstances apart from 

the parameters of the model itself, like aggregation of land categories 

and real change dynamics in the landscape. In this research three sets of 

study sites were applied, where three different approaches were 

illustrated based on the same cellular automaton-Markov (CA-Markov) 

model.  

In the first set, a CA-Markov model was run in one specific study 

site and intensity analysis was applied for analyzing changes in reference 

and simulation data. Intensity analysis is a framework for land change 

monitoring. Along with this detailed change monitoring, Figure of Merit 

(FOM) and its components were calculated to have an insight to model 

performance. FOM is a metric that mainly focuses on the comparison of 

reference and simulated changes in a landscape and FOM components 

reveal detailed information about correctly and erroneously simulated 

pixels. In this case, the effect of the consistency of real landscape change 

dynamics on validation results was illustrated.  

In the second set of study sites, 114 CA-Markov models were run 

with the same model parameters and the same input data, but with 

various sizes of study sites and various manners of aggregations of land 
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categories. In this case, the effect of various aggregation methods on 

model performance was investigated, while illustrations and findings 

derived from the comparison of bad and good practices of model 

performance validation were presented. 

In the third set of study sites, 6 CA-Markov simulation models 

were run with the same model parameters in two study sites, focusing on 

sprawl-like change dynamics specifically. In this case, the differences in 

FOM and FOM component values related to the second set of study sites 

were enhanced, and an investigation on the purport of stationarity of land 

changes across time was presented.  

The research uses remotely-sensed data either directly by 

processing Landsat satellite images or indirectly by using Corine Land 

Cover data that is also produced based on various remotely-sensed 

datasets.  

Based on the preliminary literature study, I hypothesized the followings:  

 intensity analysis could help the validation process by giving a 

deeper insight into changes in the landscape; 

 wrong model performance approaches (Kappa Index of 

Agreement and Overall Accuracy) mislead the interpretation and 

result in high correlation with persistence in the data; 

 aggregation of land use/land cover categories does not data affect 

model performance; 

 the temporal stability in the reference and simulated data affect 

model performance. 

The innovations of my research are the followings: 

 I use intensity analysis in the model validation process; 

 I investigate the possible effects of aggregation methods on 

model performance; 

 I use a large set of model runs to present the ideas above and to 

prove some specific results concerning land change modeling 

published in scientific literature before. 

I have published partial results of this research concerning the 

application of intensity analysis in model validation process (Varga et 

al., 2019) and the effect of aggregation methods on model performance 

(Varga et al., 2020) as part of my Ph.D. publication requirements. 

Based on the results of research conducted in the three different 

sets of study sites, I developed my theses. My general purpose was to 

provide expressive cases that enlighten a deeper correspondence in 

validation process and help land change modelers to choose correct and 

suitable methods. I hope for a better understanding of possible mistakes 

throughout model validation process. 
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2. LITERATURE REVIEW 

2.1. Definitions of Land 

It is important to review definitions and approaches of landscape 

in order to define the study design appropriately and clearly. There are 

several definitions of landscape that have developed with the time 

passing by. Alexander von Humboldt was the first to think of a unique 

character related to landscapes and characterized landscape as “the total 

character of a region” (Farina, 2013). In modern landscape ecology, 

Turner et al. (2015) defined landscape as “an area that is spatially 

heterogeneous in at least one factor of interest“. According to the 

definition in the European Landscape Convention (Council of Europe, 

2000),“landscape means an area, as perceived by people, whose 

character is the result of the action and interaction of natural and/or 

human factors”. In Hungarian literature, Kerényi (2007) defined 

landscape as an individuum, a unique part of the geosphere and a spatial 

unit whose basic character and boundaries were results of natural 

processes, but were modified as a result of anthropogenic activities in 

various measures. These definitions point to the fact that landscape has 

its own character which helps to discriminate it from other landscapes 

and this character is a result of a combination of natural and 

anthropogenic processes. 

Turner et al. (2015) created a synthetic review of landscape 

ecology definitions and applications where the authors summarize the 

thoughts of main representatives of this field. According to this 

synthesis, Forman (1983) described landscape ecology as dealing with 

the relationships and dynamics – like the movement or flow of species, 

energy and mineral nutrients – among elements or ecosystems of the 

landscape. Risser et al (1984) determined landscape ecology as focusing 

on the aspects of spatial heterogeneity of the landscape, mainly the 

dynamics, spatial and temporal interactions, management of spatial 

heterogeneity, moreover its effects on biotic and abiotic processes. 

Forman (1995) published the patch-matrix-corridor model, which 

introduced essential terms in landscape science up to this day. This work 

determines the following definitions: 

 a patch was defined as an area differing from its surroundings in 

nature or appearance;  

 a corridor was defined as a narrow strip of a particular type which 

connects patches and is different from its neighboring areas;  

 a matrix was defined as the background land cover type of a 

landscape which embraces and involves the other elements in the 

landscape.  
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Turner et al. (2015) also described the landscape ecology definition of 

Urban et al (1987) as it states that the motivation of landscape ecology is 

a need to comprehend ecological processes and phenomena in terms of 

dynamics, spatial scales, temporal scales and role of disturbance. 

According to McGarigal (2002), one of the founders of landscape 

metrics theory, land cover types are relevant examples of a certain basic 

data type of landscape pattern analysis. This data type is categorical map 

pattern, named also as thematic or choropleth map, where the subject is 

represented as a mosaic consisting of discrete patches. This character is 

in accordance with the ecological approach of patches where the patches 

are discrete areas of homogeneous conditions from an ecological aspect 

(McGarigal, Kevin, 2002). 

It is important to summarize the definitions and units which may 

occur in the analysis context. Scientists examine land change in a pretty 

wide range of researches and publications (Abd El-Kawy et al., 2011; 

Kim, 2016; Mallinis et al., 2014; Mallupattu and Reddy, 2013) which 

suggests that land change monitoring and land change analysis are really 

popular topics. We can find several examples which describe Land Use 

(LU) change analyses, Land Cover (LC) change analyses, but more often 

these terms are used interchangeably in literature, as land use / land cover 

(LULC) change analyses. Even there is abbreviation focusing on 

specifically the change of Land Use / Land Cover, which is LULCC 

meaning Land Use / Land Cover Change (Näschen et al., 2019; Ozsahin 

et al., 2018) and LUCC meaning Land Use/Cover Change (Mas et al., 

2014).  

However, there is fundamental difference between definitions of 

land use and land cover. DiGregorio and Jansen (2000) defined land 

cover as „the observed (bio)physical cover on the earth's surface”. 

DiGregorio and Jansen (2000) defined land use as it „is characterized by 

the arrangements, activities and inputs people undertake in a certain 

land cover type to produce, change or maintain it”. Soesbergen (2016) 

stated that land cover characterize the physical surface, e.g. presence of 

vegetation, and this character is directly observable, but land use 

characterize the economic and social functions of land or the purposes of 

human exploitation. These definitions all point to the fact that land cover 

refers to natural units of the surface which can be visually observed, 

while land use is determined by the purpose that the land is utilized for, 

and there is a direct relationship between them. Land use and land cover 

may even show different characteristics in a given unit of land. For 

instance, a residential area is homogeneous in a sense of land use 

category, since it is used as mainly permanent residence of the 

population, but it is heterogeneous in a sense of land cover category, 
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because it may consist of either buildings, roads or green areas (Verőné 

Wojtaszek, 2010).  

In this dissertation, land change is in focus in a manner that 

different categories of LULC are simulated to a future state by a LULC 

change model. The investigation is mainly based on a ready-to-use 

LULC database (Corine Land Cover, henceforth referred to as CLC) that 

has a well-defined category scheme. This category scheme is consistent 

through different versions of Corine databases and this consistency has 

substantial importance in the modelling phase of the research. The 

Corine category scheme itself has possible shortcomings due to the 

various national methods of production (Martínez-Fernández et al., 

2019) or problems when applied in local scale analyses (Diaz-Pacheco 

and Gutiérrez, 2014). These shortcomings are not in the focus of this 

research, because CLC Level 3 datasets were aggregated according to 

various category aggregation methods, and the possible general 

shortcomings of the circumstances of CLC data production may affect 

the study design uniformly, if any.  

Within this research, there was an individual group of two study 

sites where specific land cover categories were determined via 

segmentation of remotely-sensed images (Section 3.1.3.). In these cases, 

classes were determined based on specific characteristics of the 

examined phenomena and visually interpretable objects, which latter 

condition is in accordance with the cited definitions of land cover. 

Therefore, these cases can be considered more specifically as land cover 

(LC) change models, instead of LULC change models.  

2.2. Land Change Analysis 

Land change monitoring has the opportunity for revealing the 

patterns of change and dynamics of change in the landscape (Lambin, 

Eric F. et al., 2003; Madrigal-Martínez and García, 2019). Some of these 

opportunities are based on crosstabulation matrices of different land 

cover maps. Post-classification comparison of remote-sensed land cover 

data follows this logic, since this method overlays independently 

classified maps originated from remotely sensed data, and creates a 

crosstabulation matrix based on this comparison. It can provide a basis 

for calculations of LULC changes from one time period to another, and 

help to determine the changing areas and what category they turned into 

(Jensen, 1996). Many scientists used post-classification comparison for 

the change detection analysis of remotely sensed data from various 

sources, such as historical aerial photographs or Landsat and ASTER 

satellite images (Alo and Pontius Jr, 2008; Alphan et al., 2009; El-

Hattab, 2016; Halls and Kraatz, 2006). This method of establishing a 
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crosstabulation matrix and calculating changes of LULC classes can not 

only be used in case of remotely sensed data but raster land cover data 

derived from any sources, e.g. results of field measurements or maps 

generated via visual interpretation, after rasterization.  

Intensity Analysis is another approach of describing land cover 

change, also based on crosstabulation matrices of maps from initial and 

end dates of a time interval. Intensity Analysis is a quantitative 

framework to characterize change among categories through time and to 

characterize patterns of changes in more and more detailed levels. It has 

been used recently in an increasing number of researches worldwide, for 

the purpose of analyzing changes in landscape through more time 

intervals and even through time intervals with different durations 

(Aabeyir et al., 2017; Castro and Rocha, 2015; Quan et al., 2017; 

Raphael John et al., 2014; Rocha et al., 2017; Teixeira et al., 2016; Yang, 

Y. et al., 2017). It could have been used for the analysis of other 

phenomena as well, such as dynamics of solar radiation (Li et al., 2017). 

It has not been widely used in simulation model evaluation issues so far, 

although there were papers including the analysis of gains, persistence 

and losses of urban and non-urban classes in various urban growth 

scenarios (Liu and Feng, 2016). Another example of application was the 

examination of the temporal pattern of urban land changes across time 

intervals in order to get insight to the dynamics of the study area, right 

before setting up a predictive model for urban land changes (Subasinghe 

et al., 2016). These examples point to the fact that Intensity Analysis has 

started to become a widely used method for monitoring landscape 

changes, but it has not been used for monitoring the landscape changes 

simulated by a land change model. The first example was our 

publication, which is a basis for my dissertation and a practical 

application of this theory (Varga et al., 2019). 

Landscape and land change analysis are also fundamental and 

popular research topics in Hungarian scientific literature or Hungarian 

study sites, and the science of the background of land changes has long 

traditions in Hungarian science. Landscape in general (Lóczy, 2015), 

landscape ecology, human transformation (Csorba and Szabó, 2009) or 

examination of driving factors (Deák et al., 2016; Ladányi et al., 2016) 

of land change are all research topics of interest among Hungarian 

scientists as well.  

2.3. Category Aggregation 

When establishing a process of land change analysis, it is a relevant 

need to aggregate land classes that the scientist intends to analyze. 

Handling too many categories may make the analysis complicated to 
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perform and interpret. Moreover, the change analysis of too many 

categories may distract the focus from outstandingly important changes 

in the landscape. The categories in a land change analysis also need to 

be comparable, because we cannot analyze appropriately the land change 

in a time interval where the definition and membership rules of 

categories of the initial and final dates are different. The problem of 

category aggregation dates back to the definition of Modifiable Areal 

Unit Problem, frequently referred to as MAUP. The problem had been 

partly discovered before by Gehlke and Biehl (1934), and was later 

thoroughly analyzed and published by Openshaw and Taylor (1979). The 

MAUP has two sub-problems (Wong, 2004):  

(1) the zoning effect which means whether the number of zones in a 

given area is constant and new boundaries are drawn in order to 

set up a new zoning system, then the analytical result of the 

different datasets gained based on the different zoning systems 

will be also inconsistent; 

(2) the scale effect is present when spatial aggregation or 

disaggregation of data occurs, or the spatial resolution of the data 

changes and at least one of these effects leads to inconsistent 

analytical results (Wong, 2004). 

A typical example of the zoning effect is the phenomenon of 

gerrymandering, which is a certain way of drawing the boundaries of 

constituencies in order to gain particular political advantages (Johnston, 

2002). More papers investigated the scale effect in connection with its 

importance in land change monitoring and land change modelling 

applications (Jelinski and Wu, 1996). Category aggregation is an 

important factor in land change modelling as well, since usually LULC 

maps are used as inputs in land change models. The aggregation of 

LULC map categories affects if a specific change is present or hidden in 

the map, i.e. aggregation of two categories can relevantly change the 

pattern of the land mosaic; therefore, the outcome will be biased by the 

method itself. According to Olmedo et al. (2018), MAUP is relevant in 

land change modelling in a manner that vector-to-raster conversions or 

resampling operations have a significant effect on the initial map of the 

simulation model, since it influences the cell neighborhood. Mas et al. 

(2015) examined deforestation in a case where they aggregated the 

information concerning driving factors based on spatial units. They 

found that MAUP produced variation, but did not have substantial effect 

in most cases, except for some variable pairs and specific cases where 

the effect was substantial. Pham (2005) stated that not many researches 

focused on the effects of grid size and aggregation on simulation models 

despite MAUP’s known effects. Moreover, evidence of MAUP in grid-
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based modelling approach, even theoretical or empirical, is missing 

(Pham, 2005). 

Pontius and Malizia (2004) introduced a theory called category 

aggregation problem (CAP) which states that the category definition is 

important due to the fact it has a substantial influence on change in the 

map. However, it seems to be obvious that category aggregation affects 

the changes in the map somehow, they also introduced 5 principles that 

drive the effects of category aggregation and proved them 

mathematically. Pontius and Malizia (2004) proved that category 

aggregation has a tremendous effect on the confusion matrix used for 

accuracy assessment. It means that the accuracy results we interpret, 

based on traditional accuracy assessment methods, can vary with the 

change of actual categorization. Aldwaik and Pontius (2015) delineated 

a possible method for aggregation, the behaviour-based category 

aggregation, which intend to aggregate two categories in each step in 

order to maintain change as much as possible. They provided a Visual 

Basic for Applications (VBA) macro for performing the analysis in 

Microsoft Excel environment.  

Generalized nomenclatures cannot express the conditions of reality 

in details, thus, their suitability is questionable during practical 

applications and actions concerning land use. The multidimensional 

approach of land use classification dates back to the middle of the 

twentieth century and emerged from urban planning due to providing an 

opportunity on more project-specific classifications (Guttenberg, 2002). 
There are different schemes for aggregating LULC categories in order to 

reduce the influence of LULC change examinations on the results as least 

as possible. According to Congalton and Green (1999), a classification 

scheme should be mutually exclusive and totally exhaustive. Anderson 

(1976) suggested the usage of a uniform classification framework with 

two levels for LULC data interpreted based on remote-sensing 

techniques. He aimed to establish a classification system which can be a 

basis for a uniform categorization for satellite and aerial images. There 

are even several other classification systems in literature – and practice 

– so as to represent land cover data by assigning appropriate 

grouping/alignment for land cover objects and types, either at global, 

continental or local scales (Di Gregorio and Jansen, 2000; Fosberg, 1961; 

Herold et al., 2009; Küchler and Zonneveld, 1988; UNESCO, 1973). 
While there are many available category schemes in literature, there is 

not any uniformly accepted category scheme, partly because they are 

inappropriate for uniform purposes or that the schemes are based on 

outdated information (Di Gregorio and Jansen, 2000). However, in many 

cases, the scientists perform classification in accordance with a specific 
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purpose, because they want to investigate a certain land cover, and a 

process like this does not need a comprehensive, but a focused category 

scheme (Abriha et al., 2018; Burai et al., 2015; Deák, M. et al., 2017; 

Gulácsi and Kovács, 2018; Kristóf et al., 2002). 

As CLC data is a Pan-European LULC map and had five releases 

with a nomenclature consistent over time, it is a popular source for land 

change monitoring issues. This research used the most detailed CLC 

Level 3 data with its original classes and the classes were aggregated into 

various datasets according to various aggregation methods. The methods 

of category aggregation are described in Section 3.4. 

2.4. Measurement of Stationarity 

Usage of the words “pattern” and “dynamics” in context of land 

change are not necessarily related to uniformly accepted definitions. 

These words are used in literature characterizing various approaches of 

land change issues, like using a dedicated spatial index for the analysis 

of land change patterns (Dadashpoor et al., 2019) or studying the 

determinants of changes (Verburg et al., 2004b). It is important to have 

an insight into the patterns of land change in order to understand the 

changes that occur in the landscape. In case of land change, spatial and 

temporal considerations are equally important, since land change is a 

transition located in a definite place and change process has a beginning 

and end in time. There are a few measurements which address land 

change pattern analysis. According to Aldwaik and Pontius (2012), if the 

change in a landscape is stationary, then the changes in a given time 

interval show the same pattern as the pattern in another time interval 

(Aldwaik and Pontius Jr, 2012). They published calculations for 

determining stationarity in this sense. In their concept, the definition of 

stationarity depends on the level of analysis, because it has different 

conditions in case of the whole spatial extent, in case of the categories’ 

gains and losses and in case of transitions between the categories. Sang 

et al. (2019) applied this method to analyze stationarity and change 

intensity throughout 20 years based on Landsat TM and OLI images. 

Runfola and Pontius Jr (2013) used the term temporal stability, which 

they describe as the measurement of stationarity, and define as “the 

degree to which the rate of land change is consistent over a given 

temporal extent”. Markov models predict based on transitional 

probabilities and according to Mertens and Lambin (2000) (Mertens and 

Lambin, 2000; Runfola and Pontius Jr, 2013) if a Markov model has to 

deal with land change process that is not stationary, then it loses its 

predictive ability, unless the transitional probabilities are modified. 

Pontius Jr and Neeti (2010) stated that it is a good chance for uncertainty 
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in land change processes that these processes include human decisions, 

which increases the presence of non-stationary changes, while the model 

tries to extrapolate stationary changes. Runfola introduced Runfola’s R 

value (Runfola and Pontius Jr, 2013) for measuring temporal stability, 

also known as stationarity.  

This research applies Runfola’s R value for measuring the 

temporal stability between time intervals which are used for calibration 

and validation of Markov models. This research considers also the 

stationarity of calibration changes and changes simulated by the Markov 

model and how the difference between these stationarity values 

addresses model performance in a large set of simulation models. 

2.5. Land Change Models 

There is a really wide range of simulation model types in 

literature. It is important to position the model used in this study design 

in order to have an insight to the purposes and logic of the model.  

Lambin et al. (2000) published a paper in the topic of agricultural 

land-use models in which they stated that land change processes should 

have the purpose of addressing the following questions, at least one of 

them:  

 WHY? – the question addresses environmental and cultural 

variables which explain land change the most; 

 WHERE? – the question addresses the locations affected by land 

change; 

 WHEN? – the question addresses the rate of land change. 

 

Lambin et al. (2000) also published a classic grouping of land change 

models where they grouped the models based on addressing these 

questions, as follows: 

 Empirical-statistical models: these models aim to identify the 

causes of changes via mainly multiple linear regression analyses. 

These models are able to predict changes which are represented 

in the training data and had been measured through a long period 

before. 

 Stochastic models: these models are based on transitional 

probability information which is statistically estimated from 

transitions that have been observed in the past. 

 Optimisation models: these models are specific for agriculture, 

since they are based on land rent theories and the models aim to 

approach a status where the land earns the highest rent. 
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 Dynamic simulation models: these models are based on 

biophysical and socio-economic processes and their interaction, 

while aiming to simulate these processes. Therefore it is a 

system-focused approach and demands the a priori understanding 

of the driving forces. 

Soesbergen groups models into the following categories based on the 

work of Heistermann et al. (2006), as follows: 

 Geographic models: these models use local characteristics and 

suitability to allocate land. The availability of geographic 

information systems (GIS) made it possible to develop 

geographic models, and they are capable of simulating 

phenomena mainly at regional or local scales (van Soesbergen, 

2016). 

 Economic models: these models focus on demand and supply of 

land-intensive commodities to allocate land. Computable 

General Equilibrium and Partial Equilibrium models (De Rosa et 

al., 2016) are examples of this approach, since in case of these 

models the allocation is based on market conditions.  

 Integrated models combine the features of the former two model 

types. It combines geographic approach, where geographic 

analysis determine the allocation of land, with economic 

approach, where world market analysis determines demand and 

supply characteristics (van Soesbergen, 2016)  

Brown et al. (2013) determined five types of modeling approaches 

which are grouped according to both if they emphasize process or pattern 

and if they emphasize projection or explanation, as follows: 

 machine learning: this approach focuses on patterns of change. 

The approach uses algorithms for finding relationships between 

changes and characteristics of locations where the changes are 

observed and derive this information from spatial variables. 

Brown et al. (2013) mentions artificial neural network, CART 

(classification and regression trees) and logistic regression as 

examples of methods used for variable selection in this approach; 

 cellular approach: this approach focuses on either process or 

pattern, since it simulates changes based on combining likelihood 

maps with spatial interactions; 

 sector-based economic models: this approach is purely 

economical and addresses demand for land while focusing on the 

equilibrium of the market based on demand and supply relations;  

 spatially disaggregated economic models: this approach is about 

to understand land changes as a result of individual decisions in 

accordance with microeconomic theories; 
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 agent-based approach: this approach focuses on establishing 

observed land change via design and content determined by the 

user, based on interactions by which the user assumes to 

influence the processes. 

Van Schrojenstein Lantman et al. (2011) identified further 

concepts of land use change in literature in their review, based on 

practical considerations: cellular automata, statistical analysis, Markov 

chains, artificial neural networks, economics-based models and agent-

based systems. This grouping is a result of a slightly different approach, 

but it has a substantial overlap with the ideas of the groupings above. 

Models can belong to a combination of groups according to the 

cited grouping approaches. In this research, I used CA-Markov model 

that simulates transitions among categories and combines the features of 

cellular automaton approach and Markov approach. They are also used 

separately. Many land change models use Markov extrapolation, like 

Idrisi’s Land Change Modeller, Idrisi’s CA-Markov (Eastman, 2012a) 

and DINAMICA model (Filho et al., 2002). Cellular automaton is 

integrated into model applications individually as well, like it is used in 

the SLEUTH model (Clarke et al., 1997; Silva and Clarke, 2002). CA-

Markov belongs to the group of stochastic models and answers the 

question of WHEN?, according to Lambin et al (2000), in a manner that 

it focuses on the rate of land change based on the past status of land while 

does not necessarily consider the reasons for the change. This latter 

feature depends on the exact model in which this approach is integrated, 

e.g. Idrisi’s Land Change Modeler is capable of involving spatial 

variables. The CA-Markov model can implement various weighting 

factors (El-Hallaq and Habboub, 2015; Myint and Wang, 2006) and has 

been applied to specific fields of land change, such as urban growth 

(Jalerajabi and Ahmadian, 2013; Sang et al., 2011) and historical land 

use research (Clarke et al., 1997; Iacono et al., 2015). Previous studies 

dealt with the behavior of land change models in terms of quantity and 

allocation of land changes, such as in GEOMOD and TerrSet’s Land 

Change Modeller applications (Olmedo et al., 2015; Pontius and 

Malanson, 2005).  

CA-Markov is a cellular approach according to the grouping of 

Brown et al (2013) and the authors warn about that “these models are 

limited in their ability to represent decision making processes” due to 

their logic behind the modelling process. In general, land change models 

and scenarios are useful inputs for landscape planning and management 

and there are researches for the possibilities and circumstances of 

utilization in practice (Convertino and Valverde Jr, 2013; Lippe et al., 

2017). I use this model in a large set of model runs in various study areas 
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across Europe, North and South America. The driving forces could be so 

diverse that managing various forces implemented into spatial variables 

would distract the focus of the research. In this research mainly the 

metrics and influencing factors of simulation performance are relevant 

and the driving forces of land change are irrelevant. The utilization of 

the results is relevant in practical aspects, i.e. the validation of a land 

change model. The CA-Markov model makes it possible to run the 

models without determining driving factors of change in the study areas 

and simulate future land changes based on purely the characteristics of 

land changes in the past. Furthermore, the model can be run with the 

exact same variables throughout the study design, except for the cases of 

American study areas, therefore these latter examples were interpreted 

separately. 

2.6. Land change model validation 

When running a simulation model, it is a fundamental need to 

characterize the agreement between reference and simulated change. 

Turner et al. (1989) published a paper of possible evaluation methods for 

spatial simulation models. The author examined metrics for spatial 

pattern, spatial predictability and goodness-of fit analyses (Turner et al., 

1989). There are various approaches for simulating a model, depending 

on the model itself as well. It is an an extremely widely used method to 

compare the simulated LULC map to the map representing the reference 

LULC of the same date, and the agreement is characterized by an index 

used for accuracy assessment in remote sensing applications, like the 

Kappa Index of Agreement or overall accuracy (Grigorescu et al., 2011; 

Halmy et al., 2015; Keshtkar and Voigt, 2016; Mishra and Rai, 2016; 

Popovici et al., 2018; Singh et al., 2015; Yang et al., 2014). In these 

cases, the metrics of agreement between the two maps were used to 

evaluate model performance, but these indices evaluate persistent areas 

as agreement, and they are capable of returning high agreement values 

even if the agreement between reference and simulated changes is low. 

Another metric in literature, the Figure of Merit – also referred to as 

critical success index (Jollife and Stephenson, 2003; Klug et al., 1992; 

Perica and Foufoula‐Georgiou, 1996; Pontius Jr, R. G. et al., 2011), 

focuses on the intersection of reference and simulated change, making it 

possible to approach model performance based on the success of 

simulating the changes, not the persistence. Pontius Jr et al. (2011) 

examined simulation models from cases published in scientific literature 

where the authors derived and presented possible combinations of 

comparisons between the relevant maps. Figure of Merit has components 

that characterize pixels according to being simulated erroneously or 
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correctly, based on a three-map comparison approach of the reference 

map, simulated map and a reference map from the previous date which 

the simulation was based on. This concept also appears in other scientific 

fields, like behavioral analysis (Lerman et al., 2010).  

A further approach of model validation is the Kappasimulation 

published by Hagen-Zanker (Hagen-Zanker, 2006), which was defined 

as „the coefficient of agreement between the simulated land-use 

transitions and the actual land-use transitions”. This index focuses on 

whether the changes are explained more by the simulation than they 

would be explained by a random distribution. Pontius Jr (2000) revised 

the shortcomings of Kappa and advised using further variations of the 

index. Pontius Jr et al (2011) later discouraged using Kappa and its 

variations due to its baseline of randomness and warned about 

misleading results when interpreting this metric while comparing two 

maps. They presented a new idea of map comparison via crosstabulation 

matrix, by introducing alternatives for measuring disagreement between 

the maps, namely quantity and allocation disagreement. While Hagen-

Zanker’s validation method accounts for the transitions in reference and 

simulated data, this approach possibly involves a baseline of randomness 

as well, due to applying Kappa. Among other indices, Kappa variations 

are available in multi-purpose Map Comparison Toolkit software as well 

(Visser and de Nijs, 2006). 

There have already appeared more complex methods for the 

assessment of land cover change simulation models in literature, which 

mainly serve the purpose of validating models that involve spatial 

variables. One of them is Total Operating Characteristic, as known as 

TOC, which monitors the results in term of location and quantity, as it 

compares a Boolean variable versus a rank variable and assesses 

prediction accuracy at several diverse threshold levels (Pontius Jr, R. G. 

and Si, 2014). The TOC shows more extended information compared to 

the Relative Operating Characteristic, as known as ROC (Jamal, 2012; 

Pontius Jr, R. G. and Batchu, 2003; Pontius Jr, R. G. and Parmentier, 

2014). Sensitivity analysis is another method widely used in model 

assessment that aims to answer which of the input factors can be 

relatively helpful in reducing the uncertainty of the output and which of 

them should be eliminated in order to reduce the variance of the output 

(Saltelli et al., 2004). Sensitivity Analysis was used in a wide range of 

practical applications, such as for parametrization of logistic regression 

equations (Van Dessel et al., 2011) and sensitivity analysis of Markovian 

models (Cao, X. R. and Wan, 1998; Chan and Darwiche, 2005; Charitos 

and van der Gaag, 2006; Renooij, 2010). 
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By presenting trends of model validation in literature I aimed to 

highlight either the wrong approaches or underline the reasons for their 

failures. I also revised the alternatives, by which the modeler can get a 

more appropriate insight to model performance. In the following section, 

I present the methods I used in this research, along with descriptions 

focusing on a methodological aspect, therefore enabling reproducibility 

as well. 

3. METHODS AND STUDY DESIGN 

3.1. Dataset 

3.1.1. Corine Land Cover data 

In this research Corine Land Cover data (Coordination of 

Information on the Environment, henceforth referred to as CLC) was 

used, which is a LULC database produced by the European Environment 

Agency, managed by the Copernicus Land Monitoring Service recently 

(Feranec et al., 2016). In the frame of CLC program, a geographic 

information system was established that contains information about land 

cover status of years 1990, 2000, 2006, 2012 and 2018. It was produced 

at a 1:100 000 scale based on the interpretation of various data sources 

by the time and available technological opportunities passing by, e.g. 

Landsat-TM, Landsat-MSS, SPOT (HRV XS), IRS, RapidEye and 

Sentinel-2 images (Büttner and Kosztra, 2017). A minimal mapping unit 

of 25 hectares and 100 m width (latter in case of linear objects) was 

applied. The databases were reported as having a thematic accuracy of 

85% at least (Büttner et al., 2004; Büttner, 2014; Büttner and Kosztra, 

2017). CLC data is a frequently used dataset for various landscape 

analysis purposes and land monitoring issues, such as hemeroby studies 

or landscape pattern analysis, also in Hungarian study areas (Csorba and 

Szabó, 2009; Túri, 2010). Corine Land Cover data is an extremely widely 

used data source for a range of subfields of environmental monitoring 

(Bielecka and Jenerowicz, 2019; Stathopoulou et al., 2007; Yague and 

Garcia, 2004). 

CLC datasets were used as input data in study site groups 1 and 

2, as described in Sections 3.2.1 and 3.2.2., CLC has the advantage that 

it has a nomenclature consistent over time and the manner of data 

acquisition represents an approximately regular sampling over time, 

since CLC is published every 6 years. However, the images used for data 

processing showed a slight deviation from 6 years’ time interval. CLC 

nomenclature consists of 3 standard levels in a nested hierarchical order 

and the most detailed third level assigns 44 LULC categories (Kosztra et 
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al., 2019). Standard level 2 and 1 has a maximum of fewer categories, 

therefore aggregating classes into ones with broader definition. This 

standard level system was used as an approach for category aggregation. 

This approach is described in Section 3.3. in detail. CLC nomenclature 

is presented in Appendix 1 in detail. 

3.2. Study sites 

3.2.1. Study Site Group 1 

Study site group 1 (Figure 1) consists of one specific study site 

located around Tokaj city and the estuary of Tisza and Bodrog rivers in 

the west neighborhood of the settlement. It is a junction of 5 

microregions (Tokaji-hegy, Bodrogköz, Löszös-Nyírség, Hajdúhát, 

Taktaköz) and is located on the common administrative boundaries of 

two counties (Borsod-Abaúj-Zemplén, Hajdú-Bihar) and two NUTS2 

regions (Northern Hungary, Northern Great Plain). Tokaj Wine Region 

Historic Cultural Landscape, a UNESCO World Heritage site, and its 

traditional vineyards also intersect the study area (Kerényi, 2015; Varga 

et al., 2019) This intersection and presence of Natura 2000 sites also 

contributes to the protected status of particular parts of the study area. 

Lowland chernozem and alluvial meadow soils are dominant, based on 

loess coverage, which are appropriate for arable and pasture land use as 

well as viniculture. Latter could have been cultivated for centuries due 

to favorable local aspect features, however, the area is charged with 

intense erosion (Kerényi, 2015). Deciduous forest coverage is typical 

mainly in areas with brown forest soil and relatively higher altitude, 

alongside the rivers or as afforestation patches sparsely within the S and 

SE part of the study site (Dövényi, 2010). Therefore, the land cover 

structure is quite heterogeneous, even related to a nationwide scale, 

because either forest coverage, extended built-up areas, water bodies, 

arable and pasture lands appear together. However, the partly protected 

status is an obvious limit for possible land cover changes, and under this 

circumstance, the study area shows an extremely low ratio of changing 

areas throughout the 12 year-long study time interval.  

The maps of the study site were derived from CLC vector data 

concerning years 2000, 2006, and 2012, were rasterized into 25 m 

resolution maps and the categories were aggregated according to CLC 

Level 1 nomenclature (5 categories). The CLC data was available at the 

website of the Institute of Geodesy, Cartography and Remote Sensing 

(FÖMI), Hungary. The maps of 2000 and 2006 were inputs for 

calibrating the model, while 2012 served as an input only for validation. 

The model simulated a LULC map for 2012, and by calculating FOM 
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and its components, furthermore performing intensity analysis, a 

comprehensive study of land changes in the study site was conducted. 

FOM, FOM components, and intensity analysis are described in Sections 

3.6.2.1 and 3.5.2 in detail. 

 
Figure 1. Location of study site group 1, consisting of one study site, an area 

located around Tokaj, NE Hungary. 

3.2.2. Study Site Group 2 

In this study site group, models were set up in eight different 

landscapes across Europe. The landscapes were selected solely based on 

the quantity of changing areas according to CLC change layers for 2000-

2006 and 2006-2012. CLC change layers have been produced with a 

finer minimal mapping unit (5 ha; Büttner, 2014)), therefore change 

layers contain more detailed information related to a simple comparison 

of CLC LULC map layers from different dates. The selected landscapes 

were subject to as high ratio of changes as possible in at least one of the 

time intervals of the analysis (2000-2006 or 2006-2012). Further 

condition for selection was that the study sites must have had 20 

categories as a maximum in each relevant date (2000, 2006 and 2012) 

according to CLC Level 3 classification, and must have had exactly the 

same number of categories in at least the first two dates (2000 and 2006). 

The CA-Markov model can handle only the cases where the category 

numbers are equal in the calibration interval (interval between 2000 and 

2006), therefore the study areas must not have change concerning the 

number of categories in the calibration interval. It points to the fact that 

the model cannot handle newly appearing or vanishing categories.  



 

24 

 

Under the described conditions 24 areas were selected in 8 

different landscapes, because in each landscape three zoom levels were 

applied. Large (L) zoom level consisted of the whole selected landscape 

and two further zoom level were assigned completely within the large 

area: medium (M) and small (S) subareas. Therefore, the small subarea 

was always a subset of the medium subarea, and the medium subarea 

was always a subset of the large subarea. Selected subareas were clipped 

from CLC’s 100 m resolution raster layers. The 8 landscapes were named 

after the closest cities (Figure 1) in order to identify them more easily. 

Finally, all the selected subareas had the following characteristics:  

 the subareas had the exact same area by zoom level (L = 62500 

ha, M = 15625 ha, S = 2500 ha), therefore the subareas had the 

exact same pixel number by zoom level; 

 all the subareas had the exact same 100 m pixel resolution, 

independently from zoom levels; 

 the subareas had the exact same category numbers in 2000 and 

2006; 

 the subareas had the largest ratio of changing area possible. 

Classes of all the 24 areas were aggregated according to various 

aggregation methods described in Section 3.3. and Figure 5 in detail. 

Therefore, five LULC maps were created in all the 24 areas – original 

data and further four ways of aggregation – which increased the number 

of observations to 120 (= 8 landscapes * 3 zoom levels * 5 aggregation 

methods). There were 6 exceptions in case of one aggregation method 

where the aggregation did not make sense – reasons detailed in Section 

3.3. – which resulted in 114 cases altogether. For all these 114 cases, 

CA-Markov models were run, and further variables were calculated 

concerning model performance (FOM, FOM components, quantity and 

allocation disagreement of simulation), comparison of reference and 

simulated 2012 maps (Overall Agreement, Kappa index of Agreement), 

simple metrics of changing areas and temporal stability. 
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3.2.3. Study Site Group 3 

This group consists of two study extents (Atchafalaya Bay area, 

Amazonian area) and 4 more subareas, generated by stepwise zooming 

into the extents, similar to the process in study site group 2. Altogether 

there were six areas in this group, two large (L), two medium (M) and 

two small areas (S). These study extents are located in America (Figure 

3) and they have several characteristics that discriminate them against 

the other two study site groups.  

These two extents were assigned in order to specifically test the 

performance of the model in areas where the changes show a sprawl-like 

pattern, i.e. change that is concentrated in the areas neighboring the 

original categories. In Atchafalaya Bay the main accelerator of changes 

is delta accumulation (Atchafalaya River delta and Wax Lake Outlet). 

Studies about the delta accumulation dates back to the 1980’s (DeLaune 

et al., 1987; Tye and Coleman, 1989). In the Amazon, the main 

accelerator of dramatic changes is deforestation, which is a long-term 

problem in Brazil (Carvalho et al., 2019), but the problem has renewed 

in the last years partly due to the new governmental attitude (Carvalho et 

al., 2019; de Area Leão Pereira, E. J. et al., 2019). Both described 

environmental changes can be regarded as clear examples of sprawl-like 

phenomena.  

The processing scheme of these study extents was also different, 

because the maps were derived from Landsat Thematic Mapper images. 

These images were downloaded from Earth Explorer website of the 

United States Geological Survey, as known as USGS (U.S. Geological 

Survey, 2016). Landsat images are widely used in scientific researches 

(Almeida et al., 2016; Ruelland et al., 2008; Viana et al., 2019; Zhu and 

Woodcock, 2014), partly due to their long-term availability, since it has 

provided continuous data from the 1970’s. This long-term availability 

and relatively dense – 16 days – revisit time makes it possible to perform 

long-term monitoring studies. These two study sites are not covered by 

CLC area of interest, thus it was impossible to use the same dataset for 

the analysis as in the other two study site groups. Since these two areas 

were also subjects for running CA-Markov models, they had to meet the 

requirements of running CA-Markov, e.g. equal number of categories in 

all maps. These two areas’ analysis also had the special purpose of 

modelling sprawl-like phenomena. That is why the LULC maps were 

evolved by determining 2 categories in both study sites, enhancing the 

relevant phenomena. First category determines the category that would 

potentially sprawl in terms of the examined phenomenon, and the other 

category functions as the background and target of the change generated 
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by the phenomenon. Therefore the first category, e.g. deforestation in the 

Amazonian study site, is presumed to show a large amount of gain, while 

the other category (forest) loses area along with the spread of 

deforestation, thus suffering the change. 

Three Landsat images were processed in each study area from 

three different dates with quasi-equal time intervals between them. It was 

a requirement when downloading the images that they must have been 

acquired in the same season (or with a maximum of 2 months difference 

within the same period of the year). The images were acquired in 1990, 

2000 and 2010 with almost equally 10 years between them in case of the 

Amazonian site. The images were acquired in 1990, 2003 and 2016 with 

almost equally 13 years between them in case of the Achafalaya Bay site. 

They were processed in Trimble eCognition software via segmenting the 

images by a multiresolution segmentation ruleset and the segments were 

classified into two categories based on visual interpretation. The 

segmentation process was supported by using NDVI layer in case of 

forest and MDNWI layer in case of water, in order to identify forest and 

water land covers more effectively. These indices could be computed 

based on the original bands of Landsat images (Baret et al., 1989;Xu, 

2006). The accuracy assessment procedure was performed in accordance 

with Congalton’s (1991) and Cochran’s (1977; Olofsson et al. 2014) 

recommendations. The reported overall accuracy was over 85% in each 

map. The same processing scheme was used in this case as in a study 

area in Nyírség, NE Hungary before, where we achieved high 

classification accuracy related to a pixel-based classification approach. 

Furthermore, a pixel-based classification approach frequently results in 

salt and pepper effect that would be disadvantageous when analyzing a 

sprawl-like phenomenon. We reported the accuracy results of this 

processing scheme in Varga et al. (2014). In order to match the resolution 

of study site group 2 maps, the two-class LULC maps were resampled 

from the original 30 m spatial resolution of Landsat to 100 m by the 

nearest neighbor resampling method. 

Based on the CA-Markov simulations, further variables were 

calculated, similar to study site group 2, concerning either model 

performance (FOM, FOM components, quantity and allocation 

disagreement of simulation), comparison of relevant reference and 

simulated maps of 2010 and 2016 (Overall Agreement, Kappa index of 

Agreement), simple metrics of changing areas or stationarity (Runfola’s 

R values). 
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Figure 3. Study sites of study site group 3. One site is located around Atchafalaya Bay 

and Wax Lake Outlet, one site is located in Amazonia, Brazil. The overview map is 

presented based on an Open Street Map layer (CC-BY-SA). 

 

3.3. Aggregation methods 

In this section, the summary of aggregation methods used in study 

site group 2 are described. To provide a clear overview of these 

aggregation methods, an example of the classification schemes applied 

in a specific study site is presented in Figure 5 at the end of Section 3.3.  

3.3.1. Corine Standard Levels 

CLC classification scheme has a nested hierarchical 

nomenclature with 3 standard levels. The CLC dataset basically classify 

all the areas of EEA countries into 44 categories, processed with respect 

to match a thorough technical guideline (Büttner et al., 2004). When 

updating CLC datasets, new remotely-sensed datasets and technologies 

with more developed features were involved in the processing workflow, 

keeping up the pace with continuously developing technological 

innovations (Büttner and Kosztra, 2017). Although the processing 

methods and the base data varied in case of different CLC datasets over 

time, there are uniform characteristics that remained consistent over 

time, namely the 25 ha minimal mapping unit and the guaranteed 85% 

thematic accuracy. These uniform characteristics ensure a relatively 

common basis for analyses of the datasets (Büttner, 2014). 
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In this research, all the three hierarchical levels of CLC datasets 

were used. The areas determined by study site group 2 were clipped from 

CLC Level 3 dataset, with respect to equal category numbers in 2000 and 

2006, and with a maximum of 20 categories in all study sites. CLC Level 

3 is a category scheme that was used in the analysis as a basis and no 

aggregation was performed in the data at all. However, all the 

aggregations were based on this data. Throughout the analysis, this 

scheme is referred to as CLC Level 3 (L3) method. 

CLC Standard Level 2 is a superior hierarchy level related to 

Level 3, and classifies Level 3 categories into a maximum of 15 

categories. The categories were aggregated based on the hierarchical 

nomenclature scheme by a reclass procedure. Throughout the analysis, 

this aggregation is referred to as CLC Level 2 (L2) aggregation. 

CLC Standard Level 1 is a superior hierarchy level related to 

Levels 2 and 3, and classifies all categories into a maximum of 5 

categories. The categories were aggregated based on the hierarchical 

nomenclature scheme by a reclass procedure. Throughout the analysis, 

this aggregation is referred to as CLC Level 1 (L1) aggregation. 

3.3.2. Behavior-based category aggregation 

The main aim of this type of aggregation method is to maintain 

net change, which is the change originating from quantity differences 

between two dates (Aldwaik et al., 2015). This information can be 

derived from an error matrix set up between the maps of the two dates. 

There is a Visual Basic for Applications (VBA) macro published by the 

authors of the concept for extracting this information and to follow step-

by-step whether various types of change starts to decrease when 

aggregating a pair of classes. The macro advises pairs of classes to 

aggregate while shows the actual net and swap change for the user 

(Figure 4 and Table 1).  
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Figure 4. Diagram produced by behavior-based category aggregation VBA macro 

when performing aggregation of study site Malung, zoom level L. The diagram shows 

different types of change metrics and the decrease in change metrics when reaching 

different numbers of categories. Net change is change originating from quantity 

differences between two dates, swap change is a type of change originating from 

location.  

Swap change is a type of change attributed to location (Pontius Jr 

et al., 2004). The user can decide in each step if they want to continue 

with aggregation. The macro does not perform the aggregation, just show 

a possible scenario for aggregations and their consequences regarding 

net change. This macro was used for executing the aggregation for all 

the study sites and all zoom levels, 24 areas altogether. However, this 

aggregation concept has not been capable of managing more than one 

time interval simultaneously in a manner that considers the changes in 

both time intervals. That is why the L3 classes of the calibration interval 

were aggregated dictated by the behavior-based aggregation method, 

then the classes of validation interval were aggregated similarly to the 

aggregation rules of the calibration interval. In this way, the categories 

of the two time intervals became comparable and were influenced by 

hidden changes the least as possible. Throughout the analysis, this 

aggregation is referred to as behavior-based (BB) aggregation. 
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Table 1. Table edited on the basis of information provided by behavior-based category 

aggregation VBA macro when performing aggregation of study site Malung, zoom level 

L. The table shows different types of change metrics and their decrease while advising 

aggregation of certain pairs of categories. 

Number  

of  

Categ. 

Total  

Change  

(%) 

Swap  

(%) 

Net 

change 

(%) 

Order of Aggregation 
Type of Aggregated 

Categories 

13 1.36 1.25 0.10 
Pastures  

&  

Inland marshes 

N/Dormant  
& 

 N/Dormant 

12 1.36 1.25 0.10 
Aggregated 13  

& 

 Broad-leaved forest 

N/Dormant  
& 

 N/Dormant 

11 1.36 1.25 0.10 

Non-irrigated arable land  

&  

Aggregated 12 

N/Dormant 

 & 

 N/Dormant 

10 1.36 1.25 0.10 

Aggregated 11  

& 
 Water courses 

N/Dormant 

 & 
 N/Dormant 

9 1.36 1.25 0.10 
Aggregated 10  

&  

Complex cultivation patterns 

N/Dormant  
& 

 N/Dormant 

8 1.36 1.25 0.10 

Discontinuous urban fabric  

& 
 Aggregated 9 

N/Dormant  

& 
 N/Dormant 

7 1.36 1.25 0.10 

Aggregated 8  

& 
 Water bodies 

N/Dormant 

 & 
 N/Dormant 

6 1.36 1.25 0.10 

Land principally occupied by  

agriculture, with significant  

areas of natural vegetation  
& 

 Peat bogs 

L/Loser only 

 & 
 L/Net losing 

5 1.36 1.25 0.10 

Aggregated 6  

& 
 Coniferous forest 

L/Net losing  

& 
 L/Net losing 

4 1.35 1.25 0.10 
Mixed forest  

& 

 Transitional woodland-scrub 

G/Net Gaining  
& 

 G/Net Gaining 

3 1.32 1.21 0.10  -  - 

 

3.3.3. Threshold-based category aggregation 

This aggregation is an arbitrary manner of aggregating the 

categories, where the user can determine a threshold which they respect 

as being important. Here, a 0.1% of changes of the total actual study area 

was determined to be the threshold, and all categories that showed a 

change less than 0.1% of the actual study area, were aggregated into a 
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collective category. This collective category was called Other, referring 

to its character of collecting every category that did not meet the 

requirement. Therefore, this category can be thematically diverse. If in a 

specific study area there were only categories which show larger changes 

than 0.1% of that study area, respectively, then neither of them would be 

aggregated into a category called Other. This situation occurred in 6 

areas from the 120 areas altogether, consequently there were 114 model 

runs at all. Throughout the analysis, this aggregation is referred to as 

threshold-based (TB) aggregation. 

Figure 5 is a comprehensive summary of category aggregations, 

presented via the example of study site Malung, zoom level L. This area 

originally consisted of 13 categories in CLC Standard Level 3, and these 

categories were aggregated into Standard Level 2 and Standard Level 1 

according to the CLC hierarchical scheme. L2 has broader definitions of 

categories than L3, and L1 has even general categories with basic LULC 

definitions that opens the door for categories with mixed characteristics. 

BB aggregation aggregated classes into thematically extremely diverse 

categories, e.g. aggregating urban areas and water in a common category, 

while focusing on maintaining changes in the area. TB also focused on 

enhancing the changes in the area, but with determining a strict threshold 

of changes that they cannot exceed. However, the aggregations could 

vary with modifying this strict threshold. 
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Figure 5. Flowchart of various aggregation methods in study site Malung, 

Zoom level L. 
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3.4. CA-Markov Model  

In this research, a combined CA-Markov modelling method was 

applied in Idrisi Selva software environment. Markov-chain models are 

stochastic models, their output is distribution among states, which is 

based on the probability of transitions (Baker, W., 1989). They can 

model the future state of a system based purely on its preceding states 

(Eastman, 2012a). Markovian models are often used for projections of 

land cover in GIS workflows, based on transition probability tables, 

which are set up by gaining information about transitions concerning the 

areas of land cover categories (Mas, J. F. and Vega, 2012).  

Markov analysis in land cover change prediction is based on the 

state of a system at time #1 and time #2. During the Markov analysis, 

transition probability matrix, transition area matrix and conditional 

probability maps are produced based on the input data, which can be 

considered as the training data. The transition probability matrix gives 

the likelihood of change of a pixel of a given class in the next time 

interval (between time #2 and time #3) and provides information about 

the probability of that a pixel characterized with a certain category 

transitions into a different category (Bruzzone and Serpico, 1997; Lóczy, 

2010; Schweitzer, 1968; Singh et al., 2015). A collection of transition 

probability matrices shows the probabilities of all relevant combinations 

of transition. 

The transition area matrix gives the number of pixels expected to 

change from a given class to all other classes. The conditional probability 

maps give the probability that each pixel will belong to the designated 

class in the next time interval, reporting the probability that each class 

type would be found in each pixel, as a projection from the time#2 map 

(Eastman, 2012a; Eastman, 2012b). 

The cellular automaton was introduced by Neumann and Ulam in 

the 1940’s through the problem whether self-reproduction of biological 

systems can be described only by mathematical formulas and logical 

rules in case of driving factors (Benenson and Torrens, 2004). Cellular 

automata consist of a regular grid of cells which sets out a dynamical 

system considering time and space as being discrete. The neighboring 

cells’ previous states determine the state of the cell itself, and it is 

updated in discrete time steps based on identical rules (Sipper, 1997). 

The CA-Markov model is a combination of the cellular 

automaton and the Markov chain analysis, implementing the capability 

of Markov analysis to project forward in time and also the cellular 

automaton’s sensitivity to the neighborhood. Thus, the module is capable 

of projecting a state for time #3 based on states of time #1 and time #2, 
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according to the matrices of Markov analysis step, while considering the 

states of neighboring cells and suitability of pixels for each category of 

the map. Therefore, the Markov analysis helps to determine the quantity 

of change and CA-Markov analysis step helps to determine the spatial 

allocation of change (Eastman, 2012a; Mas, Jean-François et al., 2014). 

There are specific transition rules for the model, which can be 

mathematically expressed, and they govern the changes of cell 

characteristics during the projection, i.e. the simulation process (Mitsova 

et al., 2011).  

 

It is important to declare the following references that I use while 

describing the study design: 

 I refer to the time interval between time #1 reference map and 

time #2 reference map as calibration interval, which is used for 

training or calibrating the model; 

 I refer to the time interval between time #2 reference map and 

time #3 reference map as validation interval, which is used for 

the validation of the model; 

 I refer to the time interval between time #2 reference map and 

time #3 simulation map as simulation interval, where time #3 

map assigns the map produced by the simulation model. 

 

In study site groups 1 and 2, as in these cases CLC data is applied, the 

following statements are true:  

 the time #1 map is the LULC categorical map of 2000; 

 the time #2 map is the LULC categorical map of 2006; 

 the time #3 map is the LULC categorical map of 2012; 

 the time #3 simulation map is the 2012 LULC map simulated by 

the CA-Markov model. 

Therefore, the following time intervals are used in these study site 

groups: 

 calibration interval is the interval between 2000 reference map 

and 2006 reference map; 

 validation interval is the interval between 2006 reference map 

and 2012 reference map; 

 simulation interval is the interval between 2006 reference map 

and 2012 simulation map. 

 

In study site group 3, the following statements are true for the site located 

in Amazonia:  

 the time #1 reference map is the LULC categorical map of 1990; 
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 the time #2 reference map is the LULC categorical map of 2000; 

 the time #3 reference map is the LULC categorical map of 2010; 

 the time #3 simulation map is the 2010 LULC map simulated by 

the CA-Markov model. 

Therefore, the following time intervals are used in the study site located 

in Amazonia: 

 calibration interval is the interval between 1990 reference map 

and 2000 reference map; 

 validation interval is the interval between 2000 reference map 

and 2010 reference map; 

 simulation interval is the interval between 2000 reference map 

and 2010 simulation map. 

 

In study site group 3, the following statements are true for the site located 

in the Atchafalaya Bay:  

 the time #1 reference map is the LULC categorical map of 1990; 

 the time #2 reference map is the LULC categorical map of 2003; 

 the time #3 reference map is the LULC categorical map of 2016; 

Therefore, the following time intervals are used in the study site located 

in the Atchafalaya Bay: 

 calibration interval is the interval between 1990 reference map 

and 2003 reference map; 

 validation interval is the interval between 2003 reference map 

and 2016 reference map; 

 simulation interval is the interval between 2003 reference map 

and 2016 simulation map. 

 

The models were solely based on preceding states, and no driving factor 

was included. Besides the input time#1 and time#2 categorical maps, an 

iteration number and contiguity filter are further obligatory parameters 

in the model. Iteration number is advised to be the number of years that 

the modeler wishes to project forward (Eastman, 2012a), so an iteration 

number of 6 in study site group 1 and 2, and iteration numbers of 10 and 

13 in study site group 3. The contiguity filter is a 5x5 spatial filter as 

default, with a possibility to change, but there was no specific or obvious 

reason to change this parameter.  

3.5. Change analysis 

3.5.1. The error matrix 

The definition of error matrix was introduced by Congalton 

(1991). “An error matrix is a square array of numbers set out in rows 
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and columns which express the number of sample units (i.e., pixels, 

clusters of pixels, or polygons) assigned to a particular category relative 

to the actual category as verified on the ground.” (Congalton, 1991). 

Error matrix is also known as either crosstabulation matrix, confusion 

matrix or contingency table. Crosstabulation matrix is a commonly used 

tool as a basis for accuracy assessment in remote sensing and various 

metrics can be derived from the values of the matrix (Foody, 2002). 

Frequently derived values are commission and omission errors, also 

known as user’s and producer’s accuracy (Story and Congalton, 1986). 

Gopal and Woodcock (1984, 2010) advised a fuzzy approach, where the 

interpretation of the matrix exceeds the idea of simple agreement and 

disagreement, but extends to a larger set of possible responses, like 

acceptable or understandable situations. 

In Table 2 and 3 different interpretation options of the 

crosstabulation matrix are presented. Table 2 shows the interpretation of 

a crosstabulation matrix used in accuracy assessment of remote sensing 

applications, for the purpose of the comparison of reference and 

classified image data. In these cases, columns assign the reference data, 

rows assign the comparison data.  

 
Table 2. The interpretation of a crosstabulation matrix with an approach of 

comparison of reference and classified image data, based on the published 

theoretical description of Congalton (1991). 

 REFERENCE DATA 

Class A Class B Class C 

C
O

M
P

A
R

IS
O

N
 D

A
T

A
 

Class A pixels classified 

correctly 

number of pixels 

that belong to class 

B in reference data 

and belong to class 

A in comparison 

data 

number of pixels 

that belong to class 

C in reference data 

and belong to class 

A in comparison 

data 

Class B number of pixels 

that belong to class 

A in reference data 

and belong to class 

B in comparison 

data 

pixels classified 

correctly 

number of pixels 

that belong to class 

C in reference data 

and belong to class 

B in comparison 

data 

Class C number of pixels 

that belong to class 

A in reference data 

and belong to class 

C in comparison 

data 

number of pixels 

that belong to class 

B in reference data 

and belong to class 

C in comparison 

data 

pixels classified 

correctly 
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Table 3 shows the interpretation of a crosstabulation matrix used 

in change analysis, for the purpose of the comparison of categorical maps 

from different dates. In LULC change analysis, maps can be compared 

on the basis of a confusion matrix from different dates, and unlike 

thematic accuracy assessment, there is no reference in this case. Rows 

(first date) and columns (second date) have equal role and the result is 

not the error, but the quantified change. The raw information are the pixel 

quantities in the matrix diagonal which indicate the persistent areas 

(Pontius Jr et al., 2004) that corresponds the overall accuracy in thematic 

accuracy assessment (Congalton, 1991). We can also calculate the 

changes of the first map against the other one, or vice versa, and can 

reveal what class another one turned into, therefore we can also reveal 

what was the previous land class before the conversion. 

Table 3. The interpretation of a crosstabulation matrix with an approach of 

changes in the landscape between two categorical maps of different dates (Time 

1 and Time 2), based on the published theoretical description of Pontius et al. 

(2004) 

 TIME 2 MAP 

Class A Class B Class C 

T
IM

E
 1

 M
A

P
 

Class A persistence pixels changed from 

class A to class B 

pixels changed from 

class A to class C 

Class B pixels changed from 

class B to class A 
persistence pixels changed from 

class B to class C 

Class C pixels changed from 

class C to class A 

pixels changed from 

class C to class B 
persistence 

3.5.2. Intensity analysis 

A deeper change analysis was performed in study site group 1 

based on the error matrices. Intensity analysis is a method to quantify the 

change intensity of a categorical variable at interval, category and 

transition levels across different time intervals. The method was applied 

to examine LULC changes with a Microsoft Excel VBA macro 

introduced by Aldwaik and Pontius (2012). We can use different error 

matrices as inputs according to the number of time intervals we intend to 

investigate. Aldwaik and Pontius (2012) published an equation which 
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gives the uniform rate of change for the entire time extent of 

investigation, and this uniform rate would exist if the rate of overall 

change would be perfectly stationary through the entire temporal extent 

of investigation. The relation of actual changes in a specific time extent 

and uniform change is a key factor in intensity analysis.  

Interval level shows that during the temporal extent of 

examination the change of land cover was slow or fast according to the 

uniform intensity. This uniform intensity can be expressed by a 

hypothetical value that concerns a perfectly stationary change pattern 

during overall change. If the annual change value exceeds this uniform 

intensity value, then change can be regarded as fast for that time interval. 

If annual change value is less than uniform intensity value, then change 

can be regarded as slow for that time interval.  

Category level shows whether a category is active or dormant 

within a given time interval, based on a uniform intensity value as well 

– for that specific interval. This level concerns the annual gain and loss 

of each categories and relates them to the uniform intensity value of that 

time interval. If the annual gain or loss intensity value is less than 

uniform intensity, then the category’s gain or loss is dormant concerning 

that time interval. If the annual gain or loss intensity value is more than 

uniform intensity, then the category’s gain or loss is active concerning 

that time interval. If the change was uniform across the landscape, then 

all the categories’ annual gain and loss intensity value would equal the 

uniform intensity. We can regard a category as being stationary in terms 

of losses or gains if its intensity value is more or less than the uniform 

intensity across all the examined time intervals.  

Transition level focuses on given transitions from one category 

to another. This level focuses on which category gains the loss of another 

one, and vice versa, and based on these observations, we can determine 

which categories are targeted or avoided by another category’s loss or 

gain (Aldwaik and Pontius Jr, 2012; Aldwaik and Pontius Jr, 2013). 
 

It is useful to highlight that intensity analysis determines the followings: 

 the changes in a certain time interval are fast or slow related to 

uniform change; 

 a category is active or dormant in terms of gains and losses; 

 a category is targeted or avoided by transitions in the actual 

spatial extent.  

For performing intensity analysis the equations of Pontius et al (2013) 

(Pontius Jr et al., 2013) were used, because the durations of time intervals 

are identical throughout the time extent in this case. Aldwaik and Pontius 
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(2012) equations concerning intensity analysis focus on time intervals 

with different durations. 

3.6. Model validation  

3.6.1. Approaches that does not distinguish land persistence and model 

performance 

3.6.1.1. Kappa Index of Agreement 

Kappa Index of Agreement, henceforth referred to as KIA, is 

often called as Kappa statistics or Kappa coefficient as well. KIA 

originates from Galton (1982), but its origin was frequently associated 

with Cohen (1960). It was later invoked for the purposes of accuracy 

assessment of remotely sensed data (Rosenfield and Fitzpatrick-Lins, 

1986), on the grounds of Congalton et al. (1991) and Congalton and 

Mead (1983) articles. The exact calculation is often cited from Bishop et 

al. (1975), but it can be found in literature in a way easier to interpret as 

well (Banko, 1998). Equation 1 gives the formula of Kappa coefficient 

based on Bishop (1975), published by Mather (2004): 

 

𝛫 =  
𝑁 ∑ 𝑥𝑖𝑖 𝑟

𝑖=1 − ∑ 𝑥𝑖+𝑥+𝑖
𝑟
𝑖=1

𝑁2−∑ 𝑥𝑖+𝑥+𝑖
𝑟
𝑖=1

 (Eq. 1.) 

 

where 𝛫 = Kappa coefficient; xii = diagonal entries of the error matrix; 

xi+ = sum of row i of the error matrix; x+i = sum of column i of the error 

matrix; N = total number of elements in the error matrix. 

 

There are more Kappa variations which were introduced by 

Pontius (2000), but Pontius and Millones (2011) advised to use quantity 

and allocation disagreement indicators instead of these kappa variations. 

There is no uniform scale to interpret Kappa value, however, several 

approaches exist for assessing the results e.g. Viera and Garrett (2005) 

or Fleiss (1981). 
I used KIA for the purpose of measuring the agreement between 

the reference 2012 and simulation 2012 maps. As it is described above, 

it is an often used method for validation of a land change model, but it is 

an incorrect approach to the problem. By calculating KIA, I intend to 

present the flaw of this index in case of using it for model validation. 

3.6.1.2. Quantity and allocation disagreement as a tool for accuracy 

assessment in remote sensing applications 

Quantity and allocation disagreements are indices introduced for 

accuracy assessment purposes instead of Kappa variations and give a 
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more reliable insight of disagreement between the maps concerning 

errors of quantity and allocation differences. Pontius and Millones 

(2011) defined quantity disagreement as „the amount of difference 

between the reference map and a comparison map that is due to the less 

than perfect match in the proportions of the categories”. Pontius and 

Millones (2011) defined allocation disagreement as “the amount of 

difference between the reference map and a comparison map that is due 

to the less than optimal match in the spatial allocation of the categories, 

given the proportions of the categories in the reference and comparison 

maps”. Both of them can be calculated by values derived from the error 

matrix of the comparison and reference maps, and their sum returns the 

total disagreement of the comparison and reference map, which is equal 

to the complement of the proportion of pixels that belong to the same 

class in both maps (Pontius and Millones, 2011). The following formulas 

of quantity disagreement (Eq. 2.) and allocation disagreement (Eq. 3.) 

were published by (Warrens, 2015a) based on (Pontius Jr, R. G. and 

Millones, 2011):  

 

𝑄 =
1

2
∑ |𝑝+𝑖 − 𝑝𝑖+|𝑐

𝑖=1   (Eq.2.) 

 

where Q = quantity disagreement; pi+ and p+i are row and column total 

of the error matrix; c=number of categories; C=number of units (pixels) 

classified correctly. 

 

𝐴 = [∑ 𝑀𝐼𝑁(𝑝+𝑖, 𝑝𝑖+)

𝑐

𝑖=1

] − ∑ 𝑝𝑖𝑖 =

𝑐

𝑖=1

[∑ 𝑀𝐼𝑁(𝑝+𝑖, 𝑝𝑖+)

𝑐

𝑖=1

] − 𝐶 

 

 (Eq.3.) 
 

where A = allocation disagreement; pi+ and p+i are row and column total 

of the error matrix; c=number of categories; C=number of units (pixels) 

classified correctly. 

 

The sum of quantity and allocation disagreement gives the total 

disagreement (Pontius Jr, R. G. and Millones, 2011). The calculations in 

Equation 2 and 3 can be conducted automatically by a macro called the 

PontiusMatrix, which is freely available at Dr. Robert Gilmore Pontius 

Jr’s website (http://www2.clarku.edu/~rpontius/) and was developed 

especially for this purpose. The spreadsheet returns the components of 

these calculations (quantity, exchange, shift) which gives the quantity 

disagreement (quantity component), allocation disagreement (sum of 
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exchange and shift component) and total disagreement (sum of quantity 

and allocation disagreement) (Pontius and Santacruz, 2014). Warrens, 

(2015b) also published formulas for relative quantity and allocation 

disagreement indices which are category-level variants of original 

quantity and allocation disagreement indices. The complement of total 

disagreement is the overall agreement (OA), also referred to as overall 

accuracy, which is the sum of correctly classified pixels in the 

crosstabulation matrix. I did not calculate quantity, allocation or total 

disagreement values, only their complement, the overall agreement 

between reference and simulation time#3 maps. Using these metrics for 

calculating disagreement between reference and simulation time #3 

maps would be just as misleading as calculating Kappa and overall 

accuracy. I presented quantity and allocation disagreement to underline 

the differences between them and their namesake: the quantity and 

allocation errors used for determining quantity and allocation errors of a 

simulation (Section 3.6.2.2). I calculated overall agreement in case of 

study site groups 2 and 3 in order to present the flaw of this concept in 

model validation applications.  

 

3.6.2. Approaches that distinguish land persistence and model 

performance 

3.6.2.1. Figure of merit and components 

The figure of merit (FOM) is a measurement which characterizes 

the match of observed and simulated change, latter projected by a 

simulation model. The FOM is calculated as dividing the intersection of 

observed and predicted change by the sum of observed and predicted 

change (Pontius et al, 2008; Klug et al. 1992; Perica and Foufoula-

Georgiou 1996). If the observed and simulated change did not match at 

all, the FOM would return a value of 0%. If the observed and simulated 

change matched perfectly, the FOM would return a value of 100%. By 

calculating FOM components, we can get the various types of errors and 

agreements expressed as a ratio of the actual study area. The FOM 

components provide a deeper insight into the errors of changes, as 

follows:  

 Hits = area of reference change simulated as change to the right 

category (agreement); 

 Misses = area of reference change simulated as persistence (error) 

 Wrong Hits = area of reference change simulated as change to a 

wrong category (error) 
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 False Alarms = area of reference persistence simulated as change 

(error) 

 

FOM can be calculated based on FOM components (Pontius Jr, R. G. et 

al., 2011) as expressed in Equation 4: 

 

𝐹𝑂𝑀 =
𝐻𝑖𝑡𝑠(100%)

𝑀𝑖𝑠𝑠𝑒𝑠+𝐻𝑖𝑡𝑠+𝑊𝑟𝑜𝑛𝑔 𝐻𝑖𝑡𝑠+𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠
 (Eq.4.) 

 

FOM components were calculated by ‘lulcc’ package (Moulds et al., 

2015) available in R software. A further component interpretable as 

agreement, called Correct Rejection, can be described as the persistence 

simulated as persistence. These metrics were calculated in case of all 

study site groups. 
 

FOM components can be visualized for each pixel of the LULC 

map by a raster calculator command, in softwares where the 

implementation of conditions is possible when performing raster 

calculations. I visualized FOM maps by applying the following nested 

conditional expression in ArcGIS raster calculator: 

 
Con((SIM2 == REF2)&(REF2 == REF1),1,Con((REF1 == 
REF2)&(REF2 != SIM2),2,Con((REF1 != REF2)&(REF1 != 
SIM2)&(REF2 != SIM2),3,Con((REF1 != REF2)&(REF2 == 
SIM2),4,Con((REF1 != REF2)&(REF1 == SIM2),5,0))))) 
 

where REF1 = time #2 reference map; REF2 = time#3 reference map; 

SIM2 = time #3 simulation map, and the numbers return the FOM 

components according to the conditions. 

3.6.2.2. Quantity and allocation disagreement as a tool for validation of 

a simulation model 

There are two other metrics with a different purpose, but with an 

identical name of quantity and allocation disagreement. These two 

metrics aim to determine the error of simulation due to quantity of 

predicted change (quantity disagreement) and due to allocation of 

predicted change (allocation disagreement). I aim to distinguish these 

two metrics from quantity and allocation disagreement of Pontius and 

Millones (2011) unambiguously, by adding the abbreviation of the word 

simulation (AS and QS) when referring to them. These metrics were 

described by Liu et al. (2014) and Chen and Pontius (2010). According 

to Chen and Pontius (2010), quantity disagreement in terms of observed 

and predicted change, measures “how much less than perfect is the match 
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between observed and predicted quantity of change”. According to Chen 

and Pontius (2010), allocation disagreement in terms of observed and 

predicted change, measures “how much less than optimal is the match in 

the spatial allocation of the changes, given the specification of the 

quantities of the changes in the observed and predicted change maps.” 

Equation 5, 6 and 7 determine these metrics based on Chen and Pontius 

(2014) presenting the calculation of these metrics based on FOM 

components, as follows: 

 

𝑄𝑆 =  |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶ℎ𝑎𝑛𝑔𝑒 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐶ℎ𝑎𝑛𝑔𝑒| =
 |(𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠 + 𝐻𝑖𝑡𝑠) − (𝑀𝑖𝑠𝑠𝑒𝑠 + 𝐻𝑖𝑡𝑠)| = |𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠 −
 𝑀𝑖𝑠𝑠𝑒𝑠| (Eq 5) 

 

𝐴𝑆 = (𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠 + 𝑀𝑖𝑠𝑠𝑒𝑠) − 𝑄𝑆 =
2 𝑥 𝑀𝐼𝑁(𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠, 𝑀𝑖𝑠𝑠𝑒𝑠) (Eq 6) 

 

𝑇𝑆 = 𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠 + 𝑀𝑖𝑠𝑠𝑒𝑠 =  𝑄𝑆 + 𝐴𝑆 (Eq. 7) 

 

where QS= error due to quantity of predicted change; AS= error due to 

allocation of predicted change; TS = total error in predicted change; FOM 

components are as defined in section 3.6.2.1., and all the variables are 

expressed as a percent of the study area. 

These metrics were calculated in case of study site groups 2 and 3. 

3.7. Variables concerning Stationarity 

We measured Runfola’s R index in the relation of either 

calibration and validation intervals or calibration and simulation 

intervals. R index characterizes the temporal instability between time 

intervals by returning a proportion of change to be reallocated to the 

other time interval in order to achieve a uniform change during the whole 

time extent. If R index is 0, then change is perfectly stable. If R is 

increasing, the change is getting more unstable (Runfola and Pontius Jr, 

2013). This measurement is influenced by three factors, one is the 

duration of the investigated time interval and another one is the temporal 

extent. Since this research includes models that use calibration and 

validation time intervals with the same durations, these two factors were 

constant throughout most of the research. One further factor, the annual 

change during each time interval, may influence Runfola’s R value. Also 

based on Runfola and Pontius (2013) Runfola’s R index is calculated as 

in Equation 8:  
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𝑅 =
∑ {𝑀𝐴𝑋𝐼𝑀𝑈𝑀[0,(𝑆𝑡−𝑈)]∗(𝑌𝑡+1−𝑌𝑡)}𝑇−1

𝑡=1

𝑈∗(𝑌𝑇−𝑌1)
   (Eq. 8) 

 

where St = annual change; U = uniform annual, observed in case of 

change was perfectly stable during the whole examined time extent; Yt 

= year at time point assigned with t. 

3.8. Other variables concerning change 

Other simple metrics were calculated concerning the number of 

categories and overall change between reference maps, or between 

reference and simulation maps used in the analysis. These simple metrics 

can give insight from different aspects into the variation of changes with 

applying various category aggregations. These variables were the 

followings: 

 number of categories; 

 calibration, validation and simulation interval changes; 

 difference between calibration and validation interval annual 

changes in each case of study site groups 2 and 3; 

 difference between calibration and simulation interval annual 

changes in each case of study site groups 2 and 3; 

 difference between errors of simulation due to quantity (Qs) and 

errors of simulation due to allocation (As) in each case of study 

site groups 2 and 3. 

3.9. Statistical analysis 

First of all, statistical analysis aimed to reveal the effects of 

category aggregation. A Tukey test was applied to investigate this issue 

in study site group 2. The distribution in the data did not follow normal 

distribution according to a preliminary Shapiro-Wilk test. An analysis 

with the same purpose was performed in Varga et al. (2020), but with a 

two-way ANOVA, with the median as an estimator and with 

bootstrapping (599 repetitions), where H0 of the analysis were the 

followings: 

 the medians of the five different aggregation approaches were 

equal;  

 the medians of the eight study sites were equal; 

 there was no interaction between aggregation approaches and 

study sites in a statistical sense; 

Here, the difference between the aggregation methods was in focus, 

ignoring the possible effects of study sites, and ignoring it as a factor. 

Here, the H0 of the analysis was purely that the medians of the five 
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different aggregation approaches were equal. Tukey analysis was 

performed which gave opportunity for pairwise comparisons, as full-

factorial comparison between each of the aggregation methods. If 

medians of datasets related to different aggregations were significantly 

different based on the statistical test besides a 95% confidence interval, 

then they were assigned with different letters in the boxplots used for 

visualization (Piepho, 2004). Statistical analysis was performed in R 

software (R Core Team, 2020), with the following packages: 

‘multcomp’(Hothorn et al., 2008),‘WRS2’ (Mair and Wilcox, 2019) and 

‘ggplot2’ (Wickham, 2016).  

In order to test the correlation between model performance and 

all other variables calculated concerning changes and stationarity, a 

correlation matrix was set up in Past Statistics software. The correlation 

matrix was produced along with applying a 95% confidence interval and 

Spearman’s rs non-parametric rank-order test that does not have an 

assumption of normal distribution (Hammer et al., 2001). Spearman’s 

correlation coefficient applies a Pearson’s equation, after ranking the 

data (Field, 2013). 

In Figure 6, there is a comprehensive visualization of the 

workflow used in the whole dissertation. The figure summarizes the 

characteristics of the study site groups, the model approach and the full 

analysis after running the models. Hopefully, this figure supports the 

overview and comprehension of the whole analysis workflow. 
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4. RESULTS AND DISCUSSION 

In this section, the results are described according to study site 

groups. Since the applied methodology was partly different in the study 

site groups, it is critically important to interpret the results separately. 

While reporting the results, I discuss the importance of the results as 

well. The main conclusions are summarized in the Conclusions section.  

4.1. Results FOM components and Intensity analysis in Study Site     

Group 1 

In study site group 1, FOM and components were calculated in 

order to characterize model performance and intensity analysis was 

performed in order to characterize change. It is important to highlight 

that the ratio of changing areas was extremely low in the study area, 

therefore the ratio of correctly simulated change (meaning Hits) in the 

area must have been low. The overall change was 1.7% in the calibration 

interval, 1.1% in the validation interval, and 1.5% in the simulation 

interval. The annual change (overall change divided by the number of 

years in the time interval) is presented in Figure 7. Figure 7 shows that 

the change decelerated from the calibration to the validation interval, 

since the annual change in the validation interval was much less than in 

the calibration interval. The annual change of calibration and simulation 

interval shows more similarity than calibration and validation interval.  

FOM is calculated as Hits divided by the sum of Hits and erroneously 

simulated pixels in the study area. Figure 8 shows the FOM components 

visualized in a map of the study site, where the colored pixels represent 

Hits and erroneously simulated pixels due to various reasons, such as 

persistence simulated as change or change simulated as persistence. Hits 

added up to only 0.02% of the study area. False Alarms were present 

mainly on the edges of the original categories. Misses were present in 

the form of compact patches in the landscape. Correct Rejections added 

up to 97.41% of the study area. Overall FOM was equal to 0.007% in the 

study area that refers to an extremely low model performance. 

On the category level of intensity analysis, the gains and losses 

of each category were investigated in case of either calibration, 

validation or simulation intervals. This approach made it possible to 

observe the dynamics of changes per category in each time interval and 

to compare the validation and simulation changes on the basis of a more 

detailed collection of information. The relevant barplots (Figure 9 A, B 

and C) show annual gains and losses on the left side and show gain and 

loss intensities and dormant or active status on the right side, per 
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category. A category’s gain or loss is active if its gain or loss intensity 

exceeds the uniform intensity that is assigned with a dashed line. A 

category’s gain or loss is dormant if its gain or loss does not exceed the 

uniform intensity. 

 

 
Figure 7. Annual change in calibration, validation and simulation intervals in 

study site Tokaj, NE Hungary. 

 

 

Figure 8. Annual change in calibration, validation and simulation intervals in 

study site Tokaj, NE Hungary. Certain areas are highlighted in boxes 1,2 and 

3, where Hits could be observed. FOM components are assigned with different 

colors. Category borders of 2006 reference map are assigned with lines in the 

map. This figure was originally published in Varga et al. (2019). 
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Figure 9. Summary figure of the result of intensity analysis in the calibration 

(A), validation (B) and simulation (C) intervals, in terms of either annual 

change area expressed in pixels (left side) or gain and loss intensity values 

(right side) (D = dormant ; A = active). Blue dashed lines assign uniform 

intensity. The results presented in this figure were partly published with a 

different design in Varga et al. (2019) 

In Figures 9A and 9C, representing calibration and simulation 

intervals, either the annual gain/loss or gain/loss intensities were similar 

to each other. In both plots, the Agricultural areas showed the largest 

annual losses, and two categories – Forest and semi-natural areas and 
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Artificial surfaces – showed the largest annual gains. Category 

intensities and active/dormant status characteristics also showed similar 

patterns in calibration and simulation intervals.  

In Figures 9A and 9B it can be clearly observed that Artificial 

surfaces’ gain and Water bodies’ loss showed a much larger value from 

the calibration to the validation interval. The active and dormant status 

of the categories were similar, except for Water bodies’ loss, but with 

much different intensity values. These results suggest quite different 

change dynamics between calibration and validation interval. The 

common point of the results in this case was that the Agricultural areas 

category sustained a large loss in terms of size, but its intensity was close 

to uniform. In addition, Forest and semi-natural areas also showed large 

gain sizes and intensities, similarly to the simulation data as. In the 

validation interval, wetlands had a high intensity of loss, but with a high 

intensity of gain, meaning it was an active gainer and loser at the same 

time, but this dynamic did occur in neither calibration nor simulation 

intervals (Figure 9).  

Transition level of intensity analysis revealed that the gain of 

Artificial surfaces category, which was the largest gainer in the 

calibration interval, targetted Agricultural areas in calibration and 

simulation interval. However, Artificial surfaces’ gain targetted Forest 

category, according to validation interval analysis. It means that the 

simulation’s dynamics on transition level matched the calibration’s 

dynamic in terms of targeting a certain category, in case of this particular 

category. Further analysis could reveal further results of the dynamics of 

transition between every category pairs. 

4.2. Discussion of FOM components and Intensity analysis in Study 

Site Group 1 

In the study area an extremely low FOM value was calculated, 

meaning extremely weak model performance. A low value of Hits 

(0.02%) is not surprising, since the ratio of changing areas is also low, 

and Hits metric means the ratio of correctly simulated changes in the 

area. Therefore, Hits value could not exceed the ratio of the intersection 

of changing areas in the validation and simulation interval, expressed as 

a ratio of the study area. While ratio of Hits was low, Figure 8 showed 

that False Alarms and Misses were relatively higher than Hits, with 

values over 1%. False Alarms were mostly located around the patches of 

the original categories which refers to the fact that the model simulated 

changes on the edges of the original category patches, while these areas 

were persistent in the reference data. Misses were located in compact 

patches characteristically, which refers to the fact that the model did not 
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match larger changes in sparsely located areas. In this example, the 

quantity disagreement of simulated changes were less than the allocation 

disagreement, according to Equations 5 and 6. Quantity disagreement of 

the simulation was 0.41%, as calculated by taking the absolute value of 

the difference between Misses and False Alarms. Allocation 

disagreement of the simulation was 2.12%, calculated by choosing the 

lower of Misses and False Alarms and multiplying by 2. It means that in 

CA-Markov model CA caused more error than Markov, since CA is 

responsible for the allocation control of the simulation and Markov is 

responsible for quantity control of the simulation. The larger allocation 

error can be a result of this characteristic placement of simulated changes 

on the edges. 

In this case, ratio of Misses were lower than False Alarms, which 

means that more error originated from simulating persistence as change 

than the opposite. It is possible when reference change is less than 

simulated change, and this situation was also clearly visible in Figure 9 

barplots in case of this study site. Wrong Hits means that a pixel changed 

according to both reference and simulation data, but to a wrong category. 

Wrong Hits and Hits converged to zero, which means that the simulation 

hardly matched reference changes in the landscape, neither in a sense 

that the pixel exactly change to a certain category nor the poor presence 

of the change to any category. 

Intensity Analysis revealed the pattern of real and simulated 

changes in the landscape, but changes were not in accordance with each 

other. The analysis also revealed that the change decelerated from the 

calibration to the validation interval. In this case, if the model followed 

the pattern of changes in the calibration data exactly, it would not match 

the validation interval changes, since there is a strong difference between 

calibration and validation interval changes. Intensity analysis and 

consideration of both calibration and validation interval changes helped 

to reveal this reason for weak model performance. Only by calculating 

the overall metric of FOM, this reason and any other information 

concerning quantity and allocation errors would have remained hidden. 

Therefore the intensity analysis provided essential information for the 

model validation process. A simple assessment of model performance 

together with applying intensity analysis is a new practical perspective, 

but considering calibration interval changes is an innovation. It can help 

to evaluate the LULC change simulations’ predictive power while 

getting to know how much the trends of changes relate to real changes 

in the landscape. These results have been reported in Varga et al (2019). 
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4.3. Results concerning Study Site Group 2 analysis 

After performing category aggregations, 114 models were run 

altogether in study site group 2. Due to the reasons described above, TB 

aggregation was not performed in six cases. Therefore, 24 models were 

run based on the maps aggregated according to L3, L2, L1 and BB rules, 

respectively, and 18 models were run based on maps aggregated 

according to TB rules. In all figures presented in this section, boxplots 

are based on these 114 models. In each one of Figures 10-20, boxplots 

present the median as a vertical line, the lower and upper quartiles as the 

upper and lower boundaries of the boxes and the minimum and 

maximum values as the ends of whiskers.  

4.3.1. Results of Study Site Group 2 analysis concerning number of 

categories and change  

After aggregation of categories according to various aggregation 

methods, the number of categories could vary with the applied methods.  

 

Figure 10. Number of categories as observed in reference 2000 and reference 

2006 maps, grouped by aggregation method (BB=Behavior-based 

aggregation; L1 = CLC Level 1 aggregation; L2 = CLC Level 2 aggregation; 

L3 = CLC Level 3 aggregation; TB = Threshold-based aggregation). This 

figure was originally published in Varga et al. (2020) with a slightly different 

design. 

Figure 10 shows the numbers of categories by aggregation 

methods in study site group 2. L3 had the largest numbers of categories, 
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which is trivial, since all the other aggregations are aggregations of L3 

data (L3 maximum = 18). Therefore, the datasets aggregated according 

to other aggregation methods must not consist of more categories than 

L3 data. CLC L2 category scheme has a maximum of 15 categories, and 

the L2 dataset had a maximum of 12 categories, meaning that there was 

no study area where all the L2 categories were present. L1 data had the 

lowest numbers of categories in general, with a maximum of 5 

categories, matching the maximum of CLC L1 category scheme (Figure 

10).  

BB and TB aggregations does not have a determined maximum, 

their theoretical maximum equals the number of categories of the data 

aggregated. In this case, BB dataset had a maximum of 13 categories, TB 

dataset had a maximum of 9 categories. TB and BB are both aggregation 

methods where the user has the opportunity to control the aggregation, 

while CLC standard levels have strict rulesets for aggregation. BB 

decreased the number of categories more than TB, in general. L3, L2 and 

L1 had less and less categories, in accordance with their decreasing 

determined maximum by standard levels. 

 

The changes in the calibration, validation and simulation interval 

were presented in Figure 11, where the letters assign if the median of 

change values in a dataset processed according to a certain aggregation 

method was significantly different from the median of another dataset 

which was processed according to another aggregation method. This 

statistical difference between medians was proved by Tukey analysis 

(p<0.05). In case of all time intervals, L1 had the lowest change values, 

expressed as a percent of the study area, and L1 dataset was significantly 

different from all other datasets, while other datasets were not 

significantly different from each other. Since L1 had the lowest ratios of 

changing areas, L1 hid an enormously larger ratio of changes in the study 

areas related to other aggregation methods. Therefore, L1 eliminated 

significantly more changes in the study area than other aggregation 

methods. In the calibration interval BB, L2 and L3 experienced the most 

changes based on the similar medians. Since all aggregations are based 

on L3 data, it means that among all other aggregation methods, BB and 

L2 methods eliminated the less changes. 

Already when investigating changes in the study area, it is clear 

that BB, L2, L3 and TB experienced more changes in the validation 

interval than in the calibration interval, in general. Also, simulation 

interval experienced much less changes according to either calibration or 

validation intervals with almost identical medians of BB, L2, L3 and TB 

datasets. 
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Figure 11. Changes in the study areas expressed as percent of the study area, 

grouped by aggregation method (I) in the calibration interval, between 

reference 2000 and reference 2006 maps (II) in the validation interval, between 

reference 2006 and reference 2012 maps and (III) in the simulation interval, 

between reference 2006 and simulation 2012 maps. The groups with 

significantly different medians are assigned with different letters. 

(BB=Behavior-based aggregation; L1 = CLC Level 1 aggregation; L2 = CLC 

Level 2 aggregation; L3 = CLC Level 3 aggregation; TB = Threshold-based 

aggregation). This figure was originally published in Varga et al. (2020). 

Further comparison concerning annual changes in the calibration, 

validation and simulation intervals gave an opportunity to have an insight 

to the acceleration or deceleration of changes from one time interval to 

another (Figure 12). Annual changes were calculated as dividing overall 

changes in the time interval by the years of duration in the same time 

interval. The difference of annual changes was determined by subtracting 

validation interval annual changes from calibration interval annual 

changes in each individual case, which determines if the calibration or 

validation interval annual changes were larger in a particular case (Cal-

Val. annual ch.). 
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Figure 12. Difference of annual changes in the study areas expressed as 

percent of the study area, based on the comparison of calibration and 

validation interval changes (Cal-Val. annual ch., left side) and based on the 

comparison of calibration and simulation interval changes (Cal-Sim annual 

ch., right side), grouped by aggregation method. The groups with significantly 

different medians are assigned with different letters (BB=Behavior-based 

aggregation; L1 = CLC Level 1 aggregation; L2 = CLC Level 2 aggregation; 

L3 = CLC Level 3 aggregation; TB = Threshold-based aggregation).  
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The same procedure was performed in the relation of calibration and 

simulation interval changes, by subtracting simulation interval annual 

changes from calibration interval annual changes in each individual case 

(Cal-Sim. annual ch.). In case of calibration and validation interval, the 

values were mainly negative, meaning that the rate of validation interval 

changes was higher than the rate of calibration interval changes, so the 

changes accelerated from the calibration to the validation interval. On 

the contrary, in case of calibration and simulation interval, the values 

were always positive, meaning that the rate of simulation interval 

changes was lower than the rate of calibration interval changes, so the 

changes decelerated from the calibration to the simulation interval in 

each particular case. In some cases of L1 annual changes, the change did 

not accelerate but decelerated from the calibration to the validation 

interval, since there were many positive values in the dataset, and the 

median was close to zero. In relation of calibration and simulation 

interval changes, the median of L1 dataset was significantly different 

from all other datasets in terms of aggregation methods and the median 

was close to zero again. It means that the change decelerated in L1 

dataset, similar to all other datasets, but had a really slight difference 

related to the calibration interval, meaning a rate of change quite similar 

to the calibration interval. In Tables 4-8, examples for crosstabulation 

matrices of the calibration and validation intervals are presented, 

together with the transition area and transition probability matrices 

concerning the simulation model of the same study site. Table 8 provides 

information about the probabilities of each possible inter-category 

transition in the model based on the calibration interval changes. 

 

Table 4. Crosstabulation matrix of the time interval between 2000 and 2006, in 

study site Borovany, zoom level S. Row and column headings assign the L3 

categories in accordance with Appendix 1. 

 2006 

112 211 231 243 312 313 

2
0

0
0
 

112 46 0 0 0 0 0 

211 0 868 26 4 0 0 

231 0 7 310 0 0 0 

243 0 0 9 154 0 0 

312 0 0 0 0 997 0 

313 0 0 0 0 0 79 

Sum of persistent pixels (matrix diagonal pixels) 2454 
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Table 5. Crosstabulation matrix of the time validation interval (2006-2012), in 

study site Borovany, zoom level S. Row and column headings assign the L3 

categories in accordance with Appendix 1. 

 2012 

112 211 231 243 312 313 
2

0
0

6
 

112 46 0 0 0 0 0 

211 0 541 325 0 9 0 

231 0 0 345 0 0 0 

243 0 0 0 158 0 0 

312 0 0 1 0 996 0 

313 0 0 0 0 0 79 

Sum of persistent pixels (matrix diagonal pixels) 2165 

 

Table 6. Crosstabulation matrix of the simulation interval (2006-2012), in 

study site Borovany, zoom level S. Row and column headings assign the L3 

categories in accordance with Appendix 1. 

 2012 

112 211 231 243 312 313 

2
0
0
6
 

112 46 0 0 0 0 0 

211 0 851 18 6 0 0 

231 0 0 345 0 0 0 

243 0 0 12 146 0 0 

312 0 0 0 0 997 0 

313 0 0 0 0 0 79 

Sum of persistent pixels (matrix diagonal pixels) 2464 

 

Table 7. Transition area matrix generated by the Markov component of CA-

Markov simulation model in study site Borovany, zoom level S. Row and column 

headings assign the L3 categories in accordance with Appendix 1. 

 2012 

112 211 231 243 312 313 

2
0

0
6
 

112 46 0 0 0 0 0 

211 0 846 25 4 0 0 

231 0 8 337 0 0 0 

243 0 0 9 149 0 0 

312 0 0 0 0 997 0 

313 0 0 0 0 0 79 

Sum of persistent pixels (matrix diagonal pixels) 2454 
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Table 8. Transition probability matrix generated by the Markov component of 

CA-Markov simulation model in study site Borovany, zoom level S. Row and 

column headings assign the L3 categories in accordance with Appendix 1. 

 2012 

112 211 231 243 312 313 

2
0

0
6
 

112 1.0000 0.0000 0 0 0 0 

211 0 0.9666 0.0290 0.0045 0 0 

231 0 0.0221 0.9779 0 0 0 

243 0 0 0.0552 0.9448 0 0 

312 0 0 0 0 1.0000 0 

313 0 0 0 0 0 1.0000 

 

The similarity of the sum of persistent pixels in Tables 4 and 7 

shows that the transition area matrix determined the exact same quantity 

of persistence as the calibration data did, therefore the matrix dictated 

the exact same quantity of overall change as well. However, the quantity 

of persistent pixels in categories 211 and 231 were substantially different 

while the changes of each categories were similar, when comparing the 

calibration data and the transition area matrix. The sum of persistent 

pixels in the simulation interval was larger, meaning less changes in the 

simulation interval, than in the calibration interval. The sum of persistent 

pixels was much less in the validation interval, than in the calibration 

interval. These dynamics also refer to decelerating changes from the 

calibration to the simulation interval and accelerating changes from the 

calibration to the validation interval.  

4.3.2. Results of Study Site Group 2 analysis concerning FOM, FOM 

components, and quantity and allocation disagreements of the 

models 

In terms of Figure of merit (FOM) values, there was no 

significant difference between datasets of various aggregation methods 

(Figure 13). While Figure 13 shows insignificant difference, effect sizes 

indicated a larger effect in case of L1 (L1-BB: 0.30; L1-L2: 0.29; L1-L3: 

0.31; L1-TB: 0.30; where the numbers are effect sizes which determine 

the magnitude of differences between each pair of datasets). In some 

cases, L1 dataset showed larger FOM values related to other aggregation 

methods, but its median was close to zero, meaning many cases with 

extremely low model performances. FOM provides an overall 

characterization of model performance, and all other datasets showed 

FOM values similar to each other, meaning quite similar performance.  
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Figure 13. Figure of merit values in Study site group 2, grouped by aggregation 

method. The groups with indistinguishable medians are assigned with similar 
letters (BB=Behavior-based aggregation; L1 = CLC Level 1 aggregation; L2 = 

CLC Level 2 aggregation; L3 = CLC Level 3 aggregation; TB = Threshold-based 

aggregation). This figure was originally published in Varga et al. (2020), with a 
slightly different design. 

 

FOM components (False Alarms, Misses, Wrong Hits, Hits) had 

similar characteristics concerning L1 dataset, since L1 showed the lowest 

values in case of all FOM components (Figure 14). Since L1 had the 

lowest values in case of each component, it means that it had the lowest 

ratio of correctly simulated pixels (Hits), but it had the lowest ratio of 

erroneously simulated pixels (False Alarms, Misses, Wrong Hits) as 

well. In case of False Alarms, L1 was significantly different from BB 

and L3 datasets. In case of Misses, L1 was significantly different from 

all other datasets. In case of Wrong Hits, L1 was significantly different 

from BB, L2 and L3 datasets. Finally, in case of Hits, L1 was 

significantly different from BB, L2 and L3 datasets again.  



 

61 

 

 

Figure 14. Figure of merit (FOM) components values in Study site group 2, 

grouped by aggregation method. The groups with significantly different 

medians are assigned with different letters. The Wrong Hits and Hits values are 

highlighted on the right side of the figure with a different scale, in order to 

make the differences between datasets visible. (BB=Behavior-based 

aggregation; L1 = CLC Level 1 aggregation; L2 = CLC Level 2 aggregation; 

L3 = CLC Level 3 aggregation; TB = Threshold-based aggregation). This 

figure was originally published in Varga et al. (2020), with a different design.  

 

Quantity (Qs) and allocation (As) disagreement of the simulation, 

derived from False Alarms and Misses, were calculated for each 

particular model. Quantity disagreement, Allocation disagreement and 

Wrong Hits were reported together (Figure 15), since the sum of these 

three values is equal to the Total disagreement (Ts) of the model. By this 

way of visualization, it may be clearer how different types of 

disagreement contribute to the Total disagreement of the model. In 

general, L1 showed the lowest values of disagreement in terms of either 

quantity or allocation. Since these values are calculated from Misses and 

False Alarms, it was somewhat presumed that L1 would show the lowest 

values, because L1 showed the lowest values in case of False Alarms and 

Misses as well.  
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Figure 15. Different types of simulation disagreement (Quantity disagreement, 

Allocation disagreement and Wrong Hits) in Study site group 2, grouped by 

aggregation method. The groups with significantly different medians are 

assigned with different letters. (BB=Behavior-based aggregation; L1 = CLC 

Level 1 aggregation; L2 = CLC Level 2 aggregation; L3 = CLC Level 3 

aggregation; TB = Threshold-based aggregation).  

In case of BB, L2, L3 and TB aggregation methods, allocation 

disagreement values were generally lower than quantity disagreement 

values. The allocation disagreement median of L1 was slightly lower 

than quantity disagreement median of L1. Since Wrong Hits had 
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extremely low values related to quantity and allocation disagreement, 

Wrong Hits contributes to the Total disagreement the less from all 

disagreement components. In Figure 16, the difference between quantity 

and allocation disagreement was visualized for each cases. By 

calculating this metric for each case, it is possible to investigate if the 

quantity or allocation disagreement is larger in each case.  

 

Figure 16. Difference between quantity (Qs) and allocation (As) disagreement 

of the simulation in each case in Study site group 2, grouped by aggregation 

method. If the value is positive, then Qs is larger. If the value is negative, then 

As is larger. (BB=Behavior-based aggregation; L1 = CLC Level 1 

aggregation; L2 = CLC Level 2 aggregation; L3 = CLC Level 3 aggregation; 

TB = Threshold-based aggregation).  

 

It is clear that in most cases of BB, L2, L3 and TB datasets, 

quantity disagreement (Qs) was larger than Allocation disagreement (As) 

which means that the model had more error originating from quantity 

than from allocation issues. However, in case of L1, many cases were 

negative, meaning that allocation disagreement was larger than quantity 

disagreement. Median is close to zero, suggesting that these two 

alternatives occurred evenly in L1 cases. 
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4.3.3. Results of Study Site Group 2 analysis concerning stationarity 

Temporal instability, also known as stationarity, was measured 

by Runfola R values, calculated between calibration and validation 

interval (Runfola R REF), and between calibration and simulation 

interval (Runfola R SIM). Figure 17 presents the temporal instability in 

these terms. The more the value is close to 1, the more change should be 

reallocated between the two intervals in order to achieve a uniform 

change throughout the whole time interval – in this study design it means 

between the whole time interval from 2000 to 2012.  

The temporal instability concerning calibration and validation 

interval was the highest in case of L1 dataset (Runfola R REF). The 

median of all the other datasets were close to each other, meaning a 

similar temporal instability. The statistical analysis did not prove 

significant difference of L1 dataset. According to the boxplots, there are 

cases of almost all values of temporal instability in the datasets. 

On the contrary, the temporal instability concerning calibration 

and simulation interval was the lowest in case of L1 dataset (Runfola R 

SIM), also significantly different from BB, L2 and L3 datasets. It means 

that L1 dataset cases showed high stability of changes concerning 

calibration and simulation interval changes. 

Finally, the difference between Runfola R values concerning 

reference and simulation data (Runfola R DIFF) for each individual case 

was the largest in case of L1 dataset, significantly. The instability of L1 

literally dropped when comparing Runfola R REF and Runfola R SIM 

values. In case of the other aggregation methods, the medians were not 

significantly different from each other. It means that the difference of 

stability throughout calibration and validation, and throughout 

calibration and simulation intervals were extremely large in most L1 

cases and it points to the fact that the model simulated much more stable 

changes in the landscape than the real situation. In case of all other 

aggregation methods, the Runfola R DIFF medians are negative, 

meaning that in many cases, the model simulated less stable changes 

related to the real situation. 
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Figure 17. Runfola’s R values measuring temporal instability between time 

intervals. R values concerning temporal instability between calibration and 
validation intervals [Runfola R (REF)], concerning temporal instability between 

calibration and simulation intervals [Runfola R (SIM)], and the difference between 

the two Runfola R values calculated for each case [Runfola R DIFF = Runfola R 
(REF) - Runfola R (SIM)]. If Runfola R DIFF value is positive, then Runfola R 

(REF) is larger. If Runfola R DIFF value is negative, then Runfola R (SIM) is 
larger. Values of all three variables are grouped by aggregation method. The 

groups with significantly different medians are assigned with different letters. 

(BB=Behavior-based aggregation; L1 = CLC Level 1 aggregation; L2 = CLC 
Level 2 aggregation; L3 = CLC Level 3 aggregation; TB = Threshold-based 

aggregation).  
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4.3.4. Results of Study Site Group 2 analysis concerning Kappa Index of 

Agreement and Overall Agreement  

As discussed in literature review, there are validation approaches 

frequently reported in contemporary literature, where the modeler 

compares time #3 reference map to time #3 simulation maps by 

calculating metrics used in accuracy assessment of remotely sensed 

images. Two popular metrics for this purpose are Kappa coefficient and 

overall agreement.  

 

Figure 18. Kappa Index of Agreement values in each case in Study site group 

2, grouped by aggregation method (BB=Behavior-based aggregation; L1 = 

CLC Level 1 aggregation; L2 = CLC Level 2 aggregation; L3 = CLC Level 3 

aggregation; TB = Threshold-based aggregation).  

In Figure 18, Kappa coefficient values are presented for each 

model, based on the comparison of 2012 reference maps and 2012 

simulation maps in each case. Kappa returned high values (around 0.85) 

in L1 dataset, while all other aggregation methods returned values 

around 0.6–0.7, indicating a lower agreement between the two maps. 

Overall agreement also characterized the agreement between 2012 

reference and 2012 simulation maps in each case. Overall agreement 

values are presented in Figure 19 along with the ratio of persistent areas 

in the validation interval and with correctly simulated persistent areas, 

also known as Correct Rejections. The differences of the medians are 
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seemingly similar in all four metrics, which is in accordance with the 

hypothesis that Kappa and overall agreement return large values if the 

ratio of persistent areas is large, because large ratio of persistent areas 

result in high ratio of pixels that belong to the same category in both 

maps. 

 

Figure 19. Ratio of persistent areas in the validation interval (left), overall 

agreement (middle) and Correct Rejections (right), grouped by aggregation 

method. (BB=Behavior-based aggregation; L1 = CLC Level 1 aggregation; L2 

= CLC Level 2 aggregation; L3 = CLC Level 3 aggregation; TB = Threshold-

based aggregation).  

 

4.3.5. Results of statistical analysis in Study Site Group 2  

In order to reveal the correlations between variables used in the 

analysis, a comprehensive statistical analysis was conducted. In this 

analysis, the correlation between variables was checked for all pairs of 

variables and the results are presented in Figure 20. The correlations 

concerning variables characterizing model performance are highlighted. 

The thinner the ellipses, the larger the correlation is between the 

variables of which the ellipse is intersected.  

  During the interpretation, the trivial correlations were ignored. 

For instance, a strong correlation between allocation disagreement of the 

simulation (As) and False Alarms was presumed, since allocation 

disagreement is equal to the double of the minimum of False Alarms and 

Misses, thus in many cases, the double of False Alarms is equal to 

allocation disagreement. This relation establishes a strong correlation 

between these two variables.  



 

68 

 

FOM did not show a strong correlation, in a statistically 

significant manner, with any other variables that are not used for 

calculating FOM. Among FOM components, Misses returned strong 

correlation with validation interval changes (R2=0.95) and validation 

interval persistence (with the same correlation, since persistence and 

change complement each other in the study area). False Alarms returned 

moderate correlation with calibration changes (R2=0.56), calibration 

persistence, and temporal instability between calibration and validation 

interval (R2=0.72). Quantity disagreement values of the simulation 

showed strong correlation with validation interval changes (R2=0.82), 

and mild correlation with the temporal instability between calibration 

and simulation interval (R2=0.38) and with the difference between 

calibration and validation annual changes (R2=0.65) (which latter means 

the acceleration or deceleration of changes). Allocation disagreement 

values of the simulation showed moderate correlation with the temporal 

instability between calibration and validation interval (R2=0.67) and with 

the calibration interval persistence (R2=0.61) and change. Overall 

agreement and Kappa showed a high correlation with validation interval 

persistence and change (OA R2=0.92; Kappa R2=0,85), and with Correct 

Rejections (OA R2=0,96; Kappa R2=0,87) as well.  
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The difference between the rate of change of the calibration and 

validation intervals (Cal-Val annual ch.) also showed strong correlation 

with the difference between quantity and allocation disagreement of the 

simulation (Qs-As, R
2=0.76). 

4.4. Discussion of Study Site Group 2 analysis results  

After a comprehensive analysis of number of categories, changes, model 

performance metrics and stationarity metrics, this section discusses the 

scientific importance of the results presented. The statistical analysis 

results are discussed together with the detailed discussion of the relevant 

variables. 

4.4.1. Discussion concerning number of categories and changes in the 

landscape 

It was clear throughout the study that L1 dataset dissevered from 

other aggregation methods in almost all manners, whether proved by 

statistical analysis or by simple visual interpretation of the boxplots. It is 

important to interpret the number of categories together with the changes 

in the landscape, according to various aggregation methods. In this way, 

the effect of aggregation methods on category numbers becomes clear, 

while the extent of the elimination of changes also becomes clear. When 

aggregating categories, the user should pay attention for not eliminating 

important changes in the area, because the model cannot simulate the 

changes which are not present in the study area anymore. However, by 

decreasing the number of categories in the study area, the interpretation 

of land changes gets much easier (Aldwaik et al., 2015). Furthermore, 

running a model which needs to handle fewer categories, meaning fewer 

combinations of category interactions, demands much less computing 

capacity. As Figure 10 showed, the number of categories decreased the 

most in the case of L1, related to all other aggregation methods, however, 

L1 had the lowest possible maximum of the number of categories, with 

a maximum of 5. BB had the second less categories with a maximum of 

9, and then L2, TB and L3 in increasing order. While BB and TB 

aggregation methods are change-focused in a manner that the 

aggregation is performed with respect to the presence of change in the 

study area, the L1, L2 and L3 category schemes are dominated by a 

thematic ruleset, not comprehending changes at all. All the other 

aggregation methods dissevered from L1 in terms of changes in all three 

time intervals: calibration, validation and simulation, based on the 

statistical analysis. It means that, in a statistical sense, BB, L2, L3 and 

TB did not differ from each other, but all of them differed from L1. While 

all BB, L1, L2 and TB was an aggregation of L3 data, L1 showed the 
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less changes, meaning it definitely eliminates a large ratio of changes in 

the study area. BB showed the least maximum number of categories after 

L1, meanwhile not eliminating the changes from the study area, due to 

the characteristics of the applied behavior-based aggregation process. 

When aggregating the categories according to BB method, it was a 

critical condition to maintain total change in the area, thus the 

aggregation process stopped before an upcoming aggregation step would 

have decreased the total change. This process scheme resulted in the 

phenomenon that BB and L3 had the exact same ratio of changing areas 

in the calibration and the validation interval in each individual case, 

while BB had much less categories in each individual case. Therefore, 

BB eliminated zero change from the study areas, while decreasing the 

number of categories, thus making an opportunity for easier 

interpretation and less computing demand of a possible simulation. TB 

is also a change-focused aggregation method, but applies an arbitrary 

threshold when assigning the categories subject for aggregation. TB was 

less effective in either reducing the number of categories or maintaining 

changes, because the changes not meeting the requirement were not 

taken into account.  

The analysis of annual changes makes it possible to see the 

deceleration or acceleration of changes in the landscape. From the 

calibration to the validation interval, the change accelerated in most 

cases, while from the calibration to the simulation interval the change 

decelerated in all cases. It means that the model always simulated less 

changes than the change observed in both the calibration and the 

validation interval. The simulation quantity of change matched neither 

calibration nor validation interval quantities of change, which leads to 

the following conclusions: 

- the simulation models underestimated the changes related to the 

calibration interval data, based on which the model is trained; 

- the rate of change simulated by the models did not match the rate 

of change observed in the validation time interval, because the 

dynamics of changes were reverse. 

  

Olmedo et al. (2015) found in three examples of CA-Markov models 

trained with CLC data that the change accelerated from the calibration 

to the validation interval, while the CA-Markov output simulated less 

change than the Markov matrix would extrapolate. In the example 

presented in Table 4-8, the exact same phenomenon could be observed, 

where the simulation returned less change than the Markov’s transition 

area matrix would have dictated. Study site group 1 also showed a 

deceleration of changes in the simulation interval, meaning the same as 
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the findings of Olmedo et al. (2015), and the cases of Study site group 2 

proves a similar pattern in a large dataset of models. However, in case of 

L1, the aggregation affected the changes in the study area so much that 

in some L1 cases the rate of changes even turned into a deceleration from 

the calibration to the validation interval, while other aggregation 

methods showed acceleration. L1 showed values closest to zero, 

meaning really slight differences in general, between calibration and 

validation interval rates of changes, and also between calibration and 

simulation interval rates of changes. The changes in the landscape 

correlated with various metrics concerning model performance or 

temporal stability, discussed in the following sections. 

4.4.2. Discussion concerning FOM and FOM components 

Model performance metrics aimed to characterize whether the 

model could simulate changes in accordance with real landscape 

changes. In Figure 13 and 14, the FOM and FOM components were 

presented along with the statistically significant difference between the 

medians of the datasets of each aggregation method. In terms of FOM, 

there was no significant difference between the aggregation methods, 

although the median of L1 was zero, meaning a complete error of the 

model in half of the L1 cases. Hypothesis testing succeeded in a limited 

way in this case, however with an effect size larger in case of L1, but 

contemporary results also supported the idea that a clearly significance-

focused interpretation can turn out to be misleading (Baker, M., 2016; 

Kim, J. and Bang, 2016; Szabó et al., 2016; Szucs and Ioannidis, 2017).  

In case of FOM components L1 also showed the lowest values, 

but again, L1 was significantly different from all other aggregation 

methods in terms of Misses only. In a statistical sense, L1 was not 

different from TB in all other cases. False Alarms and Misses showed 

enormously larger values related to Wrong Hits and Hits (Figure 14), 

and Wrong Hits and Hits values did not exceed 3% of the study areas in 

any of the cases. It means that the errors originating from simulating 

persistence instead of change, and the opposite, were much more 

characteristic than the error of matching the change but to wrong 

category or than the ratio of correctly simulated changes.  

It is important to consider changes when interpreting FOM 

components, because these components are calculated based on changes 

in the study area, as described in Section 3.6.2.1. Therefore, if a study 

area shows less changes, then it will probably show a lower ratio of FOM 

components in the study area, like less erroneously or less correctly 

simulated pixels, as it could be observed in L1 cases. While L1 

aggregation eliminated changes, it lost the ability to extrapolate the 
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eliminated changes, and the elimination of changes also led to less ratio 

of FOM components in the study areas. In Varga et al (2019) it was stated 

that FOM is not enough to qualify model performance, and in Varga et 

al (2020) it was stated that all four FOM components were lower in L1 

dataset. In this research, a further statistical analysis supports the 

correlation between False Alarms and simulation interval changes 

(R2=0.91) and between Misses and validation interval changes 

(R2=0.95). In Study site group 1, False Alarms concentrated around the 

patches of existing categories, while Misses could be observed in 

sparsely located patches. In Study site group 1, mainly the spatial filter 

of the model caused False Alarms – persistence simulated as change – 

around the existing patches. If the simulated change is large, and the 

simulated changes are influenced by the spatial filter to locate around the 

existing patches while real changes are not located around the existing 

patches, that phenomenon can result in a large ratio of False Alarms. In 

Study site group 1, the Misses –change simulated as persistence – were 

located in compact patches in sparsely located areas, meaning that the 

real changes were also not located around the existing patches but in 

sparsely located areas. If the validation interval change is large, and the 

simulated changes are influenced by the spatial filter to locate around the 

existing patches while real changes are not located around the existing 

patches, that situation can result in a large ratio of Misses. The 

correlations concerning False Alarms and Misses suggests that the same 

pattern may influence the models in Study site group 2. According to a 

set of models, Pontius et al. (2018) suspected that smaller amounts of 

change is associated with lower predictive accuracy, but significant 

correlation between calibration or validation interval changes and FOM 

was not found in this research (Figure 20). 

4.4.3. Discussion concerning quantity and allocation disagreement of 

the simulation (Qs and As) 

Quantity and Allocation disagreement (Qs and As) of the 

simulation models were derived from False Alarms and Misses 

components, as described in Section 3.6.2.2. According to Figure 16, 

Quantity disagreements were larger than Allocation disagreement, in 

general, and Wrong Hits were the lowest in all aggregation methods, 

related to As and Qs. L1 dissevered unambiguously from the other 

aggregation methods again, in a statistically significant manner, 

however, L1 median was not significantly different from TB in case of 

Wrong Hits. L1 dissevered in a way that either Qs, As and Wrong Hits 

values were lower than in case of other aggregation methods. Since these 

metrics were derived from FOM components, the effect of changes on 
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these metrics is obvious again. Figure 16 showed if Qs or As was larger 

in each individual cases, and in most cases, Qs was larger, which means 

more error originated from the Markov than from the CA part of the 

model, since Markov controls quantity and CA controls allocation of the 

simulation. In case of L1, CA caused more error than Markov, because 

mostly the allocation error was larger and the median was around zero, 

referring to an almost equal relation between the two types of errors. In 

case of Study site group 1, the allocation error was larger as well, where 

an L1 dataset was the subject of research, too. The difference between 

quantity and allocation error (Qs-As) showed a strong inverse correlation 

with the difference between annual changes of calibration and validation 

interval, meaning that it is sensitive of the rate of changes. Moreover, it 

is sensitive in a way that whether the changes accelerate from the 

calibration interval to the validation interval, than the quantity of changes 

will be larger than allocation error. This result is in accordance with the 

systematic deceleration pattern of simulated changes, since the quantity 

error would possibly be larger, if the rate of changes move in the opposite 

way in the validation and in the simulation interval. 

4.3.3. Discussion concerning temporal stability in the landscape 

 Temporal instability was measured by Runfola R values, 

concerning either stability between calibration and validation intervals 

or between calibration and simulation intervals. Temporal instability is 

also related to the quantity of change in the landscape by definition. 

Olmedo et al (2015) claimed that non-stationarity of the changes was the 

most obvious reason for a lower model performance, since the changes 

in CLC data accelerated from the calibration to the validation interval. 

Temporal instability, stationarity and the difference of the annual 

changes between the time intervals all characterize the acceleration or 

the deceleration of the data, from a slightly different aspect. Temporal 

instability was the largest in case of L1 according to Figure 17, 

concerning the calibration and validation intervals (Runfola R REF), 

while it was the lowest concerning the calibration and simulation 

intervals (Runfola R SIM). Therefore, it is not surprising that the 

difference between these two variables (Runfola R DIFF) was the largest 

in case of L1, in a statistically significant manner in this case. The 

temporal stability of BB, L2, L3 and TB datasets were similar in case of 

Runfola R REF. The temporal stability of BB, L2, L3 and TB datasets 

were similar in case of Runfola R SIM as well, with a slightly more stable 

character in L2, L3 and TB in increasing order. These results refer to the 

fact that the model simulated more stable changes from the calibration 

to the simulation interval, which is in accordance with the fact that the 
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model simulates decelerating changes. Runfola R REF also showed a 

strong inverse correlation with False Alarms (R2=0.72), and Allocation 

disagreement of the simulation (As, R
2=0.67), suggesting that the more 

instable the changes are throughout the reference time intervals, the less 

False Alarms and Allocation disagreement are present in the simulation. 

According to some examples in literature (Mertens and Lambin, 2000; 

Runfola and Pontius Jr, 2013) the land change in reality does not match 

the idea of stationarity, that is a reason for predictive inability of Markov 

models. 

4.3.3. Discussion concerning Overall Agreement and Kappa Index of 

Agremeent  

In Figures 18 and 19, Kappa Index of Agreement and Overall 

Agreement were presented in a comparison with Correct Rejections and 

validation interval changes. As already presented when analyzing 

changes in different time intervals, L1 had the lowest ratios of changes 

in the study area, consequently, it is trivial that L1 had the largest ratios 

of persistence in the study areas. Here, L1 had also the largest Correct 

Rejections, as known as correctly simulated persistence in the area. Due 

to the fact that in case of a simulation, overall agreement and Kappa 

Index of Agreement measures the agreement between a pair of time #3 

maps, they does not distinguish correctly simulated changes and simple 

persistence, because they are incapable of comprehending this 

information. Traditional agreement index results of this research 

between simulation 2012 and reference 2012 maps, were in accordance 

with previous researches’ modelling results concerning CA-Markov 

method (Memarian et al., 2012; Singh et al., 2015). However, high ratio 

of persistent area between the two dates could be a considerable reason 

for a seemingly successful model performance, as previous researches 

delineated (Kityuttachai et al., 2013; Subedi et al., 2013). Scientists 

warned to take into account that the high agreement in the models can be 

a consequence of high persistence and/or meaning small changes in 

landscape over time (Pontius Jr, R. G. et al., 2011; van Vliet, 2009). 

Correlation study also showed that OA and KIA had an outstandingly 

strong correlation with validation interval persistence (OA R2 = 0.92; 

KIA R2=0.83). L1 cases showed large OA and KIA values, while Hits, 

also known as correctly simulated changes, were under 3% of the study 

areas. OA and KIA does not have a strong inverse correlation with Hits, 

but the results mean that these metrics show large agreement even if the 

ratio of correctly simulated pixels is extremely low. These examples 

reveal that the usage of these metrics for model validation is 

systematically misleading and their usage can seriously make the 
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modeler believe that the model performance is acceptable even when a 

model is totally incapable of simulating the real changes. 

4.5. Results concerning Study Site Group 3 

The study design of study site group 3 is different from study site groups 

1 and 2 in the following relations: 

 the input data is different, since the models are not based on CLC 

datasets, but Landsat images; 

 the input data had only 2 LULC categories in all models in this 

study site group, since the classification was performed with the 

goal of creating categories that focus on the phenomenon that is 

the specific subject of modelling;  

 the overall number of cases in study site group 3 (6 cases) is much 

lower than in any datasets grouped by aggregation method in 

study site group 2. 

 the model parameter, which is determined by the duration of the 

time intervals, was different, because the time intervals did not 

matched the duration between CLC datasets (6 years), since they 

were mainly determined by the accessibility of cloud-free 

images. 

 

All these differences resulted in the situation that the models 

performed in study site 3 are not comparable to study site 1 and 2 in a 

statistical sense. Although, they are not comparable on a ground where 

statistical correlation information can be derived under appropriate 

circumstances, but a comparison on the ground of empirical observations 

was conducted. The same variables were calculated in this study site 

group as well, but I will present selectively those variables which 

demonstrate substantial differences related to study site group 1 and 2. 

Figure 21 shows the results of FOM components presented in 

maps of the study areas where the pixels represent the erroneously 

simulated, correctly simulated and persistent areas in accordance with 

the legend of Figure 8. It can be observed that the Hits were concentrated 

on the edges of original patches in either the Amazonian or the 

Atchafalaya Bay cases. Misses were located as larger, more concentrated 

patches again in case of the Amazonian site. Misses in the Atchafalaya 

Bay example are more distant from the location of the initial changes in 

the area. False Alarms are sparsely located areas in the Amazonian 

example, and they follow the leads of the rivers in the Atchafalaya 

example. In 2012 simulation map in the Atchafalaya example, the rivers 

were literally closed as a result of the sprawl of changes. In both areas a 

relatively larger ratio of changes were characteristic, while the changes 
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were presumed to sprawl around the edges of the original category, due 

to the nature of the causes of these phenomena.

 

Figure 21. Figure of merit component values of study site group 3, zoom level L areas. The 

figure presents the time #1, time #2 and time #3 maps in both areas.
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Figure 22. Presentation of difference of annual changes in study site group 2 

and study site group 3, expressed as percent of the study area, based on the 

comparison of calibration and validation interval changes (Cal-Val. annual 

ch., left side) and based on the comparison of calibration and simulation 

interval changes (Cal-Sim annual ch., right side). The cases based on satellite 

image analysis are separated with a dashed line and assigned with label 

“SAT”. (BB=Behavior-based aggregation; L1 = CLC Level 1 aggregation; L2 

= CLC Level 2 aggregation; L3 = CLC Level 3 aggregation; TB = Threshold-

based aggregation, SAT=satellite image-based analysis).  

 

An important difference related to study site 2 is presented in 

Figure 22, where the annual changes between calibration and validation 

interval and the annual changes between calibration and simulation 

interval were presented. The calculation of annual changes provides a 

good basis for comparison of the results, since the study designs in study 
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site 2 and 3 applied different durations of time intervals, and durations 

are even different within Study site group 3 (13 years in Atchalaya Bay, 

10 years in Amazonia), as labelled in Figure 21. If we compared the 

overall changes, then the result would not be weighted by the duration of 

the time intervals and this issue would be an appropriate basis for a 

misleading interpretation. Figure 22 shows that the changes mostly 

decelerated from the calibration to the validation interval, and the 

changes decelerated in all cases from the calibration to the simulation 

interval in study site group 3. The deceleration from calibration to the 

validation interval could have been observed in only some cases of the 

L1 dataset. According to the decelerating pattern of both reference and 

simulation data, the patterns are matching in terms of the rate of changes. 

Furthermore, the rate of deceleration was the most considerable in case 

of the satellite-based dataset, related to other datasets, all derived from 

CLC.  

 

 
Figure 23. Comparison of Figure of merit (FOM) values in study site groups 2 

and 3, grouped by aggregation method. The cases based on satellite image 

analysis are separated with a dashed line and assigned with label “SAT”. 

(BB=Behavior-based aggregation; L1 = CLC Level 1 aggregation; L2 = CLC 

Level 2 aggregation; L3 = CLC Level 3 aggregation; TB = Threshold-based 

aggregation).  
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Figure 23 reports the values of FOM as compared to study site 

group 2 datasets again. In this context, FOM was outstandingly high, 

since FOM median converged to 28%, which value could be achieved 

by only outliers of the study site group 2. It means that model 

performance was much better in these sites as compared to study site 

group 2.  

Figure 24 reports FOM components, as compared to Study site 

group 2 results. There was no substantial difference in terms of False 

Alarms and Misses, since the medians had similar values as compared to 

BB, L2, L3 and TB datasets of study site group 2. However, Wrong Hits  
 

 

Figure 24. Different types of FOM components in study site groups 2 and 3, 

grouped by aggregation method. The cases based on satellite image analysis 

are separated with a dashed line and assigned with label “SAT”. 

(BB=Behavior-based aggregation; L1 = CLC Level 1 aggregation; L2 = CLC 

Level 2 aggregation; L3 = CLC Level 3 aggregation; TB = Threshold-based 

aggregation).  

and Hits were substantially different, as Wrong Hits were all zero and 

Hits were all over 4%. It means that Hits values were all larger than in 

all study site group 2 cases, but Wrong Hits were always zero, meaning 

no error originating from the simulation of changes to wrong category. 

In this sense, the study site group 3 cases are similar to L1 datasets. 
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However, here the chance of simulating to wrong category was zero, 

since there were only 2 categories in the landscape with a single 

opportunity for changing into one another, meaning no opportunity for 

changing to a wrong category. 

 

Figure 25. Difference between quantity (Qs) and allocation (As) disagreement of 

the simulation in each case in study site groups 2 and 3, grouped by aggregation 
method. If the value is positive, then Qs is larger. If the value is negative, then As is 

larger. The cases based on satellite image analysis are separated with a dashed 

line and assigned with label “SAT” (BB=Behavior-based aggregation; L1 = CLC 
Level 1 aggregation; L2 = CLC Level 2 aggregation; L3 = CLC Level 3 

aggregation; TB = Threshold-based aggregation).  

In Figure 25, the difference between quantity and allocation 

disagreement was visualized for each cases. Since some cases are over 

zero, it suggests that quantity disagreement (Qs) was larger than 

Allocation disagreement (As) which means that the model had slightly 

more error originating from quantity than from allocation issues. 

However, the median was close to zero, suggesting that Qs and As were 
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approximately equal which means that almost equal error originated 

from quantity and allocation issues.   

 

Figure 26. Runfola’s R values measuring temporal instability between time 
intervals. R values concerning temporal instability between calibration and 

validation intervals [Runfola R (REF)], concerning temporal instability between 

calibration and simulation intervals [Runfola R (SIM)], and the difference between 
the two Runfola R values calculated for each case [Runfola R DIFF = Runfola R 

(REF) - Runfola R (SIM)]. If Runfola R DIFF value is positive, then Runfola R 

(REF) is larger. If Runfola R DIFF value is negative, then Runfola R (SIM) is 
larger. Values of all three variables are grouped by aggregation method. The cases 

based on satellite image analysis are separated with a dashed line and assigned 
with label “SAT” (BB=Behavior-based aggregation; L1 = CLC Level 1 

aggregation; L2 = CLC Level 2 aggregation; L3 = CLC Level 3 aggregation; TB 

= Threshold-based aggregation).  

Temporal stability values are presented in Figure 26, where 

variations of Runfola’s R values are compared to study site group 2 
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values. According to Runfola R REF, the temporal instability was the 

lowest in case of satellite-based dataset, meaning it had the most stable 

changes from the calibration to the validation interval. On the contrary, 

satellite-based datasets had the most instable changes from the 

calibration to the simulation interval. Therefore, the instability increased 

as compared the simulation to the reference data, presented by Runfola 

R DIFF values. This metric also highlights that instability increased in 

all cases of study site group 3 from the reference to the simulation data, 

because Runfola R DIFF maximum value was zero, meaning that 

Runfola R REF was lower than Runfola R SIM in all cases.   

4.6. Discussion concerning Study Site Group 3 

It is important to discuss study site group 3 results in the context of study 

site group 2 results, because these cases highlight even more specific 

relations between model performance and changes in the study area. 

Study site group 3 presented sprawl-like changes, which are likely to 

sprawl around the original categories, this type of change is in 

accordance with the operation of the model. If the model simulates 

changes around the edges of the original categories, it simulates a sprawl-

like change, even if the real change is not a sprawl-like phenomenon.  

Figure 21 presented that the Hits concentrated on the edges of the 

original categories, which were persistent pixels, while the Misses 

concentrated into compact patches (Amazonian example) or near to Hits 

(Atchafalaya example). This latter example clearly shows that the Hits 

were located around the original category where the changes had been 

expected to occur, and Misses were located besides the Hits as a result 

of the model’s underestimation of changes. If the model did not 

underestimate changes and simulated more changes, probably the Misses 

would have become Hits as well. The model were likely to consider only 

the spatial filter when allocating the changes, since it did not consider 

the lead of the rivers, just simulated changes into all direction from the 

original category Other, even closing up the rivers in simulation map 

2012. Therefore, False Alarms followed the leads of the closed rivers, 

where the model simulated changes instead of persistence. 

The Amazonian example shows a slight salt-and-pepper effect in 

case of Hits, Misses and False Alarms. Hits seemed to be located at the 

edges of the original categories, since the logging in the forest is also a 

sprawl-like phenomenon. However, there was a salt-and-pepper effect in 

the real changes, since the deforestation advanced in a manner that some 

individual forest patches sparsely remained in the area and sometimes 

forest patches witnessed deforestation around them. Meanwhile the 

model simulated a situation where the deforestation sprawls perfectly 
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around the existing patches. Consequently, False Alarms were located 

where these forest patches were still present, Misses were located where 

the advance of deforestation concentrated in an area and Hits were 

present where the advance of deforestation matched a perfectly 

sprawling dynamic. Pontius Jr et al. (2007) used a simulation model for 

projecting deforestation in the Amazon basin and found that the 

phenomenon is likely to occur near the local main and secondary roads. 

In this model there was no input information or driver in the model, only 

the land changes in the calibration interval. It is logic to assume that the 

deforestation occurs near the main roads in a harsh environment like 

Amazonia, since the proximity of roads helps the accessibility of the 

forests. However, in the model presented in Figure 21, the 1990 

reference maps helps to identify the possible location of roads, but the 

sprawl did not follow a uniform spreading pattern from the possible 

location of roads towards the forests, since the deforestation left some 

remaining forest patches while spreading. These patches caused the salt-

and-pepper effect in the FOM component map.  

The FOM values of this study site group were especially high, 

meaning especially high model performances related to study site group 

2. However, it is really important to see how these FOM values evolved 

on the ground of various FOM components. FOM is calculated based on 

FOM components, where the Hits values are divided by the sum of Hits 

and erroneously simulated pixels. These erroneously simulated pixels are 

the bases for various errors, expressed as Misses, False Alarms and 

Wrong Hits. If the Misses, False Alarms and Wrong Hits are high and 

Hits are low, then the nominator of FOM calculation will be low and the 

denominator will be high, consequently, FOM will be low. If Hits 

increases, besides the same values of errors, the FOM will be higher. If 

Hits increases, but the errors also increase, the FOM will not necessarily 

increase. If Hits are the same, but errors increase, then FOM will 

decrease. These combinations show why it is not enough to consider only 

the correctly simulated changes, as known as Hits. In study site group 3, 

the Hits increased substantially, but the False Alarms and Misses did not 

increase, while Wrong Hits even decreased, all related to study site group 

2. This combination resulted in higher FOM values related to study site 

group 2. 

Concerning the tendency of annual changes, the rate of annual 

changes from the calibration to the validation interval matched the rate 

of annual changes from the calibration to the validation interval, 

regarding the fact that the changes decelerated from one interval to 

another. However, the rate of deceleration was different, since the 

changes decelerated more from the calibration to the simulation interval. 
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It means that the model matched the tendency of deceleration, but 

underestimated the quantity by which the change decelerates. It may be 

the reason for the Runfola’s R values, where the Runfola’s R was larger 

in case of the simulation indicating more instable changes. Runfola’s R 

characterizes the changes that should be reallocated in order to achieve 

a uniform change throughout the whole time interval (Runfola and 

Pontius Jr, 2013). In order to achieve a uniform change throughout the 

calibration and simulation intervals, more quantity of changes should be 

reallocated, because the model simulated a dynamic deceleration. 

Throughout the calibration and validation intervals, the real changes 

decelerated more slowly, so less quantity of changes should be 

reallocated to achieve a uniform change. It is a good example of that the 

temporal stability does not necessarily reveal the tendency of changes 

that the comparison of annual changes reveals, namely the acceleration 

or deceleration of changes, because it does not inform about the 

tendency, only about the necessary quantity of changes to reallocate in 

order to achieve the uniformity. 

5. DISCUSSION OF OVERALL RESULTS IN THE CONTEXT OF 

CONTEMPORARY LITERATURE AND FUTURE PERSPECTIVES 

In literature there are few examples of comprehensive analysis of 

LULC change model performance. There were researches in 

contemporary literature about the different modelling approaches, like 

Dinamica EGO, CLUE, Land Change Modeler, CA-Markov (Mas, et al., 

2014; Olmedo, et al., 2018; Olmedo et al., 2015; Paegelow et al., 2014; 

Paegelow and Olmedo, 2005) or specifically the Markovian matrix 

(Takada et al., 2010). Mas et al. (2014) provided a comprehensive 

overview of possible errors of the following simulation models: CA-

Markov, Land Change Modeler (LCM) and Dinamica. In that case, the 

examined models all applied Markov chains in order predict the quantity 

of changes, and used different approaches for spatial allocation of 

changes. They found that although all models used Markov matrices 

throughout the simulation, but the CA-Markov predicted substantially 

less change than the other two models and that model was closer to null 

hypothesis that showed only persistence in the relevant time interval.  

In this research, all the models predicted a deceleration of 

changes, meaning a decrease in annual change from the calibration to the 

validation interval. In our article (Varga et al., 2019) that described the 

analysis in study site group 1, we also discussed that the model 

“simulated fewer and smaller transitions than an extrapolation of a 

Markov chain would dictate”. However, in that case, the model 
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simulated correctly the deceleration of the changes in the study area. The 

allocation error was larger than the quantity error which could be 

observed in some L1 cases in study site group 2, while study site group 

1 can be considered as an L1 case, since it was a five-category 

aggregation of L3 data, however, with a 25 m spatial resolution. Our 

article (Varga et al., 2019) was the first example of using intensity 

analysis and FOM components together for model validation purposes. 

Intensity analysis helped to reveal the deceleration of changes and 

important category-level and transition-level changes in the study area, 

as compared to simulation. It would be an exciting future perspective of 

the research to apply intensity analysis on all datasets of study site group 

2 and 3 as well. There is an intensity analysis framework where the 

scientists can perform the analysis on their own datasets, but in 2019 an 

R software package was published with the name of ‘intensity.analysis’ 

package, by which intensity analysis could be performed en masse. It 

creates a good basis for deeper insights into the category-level and 

transition-level dynamics of the datasets.  

Based on all the study site groups, the results enlightened that the 

models always simulated a decelerating tendency. It refers to the fact that 

study site group 1 simulation would have not matched the tendency in 

the validation data, if the validation data had showed accelerating 

changes. The model matches this kind of tendency in the changes only if 

the real change decelerates. The cases of study site group 2 support this 

finding, since the cases in study site group 2 showed that quantity 

disagreement was mostly larger than allocation disagreement. 

Furthermore, study site group 3 cases demonstrated the relation of the 

contiguity filter and the mechanism of changes, while the map of FOM 

components revealed the errors originating from this relation. In study 

site 3, quantity and allocation errors were mostly even, but the change 

decelerated more in the simulation than in the validation interval.  

Mas et al. (2014) claimed that CA model was suitable for only 

applications where there is a specific rule of neighborhood in changes, 

since the model was designed for urban growth simulation. In the 

Atchafalaya example, the Hits concentrated on the edges of the original 

categories, in a great unison with the logic of contiguity filter. However, 

the very presence of the contiguity filter caused land changes that would 

be implausible in reality, like the close up of rivers.   

For the best of my knowledge, there is not any study of running 

a large set of CA-Markov models and examine the model performance 

under similar circumstances. Our article (Varga et al., 2020) was the first 

example of investigating the effect of category aggregation on model 

performance, based on FOM and FOM components, in a large set of 
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models. Our article (Varga et al 2019), based on study site group 1 

results, revealed that FOM is not enough to qualify the model since it 

does not distinguish quantity and allocation errors, and the interpretation 

of a combination metrics can help to evaluate the reasons for errors. 

There are quite few examples of using Figure of merit for the validation 

of a simulation model in literature (Cao, M. et al., 2019; Memarian et al., 

2012; Tajbakhsh et al., 2018). The analysis of FOM components in 

details or in context of allocation and quantity disagreements were 

performed even more rarely, and it seems to be a really special and 

focused subproblem of simulation modelling (Chen and Pontius Jr, 2010; 

Feng et al., 2019; Mejean et al., 2019; Wang et al., 2019).  

There is a model parameter in Idrisi’s CA-Markov model, where 

the user can set a proportional error for the model that originates from 

the input map error. In this research, the proportional error was set to 

zero, because in a couple of previous empirical observations, the model 

returned simulations with weaker model performance when setting this 

parameter to a 85% accuracy of the input maps (set to a 0.15 proportional 

error), compared to models with zero proportional error. Mas et al (2014) 

reported that when this proportional error option was applied in CA-

Markov model approach, this action resulted in affecting area 

estimations significantly. The effect of input map error could hardly be 

checked in study site group 2 dataset, because all the input maps are 

derived from CLC data, where the reported thematic accuracy is over 

85%, and the exact same parameter should be set for all the models. 

Consequently, the study design did not create an opportunity for testing 

the systematic effects of various input map accuracies on model 

performance. 

Another model parameter is the iteration number of the model 

which is advised to be the number of years of the duration of the analyzed 

time interval (Eastman, 2012a). The spatial filter is also modifiable, and 

the user can modify the default 5x5 spatial filter to a user-defined filter 

in the analysis. There are various classic types of spatial filters that are 

used for edge detection in image processing (Birchfield, 2016), even in 

a combination of cellular automaton and spatial filter for a purpose 

independent from LULC modelling (Sharma et al., 2013). Although 

Deep and Saklani (2014) used Kappa coefficient for model validation in 

their paper, which is a wrong approach for validation of the model, but 

they tested the effects of iteration number and neighborhood on the 

simulation and found that 12 iterations and a 17x17 neighborhood 

returned models with the highest kappa values. In Varga et al. (2019) we 

also tested spatial filter variations and we found that a larger filter would 

allow changes to extend farther from the original patches, but still 
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concentrate changes near the original patches. It was obvious throughout 

this research design that the spatial filters caused a concentration of 

changes on the edges of the original categories, and partly due to this 

phenomenon, cases in study site group 3 resulted in better model 

performance. If the modeler checked patch patterns of the calibration and 

validation interval changes before running the model, it would possibly 

provide a trace whether the simulation design match the changes that the 

modeler wants to simulate. The whole dataset of study site group 2 could 

be checked in FRAGSTAT (McGarigal, K. et al., 2012) that is capable 

of calculating landscape metrics based on raster datasets, and shape-

focused indices (Haines-Young and Chopping, 1996) of changing 

patches could lead to a useful pre-check in the analysis. There were 

researches concerning the variability of land changes using landscape 

metrics to characterize this feature of land change (Szilassi, 2017).  

The issue of spatial resolution was not tested in this research, 

since most of the models were derived from CLC dataset, thus the spatial 

resolution applied in the study design was determined by the resolution 

of the input dataset. There were a few investigations on the effects of 

resolution on model performance in literature (Olmedo et al., 2018; 

Pontius Jr, et al., 2011) and even on the scale-dependency of the driving 

factors of change (Verburg et al., 1999), but this study design did not 

create an opportunity for testing the systematic effects of spatial 

resolution on model performance. If the models received input data 

derived from satellite-images with various resolutions, then an analysis 

on the effects of spatial resolution would make sense, which is an 

interesting subject for future research. 

The practical utilization of the results is not limited to scientists 

who intend to run land change models. Due to the fact that the models in 

this research did not integrate land change drivers, it is rather a research 

focused on practical issues and provides insights in order to identify or 

avoid possible errors in the CA-Markov model. It is really important to 

know how the model works before integrating any drivers which could 

complicate the model and then the exact origin of errors could not be 

distinguished. According to Verburg et al. (2004a) we still do not have 

enough information or understanding of land change processes to decide 

which land change modelling approach suits our purposes the most. Land 

change modelling is a good basis for setting up future scenarios in a 

world where many recent changes concerning climate and habitat may 

be irreversible. Land change policy and decision-makers need complex 

information on the changing processes, and landscape ecology is in a 

good position to investigate the causes and interactions of these 

processes (Mayer et al., 2016). Schuwirth et al (2019) declared certain 
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conditions that helps increasing usefulness of models for ecological and 

land management, like sufficient predictive performance, among others. 

They also claimed it is important to suit these requirements when the 

policy-makers need models to support decisions presented to the public. 

It is a substantial demand towards land change modelling science to 

investigate possible errors in modelling issues in order to being capable 

of recognizing, correcting or avoiding these errors. This dissertation 

intended to take a step in this direction.  

6. CONCLUSIONS 

The analysis focused on CA-Markov models and their abilities of 

predicting LULC changes in the study areas. A variety of metrics were 

calculated in order to measure the numbers of categories, the ratio of 

changes, the model performance and temporal stability under specific 

circumstances. The following points summarize the most important 

findings:  

(1) Intensity analysis substantially contributed to the validation of the 

simulation model, since it revealed the real and simulated changes 

in detail, thus helped to reveal the reasons for the unsuccess of the 

model. 

(2) The combined usage of comparison of the calibration to the 

validation interval and comparison of the calibration to the 

simulation interval revealed patterns that the FOM and 

components could not reveal, therefore it is recommended to 

consider either calibration interval changes or usage of a 

combination of metrics when validating a model. 

(3) Category aggregation decreased changes in the study sites. In case 

of Corine Land Cover (CLC) Standard Level 1 change decreased 

the most and in a statistically significant manner, related to other 

aggregation methods. Behavior-based category aggregation 

maintained changes the most and absolutely, while model 

performance did not decrease significantly and number of 

categories decreased substantially. Therefore, CLC Level 1 

aggregation is not recommended, and behavior-based aggregation 

is recommended to use when aggregating categories. 

(4) Quantity disagreement of the Cellular Automaton (CA)-Markov 

models was mostly larger than allocation disagreement, meaning 

that the quantity control of Markov caused more errors than the 

allocation control of cellular automaton. 

(5) The model simulated decelerating changes systematically, 

meaning a systematic underestimation of changes, which resulted 
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in large quantity errors of the models, because the changes were 

mostly accelerating in the study sites. 

(6) FOM values, characterizing model performance, were 

substantially larger in case of modelling sprawl-like mechanisms. 

However, the model had quantity errors due to underestimating the 

changes and allocation errors due to the uneven sprawl mechanism.  

(7) Kappa Index of Agreement and Overall Agreement showed a 

strong correlation with validation interval changes, moreover 

showed high agreements also in the cases where correctly 

simulated changes were extremely low. This demonstration in a 

large set of datasets clearly shows why the usage of these metrics 

is not recommended for the validation of simulation models in the 

context of comparing reference and simulation time #3 maps. 

 

These results may help scientists see behind the scenes of CA-

Markov model, its logic and operation, when it is free of any drivers or 

influencing factors of change. I still hope that my dissertation helps a 

better understanding of category aggregation consequences and model 

validation approaches, and contributes to the dissemination and 

propagation of good practices and possible errors in land change 

modelling science.  

 

S U M M A R Y  

 

The main purpose of my research was to analyze land change 

models that were also capable of demonstrating the capability or 

incapability of certain model performance metrics. Furthermore, another 

important purpose was to analyze the changes in the landscape in order 

to reveal the detailed background of model performance. The analysis 

was based on a large set of CA-Markov models, by which I drew 

conclusions concerning the following issues: 

 how the detailed change analysis help the analysis of model 

performance; 

 how certain category aggregation methods influence the model 

performance; 

 which methods are not suitable for a correct model performance 

analysis; 

 how the operation of the model influence model performance. 
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The innovation of the research was that the research questions have 

not been analyzed in a large set of models before. It is an innovation from 

a methodological point of view that in the context of model performance 

analysis, intensity analysis have not been used and the effect of category 

aggregations have not been investigated. 

The analysis was performed in 3 study site groups. Study site group 

1 contained only one study site located around Tokaj city with an extent 

of 25 x 25 km and a quite heterogeneous land character. The facts that it 

is located at the joint of five microregions and all categories of the level 

1 of Corine Land Cover standard nomenclature are present in the area, 

also show its heterogeneity. The analysis was based on Corine Land 

Cover (CLC) data concerning the years 2000, 2006 and 2012, using 

subsets of the vector database resampled to 25 m raster datasets. 5 

categories were used according to CLC standard nomenclature Level 1, 

which were the followings: artificial surfaces, agricultural areas, forests 

and semi-natural areas, wetlands and water bodies. Partly due to the 

presence of protected areas, the changes in the area did not exceed 2% 

of the study area in both time intervals examined (2000-2006 and 2006-

2012). CA-Markov models were run based on the 2000 and 2006 maps 

as training data and the model simulated a map for the year 2012. The 

model was validated based on 2006 and 2012 reference maps. Intensity 

analysis was used for investigating the changes in the study area in detail 

concerning either reference or simulated changes, then model 

performance metrics (Figure of merit [FOM] and its components) were 

calculated. 

 

Study site group 2 consisted of 8 study sites that were chosen on 

the basis of Corine Land Cover change layers concerning 2000-2006 and 

2006-2012 time interval changes. The main aim was to find study sites 

with as large ratio of changing areas as possible, so as to produce a 

dataset with various quantities of changing areas in the study sites. In this 

case, the CLC datasets of 2000, 2006 and 2012 were used, however, 

using 100 m spatial resolution raster version instead of resampled vector 

version. In each study site, two further subareas were assigned, so each 

study sites consisted of three subareas according to their zoom level 

(large = L, medium = M, small = S). The assignment of the study areas 

was complicated, because the CA-Markov had specific requirements. 

For instance, the study areas must not have had more than 20 categories 

and the maps representing the first two dates (2000 and 2006 in this case) 

must have had the exact same categories. The categories of the study 

areas were aggregated according to the following schemes: 
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 the basis of the maps were the categories of level 3 of CLC 

standard nomenclature (L3); 

 the categories of level 3 of CLC standard nomenclature were 

aggregated based on the level 2 of CLC standard nomenclature 

(L2); 

 the categories of level 3 of CLC standard nomenclature were 

aggregated based on the level 1 of CLC standard nomenclature 

(L1); 

 the categories of level 3 of CLC standard nomenclature were 

aggregated based on the behavior-based category aggregation 

method (BB), where the user may decide the degree of 

aggregation based on a stepwise aggregation procedure and the 

user can monitor the status of changes in every step of 

aggregation; 

 the categories of level 3 of CLC standard nomenclature were 

aggregated based on the threshold-based category aggregation 

(TB), where the user may decide which categories should be 

aggregated into a new category based on an arbitrary threshold 

of ratio of changes in the area. In 6 cases the changes did not meet 

the applied threshold, therefore the aggregation was not 

performed. 

 

As a result of various study sites, zoom levels and category 

aggregations, 114 models were run altogether in Study site group 2. After 

running the models, metrics concerning model performance, changes 

and other variables were calculated, they were analyzed by statistical 

methods and then comprehensive conclusions were drawn. 

 

The characteristics of Study site group 3 were substantially 

different from the other two study site groups. I aimed to investigate 

phenomena with sprawl-like dynamics where the changes affect the 

neighboring areas of the original categories. Study sites with these 

characteristics were selected in North and South America. In North 

America, the study site was located in Atchafalaya Bay where a delta 

accumulation could be observed. In South America, the study site was 

located in Amazonia, where massive deforestation could be observed. 

Since the study sites were located outside Europe, CLC could not be used 

in this analysis, so time-series Landsat image datasets were processed. 

By segmenting and classifying the images, 2-category maps were created 

that enhanced the target phenomena and after performing resample 

procedure they matched the 100 m spatial resolution of study site group 

2 maps. In each study site, two further subareas were assigned, so each 
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study sites consisted of three subareas according to their zoom level 

(large = L, medium = M, small = S). In this case, CA-Markov models 

were run again, and after running the models, metrics concerning model 

performance, changes and other variables were calculated, similarly to 

study site group 2. Due to the different input data and parameters of study 

site group 3, a statistical comparison to study site group 2 cases could 

not have been well-grounded, hence the conclusions of the comparison 

were rather empirical. 

 

The most important element of methodology was the CA-Markov 

model, which is a land change model, and it is capable of simulating a 

categorical land use/land cover (LULC) map based on input LULC maps 

representing two different dates. I ran the models in Idrisi software 

environment. The model consists of cellular automaton (CA) and 

Markov components, where the latter is responsible for the quantity of 

simulated changes and the cellular automation is responsible for the 

allocation of changes. Throughout the dissertation, I referred to the time 

interval used for training or calibrating the model as the calibration 

interval. I referred to the time interval between the reference dates used 

for validation as the validation interval, which was the time interval 

between 2006 and 2012 in case of study site group 2. Finally, I referred 

to the time interval between the reference and simulation dates, where 

the latter date is the date to which the simulation model projects forward, 

as the simulation interval. The model produces conditional probability 

maps, and transition area and probability matrices based on the 

calibration interval changes and then a contiguity filter determines the 

allocation of changes. I did not include any specific drivers of changes 

in the model. 

 

Model performance was measured by the Figure of merit index and 

its components (Hits = correctly simulated changes; Wrong Hits = 

changes simulated as changes to wrong category; False Alarms = 

reference persistence simulated as change; Misses = reference change 

simulated as persistence), and by Quantity (Qs) and Allocation 

disagreement (As) of the simulation that can be derived from Figure of 

merit components. The FOM components reveal the agreement and 

disagreement of reference and simulated changes. Moreover, I calculated 

Kappa coefficient and overall accuracy metrics based on the comparison 

of reference and simulated maps of time #3 maps (2012 in case of study 

site group 2 and 2010 and 2013 in case of study site group 3). Further 

variables were concerned, as follows: 

 number of categories 
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 quantity of changes in all examined time intervals 

 quantity of annual changes in all examined time intervals 

 difference of changes between time intervals 

 temporal stability between the calibration and validation interval 

changes, and between the calibration and simulation interval 

changes 

 

Statistical analysis was conducted in study site group 2 

exclusively, by ANOVA and Tukey pairwise comparison tests. 

Statistical analysis aimed to reveal whether there is significant difference 

between the medians of aggregation groups concerning the variables 

measured throughout the analysis. In order to measure correlation 

between the variables and model performance, a correlation matrix was 

set up where Spearman’s rs coefficient was applied (p<0.05). 

 

In case of study site group 1, the ratio of changes remained under 

2% in either the calibration, validation or simulation intervals, while the 

annual changes decelerated in both validation and simulation intervals, 

related to the calibration interval. The ratio of correctly simulated 

changes (0.02%, expressed as a ratio of the study area) and model 

performance (FOM=0.007%) were extremely low. However, the 

allocation disagreement of the simulation (2.12%, expressed as a ratio of 

the study area) was larger than quantity disagreement (0.41%, expressed 

as a ratio of the study area). This refers to the fact that CA component of 

the model caused more errors, than the Markov component. Based on the 

location of False Alarms and Misses values, the model placed the 

changing areas to the neighboring areas of the original categories, which 

was probably an effect of the contiguity filter. Intensity analysis results 

showed that more similarity could be observed between the calibration 

and simulation interval change dynamics, than between the calibration 

and validation interval change dynamics and that could partly lead to the 

unsuccess of the model. Furthermore, intensity analysis revealed the 

dynamics of changes in all three intervals that a comprehensive metric, 

like FOM, could have not revealed. 

 

The results of study site group 2 showed that the changes in L1 

group were significantly lower than the other aggregation groups in 

either calibration, validation or simulation intervals. The number of 

categories drastically decreased in L1 group, but a substantial decrease 

could be observed in BB group as well. However, in BB group, the 

changes did not decrease at all, since an important aspect was to maintain 

changes when performing BB aggregation. By analyzing annual 
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changes, it became clear that the model always simulated decelerating 

changes, although the validation interval changes showed mostly 

accelerating tendencies. 

There was no significant difference between the aggregation 

groups concerning FOM, but L1 group FOM, Hits and Wrong Hits 

medians converged to zero. In case of L1 group, all FOM components 

were lower than other groups, but the ratio of these components is even 

more important when interpreting model performance and FOM. Misses 

and False Alarms were higher than Hits and Wrong Hits, which leads to 

the assumption that the contiguity filter affected the results, such as in 

case of study site group 1. The statistical analysis returned strong 

correlation between Misses and validation interval changes (R2=0.95) 

and between False Alarms and simulation interval changes (R2=0.91). 

In study site group 2, the quantity disagreement of the simulation was 

characteristically larger than the allocation disagreement, and 

concerning both metrics, L1 group values were significantly lower than 

other aggregation groups’ values. Regarding individual cases, quantity 

disagreement was mostly larger than allocation disagreement again, 

however, in L1 group, both cases were characteristically present. It refers 

to the fact that Markov component of the model caused more errors, than 

the CA component. The statistical analysis returned strong correlation 

between Quantity disagreement and validation interval changes 

(R2=0.82) and mild correlation between Quantity disagreement and the 

difference between calibration and validation interval annual changes 

(R2=0.65). 

Based on the measurement of the difference comparison of the 

instability between the calibration and validation intervals and the 

instability between the calibration and simulation intervals, L1 group 

showed substantial decrease from the reference to the simulation 

instability. It means that the changes between the calibration and the 

simulation intervals were much more stable than the changes between 

the calibration and the validation intervals.  

The map of the last reference date (2012, 2010 and 2016 in study 

site group 2, Amazonian case and Atchafalaya Bay case, respectively) 

and the relevant simulated map were compared by calculating Kappa 

coefficient and Overall agreement metrics. Both metrics returned 

significantly higher values in L1 group, where the less changes could be 

observed. Statistical results supported the strong correlation between 

either Kappa index of agreement or Overall agreement and validation 

interval persistence and Correct Rejections, latter meaning the correctly 

simulated persistent areas. Therefore the usage of these indices can be 

seriously misleading when using for the purpose of model performance 
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assessment, since they return large agreement values, even if the model 

hardly matched reference changes. This idea has already been published 

before, but a systematic relationship has not been proved in a large set of 

models. 

In case of study site group 3, Hits were present mainly around the 

borders of the original patches, which is in accordance with the 

mechanism of sprawl-like changes and the effect of contiguity filter. In 

the case of Atchafalaya Bay, Misses were located near Hits frequently, 

meaning the model did not simulate as much changes as the reference 

data showed. This phenomenon is in accordance with the results of study 

site group 2, where the model systematically underestimated the 

changes. In the Amazonian study site, a salt-and-pepper effect could be 

observed, due to the allocation of reference changes. Here, Hits were 

located near the original patches again. The sites of study site group 3 

returned drastically higher FOM values than sites of study site group 2. 

However, among FOM components, only Hits were drastically higher 

than study site group 2 cases. Wrong Hits always returned zero, because 

the maps consisted of 2 categories only, therefore it was impossible to 

simulate changes to a wrong category. The stability of changes in the 

reference time intervals was substantially larger than in study site group 

2 cases. The sprawl-like change mechanism was much more in 

accordance with the logic of the model than sparsely located changes. 

As summarizing the conclusions of the whole study, intensity 

analysis and the investigation of calibration interval changes 

substantially helped to reveal the reasons for the unsuccess of the model. 

The CLC L1 category aggregation hid important changes in the 

landscape that is a disadvantageous circumstance when performing land 

change simulation model. Quantity disagreements were mostly larger 

than Allocation disagreements of the simulation which means that 

Markov component of the model caused more errors, than the cellular 

automaton (CA) component. All the models in the study simulated 

decelerating changes, even if the reference changes were mostly 

accelerating changes, therefore the model is able to match the tendency 

of reference changes only if it is decelerating as well. Contiguity filter 

caused a concentration of changes to the neighboring areas, which is 

advantageous when simulating sprawl-like changes. The research 

presented systematic relations and errors based on a large set of 

simulation models and these conclusions can help the work of the 

modelers directly, and the workflows that support decision making 

concerning land change issues indirectly. 
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Ö S S Z E F O G L A L Á S  

Kutatásom fő célja olyan tájváltozás modellek részletes vizsgálata 

volt, amelyek képesek demonstrálni egyes teljesítmény mérési 

módszerek alkalmasságát, illetve alkalmatlanságát. Célom volt továbbá 

a tájban lejátszódó változások részletes vizsgálata annak érdekében, 

hogy felfedjem a modell teljesítményének részletes okait. Vizsgálatom a 

CA-Markov típusú modell nagy esetszámon történő futtatására épül, 

melynek alapján következtetéseket vontam le a következőkre nézve: 

 hogyan segíti a részletes változásvizsgálat a modell 

teljesítményének vizsgálatát; 

 hogyan befolyásolják az egyes kategória aggregációs módszerek 

a modell teljesítményét; 

 mely módszerek nem alkalmasak a modell teljesítményének 

érdemi vizsgálatára; 

 a modell sajátos működése hogyan befolyásolja a modell 

teljesítményét. 

 

Kutatásom újszerű megközelítését az adja, hogy a vizsgált 

összefüggéseket korábban nagyszámú modellen még nem bizonyították. 

Továbbá módszertani értelemben új megközelítés, hogy a vizsgálatban 

alkalmazott intenzitás-vizsgálat nevű módszert korábban modell 

teljesítmény mérésének kontextusában nem alkalmazták, és hogy a 

földhasználati-felszínborítási kategória összevonások modell 

teljesítményre vonatkozó hatásait nem vizsgálták. 

A vizsgálatot 3 mintaterület-csoport példáján végeztem el. Az 1. 

mintaterület-csoport konkrétan egy mintaterületet tartalmaz, amely egy 

Tokaj-környéki, 25 x 25 km kiterjedésű, igen heterogén táji 

adottságokkal rendelkező terület. Heterogenitását mutatja, hogy öt kistáj 

találkozásánál helyezkedik el, illetve, hogy a Corine sztenderd 

nómenklatúra 1. szintje szerinti összes kategória (mesterséges felületek, 

mezőgazdasági területek, erdők és természetközeli területek, vizenyős 

területek, vízfelületek) megtalálható a területén. A vizsgálatot ebben az 

esetben Corine Land Cover (CLC) adatbázis segítségével végeztem, és a 

2000., 2006. és 2012. évi vektoros adatbázisok kivágatának 25 méteres 

térbeli felbontású raszterizált verzióját használtam. A vizsgálat során 5 

kategóriát alkalmaztam a CLC sztenderd nómenklatúra 1. szintje szerint, 

amely szintén maximum 5 kategóriát engedélyez. A mintaterületen a 

védett területek jelenléte miatt kismértékű változás volt megfigyelhető: 

a mintaterület 2 százalékánál kisebb arányú változás mindkét vizsgált 

időszakban. CA-Markov modellt futtattam a 2000. és 2006. évi adatok 

segítségével, melynek alapján a modell 2012. évre egy becsült kategória 
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térképet hozott létre. A tájban bekövetkező változásokat egy intenzitás-

vizsgálat nevű módszer segítségével azonosítottam mind a referencia, 

mind a szimulált változásokat tekintve, valamint különböző mutatókat 

számoltam a modell teljesítményének mérésére (Figure of merit [FOM] 

mutató és komponensei). 

A 2. mintaterület-csoport 8 mintaterületből állt. A 8 mintaterületet 

a Corine Land Cover változásrétege alapján választottam, amely 

tartalmazza a változásokat többek között 2000-2006 és 2006-2012 

közötti időszakokra. A fő cél az volt, hogy a választott mintaterületeken 

minél nagyobb mértékű változás menjen végbe, ezáltal támogatva az 

esetekben előforduló változások mértékének sokszínűségét. Ebben az 

esetben szintén a CLC 2000., 2006. és 2012. évi rétegeit használtam, 

azonban az adatbázisok 100 méteres térbeli felbontású raszter verzióját. 

Minden mintaterületen két további, egyre kisebb alterületet jelöltem ki, 

így minden mintaterületen összesen három nagyítási szintnek megfelelő 

terület jött létre (nagy = large [L]; közepes = medium [M]; kicsi = small 

[S]). A mintaterületek kijelölését nehezítette, hogy az alkalmazott CA-

Markov modell sajátosságai miatt egyik területen sem lehetett több, mint 

20 kategória, illetve hogy minimum az első két időpontban egyforma 

számú kategóriának kellett jelen lennie. A mintaterületeken jelenlévő 

kategóriákat különböző megközelítések alapján aggregáltam, melyek a 

következők: 

 A CLC sztenderd nómenklatúra 3. szintje (L3) volt a kategória 

térképek alapja, a további összevonások e beosztás kategóriáit 

vették alapul; 

 a CLC sztenderd nómenklatúra 2. szintje (L2); 

 a CLC sztenderd nómenklatúra 1. szintje (L1); 

 viselkedésalapú kategória összevonás (BB), amely a felhasználó 

döntése alapján lépésenként vonja össze a kategóriákat, az egyes 

összevonások következményeként fellépő változások figyelembe 

vételével; 

 határértékalapú kategória összevonás (TB), amely a felhasználó 

által meghatározott határérték alapján vonja össze azokat a 

kategóriákat, amelyek változásai a határérték szerint 

meghatározott minimális változási szintet nem haladják meg. Ezt 

az összevonási módszert 6 esetben nem alkalmaztam, mert 

minden kategória meghaladta a minimális változási szintet, így 

nem volt szükség a kevés változást mutató kategóriákat tömörítő 

új kategória létrehozására. 

 

A különböző mintaterületek, a mintaterületek nagyítási szintjeinek és az 

összevonási módszerek alkalmazásának eredményeképp 114 esetet 
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vizsgáltam. Ezekre az esetekre CA-Markov modellt futtattam, a modell 

teljesítményét, a változásokat és egyéb ismérveket mérő mutatókat 

számítottam, majd az eredményeket statisztikai módszerekkel 

értékeltem, és az eredményekből átfogó következtetéseket vontam le. 

 

A 3. mintaterület-csoport merőben eltér az első két mintaterület-

csoport sajátosságaitól. Ebben az esetben olyan mintaterületek 

vizsgálatára törekedtem, amelyek terjedésszerű változást mutatnak, tehát 

a változás jellemzően a meglévő kategóriákkal szomszédos területeket 

érinti. Ilyen jellemzőkkel bíró mintaterületet választottam Észak- és Dél-

Amerika területén, az Atchafalaya-öbölben és az Amazonas-vidéken. A 

vizsgált időszakokban az Atchafalaya-öbölben található területen delta 

akkumuláció ment végbe (érintett időpontok: 1990, 2003, 2016), míg az 

Amazonas-vidéken található területen nagyfokú erdőirtás volt 

tapasztalható (érintett időpontok: 1990, 2000, 2010). A mintaterületek 

nem Európában találhatóak, tehát CLC adatbázist nem alkalmazhattam 

a vizsgálat során, ezért Landsat-felvételek idősoros elemzésével 

hidaltam át az adathiányt. A felvételek szegmentálása és osztályozása 

révén 2 célkategóriából álló térképeket hoztam létre, amelyek a vizsgált 

jelenségek változásait hangsúlyozták, és újramintavételezés után 100 

méteres térbeli felbontással rendelkeztek.  Minden mintaterületen két 

további, egyre kisebb alterületet jelöltem ki, így minden mintaterületen 

összesen három nagyítási szintnek megfelelő terület jött létre (nagy = 

large [L]; közepes = medium [M]; kicsi = small [S]). Ebben az esetben 

szintén CA-Markov modelleket futtattam, majd a 2. mintaterület-

csoporthoz hasonlóan a modell teljesítményét, a változásokat és egyéb 

ismérveket mérő mutatókat számítottam. A statisztikai összevetés 

lehetősége a 2. mintaterület-csoporttal az eltérő alapadatok és 

paraméterek miatt nem volt szakmailag megalapozott, ezért az 

összehasonlítás a két mintaterület-csoport tapasztalataiból levezetett 

következtetéseket eredményezett.  

A módszerek központi eleme a CA-Markov modell, amely egy 

tájváltozás szimulálására alkalmas modell, és két bemeneti időpont 

kategória térképe alapján létrehoz egy kategória térképet egy harmadik 

időpontra. A modellt Idrisi szoftverkörnyezetben futtattam. A modell a 

sejtautomata (cellular automaton = CA) és a Markov komponensekből 

áll, melyek közül a Markov a szimulált változás mértékét határozza meg, 

míg a sejtautomata a változások térbeli elhelyezkedéséért felel. A 

dolgozatban a betanításra használt időszakot következetesen kalibrációs 

időszaknak, a szimulált változásokat jelző időszakot szimulációs 

időszaknak, míg a validációra használt változásokat jelző időszakot 

validációs időszaknak neveztem. A modell a kalibrációs időszak 
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változásaihoz igazítva átalakulási mátrixokat, valamint feltételes 

valószínűségeket jelző térképeket hoz létre, melyek alapján a 

sejtautomata egy szomszédossági szűrő segítségével lokalizálja a változó 

területeket. A modellekben tájváltozást befolyásoló tényezőket nem 

határoztam meg. 

A modell teljesítményét a Figure of merit (FOM) mutatóval és 

annak komponenseivel (találatok=helyesen szimulált változás; helytelen 

találatok = helyesen szimulált változás, de nem megfelelő kategóriába; 

téves riasztások = referencia szerint nem változó területek, változó 

területként szimulálva; mulasztások = referencia szerint változó 

területek, nem változó területként szimulálva) mértem, illetve az ezekből 

levezetett mennyiségi és helyzeti eltérés mutatókkal. A FOM 

komponensek betekintést engednek a referencia és a szimulált 

változások közti egyezések és eltérések részleteibe. Továbbá az utolsó 

referencia időpont (1. és 2. mintaterület-csoport esetében 2012, a 3. 

mintaterület-csoport esetében 2010 és 2016), illetve az utolsó szimulált 

időpont közti egyezés mérését végeztem el a teljes egyezés, illetve a 

Kappa egyezési index mutatókkal. Mindemellett a következő egyéb 

változókat vizsgáltam:  

 kategóriák száma; 

 változás mennyisége a vizsgált időintervallumban; 

 évenkénti változás mennyisége a vizsgált időintervallumban; 

 változások különbségei a vizsgált időintervallumok között; 

 időbeli stabilitás a kalibrációs és validációs időszak között, 

illetve a kalibrációs és szimulációs időszak között. 

 

A statisztikai vizsgálatokat kizárólag a 2. mintaterület-csoport 

esetében végeztem el ANOVA-teszt és Tukey-féle páros összehasonlítás 

segítségével. A statisztikai teszt annak feltárására irányult, hogy az egyes 

kategória aggregációs módszerek mediánjai között van-e szignifikáns 

különbség a vizsgált változók tekintetében. A vizsgált változók és a 

modell teljesítmény összefüggéseinek vizsgálatára korrelációs mátrixot 

állítottam fel, ahol Spearman-féle korrelációs koefficienset használtam 

(p<0.05). 

Az 1. mintaterület-csoport esetében a változások a kalibrációs, 

validációs és szimulációs időszakban is 2% alatt maradtak, az évenkénti 

változás a validációs és a szimulációs időszakban is lassult a kalibrációs 

időszakhoz képest – bár eltérő mértékben. A helyesen szimulált 

változások aránya (0,02%, a mintaterület viszonylatában) és a modell 

teljesítménye (FOM=0,007%) is extrém alacsony volt. Ugyanakkor a 

helyzeti eltérés (2,12%, a mintaterület viszonylatában) magasabb volt, 

mint a mennyiségi eltérés (0,41%, a mintaterület viszonylatában), ami 
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arra utal, hogy több eltérés származott a modell sejtautomata 

összetevőjéből, mint a Markov összetevőből. A téves riasztás és 

mulasztás értékek és elhelyezkedésük alapján a modell a szomszédos 

területekre koncentrálta a változó területeket, ami vélhetően a 

szomszédossági szűrő hatása. Az intenzitás-vizsgálat kimutatta, hogy 

sokkal több hasonlóság mutatkozott a kalibrációs és a szimulációs 

időszak változásainak dinamikája között, mint a kalibrációs időszak és a 

validációs időszak változásainak dinamikája között. Ez azt jelenti, hogy 

nem feltétlenül a modell által szimulált változások térnek el a 

kalibrációtól, hanem a valós változások dinamikája és részben ez vezet 

a modell alacsony teljesítményéhez. Az intenzitás-vizsgálat emellett 

részletesen feltárta a három időszak változásait, amelyet egy egyszerű 

mérőszám (FOM) nem tárhatott volna fel.  

A 2. mintaterület-csoport eredményei rávilágítottak, hogy az L1 

csoport változásainak mennyisége szignifikánsan alacsonyabb volt, mint 

a többi aggregációs módszer esetében, mind a kalibrációs, mind a 

validációs és mind a szimulációs időszakban. Emellett az L1 csoportban 

drasztikusan csökkent a kategóriák száma, bár a kategóriák számának 

jelentős csökkenése a BB csoport esetében is megjelent. Ugyanakkor 

utóbbi esetében a változások mértéke egyáltalán nem csökkent, hiszen a 

kategóriák e módszerrel történő összevonásánál a változások megőrzése 

mérvadó szempont volt. Az évenkénti változások vizsgálata alapján 

kiderült, hogy a modell minden esetben csökkenő változást szimulált a 

kalibrációs időszakhoz képest, bár a validációs időszak változásai sok 

esetben gyorsuló tendenciát mutattak. 

A FOM tekintetében nem volt szignifikáns különbség az 

aggregációs módszerek között, de az L1 esetében a FOM medián a többi 

csoporttól eltérően nullához közelített, valamint szintén nulla értékhez 

közelített a találatok és helytelen találatok értéke. Az L1 esetében 

minden FOM komponens értéke alacsonyabb értéket mutatott a többi 

csoport értékeinél, de a FOM esetében e komponensek aránya a 

mérvadó. A téves riasztás és a mulasztás értékek minden esetben 

jellemzően magasabbak voltak, mint a találat és helytelen találat értékek, 

ami ebben az esetben is – az 1. mintaterület-csoporthoz hasonlóan – a 

szomszédossági szűrő hatását feltételezi. A statisztikai eredmények 

alapján a mulasztások és a validációs időszak változásai között 

(R2=0,95), valamint a téves riasztások és a szimulációs időszak 

változásai között (R2=0,91) szoros korreláció állt fenn. A 2. mintaterület-

csoport esetében a modell mennyiségi eltérései jellemzően magasabbak 

voltak, mint a helyzeti eltérései, és mindkét mutató esetében az L1 

csoport értékei szignifikánsan alacsonyabbak voltak a többi csoport 

értékeinél. Az egyedi esetek többségében a mennyiségi eltérés magasabb 



 

102 

 

volt, mint a helyzeti eltérés (az L1 csoport esetében mindkét lehetőség 

jellemző), ami arra utal, hogy általában több hiba származott a modell 

Markov összetevőjéből, mint a sejtautomata összetevőből. A statisztikai 

eredmények alapján a mennyiségi eltérés és a validációs időszak 

változásai között szoros (R2=0,82), valamint a mennyiségi eltérés és a 

változás referencia időszakokban mutatott lassulása/gyorsulása között 

számottevő (R2=0,65) korrelációs kapcsolat állt fenn. 

A változások időbeli stabilitásának mérése alapján a kalibrációs-

validációs időszakok között fennálló stabilitás és a kalibrációs-

szimulációs időszakok között fennálló stabilitás között az L1 számottevő 

különbséget mutatott, amelyből kiderül, hogy a szimulációs időszak 

változásai sokkal stabilabbak voltak, mint a validációs időszak 

változásai, mindkét esetben a kalibrációs időszakhoz viszonyítva. 

Az utolsó felhasznált időpont (2012) referencia és szimulált 

térképének összehasonlítása során a Kappa egyezési index és a teljes 

egyezés mutató is szignifikánsan és kiugróan magasabb értékeket adott 

vissza az L1 csoportban, ahol a legkevesebb változás volt megfigyelhető. 

A statisztikai eredmények alátámasztották a Kappa egyezési index 

(R2=0,85) és a teljes egyezés (R2=0,92) mutatók szoros korrelációját a 

validációs időszak perzisztens területeinek arányával, valamint a 

helyesen perzisztens területként szimulált területek arányával (R2=0,96). 

Tehát ezen indexek alkalmazása félrevezető a szimuláció értékelésekor, 

mert akkor is magas egyezést adnak, ha a változások mértéke alacsony 

és a helyesen szimulált változások találati aránya is alacsony. Ez a 

megállapítás a szakirodalomban leírtak alapján ismert, de nagyszámú 

modellen a szisztematikus összefüggést nem bizonyították. 

A 3. mintaterület-csoport esetében a találatok javarészt az eredeti 

kategóriahatárok mentén jelentek meg, ami összhangban van a terjedő 

jellegű változás mechanizmusával és a szomszédossági szűrő hatásával. 

Az Atchafalaya-öbölben található mintaterület esetében a mulasztások 

sok esetben közvetlenül a találatok szomszédságában helyezkedtek el, 

ami azt jelzi, hogy a modell nem szimulált annyi változást, mint amennyi 

a referencia adat szerint történt. Ez a jelenség összhangban van a 2. 

mintaterület-csoport eredményeivel, miszerint a modell 

szisztematikusan alábecsülte a változások mennyiségét. Az Amazonas-

vidéken található mintaterületen egyfajta só-bors hatás volt 

megfigyelhető, ami a referencia változások hasonló elrendeződéséből 

adódott. A találatok ebben az esetben is jellemzően az eredeti 

kategóriahatárok mentén voltak láthatóak. A 3. mintaterület-csoport 

mintaterületei drasztikusan magasabb FOM értékeket produkáltak, mint 

a 2. mintaterület-csoport mintaterületei. A FOM-komponensek közül 

ugyanakkor csak a találat értékek különböztek nagymértékben, amelyek 
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sokkal nagyobb arányú helyesen szimulált változást mutattak, mint a 2. 

mintaterület-csoport modelljei esetében. A helytelen találatok minden 

esetben nulla értéket adtak vissza, mert helytelen kategóriába történő 

változás nem volt lehetséges, hiszen összesen két kategória szerepelt a 

térképeken. A változások stabilitása a referencia időszakban jellemzően 

magasabb volt, mint a 2. mintaterület-csoport mintaterületei esetében. A 

terjedő jellegű változás modellezése a vizsgálat alapján sokkal inkább 

összhangban volt a modell működési mechanizmusával, mint az elszórt 

elhelyezkedésű változások. 

A vizsgálatok tapasztalatai alapján összefoglalva megállapítható, 

hogy az intenzitás-vizsgálat és a kalibrációs időszak vizsgálatának 

bevonása nagyban hozzájárult a változások megismeréséhez, és képes 

volt felfedni a modell alacsony teljesítménye mögött húzódó okokat. 

Továbbá a kategóriák CLC sztenderd 1. szint szerinti aggregációja 

elrejtheti a tájban lejátszódó fontos változásokat, ami tájváltozás 

modellezés esetén hátrányos körülmény. A vizsgált modellek esetében a 

mennyiségi eltérések általában magasabbak voltak, mint a helyzeti 

eltérések, ami azt jelzi, hogy a Markov komponens több hibát okozott, 

mint a sejtautomata komponens. A vizsgálatban szereplő minden modell 

lassuló változásokat szimulált, függetlenül a valós változások lassuló 

vagy gyorsuló tendenciájától, ezért a modell csak akkor képes eltalálni a 

valós tendenciát, ha az szintén lassuló. A szomszédossági szűrő a 

változások koncentrálódását okozza, ami a terjedő jellegű változásoknál 

kifejezetten előnyös. A kutatás nagyszámú modell segítségével mutatott 

be szisztematikus összefüggéseket és hibákat, amelyek nagyban 

segíthetik a modellező szakemberek munkáját, és ezen keresztül a 

releváns döntéshozást támogató munkafolyamatokat. 
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9. APPENDICES  

Appendix 1 

Nomenclature of Corine Land Cover Category based on the 

guidelines of Copernicus Land Monitoring Service and Kosztra et al. 

(2019). A nomenclature with detailed definitions of each category is 

available at the website cited in the footnote. 1 

 

Standard 

levels 

CLC 

Standard 

Level 1 

CLC 

Standard 

Level 2 

CLC Standard Level 3 

C
la

ss
if

ic
a

ti
o
n

 a
n

d
 c

a
te

g
o

ry
 l

a
b

el
s 

in
 d

if
fe

re
n

t 
st

a
n

d
a

rd
 l

ev
el

s 
 

1 

Artificial 

surfaces 

11 

Urban fabric 

111. Continuous urban fabric 

112. Discontinuous urban fabric 

12 

Industrial, 

commercial 

and transport 

units 

121 Industrial or commercial units  

122 Road and rail networks and 

associated land 

123 Port areas 

124 Airports 

13 

Mine, dump 

and 

construction 

sites 

131 Mineral extraction sites 

132 Dump sites 

133 Construction sites 

14 

Artificial, non-

agricultural 

vegetated 

areas 

141 Green urban areas  

142 Sport and leisure facilities 

2 

Agricultural 

areas 

21  

Arable land 

211 Non-irrigated arable land 

212 Permanently irrigated land  

213 Rice fields 

22 

Permanent 

crops 

221 Vineyards 

222 Fruit trees and berry plantations 

223 Olive groves 

 

23 

Pastures 

 

 

231 Pastures 

 

24 

Heterogeneous 

agricultural 

areas 

241 Annual crops associated with 

permanent crops 

242 Complex cultivation patterns 

243 Land principally occupied by 

agriculture, with significant areas of 

natural vegetation 

                                                           
1 URL: https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-

nomenclature-guidelines/html 

https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/html
https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/html
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244 Agro-forestry areas 

3 

Forests and 

semi-

natural 

areas 

31 

Forest 

311 Broad-leaved forest 

312 Coniferous forest 

313 Mixed forest 

32 

Shrub and/or 

herbaceous 

vegetation 

associations 

321. Natural grasslands 

322 Moors and heathland 

323 Sclerophyllous vegetation 

324. Transitional woodland-shrub 

33  

Open spaces 

with little or 

no vegetation 

331 Beaches, dunes, sands 

332 Bare rocks 

333 Sparsely vegetated areas 

334 Burnt areas 

335 Glaciers and perpetual snow 

4 

Wetlands 

41 

Inland 

wetlands 

411. Inland marshes 

412. Peatbogs 

42  

Coastal 

wetlands 

421 Salt marshes 

422 Salines 

423 Intertidal flats 

5 

Water 

bodies 

51 

Inland waters 

511. Water courses 

512. Water bodies 

52 

Marine waters 

521 Coastal lagoons 

522 Estuaries 

523 Sea and ocean 
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Appendix 2 

Abbreviations for variables used throughout the analysis, in an 

order matching the variable order in Figure 20. 
Abbreviation Description 

CR Correct Rejections  

FA False Alarms (Figure of merit component) 

WH Wrong Hits (Figure of merit component) 

H Hits (Figure of merit component) 

M Misses (Figure of merit component) 

QS Quantity disagreement of the simulation 

AS Allocation disagreement of the simulation 

TS Total disagreement of the simulation 

QS-AS Difference between quantity and allocation disagreement of the 

simulation 

Cal pers. Ratio of persistent area in the calibration interval 

Cal ch. Ratio of changing area in the calibration interval 

Val pers. Ratio of persistent area in the validation interval 

Val ch. Ratio of changing area in the validation interval 

Sim pers. Ratio of persistent area in the simulation interval 

Sim ch. Ratio of changing area in the simulation interval 

FOM Figure of merit 

Runf. (Ref) Runfola’s R value calculated for the stationarity of calibration and 

validation interval 

Runf. (Sim) Runfola’s R value calculated for the stationarity of calibration and 

simulation interval 

Runf. DIFF Difference between Runf. (Ref) and Runf. (Sim) 

Cal-Val an. Difference between calibration and validation interval annual 

changes 

Cal-Sim an. Difference between calibration and simulation interval annual 

changes 

OA Overall Agreement 

KIA Kappa Index of Agreement 

Cat no. Number of categories in the actual study area 
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