Egyetemi doktori (PhD) értekezés

Erdős Edina

COUP-TFII árva magreceptor általi kötőesemények genomszintű vizsgálata daganatos sejtekben

Debreceni Egyetem
Molekuláris sejt- és immunbioló gia doktori iskola
Debrecen, 2020
EGYETEMI DOKTORI (PhD) ÉRTEKEZÉS

COUP-TFII árva magreceptor általi kötőesemények genomszintű vizsgálata daganatos sejtekben

Erdős Edina

Témavezető: Dr. Bálint Bálint László

DEBRECEN, 2020
Tartalomjegyzék

Rövidítések jegyzéke.................................................................................................................. 4

1. BEVEZETÉS ÉS IRODALMI ÁTTEKINTÉS ................................................................................. 6
   1.1. Bevezetés .......................................................................................................................... 6
   1.2. Magreceptorok csoportosítása és struktúrája ................................................................. 7
   1.3. Magreceptorok DNS válaszadó elemei ......................................................................... 12
   1.4. Magreceptorok által mediált transzkripció és koregulátorok szerepe ......................... 15
   1.5. Ösztrogén receptor alfa (ER\(\alpha\)) magreceptor .......................................................... 17
       1.5.1. ER\(\alpha\) által mediált szabályozási program ............................................................ 19
   1.6. COUP-TFII árva magreceptor ......................................................................................... 21
       1.6.1. COUP-TFII fiziológiás szerepe ................................................................................. 23
   1.7. Magreceptorok jelentősége daganatos megbetegedésekben ......................................... 24
   1.8. Funkcionális genomikai eszközök magreceptorok általi szabályozások
        feltérképezéséhez .............................................................................................................. 25

2. CÉLKITŰZÉSEK ......................................................................................................................... 28

3. ANYAGOK ÉS MÓDSZEREK .................................................................................................. 29
   3.1. In vitro kísérletek ............................................................................................................... 29
       3.1.1. Sejtek tenyésztése és kezelése .................................................................................. 29
       3.1.2. Genetikailag módosított sejtek létrehozása ............................................................. 29
       3.1.3. Fág termelés poliklonális antitest epitópjának leképezéséhez ................................. 29
       3.1.4. Kromatin immunprecipitáció fág kontrollal ............................................................ 31
       3.1.5. Kromatin immunprecipitáció emlődaganat sejtekből ............................................ 32
       3.1.6. RNS izolálás és RT-PCR ........................................................................................... 33
       3.1.7. Kvantitatív polimeráz láncreakció (qPCR) ............................................................ 34
       3.1.8. Új generációs szekvenálás ........................................................................................ 35
   3.2. Bioinformatikai elemzések .............................................................................................. 36
       3.2.1. Adatok ......................................................................................................................... 36
       3.2.2. Új generációs szekvenálási adatok elemzése .......................................................... 37
       3.2.3. Betekerből származó adatok elemzése .................................................................. 38
       3.2.4. Statisztikai számítások ............................................................................................. 38
       3.2.5. Vizualizáció ............................................................................................................... 39
4. EREDMÉNYEK .................................................................................................................. 40
4.1. Kromatin immunprecipitáció karakterizálása ERα epitópot kifejező fág kontrollal. 40
4.2. COUP-TFII, mint ERα koregulátor ER-pozitív emlődaganatban ................................. 43
4.3. COUP-TFII szerepe emlődaganat sejtek génexpressziójában ................................. 47
4.4. COUP-TFII jelentősége emlődaganatos betegekben ................................................. 50
4.5. COUP-TFII kötőhelyek feltérképezése különböző eredetű daganatsejtekben .......... 52
4.6. COUP-TFII kötőhelyekhez kötődő kofaktorok azonosítása .................................... 55
4.7. COUP-TFII kötőhelyek a sejt-típus specifikus szabályozásban .............................. 58
4.8. A VEGFA gén szabályozása COUP-TFII által ......................................................... 61
4.9. COUP-TFII expressziójának hatása különböző daganatos betegek túlélésére ...... 63
5. MEGBESZÉLÉS .................................................................................................................. 65
6. ÖSSZEFOGLALÁS ............................................................................................................. 77
7. SUMMARY ......................................................................................................................... 78
Felhasznált irodalom ......................................................................................................... 79
Saját közlemények ............................................................................................................ 96
Kulcsszavak/keywords ..................................................................................................... 98
Köszönetnyilvánítás .......................................................................................................... 99
Függelék ........................................................................................................................... 100
<table>
<thead>
<tr>
<th>Rövidítések jegyzéke</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF-1</td>
</tr>
<tr>
<td>AF-2</td>
</tr>
<tr>
<td>ALT</td>
</tr>
<tr>
<td>AP2γ</td>
</tr>
<tr>
<td>BSA</td>
</tr>
<tr>
<td>BWA</td>
</tr>
<tr>
<td>CHD</td>
</tr>
<tr>
<td>ChIA-PET</td>
</tr>
<tr>
<td>ChIP</td>
</tr>
<tr>
<td>ChIP-Seq</td>
</tr>
<tr>
<td>CNV</td>
</tr>
<tr>
<td>COUP-TFII</td>
</tr>
<tr>
<td>CTCF</td>
</tr>
<tr>
<td>CTE</td>
</tr>
<tr>
<td>DBD</td>
</tr>
<tr>
<td>DES</td>
</tr>
<tr>
<td>DiffBind</td>
</tr>
<tr>
<td>DMEM</td>
</tr>
<tr>
<td>dNTP</td>
</tr>
<tr>
<td>DR</td>
</tr>
<tr>
<td>DREAM</td>
</tr>
<tr>
<td>DTT</td>
</tr>
<tr>
<td>E2</td>
</tr>
<tr>
<td>ENCODE</td>
</tr>
<tr>
<td>ERRα</td>
</tr>
<tr>
<td>ERE</td>
</tr>
<tr>
<td>FBS</td>
</tr>
<tr>
<td>FPKM</td>
</tr>
<tr>
<td>FOXA1</td>
</tr>
<tr>
<td>GATA</td>
</tr>
<tr>
<td>GREAT</td>
</tr>
<tr>
<td>GSEA</td>
</tr>
<tr>
<td>H3K27ac</td>
</tr>
<tr>
<td>H3K4me1</td>
</tr>
<tr>
<td>H3K4me3</td>
</tr>
<tr>
<td>HAT</td>
</tr>
<tr>
<td>HER2</td>
</tr>
<tr>
<td>HMT</td>
</tr>
<tr>
<td>HNF4</td>
</tr>
<tr>
<td>HOMER</td>
</tr>
<tr>
<td>IDC</td>
</tr>
<tr>
<td>IgG</td>
</tr>
</tbody>
</table>
1. BEVEZETÉS ÉS IRODALMI ÁTTEKINTÉS

1.1. Bevezetés

A szervezetünkben nagyon sok olyan hírvivő molekula létezik, melyek hidrofób tulajdonsággal rendelkeznek, azaz rosszul oldódnak vízben. Ezeknek a molekuláknak az eloszlásához hordozó fehérjékre van szükség (például globulinok), azonban a zsíroldékony tulajdonságaiknak köszönhetően könnyen átjutnak a plazma membránon és a sejtben specifikus intracelluláris receptorokhoz kötődnek. Ezeknek a receptoroknak egy része DNS-kötő fehérje, és transzkripciós faktorként működik. Feladatuk, hogy a környezetből származó stimulosokra génexpressziós szinten hozzanak létre választ (Mangelsdorf et al., 1995; Tsai & O’Malley, 1994). Ezeket a receptorokat gyűjtőnéven magreceptoroknak nevezzük. A magreceptorok számos biológiai folyamatban játszanak szerepet, mint például a növekedés és embrionális szabályozás, fenotípus fenntartás és metabolikus folyamatok szabályozása (koleszterol, epesav és zsírsav metabolizmus). Ezekben a folyamatokban bekövetkező zavarok terméketlenséghez, elhízáshoz, cukorbetegséghez és akár daganatok kialakulásához is vezethetnek.

A kardiovaszkuláris betegségek után a daganatos megbetegedések a második vezető halálok világszerte (WHO, 2018). Magyarországon közel azonos a rosszindulatú daganatok és kardiovaszkuláris betegségek miatti halálozások száma (~33 000 haláleset évente) a Központi Statisztikai Hivatal adatai alapján. A WHO adatai alapján globálisan 2016-ban férfiak esetén a tüdődaganat, míg nők esetén az emlődaganat volt a leggyakoribb halálozás a daganatos megbetegedések közül, és ezen halálozások száma évről évre növekszik az egyre hatékonyabb terápiás beavatkozások ellenére is.

Munkánk során a COUP-TFII árva magreceptor szerepének vizsgálatát tűztük ki célul funkcionális genomikai módszerekkel különböző eredetű daganatsejtekben, ezek közül is elsősorban az emlődaganatra fókuszálva.
1.2. Magreceptorok csoportosítása és struktúrája

A magreceptorok ligand-aktivált transzkripciós faktorok. A ligandjaik olyan hidrofób hírvívó molekulák lehetnek, melyek a szervezetünkben is előfordulnak, mint például tiroid hormonok, retinoidok, szteroidok, D vitamin, zsírsavak, epesavak, de ezen kívül külső eredetűek is lehetnek, mint például gyógyszerek vagy xenobiotikumok. Vannak olyan magreceptorok is, melyeknek még nem azonosították a természetes ligandjukat, őket orfán vagyis árva magreceptoroknak hívjuk (Giguère, 1999). A magreceptor családának 48 tagját sikerült azonosítani emberben (Mangelsdorf et al., 1995), és egy pszeudogént, az FXRβ-t (Otte et al., 2003). A család tagjainak evolúciós tanulmányozása alapján hat alcsoporthoz azonosítható (Laudet, 1997), melyet szisztematikus elnevezéshez is felhasználtak és további egy alcsort (NR0) is megkülönböztethető (Auwerx et al., 1999). Az 1. táblázatban találhatóak a magreceptor család alcsoportosítása ligandjaikkal feltüntetve. Egyéb organizmusokban további magreceptorok is megfigyelhetőek, például olyanok, amelyeknek két DNS-kötő doménjük van (Wu et al., 2007). Egy másik ettől eltérő csoportosítása látható a magreceptoroknak a 1. ábrán, ahol a magreceptorok közötti kapcsolatot láthatjuk szövet specifikus expressziós szintjeikre alapozva, azt is bemutatva, hogy főként mely biológiai folyamatokban játszanak szerepet (Bookout et al., 2006).
1. táblázat: Magreceptorok osztályozása szekvencia homológia alapján a ligandjukkal feltüntetve. *pszeudogén emberben

<table>
<thead>
<tr>
<th>NRNC szimbólum</th>
<th>Magreceptor</th>
<th>Rövidítés</th>
<th>Ligand</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR1A1</td>
<td>tiroid hormon receptor</td>
<td>TRα</td>
<td>tiroid hormon</td>
</tr>
<tr>
<td>NR1A2</td>
<td>TRβ</td>
<td>tiroid hormon</td>
<td></td>
</tr>
<tr>
<td>NR1B1</td>
<td>retinsav receptor</td>
<td>RARα</td>
<td>retinsav</td>
</tr>
<tr>
<td>NR1B2</td>
<td>RARβ</td>
<td>retinsav</td>
<td></td>
</tr>
<tr>
<td>NR1B3</td>
<td>RARγ</td>
<td>retinsav</td>
<td></td>
</tr>
<tr>
<td>NR1C1</td>
<td>peroxiszóma proliferátor aktivált receptor</td>
<td>PPARα</td>
<td>zsírsav, leukotrén B4</td>
</tr>
<tr>
<td>NR1C2</td>
<td>PPARβ</td>
<td>zsírsav, prosztaglandin I2</td>
<td></td>
</tr>
<tr>
<td>NR1C3</td>
<td>PPARγ</td>
<td>zsírsav, prosztaglandin D2</td>
<td></td>
</tr>
<tr>
<td>NR1D1</td>
<td>reverz-ErbA</td>
<td>Rev-Erbα</td>
<td>hem</td>
</tr>
<tr>
<td>NR1D2</td>
<td>Rev-Erbβ</td>
<td>hem</td>
<td></td>
</tr>
<tr>
<td>NR1F1</td>
<td>RAR-hoz vonatkoztatt árva receptor</td>
<td>RORα</td>
<td>koleszterol</td>
</tr>
<tr>
<td>NR1F2</td>
<td>RORβ</td>
<td>csupa transz retinsav (ATRA)</td>
<td></td>
</tr>
<tr>
<td>NR1F3</td>
<td>RORγ</td>
<td>csupa transz retinsav (ATRA)</td>
<td></td>
</tr>
<tr>
<td>NR1H2</td>
<td>máj X-receptor</td>
<td>LXRβ</td>
<td>oxiszterol</td>
</tr>
<tr>
<td>NR1H3</td>
<td>LXRα</td>
<td>oxiszterol</td>
<td></td>
</tr>
<tr>
<td>NR1H4</td>
<td>farnezoid receptor</td>
<td>FXRα</td>
<td>epesavak, fexaramine</td>
</tr>
<tr>
<td>NR1H5*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR1I1</td>
<td>D vitamin receptor</td>
<td>VDR</td>
<td>1,25-dihidroxi D3 vitamin</td>
</tr>
<tr>
<td>NR1I2</td>
<td>pregnán X-receptor</td>
<td>PXR</td>
<td>xenobiotikumok</td>
</tr>
<tr>
<td>NR1I3</td>
<td>konstitutív androsz tán receptor</td>
<td>CAR</td>
<td>androsztán</td>
</tr>
<tr>
<td>NR2A1</td>
<td>hepatocita nukléáris faktor</td>
<td>HNF4α</td>
<td>zsírsavak</td>
</tr>
<tr>
<td>NR2A2</td>
<td>HNF4γ</td>
<td>zsírsavak</td>
<td></td>
</tr>
<tr>
<td>NR2B1</td>
<td>retinoid X-receptor</td>
<td>RXRα</td>
<td>9-cis-retinsav</td>
</tr>
<tr>
<td>NR2B2</td>
<td>RXRβ</td>
<td>9-cis-retinsav</td>
<td></td>
</tr>
<tr>
<td>NR2B3</td>
<td>RXRγ</td>
<td>csupa transz retinsav (ATRA)</td>
<td></td>
</tr>
<tr>
<td>NR2C1</td>
<td>tesztikuláris receptor</td>
<td>TR2</td>
<td>árva</td>
</tr>
<tr>
<td>NR2C2</td>
<td>TR4</td>
<td>árva</td>
<td></td>
</tr>
<tr>
<td>NR2E1</td>
<td>Drosophila farok nélküli gén homológia</td>
<td>TLX</td>
<td>árva</td>
</tr>
<tr>
<td>NR2E2</td>
<td>fotoreceptor specifikus magreceptor</td>
<td>PNR</td>
<td>árva</td>
</tr>
<tr>
<td>NR2F1</td>
<td>csirke ovalbumin 5' vég felőli</td>
<td>COUP-TFI</td>
<td>árva</td>
</tr>
<tr>
<td>NR2F2</td>
<td>promóterhez kötődő transzkripciós faktor</td>
<td>COUP-TFI2</td>
<td>árva</td>
</tr>
<tr>
<td>NR2F6</td>
<td>V-ErbA2-hoz vonatkoztatt</td>
<td>EAR2</td>
<td>árva</td>
</tr>
<tr>
<td>NR3A1</td>
<td>ösztrogén receptor</td>
<td>ERα</td>
<td>17-β-ösztradiol, tamoxifen</td>
</tr>
<tr>
<td>NR3A2</td>
<td>ERβ</td>
<td>17-β-ösztradiol</td>
<td></td>
</tr>
<tr>
<td>NR3B1</td>
<td>ösztrogén receptorhoz vonatkoztatt</td>
<td>ERRα</td>
<td>árva</td>
</tr>
<tr>
<td>NR3B2</td>
<td>ERRβ</td>
<td>dietilstilbesztrol (DES)</td>
<td></td>
</tr>
<tr>
<td>NR3B3</td>
<td>ERRγ</td>
<td>dietilstilbesztrol (DES)</td>
<td></td>
</tr>
<tr>
<td>NR3C1</td>
<td>glükokortikoid receptor</td>
<td>GR</td>
<td>kortizol, dexametazon</td>
</tr>
<tr>
<td>NR3C2</td>
<td>minerálkortikoid receptor</td>
<td>MR</td>
<td>aldoszteron</td>
</tr>
<tr>
<td>NR3C3</td>
<td>progeszteron receptor</td>
<td>PGR</td>
<td>progeszteron</td>
</tr>
<tr>
<td>NR3C4</td>
<td>androgén receptor</td>
<td>AR</td>
<td>tesztoszteron, flutamide</td>
</tr>
<tr>
<td>NR4A1</td>
<td>NGF-indukált faktor B</td>
<td>NGFIB</td>
<td>árva</td>
</tr>
<tr>
<td>NR4A2</td>
<td>Nur-hoz vonatkoztatt faktor</td>
<td>NURR1</td>
<td>telítetlen zsírsavak</td>
</tr>
<tr>
<td>NR4A3</td>
<td>neuron eredetű árva</td>
<td>NOR1</td>
<td>árva</td>
</tr>
<tr>
<td>NR5A1</td>
<td>szteriodigenikus faktor-1</td>
<td>SF1</td>
<td>folszolfolid</td>
</tr>
<tr>
<td>NR5A2</td>
<td>máj receptor homológ</td>
<td>LRH1</td>
<td>folszolfolid</td>
</tr>
<tr>
<td>NR6A1</td>
<td>csírasejt nukléáris faktor</td>
<td>GCNF</td>
<td>árva</td>
</tr>
<tr>
<td>NR0B1</td>
<td>DSS-AHC régió az X kromoszómán</td>
<td>DAX1</td>
<td>árva</td>
</tr>
<tr>
<td>NR0B2</td>
<td>rövid heterodimer partner</td>
<td>SHP</td>
<td>árva</td>
</tr>
</tbody>
</table>
A magreceptorok struktúrájuk alapján nagyfokú konzerváltságot mutatnak, és hasonló funkcionális doménekből állnak. Ezek a domének a nagymértékű variabilitást mutató N-terminális domén (A/B), a DNS-kötő domén (DBD) két cinkujj motívummal, a D domén és a C-terminális domén (E/F), amely a ligand-kötő domént (LBD) tartalmazza (Green & Chambon, 1988). Ezeket a doméneket két transzkripciót aktiváló funkciós helyre oszthatjuk. Az egyik az aktivációs funkció 1 (AF-1) az N-terminális domén A/B régiójában, amely ligand független, míg a másik az aktivációs funkció 2 (AF-2) az E/F régióval megegyező régiójában található, mely ligandfüggő (2. ábra). A magreceptorok LBD-jének számos kristályszerekezetét határoztak meg természetes és szintetikus ligandjaikkal képzett komplexben (Huang et al., 2010). Az LBD tizenkét α-hélix struktúrából rendeződik össze egy háromrétegű szendvics struktúrává, így létrehozva egy hidrofób zsebet (Bourguet et al., 1995; Renaud et al., 1995). A ligand kötött struktúrát a C-terminálison lévő H12 hélix zárja le. A
ligandkötő zseb H3, H4/5, H7 és H11 hélixel van körülvéve, melyek apoláris és aromás aminosavakat tartalmaznak (alanin, metionin, leucin és fenilalanin). A zseb nyitott részénél poláris aminosavakat (arginin, glutamát és hisztidin) tartalmaz. 3. ábrán az ösztrogén receptor LBD-jének dietil-sztilbeszterol (DES) liganddal kötött komplexét láthatjuk példaként. A zseb mérete megegyezik a természetes ligand méretével és nagy affinitással képes kötni azt ($K_D$ nanomól tartományban).

Vannak olyan magreceptorok mint például az oxiszterol (NR1H2/3) és epesav receptorok (NR1H4/5) is amelyek alacsony affinitással képesek kötni ligandjukat (mikormól tartomány), de számos ligandot képesek felismerni. A xenobiotikus receptoroknak (NR1I2/3) van a legnagyobb és legflexibilisebb zsebük, kétszer nagyobb mint a tiroid receptoroknak, míg az NR4A2 árva magreceptornak gyakorlatilag nincs zsebe. A ligand kötése olyan változást idéz elő a H11 és H12 hélix hosszábban és pozíciójában, amely hozzájárul fehérjék (koregulátorok) kötéséhez (Nagy & Schwabe, 2004; Wurtz et al., 1996).

Az LBD domén a flexibilis híd régió köti a DBD doménhez (Robinson-Rechavi et al., 2003). A híd régió tartalmazza a sejtmag lokalizációs szignált, ezenkívül a DNS kötésben is szerepe van (Haelens et al., 2007). A híd régió kevésbé konzervált a magreceptorok között. Gyakran történnek poszttranszlációs módosítások ebben a régióban, és koregulátorokkal való kötődésben is szerepet játszik ez a domén (Jeong et al., 2004; Nishizawa et al., 2002; Pourcet et al., 2010).


1.3. Magreceptorok DNS válaszadó elemei

A magreceptorok mint transzkripciós faktorok DNS kötő doménjükön keresztül képesek egy adott specifikus DNS szekvencia motívumot felismerni, melyet nagymértékben meghatároz a fent említett P-box aminosav szekvenciája. A magreceptorok általában az 5’-AGGTCA-3’ szekvenciához kötődnek. Mivel a magreceptorok jelentős része dimerként kötődik a DNS-hez, így két ilyen egymást követő szekvenciát ismernek fel. Ezért önmagában ezt az AGGTCA szekvenciát félhelynek is nevezik. A magreceptorok DNS válaszadó elemei két félhelyből állnak, melyek különböző orientációban lehetnek és különböző számú bázispárral vannak elválasztva egymástól (Mangelsdorf et al., 1995). Amikor a magreceptorok dimerként kötődnek, a válaszadó elemeknek három fő típusát különböztetjük meg a félhelyek orientációja alapján (4. ábra). Az egyik az „inverted” úgynevezett fordított ismétlődések (IR), ahol a félhelyet a félhely tükörképe (palindrom szekvenciája) követ.
Ezekhez homodimer formában főként szteroid receptorok kötődnek. A másik fő típus a direkt ismétlődések (DR), ahol a félhelyet félhely követ orientáció változás nélkül. A direkt ismétlődéshez a magreceptorok homodimerként vagy heterodimerként (RXR-ral) képesek kötödni. Az RXR DBD-je mindig a partnere kötőhelyének az 5’ vége felől helyezkedik el (Zechel et al., 1994). A direkt ismétlődésekben 1-5 bázispárnyi szakasszal lehetnek elválasztva az NR félhelyek (DR1-5). Egy bázispárnyi elkülönülés 3.4 Å távolságot és ~35° relatív elfordulást jelent (Khorasanizadeh & Rastinejad, 2001). RXR-PPAR heterodimer vagy HNF4-HNF4 homodimer DR1, RXR-RAR DR2 és DR5, míg a RXR-VDR DR3 kötőhelyet képes felismerni (4. ábra). A harmadik típusban a félhelyet a félhely palindrom szekvenciája előzi meg, melyet „everted” ismétlődésnek (ER) nevezünk. A két félhely között tetszőleges számú bázispár előfordulhat. „Everted” ismétlődéshez például homodimerizált tiroid magreceptor képes kötődni. Vannak olyan magreceptorok (LRH1, NGF1-B és SF-1) is, amelyek monomerként kötődnek a félhelyhez (Little et al., 2006; Weikum et al., 2016). Ezek a receptorok a CTE elemüket is használják a stabilabb kötés érdekében.

A válaszadó elemekben egyetlen nukleotid cseréje is jelentős változást idéz elő a kötés affinitásban és konformációban (Isakova et al., 2016; Osz et al., 2015; J W Schwabe et al., 1995). A DNS hasonlóan a ligandhoz a magreceptorok alloszterikus regulátoraként működik, ugyanis a DNS strukturális és dinamikus változásokat okoz a magreceptorok DBD-jében (Meijsing et al., 2009; Osz et al., 2019). A glükokortikoid receptor esetében leírták, hogy a válaszadó elem által létrehozott változások a GR-ben megváltoztatják a dimerizációs felületet és koregulátorok kötődését, így pozitív és negatív hatást gyakorol egy adott gén kifejezódésére (Hudson et al., 2016; Surjit et al., 2011; Watson et al., 2013; Weikum et al., 2017).

A promóter régióban (transzkripciós start hely (TSS) ± 1000 bázispár) elhelyezkedő válaszadó elemek közvetlenül hatnak az adott gén kifejezódésére. A promótertől távolabbi
régiókban található magreceptor válaszadó elemek esetében a kromoszóma konformációja a mérvadó az adott gén szabályozását illetőleg. A kromatin hurkok vizsgálata megerősíti, hogy a magreceptorok részt vesznek nagy hatótávolságú hurkok kialakításában is (ERα ChIA-PET) összekötve ezzel a távoli régióban található válaszadó elemet a gén promóterével (Fullwood et al., 2009). Újabb teljes genom szintű vizsgálatok azt is mutatják, hogy a magreceptorok kötődése nemcsak a rájuk specifikus válaszadó elemeken történik, hanem egyéb magreceptor kötőhelyen is (Carroll et al., 2006). Egy adott magreceptorra jellemző DNS kötőhelyek összességét a genomban cisztromnak nevezzük (T. Liu et al., 2011).

4. ábra: Magreceptorok dimerizációja és DNS válaszadó elemeik. IR: „inverted” fordított ismétlődés, DR: direkt ismétlődés; ER: „everted” ismétlődés
1.4. Magreceptorok által mediált transzkripció és koregulátorok szerepe

A magreceptorok működésük alapján két csoportra oszthatóak. Az egyik csoport, amelyek citoplazma és sejtmag között mozognak, ők főként a szteroid receptorok, a másik csoport, pedig amelyek tartósan a sejtmagban foglalnak helyet. A szteroid receptorok a citoplazmában hősök fehérjék (Hsp70 és Hsp90) segítségével dimerizálódnak és megkötik a ligandjukat (Picard et al., 1990). A ligand kötődése olyan konformáció változásokat okoz a magreceptor híd és LBD-jében, amely majd a sejtmagba való transzlokációt segíti elő (Lorenz et al., 2014). Miután leváltak a magreceptorok a hordozó fehérjékről, a sejtmagban a specifikus DNS válaszadó elemekhez kötődnek, és homodímerként szabályozzák a transzkripciót. Ligand kötött magreceptorok nem minden esetben kötődnek közvetlenül a DNS-hez, ilyenkor tipikusan a híd régiójával más transzkripciós faktorokkal komplexben kötödik a kromatinhoz (Hong et al., 2008; M. H. Liu et al., 2008). A DNS-hez való kötődést követően a magreceptorokhoz számos fehérje fog kötődni, melyeket gyűjtőnéven koregulatároknak nevezünk, amelyeknek két fő típusa a koaktivátor és a korepresszor (Lonard et al., 2007; Millard et al., 2013). A koaktivátorok hozzájárulnak a transzkripciós aktivációhoz azáltal, hogy olyan fehérje komplexek fognak hozzákapcsolódni, amelyek a kromatin hozzáférhetőségét vagy nyitottságát segítik (Lonard & O’Malley, 2005). A korepresszorok ellenkező hatást fejtenek ki, azaz a transzkripciót gátolják, olyan fehérjék kötődésével, amelyek zárt, kevésbé hozzáférhető kromatin struktúrát hoznak létre. Az irodalomban közel 300 koregulátorról számoltak be, amelynek a listája a NURSA honlapján elérhető (https://www.nursa.org/nursa/molecules/index.jsf). Eukarióta sejtekben, a DNS sejtmag fehérje komplexekkel (hisztonokkal) szerveződve alkotja a kromatin, így tömörlőve a DNS mennyiségét egy háromdimenziós struktúrába. Ahhoz, hogy a DNS hozzáférhetővé váljon, különböző poszttranszlációs módosítások szükségesek a hiszton fehérjéken. A koregulátorokhoz olyan további fehérjék fognak kapcsolódni, amelyek szabályozzák ezt a
hozzáférhetőséget. A koaktivátorok olyan hiszton módosító enzimeket kötnek, mint például a hiszton acetiltranszferáz (HAT) vagy hiszton metiltranszferáz (HMT) aktivitással rendelkező fehérjék (Bulynko & O'Malley, 2011), míg a korepresszorok ennek az ellenkezőjét, például hiszton deacetilázokat kötnek (Hu & Lazar, 2000).

A magreceptorok másik csoportját képezik azok a magreceptorok (RAR, PPAR), melyek gyakran ligand nélkül kötődnek a DNS válaszadó elemekhez korepresszorokkal és kromatin módosító enzimekkel együtt a DNS-t kevésbé hozzáférhető állapotban tartják (Glass & Rosenfeld, 2000). Ligand kötődés hatására olyan konformáció változás történik a magreceptoron belül, amely által a korepresszorok koaktivátorokra fognak lecserélődni létrehozva egy transzkripciósan aktív állapotot (Y. Li et al., 2003; Nagy & Schwabe, 2004).

A magreceptorok koregulátorokkal, hiszton és kromatin módosító enzimekkel és egyéb transzkripciós faktorokkal olyan transzkripciós komplexeket hoznak létre, amely asszociál az alap transzkripciós gépezetel, így kialakítva az úgynevezett „transzkripciós gyárakat” (Lonard et al., 2007; McKenna et al., 1999; Tata, 2002). Mivel a koregulátorok fontos szerepet játszanak a magreceptorok funkciójában, így a különböző megbetegedésekben egyre kiemeltebb szerepet kap ezeknek a vizsgálata.
1.5. Ösztrogén receptor alfa (ERα) magreceptor

Az ösztrogén receptor alfa (ERα) egy szteroid hormon magreceptor, melynek a természetes ligandja az ösztrogén. Az ösztrogént az ösztron (E1), az ösztradiol (E2) és az ösztriol (E3) alkotja, melyek közül a keringésben az 17β-ösztradiol a legjelenősebb. 17β-ösztradiol kötődik a legnagyobb affinitással az ösztrogén receptorhoz (Gruber et al., 2002). Az ösztrogént az egyik legfontosabb női nemi hormonok egyikeként azonosították, azonban mára világosan látszik, hogy nemcsak a női reproduktív rendszerben van szerepe, hanem egyéb szövetekben (neuroendokrin, vaszkuláris, vás- és immunrendszerben) is mindkét nemben. Az ösztrogén számos olyan betegséggel kapcsolható össze, mint például az elhízás, metabolikus szindróma, oszteoporózis, szisztémás lupus erythematosus (SLE), endometriózis és számos daganattípus (Burns & Korach, 2012; Deroo & Korach, 2006; Hamilton et al., 2017). Az ösztrogén biológiai hatását az ösztrogén receptorhoz való kötődésével mediálja.

Az ERα-t először 1985-ben klónozták (Walter et al., 1985). Az ERα teljes kristályszerkezetének meghatározása a méretéből és flexibilis régióiból adódóan bonyolult volt, így először a DBD-jének a szerkezetét írták le 1993-ban (John WR Schwabe et al., 1993), majd később az LBD-je szerkezetét agonista és antagonista ligandjával együtt (Brzozowski et al., 1997). Technika fejlődésének köszönhetően krio-elektronmikroszkóppal sikerült háromdimenziós képet kapnunk az ERα szerkezetéről DNS-sel és két koregulátorral (SRC3 és p300) való kötésével együtt (Yi et al., 2015). A többi magreceptorhoz hasonlóan hat funkcionális doménből áll. A krio-elektronmikroszkópos kép alapján azt láthatjuk, hogy az ERα A/B régiójának szerepe van koaktivátorok kötődésében (Yi et al., 2015). DBD doménjével pedig specifikus DNS válaszadó elemhez 5′-GGTCA\textsubscript{nnn}TGACC-3′ képes kötődni nagy affinitással, ezt a motívumot ösztrogén válaszadó elemnek, ERE-nek hívjuk (Seilcr-Tuyns et al., 1986). A receptor flexibilis híd régiója ERα interakciók allosztérikus módosítója (Kumar & McEwan, 2012), továbbá hatással van a transzkripciós szabályozásra,
ugyanis olyan poszttranszkripciós módosításai lehetnek ennek a régiónak, mint például a szumoiláció vagy p300 mediált acetiláció (Le Romancer et al., 2011; Sentis et al., 2005; C. Wang et al., 2001). LBD doménjével nagy affinitással képes kötni az ösztradiolt (K_D 0.1 nanomól tartományban) (Kumar & McEwan, 2012). Továbbá köt olyan ligandokat is, mint az endogén ösztogének (ösztron, ösztriol), természetes ösztrogének, szintetikus ösztrogének (DES), fitoösztorgének (genisztein), szelektív ösztrogén receptor modulátorok (tamoxifen, raloxifen) és szelektív ösztrogén receptor lebontók (fulvestrant) (Farooq, 2015; McDonnell & Wardell, 2010). Meg kell még említeni a receptor F doménjét, mely a többi magreceptor esetében nem jellemző. Viszonylag keveset tudunk ennek a funkciójáról, valószínűleg az intramolekuláris interakciókban és fehérje stabilitásban van szerepe (Skafar & Zhao, 2008). Nemrégiben megjelent tanulmányban kimutatták, hogy a tamoxifen mediált transzaktivációban van szerepe faj specifikus módon (Arao & Korach, 2018).

Ösztradiol (E2) hatására a szteroid receptorokra jellemző mechanizmus játszódik le, azaz közvetlenül a genomhoz kötődve az ERE motívumon keresztül fejti ki hatását (Hah & Kraus, 2014). Ezenkívül ismert még, hogy más transzkripciós faktorokon (AP-1 elemen keresztül a FOS/JUN dimerhez kötődve) keresztül fejti ki szabályozó hatását (Kushner et al., 2000). Az ERα-nak ismertek nem genomi úton megvalósuló szabályozó mechanizmusai is. Ez több módon történhet. Az egyik az, amikor sejtmembránon asszociált úgynevezett G-protein kötött ER (GPER) köti az E2-t, amely egyéb jelátviteli útvonalakat aktiválva indít transzkripcionális válaszreakciót (Levin, 2015; Prossnitz & Hathaway, 2015). A másik pedig, amikor E2 hiányában egy ligand független aktiváció történik, ilyenkor a jel foszforiláció formájában egyéb jelátviteli útvonalakból (például EGF vagy IGF1) származik (Benesch & Picard, 2015).
1.5.1. ERα által mediált szabályozási program

Az új-generációs szekvenálási eljárásoknak köszönhetően közelebb kerülhetünk az ERα általi szabályozás megismeréséhez teljes genom szinten. Számos tanulmány feltérképezte az ERα cisztromját különböző emlődaganat sejtkeben és betegekből származó mintákból is (Carroll et al., 2006; C. Y. Lin et al., 2007; Ross-Innes et al., 2012). Ezek alapján azt láthatjuk, hogy az ERα jelen van promóter régiókban is (TSS±1kb), de az ERα kötődések nagyrésze távol a transzkripciós start helytől (TSS) történik akár >100 kilobázis távolságra. Ezek a távoli ERα kötött DNS régiók aktív hiszton módosításokkal (például H3K27ac és H3K4me1) és transzkripciót mediáló faktorokkal enhanszerként működnek. A távoli enhanszer régiók kromatin hurkok segítségével kerülnek közelebb az adott gén promóter régiójához. A kromatin hurkok magukban foglalnak enhanszer RNS képződést és CTCF-kohézsin komplex jelenlétét, megkönnyítve az enhanszer-promóter interakció kialakulását, így befolyásolva az adott gén aktivitását (Hah et al., 2013; W. Li et al., 2015). Jól karakterizált, távoli ERα kötött enhanszerrel régióval szabályozott gének például a TFF1 (Theodorou et al., 2013; F. P. You et al., 2008), GREB1 (Deschénes et al., 2007; Fullwood et al., 2009), CA12 (Barnett et al., 2008) és PGR (Bonéy-Montoya et al., 2010). Korábbi tanulmányok arról számoltak be, hogy az ERα által kötött enhanszerekhez további transzkripciós faktorok tudnak kötődni kialakítva 1-2 MDa-os komplexet. A komplexben jelenlévő transzkripciós faktorok és koaktivátorok nagy része fehérje-fehérje interakcióban vesz részt, úgynevezett „transz” módon kapcsolódnak egymáshoz, így MegaTransz komplexnek nevezték el (Z. Liu et al., 2014). Az ERα által mediált MegaTransz komplexben a FOXA1, mint úttörő faktor játszik szerepet azáltal, hogy közvetlenül a DNS-hez kötődve („cisz” módon) segíti az ERα kötődését. A komplexben transz módon jelen van még a GATA3, AP2γ, egyéb koaktivátorok mint a DNS-függő protein kinázok, p300 és Med1 (RNS polimeráz II transzkripció mediátorának 1-es alegysége). Ezekben az enhanszereken lévő komplexek gyakran szuper-
enhanszerek részét képezik. A szuper-enhanszerek több enhanszer csoportosulása egy rövid régió belül, melyek transzkripcionálisan aktív részét képezik a gének kifejeződésének (Whyte et al., 2013). Ezeket hívják még „főró pontoknak” vagy klaszter enhanszereknek is (Rada-Iglesias et al., 2012; Siersbæk, Baek, et al., 2014; Siersbæk, Rabiee, et al., 2014; Yan et al., 2013). Ezeknek a szuper-enhanszerek a kialakulásában meghatározó szerepet tölt be az ERE motivumot tartalmazó „anya enhanszereken” lévő ERα jelenléte ligand kezelés nélkül, majd E2 kezelés hatására az anya enhanszer körül további ERα kötődés jön létre „leány enhanszereken”. Erről a lehetséges mechanizmusról munkacsoportunk számolt be (Bojcsuk et al., 2017). Hisham Mohammed és munkatársai endogén fehérjék gyors immunprecipitációját követő tömegspekrometriát (RIME) alkalmazva azonosították az ERα-azzociált kofaktorokat (Mohammed et al., 2013). Az azonosított 108 kofaktor között jelen van a jól ismert FoxA1, TLE1, AP2-γ, GATA3, p300, NCOA3, NRIP1 és RAR (Carroll et al., 2005; Holmes et al., 2012; Ross-Innes et al., 2010; Tan et al., 2011; Theodorou et al., 2013) (5. ábra). Ezek mellett kevésbé ismert transzkrípcióss asszociációt találtak az ERα-val GREB1 és COT2 (COUP-TFII) esetében. Mivel keveset tudunk az ERα és COUP-TFII közötti transzkripcionális kapcsolatról, így munkánk egyik célja ennek a kapcsolatnak a tanulmányozása.
5. ábra: ERα komplexben résztvevő koregulátorok. (Mohammed et al., 2013)

1.6. COUP-TFII árva magreceptor

Csirke ovalbumin gén 5’ vég felőli promóterhez kötődő transzkripciós faktor 2 (COUP-TFII, egyéb nevei az NR2F2, ARP-1, COT2) a szteroid/tiroid magreceptor család tagja (Lee Ho Wang et al., 1989). COUP-TF fehérjéket először 1980-as években izolálták HeLa sejtmag kivonatból (Sagami et al., 1986). A 1990-es évek elején pedig két független csoportnak sikerült elkülöníteni a COUP-TFII-t a COUP-TFI-től (Ladias & Karathanasis, 1991; L H Wang et al., 1991), ami azért volt kihívás, mert a két fehérje szekvenciája nagyon hasonló. A két fehérje aminosav szekvenciája alapján a DBD-jük 98%-ban, míg az LBD-jük 96%-ban egyezik és nem csak a két fehérje között láthatunk nagymértékű hasonlóságot, hanem evolúciósan is, ugyanis több mint 90%-os egyezést figyelhetünk meg egyéb gerincesek és gerinctelenek ortológaihoz viszonyítva (Yuhong Qiu et al., 1994). A humán és egér COUP-
TFII aminosav szinten 100% azonosságot mutat (Y. Qiu et al., 1994), továbbá Dro sophila 1-es típusú svp fehérje és humán COUP-TF DBD-je között 94% és az LBD-je között 93% azonosság van (Mlodzik et al., 1990). Mindez azt feltételezheti, hogy a COUP-TF fehérjék a magreceptor család egyik legősibb tagjai (Yuhong Qiu et al., 1994). A COUP-TFII-t általánosságban árva magreceptorként tartjuk számon, mert természetes ligandja még nem ismert, de retinsav képes strukturális aktivációt okozni a COUP-TFII LDB-jében in vitro, azonban ez a retinsav koncentráció bőven a fiziológiás szint fölött van (Kruse et al., 2008). A COUP-TFII a többi magreceptorhoz hasonló DBD-jével egy specifikus DNS szekvencia motívumot képes felismerni. A konszenzus COUP-TFII kötőhely az AGGTCA direkt ismétlődése egy nukleotiddal elválasztva (DR1), azonban a COUP-TF fehérjék nagyon flexibilisek a DNS-hez való kötődésük során (Cooney et al., 1992; C M Klinge et al., 1997; Carolyn M. Klinge, 1999; F A Pereira et al., 2000). A relatív kötés affinitásuk sorrendje a direkt ismétlődésekhöz in vitro a következő: DR1, DR6, DR4, DR8, DR0 és DR11, de a konszenzus szekvenciához képes „inverted” vagy „everted” ismétlő (IR és ER) módon is kötni (Cooney et al., 1992). Mindezen okokból kifolyólag a COUP-TF képes felismerni a magreceptor család egyéb tagjainak, mint például TR, RAR, VDR, HNF4 vagy ERα (Cooney et al., 1993; C M Klinge et al., 1997; Stroup & Chiang, 2000; Tran et al., 1992) kötőhelyét, ezzel versengést kialakítani a kötőhely hozzáférhetőségéhez. A COUP-TFII a DNS válaszadó elemekhez homodimer vagy COUP-TFI-el heterodimer formában képes kötődni (L H Wang et al., 1991). Számos tanulmány kimutatja a COUP-TFII heterodimerizációját más magreceptorral (RXR, TR vagy RAR) in vitro (Cooney et al., 1992; Kli ewer et al., 1992; Tran et al., 1992), azonban in vivo kísérletekkel ezt nem sikerült megerősíteni (Butler & Parker, 1995). Az utóbbi évek tanulmányai pedig azt mutatják, hogy a COUP-TFII a TR4 magreceptorral GGGTCA motívumok DR0, DR6 és DR7 ismétlődéseinek képesek kötődni alternatív telomer meghosszabbodásra képes daganatsejtek (ALT+ daganatsejtek) telomer
régiójában (Déjardin & Kingston, 2009; Marzec et al., 2015; M. Xu et al., 2019).

1.6.1. COUP-TFII fiziológiás szerepe

COUP-TFII árva magreceptorral kapcsolatban több tanulmány beszámolt arról, hogy számos biológiai folyamat szabályozásában részt vesz, például szervképződés, neurális fejlődés, kardiovaszkuláris folyamatok, szaporodás, metabolizmus és betegségek (veleszületett szívfejlődési rendellenesség (CHD) és daganat) (F.-J. Lin et al., 2011). COUP-TFII+/− homozigóta knock-out egér a fejlődés embrióális 10. napja körül meghal szív- és érrendszeri zavarok, illetve angiogenezis defektusa miatt (Fred A. Pereira et al., 1999). Angiogenezisben betöltött szerepéről egyéb tanulmányokban is beszámoltak, ahol a COUP-TFII hatással van olyan angiogenikus folyamatokra, mint a vaszkuláris endotél növekedési faktorok (VEGF) és receptoraik (VEGFR), Angiopoietin-1/Tie2 és Notch gének kifejezódése (Chen et al., 2012; Kang et al., 2010; F.-J. Lin et al., 2010; Nagasaki et al., 2009; Qin, Chen, Xie, et al., 2010; Qin, Chen, Yu-Lee, et al., 2010; L. R. You et al., 2005). COUP-TFII+/− heterozigóta knock-out nőstény egereknek a szaporodási traktusában jelentkeztek problémák a vadípuszhoz képest, míg a hím egyedeknek a termékenysége normális maradt (Takamoto et al., 2005). COUP-TFII+/− heterozigóta knock-out egereknek a metabolikus folyamatainak vizsgálatánál azt találták, hogy a COUP-TFII+/− mutáns egereknek kevesebb fehér zsírszövete van, ellenállóbbak az elhízás és inzulin rezisztencia ellen, jobb a glükóz homeosztázisuk és energia felhasználásuk, mint a vadípusú egyedeknek (L. Li et al., 2009). COUP-TFII minden emberi szövetben expresszálódik, magas expressziós szintet mutat endokrin, metabolikus, reproduktív és kardiovaszkuláris szövetekben (Bookout et al., 2006).
1.7. Magreceptorok jelentősége daganatos megbetegedésekben

mutat tamoxifen-rezisztens humán emlődaganat sejtekben, azonban a COUP-TFII újraexpresszáltatása ezekben a sejtekben visszaállítja a tamoxifenre való érzékenységet. Egy másik tanulmányban pedig azt mutatják, hogy a COUP-TFII sejt és gyógyszertípusfüggő módon van hatással a kemorezisztenciára emlődaganat sejtekben (C. Zhang et al., 2014). Emlődaganatos betegekben a COUP-TFII expressziós szintjének jelentőségére nincs konkrét következtetés, mivel különböző tanulmányok eltérő eredményeket mutatnak (Nagasaki et al., 2009; C. Zhang et al., 2014). A COUP-TFII expressziójának szerepéért egyéb daganatos megbetegedésekben is vizsgálták, például prosztatadaganatban (Qin et al., 2013), gyomordaganatban (Ding et al., 2018), kolorektális daganatban (Shin et al., 2009; Yun et al., 2017), hasnyálmirigy adenokarcinómában (Polvani et al., 2014) és petefészekdaganatban (Hawkins et al., 2013). Ezekből azt láthatjuk, hogy a COUP-TFII prognosztikai jelentősége tanulmányoktól és daganat típusától függően eltérő, pontos szerepe még nem ismert.

1.8. Funkcionális genomikai eszközök magreceptorok általi szabályozások feltérképezéséhez

Az elmúlt évtizedekben a genomi technológiák olyan fejlődésen mentek keresztül, mely megengedi a magreceptorok általi génzabályozások jobb megértését teljes genom szinten. A módszerek többsége a DNS microarray alapú módszerekből fejlődött ki, de ma már az új generációs szekvenálás (NGS) a legelterjedtebb. Funkcionális genomikai módszerekkel lehetővé vált a génexpresszióból, kötések célhelyében, DNS metilációban és kromatin hozzáférhetőségben történő változások nyomon követése. Génapressziós adatokkal, DNS szekvenálási adatokkal és kromatin jellegzetességekből (poszttranszlációs módosítások jelenléte) származó adatokkal globális képet kaphatunk a magreceptorok általi szabályozó folyamatokról (6. ábra), ami befolyásolhatja a klinikusok döntését a megfelelő terápia kiválasztásához. A magreceptorok, koregulátorainak és egyéb DNS-kötő fehérjék kötőhelyeinek feltérképezése kromatin immunprecipitációt követő szekvenálással (ChIP-Seq)
lehetséges. Hisztom módosítások jelenlétének vizsgálatával megállapíthatjuk a kromatin állapotát, mely közvetlenül befolyásolja a transzkripciót azáltal, hogy a zárt kromatin kevésbé hozzáférhető transzkripciós faktorok számára, míg a nyitott kromatin segíti ezeknek a faktoroknak a kötődését a DNS-hez. A kromatin immunprecipitáció (ChIP) fehérje és DNS közötti interakció alapul (Johnson et al., 2007). A módszer során a sejteket formaldehyddel fixáljuk, majd a szonikálással vagy enzimes emésztéssel a kromatint fragmentáljuk. A vizsgálni kívánt fehérjére specifikus, mágneses gyöngyökhoz kapcsolt antitesttel immunprecipitáljuk a fragmenteket, majd különböző só koncentrációjú puffert alkalmazva k tudjuk szelektálni a vizsgálni kívánt fehérjénk által kötött fragmenteket. Ezután jön a keresztkötések feloldása, fehérje és RNS emésztés, majd a DNS izolálás. A tisztított DNS-t a könyvtárkészítés után megszekvenáljuk. A szekvenálás után komplex bioinformatikai elemzések következnek, mely a szekvencia leolvasások minőség-ellenőrzését, a megfelelő genomhoz való illesztését és a csúcsok, azaz a kötőhelyek predikcióját jelenti. A csúcsok a szekvenálási leolvasások méretbeli eltolódásának empirikus modellezéséből származnak (Y. Zhang et al., 2008). A ChIP során kritikus lépéseinek számítanak a megfelelő kiindulási sejtszám, mely 10-20 millió sejtet jelent, a fragmentek mérete, a megfelelő „ChIP-grade” antitest kiválasztása, megfelelő kontrollok kiválasztása és szekvenálás mélysége (Park, 2009). Kontrollként használhatunk input DNS-t, mely az immunprecipitáció előtt eltávolított kis mennyiségű DNS minta, vagy IgG-vel immunprecipitált DNS-t. Mindezen kritikus lépések miatt a ChIP-Seq kevésbé alkalmazható betegekből származó minták közvetlen vizsgálatához. ChIP-Seq adatok kombinálása RNS szekvenálással hozzájárul a magreceptorok kötőhelyeinek és annak transzkripciós következményének vizsgálatához teljes genom szinten. Ezeket együtt kombinálva megvizsgálhatjuk, hogy bizonyos hormon vagy gyógyszeres kezelések hogyan befolyásolják a magreceptorok kötődését és a gének kifejeződését, így megjósolható a terápiás lehetőségekre adott válasz. Mivel a sejtekben egyszerre több magreceptor is jelen
van, és ezeknek bizonyos szabályozó régiói átfedést mutatnak, így a magreceptor család tagjai közötti kapcsolat vizsgálata hozzájárulhat új szerepek megismeréséhez a tumor progressziójában és kezelésében.

6. ábra: Funkcionális genomikai eszközkészlet. (Dhiman et al., 2018)
2. CÉLKITŰZÉSEK

A COUP-TFII árva magreceptor jelentőségről daganatos folyamatokban számos tanulmány beszámolt, azonban genom szintű tanulmányok kevésbé elérhetőek. Célunk az volt, hogy megértsük teljes genom szinten a COUP-TFII általi szabályozási mechanizmusokat különböző daganatsejtekben. Ehhez a következő célkitűzéseket alkottuk:

- Magreceptorok általi kötőhelyek vizsgálatához kiemelt jelentőséggel bíró kromatin immunprecipitáció (ChIP) karakterizációja ERα epitópot kifejező fág kontrollal
- COUP-TFII, mint kevésbé tanulmányozott ERα koregulátor, cisztromjának és transzkriptomjának feltérképezése ER-pozitív emlődaganat sejtekben
- COUP-TFII génexpresszójának vizsgálata különböző altípusú emlődaganatos betegekre vonatkozólag, és túlélésre gyakorolt hatásának megállapítása
- COUP-TFII cisztromjának karakterizálása egyéb különböző eredetű daganatsejtekben (emlődaganat, májdogánat és leukémia eredetű sejtekben)
- Angiogenezisben szerepet játszó gének COUP-TFII általi szabályozásának vizsgálata
- A COUP-TFII expressziójának jelentősége a túlélésre különböző daganatos betegekben
3. ANYAGOK ÉS MÓDSZEREK

3.1. In vitro kísérletek

3.1.1. Sejtek tenyésztése és kezelése

Az MCF-7 sejteket a Hitelesített Sejt Kultúrák Európai Gyüteményétől (ECACC) szerezők be, míg a T47D sejteket ajándékba kaptuk Uray Iván munkacsoportjától. MCF-7 és HEK293T sejtek DMEM médiumban voltak tenyészve, melyet kiegészítettünk 10% FBS-sel, 1% L-glutaminnal és 1% penicillin-streptomycinnel. T47D sejteket RPMI-1640 médiumban tenyészettük, melyet szintén kiegészítettünk 10% FBS-sel, 1% L-glutaminnal és 1% penicillin-streptomycinnel.

3.1.2. Genetikailag módosított sejtek létrehozása


3.1.3. Fág termelés poliklonális antitest epitópjának leképezéséhez

New England Biolabs (Ph.D.™-7 Phage Display Peptide Library Kit) előre elkészített random heptapeptid könyvtárát használtuk olyan fágok létrehozásához, melyek nagy
affinitással kötődnek a széles körben használt ERα antitest hipervariábilis régiójához. Nagy
vonalakban a kísérletről: 5 µl (10^{11} pfu) fág peptid könyvtárat 1 ml TBST/BSA (1% BSA
tartalmú TBST) pufferrel előblokkoltunk 30-60 percen keresztül szobahőmérsékleten. A
blokkolt fághoz 10 µg antitestet adtunk és rotátoron inkubáltuk 10-60 percen keresztül
szobahőn. 50 µl Protein A és Protein G konjugált mágneses gyöngyöt kétszer mostuk
TBST/BSA pufferrel, majd 50 µl mágneses gyöngyöt adtunk az antitest-fág komplexhez. A
reakció elegyet 20 percig inkubáltuk szobahőn enyhe keveréssel. A gyöngyeket tízszer
mostuk TBST/BSA pufferrel, majd kétszer eluáltuk savas elúciós oldattal (0,2 M glicin-HCl
(pH 2,2), 1 mg/ml BSA) 20 percig szobahőn. A savas elúciós oldat semlegesítéséhez 150 µl 1
M Tris-HCl puffert (pH 9,1) adtunk 1 ml eluátumhoz.

Fág amplifikáció. Ezután a fágokat F+ER2738 baktérium törzsben szaporítottuk úgy,
 hogy 25 ml baktérium kultúrát a log fázis korai szakaszában megfertőztük és 4,5-5 órán
keresztül nem szelektív Luria broth (LB) médiumban 200 rpm-en rázattuk, majd
centrifugáltuk a mintákat. A fágokat, melyek a felülúszóban voltak megtalálhatóak, egy
ejszakán át precipitáltuk 4°C-on 1/6 térfgogatú 20% (v/w) PEG-8000/2,5M NaCl oldattal, majd
a centrifugált pelletet TBS-ben vettük fel. A fágokat ismét precipitáltuk ugyanazzal az oldattal
ey-két órán keresztül jégen. A centrifugált pelletet 200 µl TBS pufferben vettük fel. A fág
partikulák koncentrációjának méréséhez spektrofotóméterrel mértük az abszorbanciát 260
nm-en. A fág mennyiségére 1 ml oldatban a következő számításból következtettünk: fágok
száma/ml = hígítás x OD_{260} x 2,214 x 1011. Hosszabb idejű tároláshoz 50%
végkoncentrációban glicerolt adtunk és -20°C-on tároltuk.

Monoklonális fág termelés. Ehhez a New England BioLabs fág titrálási és plakk
amplifikációs protokollját használtuk néhány módosítással. Az amplifikált poliklonális
fágokat 10^9-10^{13}-szorosra hígítottuk LB médiumban, majd 200 µl ER2738 baktérium törzset
fertőztünk 10 µl hígított fággal 1-15 percig a log fázis középső szakaszában, majd a fertőzött

sejtek előmelegített LB/IPTG/Xgal lemezekre szélesztettük. A lemezeket 37°C-on egy éjszakán át inkubáltuk. Másnap, egy éjszakát inkubált ER2738 baktérium kultúrát 1:100 arányban hígítottunk és a korai log fázisig (OD600 0,3-0,5 AU között) növesztettük, majd a lemezről egy különálló kolóniát 2 ml baktérium kultúrába oltottunk. Ezután a „Fág amplifikáció” lépéseit követtük.

3.1.4. Kromatin immunprecipitáció fág kontrollal

A fág kromatin immunprecipitációs kísérlethez a kromatin környezet megteremtéséhez HEK293T sejtből származó kromatint használtunk. A kísérlethez olyan sejtből származó a kromatint kellett használnunk, mely nem expresszálja jelentős mennyiségben a vizsgálni kívánt transzkripciós faktort, így nem zavarva az antitest kötőkapacitását. Így 10 millió HEK293T sejtet fixáltunk 1% formaldehiddel 10 percig szobahőmérsékleten, majd a reakciót 0,125 M glicin hozzáadásával állítottuk le 5 percig inkubálva. Ezt követően a sejteket kétszer mostuk jéghideg PBS pufferrel. A sejteket PBS pufferben kaptuk fel, majd a pelletet szonikáló pufferben (1% SDS, 10 mM EDTA, 50 mM Tris–HCl pH 8,0, Proteáz Inhibitor) lizáltuk 10 millió sejt/ml koncentrációban. A minták szonikálása Bioruptor Plus Szonikátor készülékkel történt, melyet 10 ciklusra 30 másodperc be- és kikapcsolással és magas intenzitásra állítottunk be, hogy elérjük a 150-500 bp közötti kromatin fragment méretet. Szonikálást követően a mintát maximális sebességen (15 000 rpm) centrífugáltuk, majd a felülösztőt, a kromatint szétesztottuk egyenlő részekre és -80°C-on tároltuk.

A HEK293T kromatinhoz kísérletnek megfelelő térfogatú és mennyiségű (1, 10 és 100 millió) fágot adtunk, majd a kromatin-fág mixet antitest (ERα: sc-543X) konjugált mágneses gyöngyökkel precipitáltuk 4°C-on 6 órán keresztül IP pufferrel hígítva (1,1% Triton-X, 0,01% SDS, 167 mM NaCl, 1,2 mM EDTA, 16,7 mM Tris-HCl, Proteáz Inhibitor). Ezt követően a mágneses gyöngyökhöz kötődő komplexet egyszer alacsony sótartalmú ChIP mosó pufferrel (A’ puffer: 1% Triton-X, 0,1% SDS, 150 mM NaCl, 2 mM EDTA, 20 mM Tris-HCl, Proteáz
Inhibitor), egyszer magas sótartalmú ChIP mosó pufferrel (B’ puffer: 1% Triton-X, 0,1% SDS, 500 mM NaCl, 2 mM EDTA, 20 mM Tris-HCl, Proteáz Inhibitor), egyszer LiCl tartalmú ChIP mosó pufferrel (C’ puffer: 1% NP-40, 250 mM LiCl, 1 mM EDTA, 20 mM Tris-HCl, 1% NaDOC, Proteáz Inhibitor) és kétszer TE pufferrel (1 mM Tris és 1 mM EDTA) mostuk. Az antitest-kromatin komplexet 100 µl elúciós pufferrel (100 mM NaHCO₃, 1% SDS) eluáltuk 15 percig rázatva. A keresztkötések feloldása 400 mM NaCl hozzáadásával és 65°C-on történő inkubációval történt legalább 4 órán át. Ezután a mintákat 10 µg RNázzal 37°C-on 30 percig és 10 µg Proteináz K-val 1-2 órát 45°C-on 1000 rpm-en rázva emészttettük. Az immunprecipitált DNS-t High Pure PCR Template Preparation Kitet használva tisztítottuk a gyártó utasításainak megfelelően.

3.1.5. Kromatin immunprecipitáció emlődaganat sejtekből

A kromatin immunprecipitációhoz 15-20 millió emlődaganat sejtvonalból (MCF-7 és T47D) indultunk ki. A sejtek 1% metanolmentes formaldehiddel fixáltuk 10 percig szobahőmérsékleten, majd a fixálást 0,125 M glicinnel 5 percig inkubálva állítottuk le. A sejteket ezután kétszer mostuk jéghideg 1xPBS pufferrel. A sejteket 1 ml ChIP lízis pufferben (1% Triton-X, 0,1% SDS, 150 mM NaCl, 1 mM EDTA, 20 mM Tris-HCl, Proteáz Inhibitor) kapartuk fel, majd maximális fordulaton centrifugáltuk. A sejtmag izolálás során a pelletet háromszor szuszpendáltuk ChIP lízis pufferrel. A kromatin fragmentálását Bioruptor Plus Szonikátor készülékkkel végeztük, melyet 15 ciklusra 30 másodperc be- és kikapcsolással és magas intenzitásra állítottuk be. A szonikálás után maximális fordulaton (15 000 rpm) centrifugáltunk, majd a felülúszó térfogatának (kromatin) 90%-át vittük tovább immunprecipitációra. Szekvenáláshoz 15-20 millió sejtnek, míg kvantitatív PCR-hez 5 millió sejtnak megfelelő kromatin mennyiséget használtunk. Az immunprecipitáció egy éjszakán át 4°C-on történt a következő antitesteket használva: ER (sc-543X), COUP-TFII (sc-271265X) és IgG (sc-2027X). Szekvenálásra szánt minták esetén az antitestek mennyisége 8 µg, míg
kvantitatív PCR-re szánt minták esetén 4 µg. Az inkubációt követően 3000 g fordulatszámon 20 percig centrifugáltuk a mintákat, majd a felülűső térhogatának (kromatin) 90%-hoz előblokkolt Protein A és Protein G konjuguált mágneses gyöngyöket adtunk. A mintákat ismét inkubáltuk minimum 6 órán keresztül 4°C-on. Ezt követően a mágneses gyöngyőkhöz kötődő komplexet mágneses tartóval egyszer alacsony sötétartalmú ChIP mosó pufferrel (1% Triton-X, 0,1% SDS, 150 mM NaCl, 1 mM EDTA, 20 mM Tris-HCl, 0,1% NaDOC, Proteáz Inhibitor), kétszer magas sötétartalmú ChIP mosó pufferrel (1% Triton-X, 0,1% SDS, 500 mM NaCl, 1 mM EDTA, 20 mM Tris-HCl, 0,1% NaDOC, Proteáz Inhibitor), egyszer LiCl tartalmú ChIP mosó pufferrel (0,5% NP-40, 250 mM LiCl, 1 mM EDTA, 20 mM Tris-HCl, 0,1% NaDOC, Proteáz Inhibitor) és kétszer TE pufferrel mostuk. Ez az antitest-kromatin komplexet 200 µl eluciós pufferrel eluáltuk 15 percig rázatva. A keresztkötések feloldása 400 mM NaCl hozzáadásával és 65°C-on történő inkubációval történt egy éjszakán át. Ezután a mintákat 10 µg RNázzal 37°C-on 30 percig és 10 µg Proteináz K-val 1-2 órát 45°C-on 1000 rpm-en rázatva emésztettük. Az immunprecipitált genomik DNS-t Qiagen MinElute PCR Purification Kitet használva tisztítottuk a gyártó utasításainak megfelelően.

3.1.6. RNS izolálás és RT-PCR

A sejteket RNS izoláláshoz 6 lyukú lemezen növesztettük, majd PBS-sel történő mosás után 0,5 ml TrIzolate reagensben vettük fel és 5 percig rázattuk szobahőmérsékleten. A fázis szeparáció 100 µl kloroform hozzáadásával és maximális gyorsaságú centrifugálással történt. Az RNS kicsapását a felső vizes fázisból 375 µl izopropanollal végeztük. Maximális gyorsaságú centrifugálás után (15 000 rpm) az RNS pelletet kétszer mostuk 75%-os jéghideg etanolból. A pelletet ezt követően vákuum-koncentráторral száritottuk, majd nukleázmentes vízben oldottuk fel 65°C-on 10 percig. RNS koncentrációmérést NanoDrop segítségével végeztük.
cDNS szintézishez minden esetben 1 μg totál RNS-t írtunk át SuperScript III Reverse Transcriptase (Thermofisher 18064071) segítségével. A gyártó instrukciójától eltérően a laborunkra specifikusan egy reakcióra számolva a következő mennyiségeket állítottuk be a szükséges reagensekből: 4 µl SSII puffer (5x), 2 µl DTT (100 mM), 4 µl dNTP (2.5 mM), 0,08 µl random hexamer (3 μg/µl) és 0,08 µl SSII MnlI enzim (200 U/µl), és 10 µl RNS minta. A reakcióhoz a következő hőmérsékleti profilt használtuk: 10 perc 25°C, 2 óra 42°C és 15 perc 70°C. A PCR-t követően a mintákat 5x mennyiségben hígítottuk nukleázmentes vízzel.

3.1.7. Kvantitatív polimeráz láncreakció (qPCR)

Kvantitatív polimeráz láncreakcióhoz 2x SYBR Green Master Mix-et használtunk, melyhez 2.5 μM végkoncentrációban primereket, ROX passzív referencia festéket és nukleázmentes vizet adtunk. A mix végértékgemina 7,5 µl, és ehhez 2,5 µl mintát adtunk. Ez a minta háromféle lehetett: egyszálú fág DNS vagy ChIP-ből származó genomi DNS vagy cDNS. A PCR hőmérsékleti profiljának 5 perc 95°C, 30 mp 60°C és 30 mp 72°C lett beállítva 40 ciklusszámmal és olvadáspont analízissel ABI QuantStudio 12K Flex Real-Time PCR készüléken. Az elemzés során a ΔCT módszert alkalmaztuk. A ChIP során a normalizálás input DNS-hez, míg génexpressziós mérés esetén ACTB (β-aktin) génhez történt. A felhasznált primerek szekvenciái az 2. táblázatban találhatóak meg.

2. táblázat: A felhasznált primerek szekvenciái

<table>
<thead>
<tr>
<th>Célgén</th>
<th>Egyenes irányú primer</th>
<th>Fordított irányú primer</th>
<th>Kísérlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>M13 univerzális fág specifikus primer</td>
<td>attcactggcgcgtttta</td>
<td>ggcgattaagttggaacag</td>
<td>ChIP-qPCR</td>
</tr>
<tr>
<td>BAMBI</td>
<td>ggctgacagatgtctctcc</td>
<td>ccceggacccacaactcttt</td>
<td>RT-qPCR</td>
</tr>
<tr>
<td>VEGFA</td>
<td>tgtgtgttgtgtgtcttga</td>
<td>tctcgtgcctcgggaag</td>
<td>RT-qPCR</td>
</tr>
<tr>
<td>KRT15</td>
<td>ggtggtgcttccacacagaa</td>
<td>tgaatagagacggggtgaag</td>
<td>RT-qPCR</td>
</tr>
<tr>
<td>HEY2</td>
<td>atgacatagactgccagagt</td>
<td>ggcagggactctcgaag</td>
<td>RT-qPCR</td>
</tr>
<tr>
<td>ACTB</td>
<td>ccttgccacccagae</td>
<td>gcgcgttccacccagagtc</td>
<td>RT-qPCR</td>
</tr>
</tbody>
</table>
3.1.8. Új generációs szekvenálás

Az új generációs szekvenálást és az azt megelőző könyvtárkészítést a Genomi Medicina és Bioinformatikai Szolgáltató Laboratórium végezte. A ChIP DNS könyvtárak Illumina’s TruSeq ChIP Sample Preparation protokolja szerint készültek 10 ng ChIP DNS-ből kiindulva, majd a könyvtárak 50 bp-nyi egyirányú leolvasásban voltak szekvenálva Illumina NextSeq 500 rendszeren. RNS szekvenáláshoz 1 µg totál RNS-ből kiindulva Illumina’s TruSeq RNA Sample Preparation kettes verziójú protokoll alapján történt a könyvtárkészítés. Az elkészült könyvtárak Illumina NextSeq 500 rendszeren lettek megszekvenálva 50 bp-nyi egyirányú leolvasásban.
3.2. Bioinformatikai elemzések

3.2.1. Adatok

MCF-7 és T47D sejtekből származó ERα és COUP-TFII ChIP-Seq és RNS-Seq adatokat mi generáltuk, mely NCBI BioProject ID-ja PRJNA602619. A többi ChIP-Seq és RNS-Seq adat publikusan elérhető adatbázisokból származnak. Más labor által generált adatok jellemzőit és származását a 3. táblázat foglalja össze.

3. táblázat: Más labor által generált NGS adatok forrásgyűjteménye

<table>
<thead>
<tr>
<th>Sejtvonal</th>
<th>Módszer</th>
<th>Célfehérje</th>
<th>Adatbázis</th>
<th>Azonosító szám</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCF-7</td>
<td>ChIP-Seq</td>
<td>COUP-TFII</td>
<td>ENCODE</td>
<td>ENCSR000BUY</td>
</tr>
<tr>
<td>MCF-7</td>
<td>ChIP-Seq</td>
<td>CTCF</td>
<td>ENCODE</td>
<td>ENCSR000AHD</td>
</tr>
<tr>
<td>MCF-7</td>
<td>ChIP-Seq</td>
<td>GATA3</td>
<td>ENCODE</td>
<td>ENCSR000EWS</td>
</tr>
<tr>
<td>MCF-7</td>
<td>ChIP-Seq</td>
<td>FOXA1</td>
<td>GEO</td>
<td>GSM2137769</td>
</tr>
<tr>
<td>MCF-7</td>
<td>ChIP-Seq</td>
<td>ESR1</td>
<td>GEO</td>
<td>GSM614611</td>
</tr>
<tr>
<td>MCF-7</td>
<td>ChIP-Seq</td>
<td>H3K27ac</td>
<td>ENCODE</td>
<td>ENCSR752UOD</td>
</tr>
<tr>
<td>MCF-7</td>
<td>ChIP-Seq</td>
<td>H3K4me1</td>
<td>ENCODE</td>
<td>ENCSR493NY</td>
</tr>
<tr>
<td>MCF-7</td>
<td>ChIP-Seq</td>
<td>H3K4me3</td>
<td>ENCODE</td>
<td>ENCSR985MIB</td>
</tr>
<tr>
<td>MCF-7</td>
<td>ChIA-PET</td>
<td>CTCF</td>
<td>ENCODE</td>
<td>ENCSR000CAD</td>
</tr>
<tr>
<td>K562</td>
<td>ChIP-Seq</td>
<td>COUP-TFII</td>
<td>ENCODE</td>
<td>ENCSR000BRS</td>
</tr>
<tr>
<td>K562</td>
<td>ChIP-Seq</td>
<td>CTCF</td>
<td>ENCODE</td>
<td>ENCSR000BPJ</td>
</tr>
<tr>
<td>K562</td>
<td>ChIP-Seq</td>
<td>GATA2</td>
<td>ENCODE</td>
<td>ENCSR000BKM</td>
</tr>
<tr>
<td>K562</td>
<td>ChIP-Seq</td>
<td>H3K27ac</td>
<td>ENCODE</td>
<td>ENCSR000AKP</td>
</tr>
<tr>
<td>K562</td>
<td>ChIP-Seq</td>
<td>H3K4me1</td>
<td>ENCODE</td>
<td>ENCSR000EWC</td>
</tr>
<tr>
<td>K562</td>
<td>ChIP-Seq</td>
<td>H3K4me3</td>
<td>ENCODE</td>
<td>ENCSR668LDD</td>
</tr>
<tr>
<td>K562</td>
<td>ChIA-PET</td>
<td>CTCF</td>
<td>ENCODE</td>
<td>ENCSR000CAC</td>
</tr>
<tr>
<td>K562</td>
<td>ChIA-PET</td>
<td>H3K4me3</td>
<td>ENCODE</td>
<td>ENCSR000DFD</td>
</tr>
<tr>
<td>HepG2</td>
<td>ChIP-Seq</td>
<td>COUP-TFII</td>
<td>ENCODE</td>
<td>ENCSR000BVM</td>
</tr>
<tr>
<td>HepG2</td>
<td>ChIP-Seq</td>
<td>CTCF</td>
<td>ENCODE</td>
<td>ENCSR000BIE</td>
</tr>
<tr>
<td>HepG2</td>
<td>ChIP-Seq</td>
<td>FOXA1</td>
<td>ENCODE</td>
<td>ENCSR000BMO</td>
</tr>
<tr>
<td>HepG2</td>
<td>ChIP-Seq</td>
<td>HNF4A</td>
<td>ENCODE</td>
<td>ENCSR000BLF</td>
</tr>
<tr>
<td>HepG2</td>
<td>ChIP-Seq</td>
<td>H3K27ac</td>
<td>ENCODE</td>
<td>ENCSR000AMO</td>
</tr>
<tr>
<td>HepG2</td>
<td>ChIP-Seq</td>
<td>H3K4me1</td>
<td>ENCODE</td>
<td>ENCSR000APV</td>
</tr>
<tr>
<td>HepG2</td>
<td>ChIP-Seq</td>
<td>H3K4me3</td>
<td>ENCODE</td>
<td>ENCSR000AMP</td>
</tr>
</tbody>
</table>
3.2.2. Új generációs sekvenálási adatok elemzése

**ChIP-Seq adatok.** A ChIP-seq adatok analízise házon belül létrehozott számítógépes elemzési lépések (Barta, 2011) követésével valósult meg. Ezek a lépések nagyvonalakban a következőek. A sekvenálási leolvasások Burrows-Wheeler Alignment v0.7.17 (BWA, (H. Li & Durbin, 2009)) programmal voltak a hg19 (GRCh37) genomhoz illesztve. Majd a csúcsok predikciója Model-based Analysis for ChIP-Seq (MACS2, (Y. Zhang et al., 2008)) v2.1.1 programmal történt. Az általunk generált ERα és COUP-TFII ChIP-Seq adatok csúcs predikciója HMCan programmal (transzkripciós faktor módban) történt a DNS amplifikációk miatti torzítások kiküszöbölése végett (Ashoor et al., 2013). A műtermékek az ENCODE által elérhető lista alapján lettek kiszedve Bedtools v2.27.1 (intersectBed) programmal (Quinlan & Hall, 2010). ENCODE által elérhető ChIP-Seq adatok esetén lefedettség (RPKM) alapján sorbarendeztük a csúcsokat és a top 25%-ba eső csúcsot használtuk további elemzésekhez. A prediktált csúcsok közötti átfedések, kivonások és összevonások BedTools v2.27.1 programmal történtek. Átfedések vizsgálata diffBind R csomag használatával történt. A motívum analíziseket HOMER v4.9.1 program findMotifsGenome.pl parancsával végeztük. Szekvencia feldúsulási eloszlásokat a HOMER program annotatePeaks.pl parancsával számoltuk ki 1000-2000 bp hosszúságú régiókon, majd hőtérképen vagy hisztogramon ábrázoltuk a kapott eredményeket. A csúcsok génekhez való asszociálása szintén a HOMER program annotatePeaks.pl parancsával történt a transzkripciós strat helytől (TSS) számított ±50 kb-on belül. Génontológiai elemzést pedig a Genomic Regions Enrichment Annotations Tools (GREAT) v3.0.0 segítségével végeztük (McLean et al., 2010).

**RNA-seq adatok.** A nyers adatok humán hg19 referencia genomhoz illesztése TopHat v2.1.1 programmal történt (Trapnell et al., 2009). Az egyes génekhez tartozó leolvásosok számát a featureCounts v1.6.2 program segítségével határoztuk meg (Liao et al., 2014). A minták között különbözően expresszáló gének azonosítása R v3.5.1 alatt futó edgeR v3.22.3
programmal történt FDR 0.01 határérték beállításával (Robinson et al., 2009). A különbözően kifejeződő géneket génszett feldúsulási analízishez (GSEA) használtuk annak megállapítására, hogy milyen biológiai folyamatokkal mutatnak hasonlóságot. A génjeinket az FC, vagyis a változás mértéke alapján előre sorba rendeztük. GSEA elemzés során a „Molecular Signatures Database (MSigDB)” adatbázis ellenőrzött génszetjeihez (C2: curated gene sets) kerestünk hasonlóságot FDR<0.25 határértékkel GSEA szoftver 3-as verziójának használatával.

3.2.3. Betegekből származó adatok elemzése

Emlődaganatos betegek adatai a „The Cancer Genome Atlas” adatbázisból származnak, melyet a cBioPortal segítségével töltöttünk le (Ciriello, Gatza, Beck, Wilkerson, Perou, et al., 2015). Feldolgozott RNA-Seq-ből származó „z-score” adatokat használtunk géneszpoziós analízishez. A túlélési adatokat a betegek nagy csoportját összegyűjtő KMPlotter adatbázis adatai alapján dolgoztuk fel (Györffy et al., 2010).

3.2.4. Statisztikai számítások

A statisztikai számításokat GraphPad Prism 6-os verziójú szoftverrel végeztük. Shapiro-Wilk tesztet használtunk az adatok normalitásának eldöntéséhez (Gaussi eloszlásának ellenőrzéséhez). Két csoport közötti különbség vizsgálatához normál eloszlás esetén t-tesztet hajtottunk végre, míg nem normál eloszlás esetén Mann-Whitney tesztet. Párosított parametrikus adatok esetén párosított t-tesztet, míg nem parametrikus eloszlás esetén Wilcoxon tesztet használtunk. Több csoport közötti különbség teszteléséhez ANOVA próbát használtunk. Kaplan-Meier túlélés teszteléshez Mantel-Cox teszt volt használva. A p értékeket csillaggal jelöltük, ahol * P <0,05; ** P <0,01; *** P <0,001 és **** P <0,0001 értékek voltak szignifikánsan jelölve.
3.2.5. Vizualizáció

Az ábrák többsége GraphPad Prism 6-os verziójával vagy R v3.5.1 alatt futó ggplot2 v3.0.0 csomagjával készültek. A heatmapek elkészítéséhez Java TreeView v1.1.6 szoftvert használtunk (Saldanha, 2004). Proporcionális Venn diagramok a BioVenn program segítségével készültek (Hulsen et al., 2008).
4. EREDMÉNYEK

4.1. Kromatin immunprecipitáció karakterizálása ERα epitópot kifejező fág kontrollal

Magreceptorok által kötött DNS szabályozó elemek vizsgálatához egyik legelterjedtebb módszer a kromatin immunprecipitáció (ChIP). A kromatin immunprecipitáció komplex és több lépéses folyamat, amely több szinten kíván kontrollt és normalizációt. Az egyik legfontosabb, hogy ismerjük a kiválasztott antitestünket az alkalmazott módszerben. Kisérleteink során a Santa Cruz Biotechnology által forgalmazott ERα antitestet (sc-543X) használtunk, melyet több száz publikációban használtak a forgalmazó adatai alapján. Célunk volt, hogy ezzel a jól ismert antitesttel egy szabványosított, kontrollallonőrzizhető ChIP kísérletet állítsunk be, ezért a laborunkban kifejlesztett módszer segítségével ERα epitópot kifejező fágot hoztunk létre fág bemutatással. A fág kiválóan alkalmas fehérje és DNS közötti interakció tanukmányozásához, ugyanis a fág burok fehérje képes az általunk vizsgálni kívánt fehérje egy bizonyos rövid részletét kifejezni, míg a fágból lévő ismert egyszálú DNS szekvenciával ki tudjuk mérni a DNS-t qPCR-rel. A NEB Ph.D.™-7 random heptapeptid könyvtár segítségével több köröss ciklus után egyedi monoklonális fáglónokat hoztunk létre. Az egyedi monoklonális fágokat különböző mennyiségű ERα fágokat kombináltunk.

A klónokat külön-külön teszteltük kromatin immunprecipitációban, ahol HEK293T sejtekből származó kromatint használtunk pufferként a kromatin környezet biztosítása érdekében. HEK293T sejtek alig expresszálják ERα-t, ezért „spike-in” kontroll reakcióhoz tudtuk használni. A ChIP kísérletek során HEK293T kromatint tartalmazó oldathoz adtunk különböző mennyiségű ERα fágokat.

Először tíz monoklonális fág esetében azt teszteltük, hogy melyik klónok használhatóak ChIP reakcióhoz. Ennek során megvizsgáltuk, hogy mennyi fágot tudunk visszanyerni a teljes ChIP elücióból, illetve mennyi marad veszteségként az IP pufferben, azaz mennyi az, ami nem tudott kötödni az ERα antitestünkhoz (7. ábra A). Két olyan klónt (#4 és #9 klón)
találtunk, amelyet a vissza tudtunk nyerni a teljes folyamat után. Tovább vizsgálva ezeket a klónokat azt vizsgáltuk meg, hogy 100, 10 000 és 1 000 000 fágtalálat hozzáadva a ChIP-hez, mennyit tudunk visszanyerni az antitestünkkel. Az eredményeink azt mutatják, hogy 100 fágot használva ~60%-ot, míg ha ennél több fágot használtunk, akkor ~80%-ot tudtunk visszamerni az elücióban (7. ábra B). További kísérleteinkhez a #9-es ERα epitópot kifejező fág klónot használtuk, ennek megvisszagtuk még a reprodukálhatóságát és stabilitását.

7. ábra: Egyedi fág klónok tesztelése. A) Egyedi klónok tesztelése egy ChIP kísérlet folyamán. B) ERα #4-es és #9-es klón különböző mennyiségben való tesztelése ChIP-ben.

Megismételhetőség tesztelése során 1 000 000 és 100 000 fágot használtunk két külön ChIP kísérletben, melynek eredményeként azt láthatjuk, hogy két kísérletben a különböző mennyiségű fágok ellenére is ugyanazt az eredményt kaptuk (8. ábra A). Következőkben összehasonlítottuk a fagyasztott és frissen termelt monoklonális fágokat. Hosszabb idejű tárolás során a fágokat -20°C-on glicerolban tartjuk, és kíváncoik voltunk hogyan befolyásolja ez a fágok használatát ChIP reakcióban. Azt találtuk, hogy a fagyasztott fágok
használata során ~10%-kal csökkent az IP hatékonyság, míg a frissen termelt fágok esetében az korábbi eredményekhez hasonló IP hatékonyságot figyelhetünk meg (8. ábra B). A fág alapú rendszer előnye, hogy könnyen újranöveszthetőek baktérium törzsekben, így bármikor elérhetőek rövid időn belül.


A fág rendszer lehetővé teszi, hogy megvizsgáljuk a ChIP reakció során létrejövő epitőp veszteségeket. Eddigiek alapján azt láttuk, hogy az elúcióban lévő fágvisszanyerés ~50-60% volt, míg az IP pufferben a fágveszeség 20% körüli. A maradék veszteség a mágneses gyöngyhöz és műanyagokhoz (csövek, pipettahegyek) való kötődés miatt veszhetett el. A továbbiakban ennek figyelembevételével végeztük el a ChIP kísérleteinket. Fág kontrollal a kísérletek megkezdése előtt jól kiszűrhető az antitesteknél gyakran előforduló termelési sarzs variabilitás. Összességében ezek az eredmények azt sugallják, hogy a fágok mint „spike-in” kontrollok alkalmazhatóak a kromatin immunprecipitáció során.
4.2. COUP-TFII, mint ERα koregulátor ER-po trumpet emlődaganatban

A COUP-TF árva magreceptorral kapcsolatban már számos kutató beszámolt arról, hogy kölcsönhatásban van ERα magreceptorral (C M Klinge et al., 1997; Métivier et al., 2002), azonban genomszintű tanulmányok nem állnak rendelkezésre. Kutatásunk során a COUP-TFII szerepét vizsgáltuk meg ERα mediált szabályozásokban teljes genomszinten emlődaganat sejtekben, ehhez ERα és COUP-TFII ChIP-et követő szekvenálást alkalmaztunk ERα-po trumpet MCF-7 és T47D sejtekből. A 9. ábrán láthatóak az ER és COUP-TFII kötőhelyek néhány specifikus ERα célgénnél MCF-7 és T47D sejtekben. Az ábra alapján már látható, hogy a COUP-TFII kötőhelyek nagyrésze átfed ERα kötőhelyekkel, ezért diffBind programmal is számszerűsítettük az ERα és COUP-TFII között átfedő régiókat. Azt találtuk, hogy a COUP-TFII kötőhelyek ~90%-a fed át ERα kötőhelyekkel (10. ábra) MCF-7 sejtekben, ami azt jelzi, hogy a COUP-TFII jelentős része van jelen az ERα általi szabályozási programban. A következőkben összehasonlítottuk, hogy a COUP-TFII-vel átfedő ERα, csak ERα vagy csak COUP-TFII kötőhelyeknél található magasabb ChIP-Seq jelintenzitás. Az eredmény azt mutatja, hogy az átfedő kötőhelyeknél magasabb az ERα és COUP-TFII ChIP-seq jelintenzitás van, mint a magreceptoroknál önmagukban (10. ábra). Ugyanezeket az eredményeket meg tudtuk erősíteni T47D sejtekben is, attól függetlenül, hogy a COUP-TFII kötőhelyek száma sokkal alacsonyabb (11. ábra). Ennek az alacsony kötőhely számnak az az oka, hogy a COUP-TFII kifejeződése is alacsonyabb T47D sejtben, mint MCF-7 sejtekben. Ezek az eredmények azt sugallják, hogy a COUP-TFII szerepet játszhat az ERα általi szabályozási programban.
9. ábra: ChIP-Seq IGV képernyőkép az ERα és COUP-TFII kötőhelyekről MCF-7 és T47D emlődaganat sejtekben.

10. ábra: ERα és COUP-TFII átfedő kötőhelyek azonosítása MCF-7 sejtekben. A) Venn diagram és B) hő térkép mutatja az ERα és COUP-TFII kötőhelyek közötti átfedő régiókat. C) Hisztogramok mutatják az ERα és COUP-TFII ChIP-seq jelintenzitást az átfedő ERα és COUP-TFII és egyedi kötőhelyek körül MCF-7 sejtekben.

11. ábra: ERα és COUP-TFII átfedő kötőhelyek azonosítása T47D sejtekben. A) Venn diagram mutatja az ER és COUP-TFII kötőhelyek átfedésének számát T47D sejtekben. B) Hisztogramok mutatják az ERα és COUP-TFII ChIP-seq jelintenzitást az átfedő ERα és COUP-TFII és egyedi kötőhelyek körül T47D sejtekben.
Azért, hogy megvizsgáljuk a COUP-TFII és ERα kolokalizált régiók körül lévő aktív kromatin állapotot, különböző hiszton módosításokból származó ChiP-Seq adatot használtunk az ENCODE adatbázisból, melyeket újraelemezünk. Bizonyos hiszton módosítások jelenléte meghatározza az adott szabályozó régió jellegét. H3K27ac és/vagy H3K4me1 jelenléte főként aktív enhanszerrel, míg H3K4me3 aktív promóterrel korrelál. Megvizsgálva ezt a három hiszton módosítást COUP-TFII-el együtt kötött ERα és csak ERα kötőhelyeknél, azt találtuk, hogy COUP-TFII-el együtt kötött ERα régiók magasabb jelintenzitást mutatják azoknak a hiszton módosításoknak, amelyek aktív enhanszer jelenlétével függnek össze, mint az ERα önmagában (12. ábra). A promóter specifikus H3K4me3 intenzitásában nem látunk különbséget COUP-TFII együtt kötött vagy önmagában ERα által kötött régiók között. Ezek az eredmények arra engednek következtetni, hogy a COUP-TFII főként az aktív enhanszer elemeken található ERα általi szabályozási programban van jelen.

12. ábra: Hiszton módosítások az ERα és COUP-TFII átfedő és egyedi ERα kötőhelyek körül. Hisztogramok mutatják a H3K27ac, H4K4me3 és H3K4me1 ChIP-Seq jelintenzitásának eloszlását az ERα és COUP-TFII átfedő és egyedi ERα kötőhelyek körül.

Az ERα általi szabályozásokban számos kiemelkedő jelentőségű kofaktorokat azonosítottak már, többek között a FOXA1 és GATA3 faktorokat. Annak vizsgálatára, hogy a COUP-TFII és ERα átfedő kötőhelyeknél, csak ERα és csak COUP-TFII kötőhelyeknél milyen egyéb transzkripciós faktorok lehetnek jelen, motívumelemzést hajtottunk végre HOMER programmal. Eredményeink azt mutatják, hogy az ERα és COUP-TFII átfedő
köthelyeknél a magreceptorokra jellemző NR félhely, FOXA1 és GATA3 motívum mutat jelentős feldúsulást, ugyanezen faktorok megjelennek a csak ERα köthelyeknél, azonban itt az ERα-ra specifikus ösztrogén válaszadó elemet (ERE) láthatjuk feldúsulni (13. ábra). A COUP-TFII köthelyeknél a korábban már leírt COUP-TFII-re specifikus DR1 elem és CTCF látható. Mindebbből arra következtethetünk, hogy a COUP-TFII mellett ugyanúgy jelen vannak a FOXA1 és GATA3 kofaktorok, mint önmagában az ERα mellett.

A következő lépésben azt vizsgáltuk meg, hogy a FOXA1, GATA3 és CTCF milyen intenzitással kötődik az átfedő és egyedi régiókhoz. Ehhez MCF-7 sejtekből származó FOXA1, GATA3 és CTCF ChIP-seq adatokat töltöttük le az ENCODE adatbázisból és újraelemeztük az adatokat. ChIP-seq jelentént vizsgálatánál azt találtuk, hogy a COUP-TFII és ERα átfedő köthelyeken jelentősen nagyobb intenzitásokat figyelhetünk meg FOXA1 és GATA3 tekintetében, mint önmagukban a magreceptorknál (14. ábra). CTCF tekintetében pedig azt figyelhetjük meg, mint a motívumelemzés eredményénél, hogy önmagában a COUP-TFII köthelyeknél látható nagyobb CTCF feldúsulás. Ezek az eredmények azt sugallják, hogy a COUP-TFII mellett a FOXA1 és GATA3 is jelen van az ERα mediált transzkripciós programban.

13. ábra: Motívumelemzés az ERα és COUP-TFII átfedő és egyedi magreceptorok által kötött régiókon MCF-7 sejtekben.
14. ábra: Kofaktorok azonosítása ERα és COUP-TFII által kötött és egyedi magreceptor által kötött régiókon. A) Hő térkép mutatja a FOXA1, GATA3 és CTCF ChIP-Seq jelintenzitását a magreceptorok által kötött régiók centrumához képest ± 1kb-ra. B) Hisztogramok mutatják a kofaktorok jelintenzitását az átfedő és egyedi kötött régiók között.

4.3. COUP-TFII szerepe emlődagánat sejtek génexpressziójában

Emlődagánat sejtekben a COUP-TFII általi génexpressziós szabályozások vizsgálatához, COUP-TFII csendesített ER-POZITIV emlődagánatból származó sejtvonalakat hoztunk létre lentivirális alapú shRNS géncsendesítést alkalmazva. A géncsendesítés során COUP-TFII génjére specifikus (shCOUP) és kontrollként (shCTRL) egy nem-specifikus shRNS-t tartalmazó lentivirusokkal transzdukáltunk MCF-7 és T47D sejteket. Legalább két hetes puromycin szelekciót követően további kísérletekre készítettük elő a sejteket. A COUP-TFII géncsendesítés mértékét mRNS szinten RT-qPCR-ral ellenőriztük (15. ábra). MCF-7 sejtekben a COUP-TFII mRNS szintje ~70%-kal, míg T47D sejtekben ~90%-kal csökkent. A további kísérletekhez ezeket az RNS mintákat használtuk.

Azért, hogy teljes genom szinten megvizsgáljuk a különbözően expresszálódó géneket a
kontroll és COUP-TFII csendesített emlődaganatból származó sejtvonalakban, RNS szekvenálást hajtottunk végre. Géncsendesítést követően MCF-7 sejtekben 524 magasabban kifejeződő és 388 alacsonyabban kifejeződő gént, míg T47D sejtekben 378 magasabban kifejeződő és 624 alacsonyabban kifejeződő gént azonosítottunk FC > 1,5 és FDR<0,01 határértékkel edgeR program használatával. MCF-7 sejtekben a kapott génlistát leszűkítettük annak függvényében, hogy a változott gén promóterén, enhanszerén vagy szuper-enhanszerén található-e COUP-TFII kötőhely. T47D sejtekben az alacsony COUP-TFII kötőhelyek száma miatt ezt nem tudtuk megtenni. Így kapott MCF-7 és T47D sejtekben különbözően expresszállódó gének között 145 átfedést találtunk, melyek között olyan géneket találhatunk, mint a TFF1, HEY2, CDH1, AR, RXRA és BAMBI gének. Következőkben az MCF-7 sejtekben változó génlistánkat GSEA elemzéssel összehasonlítottuk egy adatbázisban meglévő génszettel annak vizsgálatára, hogy a mi génlistánk milyen biológiai folyamatokhoz köthetőek (16. ábra). Azt találtuk, hogy a magasabban kifejeződő génjeink olyan folyamatokhoz köthető génekhez hasonlítanak, melyeknek csökkent expressziója van tamoxifen rezisztens sejtekben, viszont ösztrogén kezelés hatására expressziójuk fokozódik. Mindez azt sugallja, hogy a változó génjeink ERα által is szabályozott gének. Az alacsonyabban kifejeződő génszettünk összehasonlításánál olyan géneket találtunk, melyek DREAM komplex célgének is, azaz fontos szerepet tölténak be a sejtciklus szabályozásában. Néhány különbözően expresszállódó gént (BAMBI, KRT15 és HEY2) RT-qPCR-rel is validáltunk, melyek megerősítik az RNS szekvenálásban kapott eredményt (17. ábra). Összességében ezek az eredmények arra engednek következtetni, hogy a COUP-TFII-nek fontos szerepe van az ERα mediált transzkripciós szabályozásokban.
15. ábra: COUP-TFII mRNS szintje a COUP-TFII génSendesítés után MCF-7 és T47D sejtekben RT-qPCR-rel mérve.

17. ábra: COUP-TFII csendesítést követően MCF-7 sejtekben különbözően expresszálódó gének mRNS szintjének validálása. A) Heatmap mutatja RNS szekvenálás alapján néhány különbözően expresszálódó gént (z-score). B) Ugyanezen génnek validálása RT-qPCR módszerrel.

4.4. COUP-TFII jelentősége emlődaganatos betegekben

COUP-TFII génexpressziójának vizsgálatához különböző alcsoportjait használtuk az emlődaganatos betegeknek azért, hogy közelebi képet kapjunk a COUP-TFII fontosságáról az egyes altípusokban. Ehhez a vizsgálathoz TCGA adatbázisba feltöltött 817 emlődaganatos beteg adatait használtuk (Ciriello G Cell 2015). A betegeket hisztológiailag invazív ductális karcinóma (IDC), invazív lobuláris karcinóma (ILC) és kevert IDC/ILC csoportra osztottuk. Ezen felül az IDC csoportban PAM50 (génexpressziós jellegzetesség alapján létrehozott alcsoportok) szerinti alcsoportokat (luminális A, luminális B, HER2 pozitív és bazális) hoztuk létre, míg az ILC és kevert csoportban nem végeztük el ezt a csoportosítást, mivel a betegek nagy része (~90%-a) luminális A alcsoporthoz tartozik. Az így kialakított hat csoportban összehasonlítottuk az ERα és COUP-TFII kifejeződésének mértékét (18. ábra A). A HER2 pozitív és bazális alcsoport ER negatív emlődaganat, így a vártak megfelelően az ERα szintje alacsony, és ugyanez figyelhető meg a COUP-TFII esetében is. Az ER-pozitív alcsoporthaban a COUP-TFII expressziója is jelentős az ERα mellett. Az eredményekből még az látható, hogy a COUP-
TFII expressziója ILC luminális A csoportban szignifikánsan (p<0,0001) magasabb, mint IDC luminális A csoportban.

Ezt követően megvizsgáltuk a betegségmentes túlélési arányt (DFS) arra alapozva, hogy a COUP-TFII-nek magas vagy alacsony az expressziója ER-pozitív és ER-negatív emlődaganatos csoportban (18. ábra B). Azt találtuk, hogy ER-pozitív csoportban a COUP-TFII magas expressziója szignifikánsan (logrank P<0,0001, Mantel-Cox teszt) jobb túléléshez járul hozzá, mint a COUP-TFII alacsony expressziója. Az ER-negatív csoportban nem láthatunk különbséget a túlélésben a két COUP-TFII expressziós szint között. Az ER-pozitív csoportot további luminális A és B alcsoportra osztva vizsgáltuk meg a túlélést. A két csoport között HER2 pozitivitásban van különbség, tehát a luminális A ER+/HER2-, míg a luminális B ER+/HER2+. Azt találtuk, hogy a COUP-TFII magas expressziójához köthető jobb túlélés csak a luminális A csoportban figyelhető meg, a luminális B csoportban nincs különbség a túlélésben a COUP-TFII expressziós szintjére vonatkozólag. Mindez arra enged következtetni, hogy a COUP-TFII-nek kulcsfontosságú szerepe van olyan ER-pozitív emlődaganatos betegek túlélésében, akik luminális A alcsopoportba (ER-pozitív, de HER2 negatív) tartoznak.
18. ábra: COUP-TFII expressziója emlődaganatos betegekben. A) Dobozdiagram mutatja az ERα és COUP-TFII génjének expresszióját különböző altípusú emlődaganatos betegekben. Mann-Whitney teszt, * jelzi a szignifikanciát P < 0,05, ** P < 0,01, *** P < 0,001, **** P < 0,0001 értéknél. B) Kaplan-Meier-féle túlélési görbék mutatják a betegségmentes túlélési százalékot (DFS) a COUP-TFII expressziójának mértéke alapján emlődaganatos betegek különböző alcsoportjaiban. Statisztika Mantel-Cox tesztel lett számítva.

4.5. COUP-TFII kötőhelyek feltérképezése különböző eredetű daganatsejtekben

A COUP-TFII kötőhelyek genomi eloszlásáról különböző daganatsejtekben keveset tudunk, ezért az emlődaganat sejtek mellett máj és leukémia eredetű daganatsejtekben vizsgáltuk meg a COUP-TFII kötődését genom szinten. A vizsgálathez az ENCODE Projekt által generált nyers ChIP-Seq adatokat használtuk, minimalizálva ezzel a különböző kisérleti és szekvenálási módszerekből eredő különbségeket. Az adatok letöltése után a biológiai replikákat összevontuk, majd a saját bioinformatikai eszközöket tervünkkel újra elemezettük őket.
19. ábra: Sejt-típus specifikus és három sejt-típusban átfedő COUP-TFII kötőhelyek


GO Biológiai Folyamatok

4.6. COUP-TFII kötőhelyekhez kötődő kofaktorok azonosítása

A COUP-TFII mellett jelenlévő kofaktorokról kevés ismeretünk van, ezért motivumelemzést hajtottunk végre a három sejt-típusban átfedő és sejt-típus specifikus COUP-TFII kötőhelyeknél (22. ábra). Az elemzésképpen a többi magreceptorphoz hasonlóan a magreceptorkra jellemző AGGTCA motivum (NR) feldúsulását figyelhetjük meg mind az átfedő és mind az egyedi sejtvonalakban. Ezen kívül azt láthatjuk még, hogy MCF-7 és HepG2 sejtekben a FOXA1 motivum, míg K562 sejtekben a GATA motivum jelenik meg jelentős mértékben. A három sejt-típusban átfedő COUP-TFII kötőhelyeknél pedig a CTCF motivum feldúsulását figyelhetjük meg.

![22. ábra: Transzkripciós faktorok motivumának feldúsulása három sejt-típusban átfedő és egyedi COUP-TFII kötőhelyeknél](image)

A motivum elemzés eredményére alapozva, arra voltunk kivánéíak, hogy a kofaktorok milyen ChIP-Seq jelintenzitással vannak jelen a három sejt-típusban átfedő és egyedi sejtekben jelenlévő COUP-TFII kötőhelyeknél. Mindemellett tekintetbe véve azt, hogy a mester transzkripciós faktorok szintén magreceptorkor, MCF-7 sejtekben az ERα, míg HepG2 sejtekben a HNF4α, amelyek képesek NR motivumhoz kötödni, így ezen faktorok intenzitását
is megvizsgáltuk. K562 sejtekben a mester transzkripciós faktor a GATA2. Mester transzkripciós faktor alatt itt olyan fehérjéket értünk, amelyek magas expressziós szintet mutatnak az adott sejtben, és olyan géneket szabályoznak, melyek sejt-típus specifikus szabályozásért felelősek, fenntartva így a sejtre jellemző fenotípust (Sunny Sun-Kin Chan 2013). Az eltérő ChIP-Seq kísérletekből származó különbségek kiküszöböléséhez a kapott jelet az adott kísérlet mediánjára normalizáltuk. Azt találtuk, hogy a COUP-TFII kötőhelyek többségénél megfigyelhetőek a mester transzkripciós faktorok, FOXA1 és CTCF is. Továbbá azt láthatjuk, hogy a három sejt-típusban közös COUP-TFII kötőhelyeknél a CTCF szignál nagyobb, mint a sejt-típus specifikus COUP-TFII kötőhelyeknél, míg a sejt-típus specifikus COUP-TFII kötőhelyeknél inkább a mester transzkripciós faktorok jelintenzitása a jelentősebb (23. ábra). Ezek az eredmények arra engedhetőek következtetni, hogy a sejt-típus specifikus COUP-TFII kötőhelyeket a mester transzkripciós faktorok, míg a három sejt-típusban átfedő COUP-TFII kötőhelyeket a CTCF jelenléte határozza meg.
4.7. COUP-TFII kötőhelyek a sejt-típus specifikus szabályozásban

A COUP-TFII kromatin környezetének vizsgálatához először megnéztük, hogy a COUP-TFII milyen arányban van jelen az adott sejtre jellemző mester transzkripciós faktor és CTCF mellett a különböző sejtekben. Ehhez a vizsgálathoz `diffBind` analízist használtunk, melynek eredményeképpen azt kaptuk, hogy a mester transzkripciós faktorok több mint fele átfed COUP-TFII kötőhelyekkel egy-egy sejtvonalon belül, illetve a CTCF több átfedést mutat COUP-TFII-vel, mint a mester transzkripciós faktorokkal (24. ábra). Mindez azt sugallja, hogy a COUP-TFII részt vesz két különböző funkciójú transzkripciós faktor szabályozásában.

Továbbiakban azt is megvizsgáltuk, hogy a három sejt-típusban átfedő és sejt-típus specifikus COUP-TFII kötőhelyek milyen arányú átfedést mutatnak CTCF-el és mester transzkripciós faktorról. Azt találtuk, hogy a sejt-típus specifikus COUP-TFII kötőhelyek főként mester transzkripciós faktorokkal, míg három sejt-típusban átfedő COUP-TFII kötőhelyek CTCF-el mutatnak nagyobb mértékű átfedést. Mindez megerősíti korábbi eredményünket, hogy a COUP-TFII sejt-típus specifikus kötőesemények az adott sejt mester transzkripciós faktorához, illetve a három sejt-típusban közös COUP-TFII kötőesemények főként CTCF-hez köthetőek.

A sejt-típus specifikus szabályozás meghatározó DNS elemei az aktív enhanszer és promóter régiók, melyek jól jellemezhetőek különböző hiszton módosítások jelenlétével. Az aktív enhanszerek H3K4me1 és H3K27ac, illetve az aktív promóterek pedig H3K4me3 és H3K27ac hiszton módosítások magas jelenlétével korrelálóak. Erre alapozva megvizsgáltuk, hogy a COUP-TFII kötőhelyeknél önmagukban, mester transzkripciós faktorral, illetve CTCF-el milyen hiszton módosításokkal korrelál. Azt találtuk, hogy a COUP-TFII mester transzkripciós faktorral inkább aktív enhanszer elemeknél, míg önmagában vagy CTCF-el aktív promóter régióban találhatóak (25. ábra). Összességében ezek az adatok további megerősítéssel szolgálnak arra, hogy a COUP-TFII mester transzkripciós faktorral együtt
aktív enhanszer elemeken keresztül jelen van sejt-típus specifikus szabályozásban.

24. ábra: COUP-TFII köthelyek átfedése mester transzkripciós faktorral és CTCF-el. Venn diagramok mutatják az átfedéseket COUP-TFII, CTCF és mester transzkripciós faktor között különböző sejtekben, míg az oszlop diagramok mutatják az átfedések százalékos arányát az alapján, hogy a COUP-TFII egyedi vagy három sejt-típusban átfedő.
4.8. A VEGFA gén szabályozása COUP-TFII által

Korábbi tanulmányok arról számoltak be, hogy a COUP-TFII fontos szerepet játszik az angiogenezisben (Fu et al., 2018; Fred A. Pereira et al., 1999; Qin, Chen, Xie, et al., 2010; Qin, Chen, Yu-Lee, et al., 2010). Így megvizsgáltuk, hogy az angiogenezisben szerepet játszó génekhez köthető-e három sejt-típusban átfedő COUP-TFII köthőhely. Azt találtuk, hogy tizenegy olyan gén van (ANG, ANGPTL4, CTSB, MDK, NRAS, PECAM1, PTAFR, PTGS1, TGFBR3, VEGFA és ZNF444), amely angiogeneziszel és három sejt-típusban átfedő COUP-TFII köthőhellyel asszociál (26. ábra). Ezek közül az angiogenezis egyik fő szabályozóját (Sender DR, 1993), a vaszkuláris endoteliális növekedési faktor A (VEGFA) génjének COUP-TFII általi szabályozására voltunk kíváncsiak. ChIP-Seq adatok alapján azt láthattuk, hogy COUP-TFII köthőhelyek találhatóak a VEGFA gén promóterén és disztagális szabályozó elemeinél MCF-7, HepG2 és K562 sejtekben (27. ábra). A három sejt-típusban a COUP-TFII kötés mintázata eltérő, de számos olyan régiót is megfigyelhetünk ahol ezek a kötések átfednek egymással, illetve CTCF-el is. ChIA-PET adatok alapján következtetünk kromatin interakciók jelenlétére. A ChIA-PET kombinációja a ChIP és 3C kísérleteknek. A ChIP módszerével meghatározzuk a transzkripciós faktor köthőhelyeit vagy a hiszton módosítások jelenlétét, míg a 3C a kromatin interakciókat képes azonosítani. CTCF ChIA-PET adatokból a CTCF által kialakított kromatin interakciókat láthatjuk. CTCF ChIA-PET adatok (ENCODE adatbázisban elérhető MCF-7 és K562 sejtekből) azt mutatják, hogy a VEGFA gén promóterétől +45, -69, -183 és -305 kilobázisra olyan COUP-TFII és CTCF köttött régiók vannak, melyek kromatin interakcióban vesznek részt a VEGFA promóterével. Mindez megerősíti, hogy a több sejt-típusban átfedő COUP-TFII CTCF-el ko-lokalizál, és interakcióban vesz részt a promóter és enhanszer régiók között. K562 sejtekből származó H3K4me3 ChIA-PET adatból pedig azt láthattuk, hogy a COUP-TFII és CTCF által köttött régiók H3K4me3 által jelölt interakcióival is átfednek.

27. ábra: COUP-TFII és CTCF köthelyek, illetve kromatin hurkok a VEGFA gén körül. A) H3K4me3 által alkotott kromatin hurkok ChIA-PET alapján K562 sejtekben. B) COUP-TFII és CTCF köthelyek MCF-7, HepG2 és K562 sejtekben illetve CTCF ChIA-PET által meghatározott kromatin hurkok MCF-7 és K562 sejtekben.
Ez megerősíti a korábbi eredményünket, miszerint a COUP-TFII és CTCF kolokalizált régiók főként a promóter specifikus H3K4me3 jelenlétével korrelálnak. H3K4me3 jelölt interakciók jelenléte ezeken az enhanszer régiókon feltételezi a VEGFA gén promóterével történő fizikai interakciót. Így COUP-TFII és CTCF ko-lokalizált távoli enhanszerek közvetlenül befolyásolhatják a VEGFA gén kifejeződését.


28. ábra: VEGFA gén kifejeződése COUP-TFII csendesítés után. VEGFA mRNS szintje RT-qPCR módszerrel mérve COUP-TFII csendesített MCF-7 sejtekben.

4.9. COUP-TFII expressziójának hatása különböző daganatos betegek túlélésére

Előzőekben leírtuk, hogy a COUP-TFII magas szintje jobb túlélessel korrelál ER-poizitív emlődaganatos betegekben. Ennek kapcsán megvizsgáltuk, hogy a májdaganatban és leukémiában szenvedő betegek túlélését hogyan befolyásolja a COUP-TFII expressziója. KMplotter adatbázist használva leukémiára vonatkozólag nincsenek adatok, viszont
májdaganatra és egyéb daganattípusra (tűdődaganat, gyomordaganat és petefészekdaganat) találhatunk adatokat. Ezen adatokból azt láthatjuk, hogy májdaganatban, tűdődaganatban, petefészekdaganatban és gyomordaganatban is ugyanazt tapasztalhatjuk, mint az emlődaganat esetén, még pedig, hogy a COUP-TFII magas expressziója jobb betegségmentes túléssel függ össze (29. ábra). Mindez arra enged következtetni, hogy a COUP-TFII magas expressziója jobb túlélest és prognózist mutat különböző daganatos megbetegedésekben, és mint magreceptor lehetséges terápiás célpontként szolgálhat egy megfelelő liganddal.

29. ábra: Kaplan-Meier elemzés különböző daganattípusban a COUP-TFII expressziós szintjére alapozva. Májdaganatra vonatkozó információk RNS szekvenálási adatokból származnak (Menyhárt et al., 2018), míg a többi esetén microarray adatokból (Gyorffy et al., 2012, 2013; Szász et al., 2016).
5. MEGBESZÉLÉS

A COUP-TFII a szteroid/tiroid magreceptor család tagja, mely fontos szerepet játszik különböző fejlődési folyamatokban. Számos tanulmány beszámolt arról, hogy szerepet játszik daganatos folyamatokban, azonban a COUP-TFII mediált transzkripciós szabályozásról teljes genomban keveset tudunk daganatsejtekben (Boudot et al., 2011; Qin et al., 2014; M. Xu et al., 2015). Technológiák fejlődésének köszönhetően teljes genomban vizsgálhatjuk meg a kötőhelyeket és a génexpressziót, ami hozzájárul a magreceptorok molekuláris mechanizmusának jobb megértéséhez. Ilyen technológiai fejlesztések egyike a kromatin immunprecipitációt követő szekvenálás (ChIP-Seq), amely manapság a széles körben elterjedt módszerek egyike transzkripciós faktorok és kromatin módosítások tanulmányozásában. Az ENCODE Projekt konzorciuma által különböző laboratóriumokban eddig 9018 ChIP-Seq adat lett generálva ChIP-Seq kísérleti irányelvek alapján (Landt et al., 2012). Mindezek ellenére a ChIP komplexitása és standardizáció hiánya miatt klinikai alkalmazása limitált, és a sejtvonalakon végzett kísérletek sem teljes mértékben tükrözik az in vivo folyamatokat (O’Neill et al., 2006). Ezek a limitációk számos technikai aspektusból származnak. Ezek közé tartozik a sejttípus, a magas kezdeti sejtszám (10^5-10^8 tartományban), vizsgálni kívánt fehérje, fixáció és kromatin fragment optimalizáció, továbbá replikák és kontrollok használata (Kidder et al., 2011; Meyer & Liu, 2014; Park, 2009). Megfelelő affinitású és specifitású antitest használata elengedhetetlen részét képezi a megfelelő immunprecipitációknak (Goens et al., 2009; Peach et al., 2012). Munkánk során olyan fág alapú rendszert hoztunk létre, mely kontrollként használható ChIP folyamata során az ERα antitest specifikusságának nyomonkövetéséhez. Ez az ERα antitest széles körben, és több száz publikációban használt antitest, azonban sajnálatos módon már nincs forgalomban. A fág külső burka az ERα fehérje epitópját utánozza (mimitóp), míg a belsejében lévő egyszálú DNS lehetővé teszi a PCR reakcióban való detektálhatóságát. Ehhez fág bemutatással poliklonális ERα fágot termeltünk,
majd egy több körös szelekció után monoklonális egyedeket hoztunk létre. A monoklonális ERα fágot ezután ChIP folyamata során teszteltük. Megvizsgáltuk az epitóp veszteségeket ChIP különböző lépéseiben, az ERα fág stabilitását és reprodukálhatóságát. Eredményeink egy könnyen kezelhető, reprodukálható kontrollrendszert kínálnak az antitest karakterizációjához a ChIP folyamata során. Rendszerünk limitációja abban rejlik, hogy ennek a fágnak egyszálú cirkuláris DNS-e van, így nem alkalmas könyvtárkészítéshez és újgenerációs szekvenáláshoz. Hasonló úgynevezett „spike-in” kontrollokról már beszámoltak a ChIP kísérletek különbözőségeinek kiküszöbölésére, azonban kevésbé elterjedtek (Bonhoure et al., 2014; Egan et al., 2016; Grzybowski et al., 2015; Orlando et al., 2014). Ezek többségének lényege, hogy az adott fajból származó kromatinhoz (ember) eltérő fajból származó kromatint (ecetmuslica vagy egér) adnak, majd így végzik el a teljes ChIP-Seq kísérletet hiszton módosítás vagy RNS polimeráz ellenes antitesttel. Adrian T. Grzybowski és munkatársai pedig olyan félszintetikus H3K4me3 hiszton módosítást tartalmazó nukleoszómát hoztak létre, melyeknek meghatározott koncentrációját egyedi DNS kóddal jelöltek, így kapott kalibrációs görbe alapján hiszton módosítási sűrűséget számoltak a minták közötti különbség kiküszöbölésére. Mindezek mellett elmondható, hogy a fág bemutatás széles körben használt, azonban mi először írjuk le kontrollként való használatát a ChIP minőség ellenőrzéséhez. Reméljük, hogy ez a fajta minőségellenőrzés a tudományos közösség széles körében válik ismertté.

Az ERα kulcsfontosságú magreceptor az emlődaganatban, mivel jelenléte jobb prognózissal korrelál, és fontos célpontja az endokrin terápiának. Mindezek ellenére a betegek gyakran rezisztenssé válnak erre kezelésre, ami a betegség kiújulásához vezet. Ezen események megértéséhez meg kell ismernünk az ERα általi szabályozási mechanizmusokat, melyhez hozzátartoznak az ERα koregulátorok működésének ismerete is. Ezek a koregulátorok olyan fehérjék, melyek híd létrehozásának szerepét vagy segítőként működnek ahhoz, hogy
egy olyan nagy transzkripciós komplexet képezzenek, melyek a célégének aktivitását fogják befolyásolni (Manavathi et al., 2014). Tanulmányunk során a COUP-TFII árva magreceptort, mint ERα koregulátort azonosítottuk. Emlődaganat eredetű MCF-7 és T47D sejtekből ERα és COUP-TFII ChIP-Seq adatok alapján azt találtuk, hogy a COUP-TFII közel 90%-a mutat átfedést ERα kötőhelyekkel és a ChIP-Seq jelintenzitás is nagyobb a közös kötőhelyeknél, mint önmagukban ezeknél a faktoroknál. Továbbá a közös kötőhelyek aktív enhanszerre specifikus hiszton módosításokkal (H3K27ac és H3K4me1) korrelálnak. Mindez arra enged következtetni, hogy a COUP-TFII az ERα-val transzkripcionálisan aktív helyekhez kötődik.

Megvizsgálva a közös kötőhelyek szekvenciáit, olyan motívumok feldúsulását sikerült azonosítanunk, mint a magreceptorokra specifikus NR félhely, FOXA1 és GATA3. Ugyanezek voltak láthatóak olyan ERα kötőhelyeknél, ahol COUP-TFII nem kötődött. Csak COUP-TFII kötőhelyeknél pedig a COUP-TFII-re specifikus DR1 és CTCF motívum figyelhető meg. Egyedi és közös ERα és COUP-TFII kötőhelyeknél megvizsgálva a FOXA1, GATA3 és CTCF ChIP-Seq jelintenzitását azt kaptuk, hogy a közös kötőhelyeknél a FOXA1 és GATA3 jelintenzitása jóval magasabb, mint az egyedi kötőhelyeknél. CTCF ChIP-Seq jelintenzitása pedig az egyedi COUP-TFII kötőhelyekre jellemző. Mindez azt feltételezi, hogy a COUP-TFII része egy olyan transzkripcionálisan aktív komplexnek, ahol az ERα mellett FOXA1 és GATA3 is jelen van. Ezt egy nemrégiben megjelent tanulmány is megerősíti (Jiang et al., 2019). Korábban már több tanulmány is beszámolt arról, hogy az ERα mediált komplexben egyéb magreceptorok is jelen lehetnek. Micheal G. Rosenfeld és munkatársai azonosították, hogy az ERα MegaTransz komplexekben ligand-függő módon egyéb magreceptorok is kötődnek az ERα-hoz fehérje-fehérje (transz) kölcsönhatás révén. Például ösztrogén kezelés hatására az ERα-hoz transz módon a RARα vagy RARγ kötődik (Z. Liu et al., 2014), míg ha ösztrogén mellé dexametazon, egy glükokortikoid receptor (GR) agonistát is adunk, akkor a RAR szumoilált GR-ra cserélődik (Yang et al., 2017). Szumoilált GR
korepresszor komplexet fog kötni, így gátolva az ERα függő génkifejezódést és Enhanszer aktivitást. Egyéb tanulmányok is leírták az ERα-RARα (Ross-Innes et al., 2010) és ERα-GR (Karmakar et al., 2013; Miranda et al., 2013; Tonsing-Carter et al., 2019; West et al., 2016) interakciókat emlődaganatban, továbbá olyan egyéb magreceptorok is, mint a PR, AR és LRH-1, képesek interakcióba lépni az ERα-val (Severson et al., 2018; Siersbæk et al., 2018; Truong & Lange, 2018). Itt mi teljes genom szinten számoltunk be COUP-TFI és ERα közötti kapcsolatról. Korábbi tanulmány kimutatta, hogy a COUP-TF képes az ERE-hez kötödni, gátolva ezzel az E2 indukált gén kifejezódést (Caroly M. Klinge, 1999). Egy másik tanulmányban pedig arról számoltak be, hogy a COUP-TFI mind a DBD és LBD doménjével interakcióban képes lépni az ERα-val, így befolyásolja az ERα N-terminális végének (118-as szerin) foszforilációját, amely az ERα transzkripcionális aktivitását erősíti (Métiévier et al., 2002). A COUP-TFI-ERα komplex által az ERK2/p42MAPK kötődése is megnő a komplexben. Mivel nagyfokú homológia figyelhető meg a COUP-TFI és COUP-TFII között, így elképzelhető egy hasonló mechanizmus a COUP-TFII és ERα között is. Többek között azért is, mert a MAPK növeli a COUP-TFII expresszióját emlődaganat sejtekben (Moré et al., 2003). A COUP-TFII esetében egy másik magreceptorral, a GR-rel való interakciójáról számoltak be, ahol azt mutatják, hogy a COUP-TFII a DBD doménjén keresztül képes kötödni a GR híd régiójához (De Martino et al., 2004). A COUP-TFII és ERα egy komplexben való kapcsolatát Mohammed tanulmánya erősíti meg, ahol a 108 ERα asszociált fehére között a COUP-TFII is megtalálható (Mohammed et al., 2013). Összességében azt mondhatjuk, hogy mindezek a magreceptor-magreceptor kölcsönhatás jelenlétét erősítik a COUP-TFII és ERα között emlődaganat sejtekben. Egy másik lehetséges mechanizmus pedig, hogy a COUP-TFII kötődik az ERE-ekhez, kiszorítva, így az ERα-t és befolyásolva a célégének kifejezódését. ChIP-Seq módszer esetén a nagy sejt szám miatt nehéz elkülöníteni, hogy éppen milyen magreceptor kötődhet az adott NR motívumhoz.

68
Választ keresve arra kérdésre, hogy milyen gének kifejeződését befolyásolja a COUP-TFII, COUP-TFII csendesített ER-pozitív emlődaganat sejtekben vizsgáltuk meg a transzkriptom változását. Eredményeink azt mutatják, hogy a csendesítést követően főként olyan gének fejeződtek ki magasabban, amelyeknek endokrin rezisztenciában van szerepük, és ugyanakkor ezeknek a géneknek az expressziója emelkedett E2 kezelés hatására is (Creighton et al., 2008; Massarweh et al., 2008). A COUP-TFII csendesítés hatására alacsonyabban kifejeződő gének pedig olyan génszettekhez köthetőek, melyek a DREAM (DP, RB-like, E2F4 and MuvB) komplexnek is célgénjei, azaz fontos szerepet töltnek be a sejtciklus szabályozásban (Fischer et al., 2016). Guojuan Jiang és kollégái is azt találták, hogy a COUP-TFII csendesítés hatására sejtciklusban szerepet játszó gének expressziója változik meg (Jiang et al., 2019). Továbbá Harikrishna Nakshatri és kollégái arról számoltak be, hogy a COUP-TFII fontos szerepet tölt be a sejtciklus szabályozásában bizonyos emlődaganat sejtekben azáltal, hogy késlelteti a késői S és G2/M fázis közötti átmenetet cdk2 és ciklin D1 szabályozásán keresztül (Nakshatri et al., 2000). Mindezen eredmények azt mutatják, hogy a COUP-TFII-nek fontos szerepe van olyan gének szabályozásában, melyek meghatározóak a sejt életét.

Következőkben azt vizsgáltuk meg, hogy a COUP-TFII expressziója hogyan változik emlődaganatos betegekben. Ehhez 817 betegből származó TCGA által feldolgozott RNS szekvenálási adatot használtuk (Ciriello, Gatza, Beck, Wilkerson, Zmuda, et al., 2015). Azt találtuk, hogy a COUP-TFII expressziója ER-pozitív emlődaganatos betegekben magasabb, mint az ER-negatív betegekben. Néhány korábbi tanulmány is hasonló eredményre jutott azaz, hogy a COUP-TFII expressziója ER-pozitív státusszal korrelál (Litchfield et al., 2012; Nagasaki et al., 2009; C. Zhang et al., 2014). A COUP-TFII expressziójának a túlélésre gyakorolt hatásával kapcsolatban ezek a tanulmányok eltérő eredményeket írtak le. Shuji Nagasaki és kollégái rosszabb túlélést és klinikai kimenetet írtak le, Lacey Litchfield és
kollégái nem találtak különbséget, míg Cheng Zhang és munkacsoportja azt találták, hogy magas COUP-TFII expresszió jobb túlélést mutat. Ennek tisztázására, mi is megvizsgáltuk a túlélési adatokat a KMPlotter adatbázis segítségével, mely 1809 emlődaganatos betegből származó microarray adatot gyűjt össze (Györffy et al., 2010). Először az ER-pozitív és negatív betegekben hasonlítottuk össze a betegségmentes túlélést (DFS) a COUP-TFII expressziós szintje alapján. Az ER-negatív betegekben nem találtunk különbséget, csak az ER-pozitív betegekben, ez utóbbi csoportot tovább bontva luminális A és B alcsoporthoz, azt találtuk, hogy a HER2-negatív luminális A csoportban a magasabb COUP-TFII expressziós szint jobb túléléssel korrelál, mint az alacsony COUP-TFII expressziós szint. Luminális B csoportban, mely HER2 pozitivitással is rendelkezik, nem volt különbség a két expressziós szint között a túlélésre vonatkozólag. A legmagasabb COUP-TFII expressziót invazív lobuláris karcinóma (ILC) luminális A típusos rendelkező csoportban találtuk. Az ILC luminális A csoport nagyrésze ERα pozitív, így az IDC betegekhez hasonlóan endokrin terápiát alkalmaznak, ennek ellenére az ILC betegek rosszabb prognózist mutatnak (Du et al., 2018). ILC betegek egy része emelkedett ERK szignálút vonali aktivitást mutat. (Ciriello, Gatza, Beck, Wilker, Zmuda, et al., 2015). Emelkedett ERK1/2 pedig emelkedett COUP-TFII fehérje jelenlétével korrelál (Moré et al., 2003). Összességében azt mondhatjuk, hogy jelen tanulmányunkban, először mi számolunk be arról, hogy milyen jelentősége van a COUP-TFII-nek a különböző emlődaganatos betegekre vonatkozólag, kiemelve a luminális A alcsoportot.

A következőkben további daganatsejtekben vizsgáltuk meg a COUP-TFII cisztromját, melyhez ENCODE által generált COUP-TFII ChIP-Seq adatokat elemeztünk újra MCF-7 (emlődaganat eredetű), HepG2 (májdaganat eredetű) és K562 (leukémia eredetű) sejtekből. A három kísérlet ugyanabban a laborban lett végezve az ENCODE irányelvei alapján, így akartuk csökkenteni az eltérő kísérleti körülményekből származó eltéréseket. További
emberből származó COUP-TFII ChIP-Seq adatok ganglionléc (neural crest) sejtekből (Rada-Iglesias et al., 2012), endometrium stroma sejtekből (X. Li et al., 2013) és indukált pluripotens összejt eredetű kardiomiocita sejtekből érhetőek el (Churko et al., 2018). Megvizsgálva az általunk választott három különböző eredetű sejtben a COUP-TFII cisztromját, azt találtuk, hogy a COUP-TFII sejt-típus specifikus kötőhely eloszlást mutat a genomban, csak kevés hanyada fed át a három sejt között. A három sejt-típus között átfedő COUP-TFII mellett CTCF kötődést figyelhetünk meg főként aktív promóter régióban. Közvetlen interakcióról a COUP-TFII és CTCF között még nem számoltak be, de vannak olyan eredmények, melyek utalnak arra, hogy jelen lehetnek egy complexben (Fournier et al., 2016; Ku et al., 2009). A sejt-típus specifikus COUP-TFII pedig az adott sejtre jellemző mester transzkripciós faktor közel felével mutat átfedést, és ezek a helyek aktív enhanszerrel specifikus hisztgon módosításokkal (H3K27ac és H3K4me1) korrelálnak (30. ábra). A mester transzkripciós faktorok felelősek olyan gének szabályozásáért, melyek meghatározzák az adott sejt-típusra jellemző folyamatokat (D. X. Zhang & Glass, 2013). MCF-7 sejteken az ERα-val mutat átfedést a COUP-TFII, melyek a fentebb leírt eredményeinket erősíti meg különböző adatok használatával. HepG2 sejtekben HNF4α magreceptor a mester transzkripciós faktor (Odom et al., 2004), melynek fele átfed COUP-TFII kötőhelyekkel is. Eleni Ktistaki és Iannis Talianidis tanulmányukban egy olyan fehérje-fehérje interakciót mutatnak be a HNF4α és COUP-TFII között, amely bizonyos gének aktivációját fokozza (Ktistaki & Talianidis, 1997). A kötődést in vitro és in vivo körülmények között is megerősítették. A COUP-TFII kapcsolata HNF4α 227-271 aminosav közötti részével jön létre, és szükséges az AF2 régió (337-368 aminosav közötti régió) sértetlensége is. Egyéb tanulmányok azt mutatják, hogy a HNF4α és COUP-TFII is DR1-szerű elemeket képes felismerni, így versengye egymás kötőhelyéért (Fang et al., 2012; Ladias & Karathanasis, 1991; Mietus-Snyder et al., 1992). Eredményeink azt mutatják, hogy nemcsak olyan mester
transzkripciós faktorral fed át a COUP-TFII, amelyek magreceptorok is, hanem K562 sejtekben a GATA2 faktorral is. GATA2 mester regulátora az eritroid eredetű sejteknek (Harigae et al., 2006; Weiss & Orkin, 1995). Egy korábbi tanulmányban leírtak egy fizikai interakciót a COUP-TFII és GATA faktorok között preadipocita sejtekben (Z. Xu et al., 2008). Ehhez az interakcióhoz szükség van a GATA két cinkujj doménjére és az azt követő 39 aminosavra. Ugyanakkor nemcsak a mi tanulmányunkban figyelhető meg, hogy a COUP-TFII a mester transzkripciós faktorral képes együttkötődni. Alvaro Rada-Iglesias és munkatársai azt találták, hogy ganglionléc sejtek fő regulátora, az AP2α (TFAP2A) mellett aktív enhanszereken a COUP-TFII is jelen van (Rada-Iglesias et al., 2012), egy másik tanulmányban pedig a szív fejlődésében kulcs szerepet játszó TBX5 fehérje mellett a COUP-TFII is fontos szerepet játszik kardio-specifikus gének szabályozásában (Churko et al., 2018).

Eredményeink azt is mutatják, hogy a COUP-TFII a mester transzkripciós faktorokkal aktív enhanszer régiókkal fednek, ezek a régiók pedig sej-típus specifikus szabályozás meghatározó elemei (Hon et al., 2009). Összességében azt mondhatjuk, hogy ezekkel az eredményekkel egy új szerepet mutatjuk be a COUP-TFII magreceptornak, ami a sejt-típus specifikus szabályozásban való részvételét jelenti.

30. ábra: COUP-TFII általi sejt-típus és sejt-típus független szabályozások sematikus ábrázolása
Mivel számos tanulmány beszámolt arról, hogy a COUP-TFII magreceptornak szerepe van az angiogenezisben (Fu et al., 2018; F A Pereira et al., 2000; Qin, Chen, Xie, et al., 2010), így megvizsgáltuk, hogy az angiogenezisben szerepet játszó gének közelében megfigyelhetünk-e sejt-típustól független COUP-TFII kötőhelyet. Tizenegy olyan angiogenezishez kapcsolódó gént találtunk, amelyhez három sejt-típusban átfedő COUP-TFII kötőhely köthető. Ezek között megtalálható az angiogenezis fő mediátora a VEGFA génje.

Közelebbről megvizsgálva ezt a gént azt találtuk, hogy a három különböző eredetű sejt mindegyikében COUP-TFII és CTCF kötött promóter és távoli enhanszer régiók láthatók. CTCF ChIA-PET adatok azt mutatják, hogy ezek a távoli enhanszer régiók és a promóter között CTCF-mediált kromatin interakciók vannak. Mindez azt feltételezi, hogy az enhanszer régiók fizikai kapcsolatban vannak a VEGFA gén promóterével, befolyásolva így a gén kifejeződését. Korábbi tanulmányok azt mutatják, hogy a VEGFA különböző szabályozó elemek például ösztrogén válaszadó elem, SMAD kötő elem, hipoxia válaszadó elem és Wnt/β-katenin válaszadó elem által szabályozódnak. Itt mi VEGFA génjéhez köthető COUP-TFII kötőhelyekkel rendelkező szabályozó elemekről számolunk be három különböző eredetű sejtben. Annak érdekében, hogy kiderítsük, milyen módon befolyásolja a COUP-TFII a VEGFA gént, COUP-TFII csendesített MCF-7 sejtekben vizsgáltuk meg a VEGFA kifejeződését. Azt találtuk, hogy a VEGFA gén kifejeződése megnőtt a COUP-TFII csendesített sejtekben, ami arra utal, hogy a COUP-TFII gátló hatással van a VEGFA expressziójára. Korábbi tanulmányok azt mutatják, hogy magas VEGFA jelenléte rossz prognózissal, metasztázissal és rossz túléléssel asszociál emlődaganatos betegekben (Ghosh et al., 2008; Sa-Nguanraksa & O-Charoenrat, 2012). Mindez azt sugallja, hogy a COUP-TFII magreceptornak tumor ellenes szerepe van.

Emlődaganaton kívül egyéb olyan daganattípusokban, mint májdaganatban, tüdődaganatban, petefészekdaganatban és gyomordaganatban is megvizsgáltuk a COUP-TFII
expressziójának hatását a betegek betegségmentes túlélésére (DFS) vonatkozólag. Minden esetben azt találtuk, hogy a COUP-TFII magas expressziója jobb túléléssel korrelál, mint az alacsony COUP-TFII expresszió. Weiji Ding és kollégái tanulmányában megerősíti a kapott eredményünket gyomordaganatban (Ding et al., 2018). Az általunk vizsgált daganattípusokban nincsenek egyéb túlélésre vonatkozó összehasonlítható eredmények. Összességében ezek az eredmények tovább erősítik a COUP-TFII jelenlétének jótékony hatását tumoros sejtekben, betegekben.

Az eredményeink összességében betekintést engednek a COUP-TFII általi szabályozási mechanizmusokba különböző daganatsejtekben. COUP-TFII, mint a mester transzkripciós faktorok koregulátora fontos szerepet tölt be a sejt-típus specifikus szabályozásában. A COUP-TFII képes bizonyos mester transzkripciós faktorokkal fehérje-fehérje kölcsönhatásban részt venni, ezzel befolyásolva az adott mester transzkripciós faktor működését vagy képes elfoglalni a mester transzkripciós faktorok DNS felismerő szekvenciáját hatást gyakorolva ezzel az adott gén kifejeződésére. ER-pozitív emlődaganatban részt vesz az endokrin terápiára rezisztens gének és sejtciklust meghatározó gének szabályozásban. Különböző daganatos megbetegedésekben (emlő-, tüdő-, máj, petefészek és gyomordaganat) magas expressziós szintje hozzájárul jobb túléléshez és kimenethez. A COUP-TFII mint magreceptor akár fontos terápiás célpontként vagy biomarkerként is szolgálhat a daganatos megbetegedések.
Az értekezés új megállapításai:

- Létrehoztunk egy fágbemutatáson alapuló kontroll rendszert ERα vizsgálatához használt kromatin immunprecipitációs (ChIP) kísérletekhez. Az alkalmazott módszer alapján számos antitest alkalmazhatóságát meg tudjuk vizsgálni ChIP-qPCR kísérletekben.

- Az ERα egy kulcsfontosságú magreceptor az emlődaganatban, így az ERα-mediált szabályozások megértése nagy jelentőséggel bírnak a betegség kimenetelét illetőleg. Munkánk során a COUP-TFII árva magreceptor jelentőségét vizsgáltuk meg ER-poジティヴ emlődaganatban. Genomszintű vizsgálataink ER-poジティブ emlődaganat sejtekből azt mutatják, hogy a COUP-TFII kötőhelyek 90%-a fed át ERα általi kötőeseményekkel. Továbbá a COUP-TFII olyan transzkripcionálisan aktív ERα kötőhelyeken található meg, ahol ismert ERα koregulátorok, a FOXA1 és a GATA3 faktorok is megtalálhatóak.

- COUP-TFII csendesített ER-poジティブ emlődaganat sejtek transzkriptóm profilozásával kimutattuk, hogy COUP-TFII olyan géneket szabályoz, amely ERα által is szabályozottak. Mindez megerősíti, hogy a COUP-TFII, mint ERα koregulátor fontos szerepet játszik az ERα-mediált szabályozásokban.

- Különböző eredetű daganatsejtekben (emlő-, májdaganat és leukémia) a COUP-TFII cisztromjának feltérképezése során kimutattuk, hogy a COUP-TFII az egyedi sejt-típusra jellemző mester transzkripciós faktorral olyan aktív enhanszer elemeken található, amely hozzájárul a sejt-típus specifikus gének szabályozásához.

- Különböző eredetű sejtekben átfedő COUP-TFII kötőhelyek meghatározó faktorra a kromatin interakciókban szerepet játszó CTCF. Ezen kötőhelyek egyik potenciális célpontjaként az angiogenezis fő mediátorát, a VEGFA gént azonosítottuk.

- Különböző eredetű (máj, tüdő, gyomor és petefészek) daganatos betegek túlélésének vizsgálata során azt találtuk, hogy a COUP-TFII magas szintje jobb túléléssel korrelál, mint az alacsony COUP-TFII expressziós szint.
6. ÖSSZEFoglalás

7. SUMMARY

Nuclear receptors, as ligand-activated transcription factors, can influence directly the gene expression. Changes in gene expression are a hallmark of cancer. Genome-wide studies make it possible to study the transcriptional program by nuclear receptors, which brings us closer to understanding the disease. The most widely used method for the regulation of nuclear receptor is chromatin immunoprecipitation (ChIP). In our study, we have established a phage display control system through the example of estrogen receptor alpha (ERα) antibody that enables the characterization of ChIP antibodies in ChIP-qPCR experiments. ERα is a key nuclear receptor in the treatment and outcome of breast cancer. We investigated the role of COUP-TFII orphan nuclear receptor in ER-positive breast cancer cells and patients using functional genomics approaches. Our results indicate that COUP-TFII, as a co-regulator, is present in the ERα-mediated transcriptional complex and affects the expression of ERα target genes. Furthermore, high expression levels of COUP-TFII correlate with improved survival in patients with ER-positive luminal A phenotype. Examining the cistrome of COUP-TFII in other tumor cells, we found that COUP-TFII co-localizes with the cell-type-specific master transcription factor. Common COUP-TFII binding sites in cells of different origins were identified in the regulatory regions of the VEGFA gene. In breast cancer cells, COUP-TFII inhibits the expression of this angiogenic gene. Investigation of survivals in various cancer patients has found that high expression levels of COUP-TFII correlate with improved survival rate. In summary, the presence of the COUP-TFII nuclear receptor has a tumor suppressor effect with master transcription factors in various cancers.
Felhasznált irodalom


agonism in the oestrogen receptor. *Nature*, 389(6652), 753–758. https://doi.org/10.1038/39645


Cooney, A. J., Leng, X., Tsai, S. Y., O’Malley, B. W., & Tsai, M. J. (1993). Multiple mechanisms of


ovalbumin upstream promoter-transcription factor interacts with estrogen receptor, binds to estrogen response elements and half-sites, and inhibits estrogen-induced gene expression. The Journal of Biological Chemistry, 272(50), 31465–31474. https://doi.org/10.1074/jbc.272.50.31465


Li, W., Hu, Y., Oh, S., Ma, Q., Merkurjev, D., Song, X., Zhou, X., Liu, Z., Tanasa, B., He, X., Chen,


phosphorylation by MAPK. EMBO Journal, 21(13), 3443–3453. https://doi.org/10.1093/emboj/cdf344


Ross-Innes, C. S., Stark, R., Holmes, K. A., Schmidt, D., Spyrou, C., Russell, R., Massie, C. E.,


Saját közlemények

Jelölt: Erdős Edina
Neptun kód: S6ZPAR
Doktori Iskola: Molekuláris Sejt- és Immuniológia Doktori Iskola
MTMT azonosító: 10037512

A PhD értekezés alapjául szolgáló közlemények


   DOI: http://dx.doi.org/10.1016/j.jbiotec.2019.05.305
   IF: 3.163 (2018)

   DOI: http://dx.doi.org/10.1016/j.jbiotec.2019.05.009
   * These authors contributed equally this work.
   IF: 3.163 (2018)
További közlemények

DOI: http://dx.doi.org/10.1038/s41591-018-0091-x
IF: 30.641

5. Ozgyin, L., Erdős, E., Bojcsuk, D., Bálint, B. L.: Nuclear receptors in transgenerational epigenetic inheritance.
DOI: http://dx.doi.org/10.1016/j.pbiomolbio.2015.02.012
IF: 2.581


A közlő folyóiratok összesített impakt faktora: 43,731
A közlő folyóiratok összesített impakt faktora (az értekezés alapjául szolgáló közleményekre): 10,509

A DEENK a Jelölt által az IDEa Tudósítésbe feltöltött adatok bibliográfiai és tudományos metrikával ellenőrzését a tudományos adatbázisok és a Journal Citation Reports Impact Factor lista alapján elvégezte.

Debrecen, 2020.03.10.
Kulcsszavak/keywords

genomika, magreceptorok, emlődaganat, COUP-TFII, ERα, HNF4α, GATA2, kromatin immunprecipitáció, ChIP szekvenálás, RNS szekvenálás, génexpresszió, sejt-típus specifikus génszabályozás, CTCF, MCF-7, T47D, HepG2, K562

genomics, nuclear receptors, breast cancer, COUP-TFII, ERα, HNF4α, GATA2, chromatin immunprecipitation, ChIP-Seq, RNA-Seq, gene expression, cell-type specific gene regulation, CTCF, MCF-7, T47D, HepG2, K562
Köszönnetnyilvánítás

Köszönetemet szeretném kifejezni témavezetőmnek, Dr. Bálint Bálint Lászlónak, aki B.Sc, M.Sc és PhD képzésem alatt értékes elméleti és gyakorlati tanácsokkal segített, és szakmai és egyéni fejlődésemet minden körülmények között támogatta.

Szeretném megköszönni a Molekuláris Sejt- és Immunbiológia Doktori Iskola korábbi és jelenlegi vezetőjének, Prof. Dr. Fésüs Lászlónak és Prof. Dr. Tözsér Józsefnak, hogy munkámat a doktori iskola keretein belül végezhettem.

Külön köszönetem szeretném kifejezni közei munkatársaimnak Bojcsuk Dórnak, Ozgyin Lillának, Boros-Óláh Beátának, Noura Farajnak és Csumita Máríának, akik nemcsak szakmai segítséget nyújtotottak, hanem barátként is támogattak a mindennapokban.

Szeretném köszönetem kifejezni a Genomi Medicina és Bioinformatikai Szolgáltató Laboratórium jelenlegi és korábbi munkatársainak: Dr. Horváth Attilának, Dr. Póliska Szilárdnak, Dr. Széles Lajosnak, Kerekes Tamásnak, Pallér Ádámnak, Mátyás Erzsébetnek, Balogh Máríának és Nagy Évának, akik rengeteg hasznos tanáccsal láttak el a tanulmányaim során. Továbbá köszönöm társzerzőimnek, akik értékes munkájukkal hozzájárultak a közlemények létrejöttéhez.

Hálával tartozom Dr. Luca Magnani-nek (Imperial College, London) és munkacsoportjának, akitől lehetőséget kaptam Campus Mundi ösztöndíjasként külföldi szakmai tapasztalatszerzésre, és lehetővé tették, hogy egy értékes publikáció részese lehettem.

Végül, de nem utolsó sorban hálával tartozom páromnak, szüleimnek, testvéreimnek és barátaimnak, akik mindvégig mellettem álltak és támogattak céljaim elérésében.
Függelék

A függelék az értekézés alapjául szolgáló eredeti közleményeket tartalmazza.