EGYETEMI DOKTORI (PhD) ÉRTEKEZÉS

Feszültségkapuzott káliumcsatornák kapuzásának vizsgálata
modern biofizikai módszerekkel

dr. Zákány Florina
Témavezető: Prof. Dr. Panyi György

DEBRECENI EGYETEM
MOLEKULÁRIS ORVOSTUDOMÁNY DOKTORI ISKOLA
Debrecen, 2020
Tartalomjegyzék
Rövidítések jegyzéke .. 4
1. Bevezetés ... 7
 1.1 Általános bevezetés ... 7
 1.2 A feszültségkapuzott káliumcsatornák (K_V) felépítése: a feszültségszenzor domén és a pórusdomén szerkeze, valamint a két domén közti csatolási mechanizmusok bemutatása 11
 1.3 A K_V csatornák kapui: az aktivációs kapu, valamint az N- és C-típusú inaktivációs kapuk bemutatása .. 14
 1.4 Az általunk vizsgált K_V csatornák kapuzása: az aktivációs és C-típusú inaktivációs kapuzás, valamint a két kapu közötti kommunikáció bemutatása ... 17
 1.5 A koleszterin szerkezte és membránbeli eloszlása .. 19
 1.5.1 A koleszterin szerkeze .. 19
 1.5.2 A koleszterin vertikális megoszlása a sejtmembránban ... 20
 1.5.3 A koleszterin laterális megoszlása a membránban, a lipidtutaj-elmélet. 21
 1.6 A koleszterin és a K_V ioncsatornák közötti kölcsönhatások bemutatása 22
 1.6.1 A koleszterin és fehérjék közötti direkkt kölcsönhatások: koleszterinkötő motívumok, régiók és domének ... 23
 1.6.2 A koleszterin és fehérjék közötti indirekkt kölcsönhatások ... 25
 1.6.3 A koleszterin és membránfehérjék közötti direkkt és indirekkt kölcsönhatások elkülönítése. 27
 1.7 A koleszterin K_V ioncsatornákra kifejtett hatásai és azok mechanizmusa 29
 1.8 A K_V1.3 és K_V10.1 ioncsatornák fiziológiai folyamatokban és betegésgeken betöltött szerepeinek összefoglalása .. 31
2. Célkitűzések .. 35
3. Anyagok és módszerek .. 40
 3.1 Molekuláris biológia ... 40
 3.2 Expressziós rendszerek, transzfekció és mRNS injektálás.. 40
 3.3 A sejtmembrán szterol tartalmának módosítása .. 41
 3.4 Elektrofiziológia .. 42
 3.4.1 Kételektródás voltage-clamp fluorimetria (TEVCF) .. 42
 3.4.2 Patch-clamp mérések outside-out konfigurációban .. 43
 3.4.3 Patch-clamp mérések inside-out konfigurációban .. 43
 3.5 Konfokális lézer pásztázó és stimulált emisszió depléció (STED) mikroszkópia....................... 44
 3.6 Adatok elemzése ... 45
 3.6.1 Kételektródás voltage-clamp fluorimetria (TEVCF) mérések elemzése 45
 3.6.2 Outside-out konfigurációban történő patch-clamp mérések elemzése 48
 3.6.3 Inside-out konfigurációban történő patch-clamp mérések elemzése 48
 3.6.4 Konfokális lézer pásztázó és (STED) mikroszkópiás mérések elemzése 50
 3.7 Statisztika .. 51
4. Eredmények ... 52
4.1 Szterolok hatása a Kv1.3 ioncsatorna feszültségfüggő kapuzásának egyensúlyi és kinetikai paramétereire.......................... 52
4.2 Szterolok hatása a Kv10.1 feszültségfüggő kapuzásának egyensúlyi és kinetikai paramétereire 57
4.3 Szterolok hatása a VSD és az ionáram aktivációs kinetikájára... 60
4.4 A szterolok által okozott áramcsökkenés mechanizmusának vizsgálata... 64
4.5 A Kv1.3 és Kv10.1 lipidtutajokkal való asszociációjának vizsgálata .. 66
4.6 A kísérleti stratégia bemutatása a Shaker-IR T449A/V474C ioncsatornában negatív membránpotenciálokon végbemenő, inaktivációhoz vezető útvonalak tanulmányozásához........ 69
4.7 Az aktivációs kapu nyitása megfigyelhető a Shaker-IR T449A/V474C ioncsatornában negatív membránpotenciálok mellett... 73
4.8 A nyitott állapotban rögzített aktivációs kapu megakadályozza a Shaker-IR T449A/V476C csatornák C-típusú inaktivációból történő visszatérését ... 78
5. Diszkusszió .. 85
5.1 A szterolok nem a VSD-n keresztül fejtik ki hatásukat Kv ioncsatornákban... 85
5.2 A membránstressz szerepe a szterol hatások mediálásában.. 88
5.3 Lipidtutajbeli lokalizáció változása szterol töltések hatására... 88
5.4 A szterol töltések által okozott áramcsökkenés oka ... 89
5.5 A szterolok által okozott változások specificitása, a koleszterin és a 7DHC által kifejtett hatások összehasonlítása .. 90
5.6 A Kv1.3 és Kv10.1 ioncsatornák szterolok általi modulációjának jelentősége különböző betegségekben ... 92
5.7 A koleszterin Kv ioncsatornákra gyakorolt hatásmechanizmusának általunk javasolt modellje 93
5.8 Az aktivációs kapu szerepe az egensúlyi inaktiváció és az inaktivációból való visszatérés folyamatainak szabályozásában negatív membránpotenciálok esetén.. 94
5.9 A zárt állapotból bekövetkező inaktiváció különböző ioncsatornák esetén................................. 95
5.10. A T449A/V474C Shaker-IR csatorna esetén kapott kísérletes eredmények kritikus elemzése, a C→CI átmenet lehetőségének vizsgálata negatív membránpotenciálok esetén.......................... 98
5.11 A T449A/V476C Shaker-IR csatorna esetén kapott kísérletes eredmények kritikus elemzése, az OI→O átmenet lehetőségének vizsgálata negatív membránpotenciálok esetén 100
5.12 Általános összefoglalás ... 101
6. Összefoglalás.. 105
7. Summary .. 106
8. Irodalomjegyzék.. 107
9. Tárgyszavak ... 119
10. Köszönetnyilvánítás .. 120
11. Függelék .. 121
Rövidítések jegyzéke

7DHC: 7-dehidrokoleszterin
ABC: „ATP-binding cassette” ATP-t kötő kazetta
ABCB1: „ATP-binding cassette sub-family B member 1” ATP-t kötő kazettát tartalmazó fehérjescsalád B alcsaládjának 1. tagja
ABCG1: „ATP-binding cassette sub-family G member 1” ATP-t kötő kazettát tartalmazó fehérjescsalád G alcsaládjának 1. tagja
ABCG1: „ATP-binding cassette sub-family G member 2” ATP-t kötő kazettát tartalmazó fehérjescsalád G alcsaládjának 2. tagja
ADWX-1: a BmKTx *Buthus martensii Karsch* skorpióból származó toxin szintetikus peptidanalógia
Ala: alanin
APETx4: Anthopleura elegantissima tengerirózsából származó toxin
BK: „big potassium = large conductance calcium-activated potassium channel” feszültség és kalcium által aktívált nagy konduktanciájú káliumcsatorna
C: „closed state” zárt állapot
CARC: „reverse or mirror version of the CRAC” koleszterinkötő motívum
CCM: „Cholesterol Consensus Motif” koleszterinkötő motívum
CD: „deep closed state” mély zárt állapot
Cd²⁺: kadmium ion
CI: „closed-inactivated state” zárt-inaktivált állapot
CRAC: „Cholesterol Recognition Amino Acid Consensus” koleszterinkötő motívum
C-típusú inaktiváció: lassú inaktiváció
CTX-B: koleratoxin B alegység
Cys: cisztein
DP: dipólpotenciál
eag: *Kv* csatornák ether-à-go-go családja
EC: extracelluláris
EDTA: etiléndiamin-tetraecetsav
EGFP: „enhanced green fluorescent protein” javított fluoreszcenciájú zöld fluoreszcens protein
EGTA: etilénglikol-tetraecetsav
ER: endoplazmás retikulum
E_{ekv}: a kálium egyensúlyi potenciálja
FLAG: DYKDDDDK epitóp
F_{norm}-V: normált fluoreszcencia intenzitás-feszültség görbe
F-V: fluoreszcencia intenzitás-feszültség görbe
GABA_A: „gamma-aminobutyric acid” gamma-aminovajsav receptor A típusa
GFP-GPI: „green fluorescent protein- glycosylphosphatidylinositol” zöld fluoreszcens protein-glükozilfoszfatidilinozitol
G_{norm}: normált konduktancia
G_{norm}-V: normált konduktancia-feszültség görbe
GPCR: „G protein-coupled receptor” G-proteinhez kapcsolt receptor
GPI: „glycosylphosphatidylinositol” glükozilfoszfatidilinozitol
G-V: konduktancia-feszültség görbe
HC: hiperkoleszterinémia
HCN: „hyperpolarization-activated cyclic nucleotide–gated channel” hiperpolarizáció által aktivált és ciklikus nukleotid által szabályozott csatorna
HEK 293: „human embryonic kidney” humán embrionális vesesejt vonal
HEPES: 4-(2-hidroxietil)-1-piperazin-etánszulfonsav
HERG: humán Ether-à-go-go-Related Gene
HSD: „honestly significant difference” statisztikai teszt
HsTx1: *Heterometrus spinifer* skorpióból származó toxin
IC: intracelluláris
IF: „inactivated fraction” inaktiválódó áramhányad
ILT mutáns: az S4 régióban V369I, I372L és S376T mutációkat hordozó Shaker csatorna
ipi: „interpulse interval” pulzusok közötti intervallum
I_{c}: a P_{x} által kiváltott áram
k: meredekiségi együttható
K^+: káliumion
KCHIP: „K^+ channel–interacting protein” káliumcsatornával kölcsönható fehérje
KCNE: „K^+ voltage-gated channel subfamily E” feszültségfüggő káliumcsatorna járulékos alegység „E” alcsalád
KcsA: „K channel of Streptomyces A” *Streptomyces* A káliumcsatornája
Kir: „inward rectifier potassium channel” befelé egyenirányító káliumcsatorna
krio-EM: krio-elektronmikroszkópia
Kv: feszültségfüggő káliumcsatorna
MβCD: metil-béta-ciklodextrin
MD szimuláció: molekuláris dinamikai szimuláció
MTS-TAMRA: metántioszulfonát-5(6)-karboxitetrametilrodamin
nAChR: „nicotinic acetylcholine receptor” nikotinerg acetilkolin receptor
Na\(_V\): feszültségfüggő nátriumcsatorna
NBD-koleszterin: 25-[N-[(7-nitro-2-1,3-benzoxadiazol-4-il)metil]amino]-27-norkoleszterin
N-típusú inaktiváció: gyors inaktiváció
O: „open state” nyitott állapot
OI: „open-inactivated state” nyitott-inaktivált állapot
PAP-1: 5-(4-Fenoxibutoxi)psoralen
PAS: Per-Arnt-Sim domén
PD: „pore domain” pórusdomén
Po: „open probability” csatornák nyitási valószínűsége
PUFA: „polyunsaturated fatty acid” többszörösen telítetlen zsírsav
P\(_x\): a hárompulzusos protokoll x-edik pulzusa
RCF: „recovered current fraction” visszatért áramhányad
Shaker-IR: „Shaker inactivation-removed” N-típusú inaktivációval nem rendelkező Shaker ioncsatorna
ShK: *Stichodactyla helianthus* skorpióból származó toxin
SLO szindróma: Smith-Lemli-Opitz szindróma
SSI: „steady-state inactivation” egyensúlyi inaktiváció
STED: stimulált emisszió depléció mikroszkópia
\(\tau_{\text{act}}\): áramok aktivációs időállandója
TEA\(^+\): tetraetil-ammónium
TEVCF: „two-electrode voltage-clamp fluorometry” kételektródás voltage-clamp fluorimetria
\(\tau_{\text{inact}}\): áramok inaktivációs időállandója
TMRM: tetrametilrodamin maleimid
\(\tau_{\text{rec}}\): inaktivációból való visszatérés időállandója
TRP: tranziens receptorpotenciálú csatorna
TRPM8: tranziens receptorpotenciálú csatorna, melasztatin alcosport 8. tagja
TRPV1, TRPV4: tranziens receptorpotenciálú csatorna, vanilloid alcosport 1. és 4. tagja
TTVGYGD: \(K_V\) csatornák szelektivitási filterében található speciális szekvencia
\(V_{1/2}\): félaktivációs feszültség
VSD: „voltage sensor domain” feszültségszenzor domén
WT: „wild-type” vad típusú
1. Bevezetés

1.1 Általános bevezetés

Az ioncsatornák speciális transzmembrán fehérjék, amelyekben közös, hogy a sejtmembránon keresztül egy hidrofil pórust képezve biztosítják az ionok extracelluláris és intracelluláris terek közötti áramlását. Az ioncsatornákat az általuk vezetett ionok, működésük és felépítésük alapján oszthatjuk különböző családokra, amelyek szerteágazó funkciókkal vesznek részt számos biológiai folyamatban. Érdeklődésünk középpontjában a feszültségkapuzott káliumcsatornák (Kv) állnak, amelyek mind ingerelhető, mind pedig klasszikusan nem ingerelhető sejtekben kulcsfontosságú szerepet töltnek be számos sejtfunkció mediálásában. A Kv ioncsatornák négy alegységből állnak, az egyes alegységek pedig hat transzmembrán helikális szegmentumból (S1-S6) épülnek fel. Az alegységeken belül a héliceket intra- és extracelluláris aminosavhurkok, míg az egyes alegységeket nem-kovalens kölcsönhatások tartják össze. Az S1-S4 héliek építik fel a csatorna feszültségzsenzor doménjét (VSD), míg az S5-S6-os héliek formálják a pórusdomént (PD). A két domén közötti strukturális kapcsolatot egyes csatornáknl az S4-S5 linker, míg másoknál a transzmembrán héliek közötti intramolekuláris kölcsönhatások biztosítják. A membránpotenciál érzékeléséért a VSD, a káliumionok (K⁺) áramlásának koordinálásáért a PD-ben található aktivációs és C-típusú inaktivációs kapuk és a szelektivitási szűrő felelősek. Az aktivációs kapu a pórus intracelluláris, míg a C-típusú inaktivációs kapu a pórus extracelluláris bejáratánál helyezkedik el. A csatorna kapuzása a feszültségzsenzor, az aktivációs és inaktivációs kapuk összehangolt működése során valósul meg. Depolarizáció hatására a zárt állapotban levő (C) csatorna aktivációs kapuja kinyit, így funkcionálisan vezető állapotba (O) kerül, majd ha a depolarizáció továbbra is fennáll, az inaktivációs kapu bezáródik, kialakítva a már nem vezető inaktivált állapotot. A kapuzási sémában szerkezeti állapotként ezt OI kapuzási állapotnak nevezzük, ami arra utal, hogy az aktivációs kapu még nyitva van, míg az inaktivációs kapu zárt. A depolarizáció megszűnésével az aktivációs kapu bezáródik, az inaktivált csatorna kapuzási sémában feltüntetett szerkezeti állapota pedig a CI, ami arra utal, hogy mind az aktivációs, mind pedig az inaktivációs kapu zárt állapotban vannak. Amennyiben megfelelő ideig kellő negatív membránpotenciálon tartjuk a csatornákat, akkor az inaktivációs kapu kinyilk, így az inaktivációból való visszatérés folyamata révén a csatorna visszakerül a kiindulási zárt állapotba (C).
Az ioncsatornák kapuzása igen összetett folyamat, több ponton befolyásolható különböző ioncsatornán kívüli, illetve azon belüli (intrinsic) kölcsönhatások által. Az ioncsatornán kívüli tényszék közül kiemelendő a sejtmembránban található koleszterin, ami az egyik fő meghatározója a membrán biofizikai tulajdonságainak, vertikális és laterális heterogenitásának, amely tényszék együttesen jelentősen hozzájárul a különböző funkcionális membrándomének kialakulásához. Mivel a transzmembrán fehérjék, így az ioncsatornák és a koleszterin közötti interakciók, vagy azok változásai számos fiziológiai és patológiai folyamatban jelentős tényszékként szerepelnek, a koleszterin és az ioncsatornák közötti kölcsönhatások vizsgálatával számos tanulmány foglalkozott. Az utóbbi években elterjedt új technikák (például a krio-elektromikroszkópia (krio-EM), vagy a szuperrezolúciós mikroszkópia), valamint a molekuláris dinamikai (MD) szimuláció terén bekövetkező jelentős fejlődés egy teljesen új perspektívát nyitott a protein-koleszterin interakciók vizsgálatában, ami a téma iránt újra felkeltette az érdeklődést. A korábbi tanulmányok két típusú interakciót különböztettek meg a koleszterin és különböző transzmembrán fehérjék, így az ioncsatornák között: egy direkt, ligandszerű kölcsönhatást, ahol a koleszterin különböző kötőhelyekhez kötődve módosítja az ioncsatornák működését, illetve indirekt kölcsönhatást, ahol a koleszterin a membrán biofizikai tulajdonságainak (membránfluiditás, -rigiditás, -vastagság, laterális nyomás, lipid rendezettség, dipólpotenciál) módosításán keresztül fejti ki hatását. A koleszterin és az ioncsatornák közötti kölcsönhatások mediálásában szerepet játszhatnak a koleszterin lipidtutajokon keresztül kifejttetett hatásai is. A lipidtutajokban ugyanis eltérő a membránszerkezet és a fehérjekörnyezet, ami az indirekt hatásokat módosíthatja; illetve a tutajokban a megnövekedett koleszterintartalom a direkt kölcsönhatások fellépésének valószínűségét befolyásolhatja. Ezeket egyes tanulmányok a koleszterin-fehérje kölcsönhatások harmadik mechanizmusaként jellemeznék. Az ioncsatornák, azon belül is a feszültsékgapuzott káliumcsatornák megfelelő modellfehérjék a transzmembrán fehérje-koleszterin kölcsönhatások vizsgálatához, ugyanis a kapuzás során mind a feszültségzenzor, mind pedig a pórust alkotó hélixek mozgása és konformációváltozása a környező lipidmembránban, így azzal kölcsönhatásban valósul meg, a membrán koleszterin pedig közvetlenül is képes a foszfolipid kettősréteg tulajdonságait módosítani. Az ioncsatornák esetén a koleszterin hatásainak funkcionális feltérképezése relatíve egyszerű, mivel az ionáramok mérésével számos olyan paraméter meghatározható (például egyensúlyi aktiváció és inaktiváció, nyitási valószínűség, egyedi csatorna konduktancia, áram aktivációs és inaktivációs kinetikák), amelyek jól leírják a koleszterin által okozott módosítások funkcionális következményeit. A témában megjelent korai tanulmányok a közvetlen elektrofiziológiai
hatások leírására szorítóztak, majd a lehetséges hatásmechanizmusok vizsgálata során először az indirekt, membránbiofizikai és lipidtutajokon keresztüli hatásmódotokat valószínűsítették. A képalkotó és különböző számítógépes modellezési technikák elterjedésével ez az irányvonal átalakult, és előterbe került a direkt kölcsönhatások fontosságának hangsúlyozása. Függetlenül a direkt vagy indirekt hatásmechanizmustól nem ismert az, hogy az ioncsatorna működésében kialakuló funkcionális változások melyik doménén (VSD, PD vagy a két domén közti csatolási apparátuson) keresztül következnek be.

Az ioncsatornánk kapuzását befolyásoló belső, az ioncsatorna fehérjén belüli intrinsic kölcsönhatások közül a figyelem középpontjába került az ioncsatornánk egyes kapui közötti kommunikáció. Ezek közül is annak megismerése volt kiemelendő, hogy a C-típusú inaktivációs kapuzást meghatározza az aktivációs kapu helyzete. Az aktivációs és a C-típusú inaktivációs kapuk kétirányban csatoltak: az aktivációs kapu nyitása elősegíti az inaktivációs kapu záródását és gátolja annak nyitását, tehát elősegíti a C-típusú inaktiváció kialakulását. Ugyanakkor a C-típusú inaktivációs kapu zárt állapota felgyorsítja az aktivációs kapu nyitását és lassítja annak záródását. A csatolásra és az egyes kapuzási átmenetek valószínűségére vonatkozó ismereteink főleg pozitív membránpotenciálok alkalmazása mellett kapott adatokból származtak, mivel ilyen membránpotenciálok mellett van jelen akkor ha játék és nyitási valószínűség, amelyek viszonylag könnyen mérhető ionáramokat biztosítanak. A kapuzási átmenetek pontos mechanizmusa negatív membránpotenciál mellett, ahol az ionáram hiányában szerkezet-funkció alapú megközelítéssel kell adatot gyűjteni, nem ismert.

A disszertáció középpontjában a fentiekből következően két kérdéskör állt. Egyrészt vizsgáltuk, hogy a feszültségkapuzott káliumcsatornák esetén melyik funkcionális domén érintett elsődlegesen a koleszterin által létrehozott elektrofiziológiai hatások közvetítésében a pórus felé. A koleszterin elsősorban a feszültségszenzor domén működését befolyásolja, amely másodlagosan tevődik át a csatolási apparátuson keresztül a pórusra? Vagy ezzel ellentétben a pórus érintett elsődlegesen és így a feszültségszenzor működését nem befolyásolja a koleszterin? A kísérletekkel új oldalról vizsgálhatjuk a koleszterin-Kᵥ ioncsatornánk közötti interakciókat és közelebb kerülhetünk a koleszterin hatásmechanizmusának megértéséhez, ami számos, a membrán koleszterintartalmának megváltozásával járó betegség molekuláris alapjainak a megértését segítheti elő. A másik kérdéskör az volt, hogy a kapuzás során hogyan befolyásolja az aktivációs kapu aktuális állapotát a C-típusú inaktivációs kapu mozgását, annak záródását, illetve nyitását, negatív membránpotenciálok mellett. Létrejöhet-e az inaktiváció közvetlenül a zárt állapotból (C→Cl átmenet), az aktivációs kapu kinyilása nélkül? Szükséges-e az aktivációs kapu bezáródása negatív membránpotenciálon ahhoz, hogy a csatorna az
inaktivált állapotából visszatérjen a zárt állapotba? Mindkét esetben az inaktivációs kapu mozgása az aktivációs kapu rögzített (zárt, illetve nyitott) állapota mellett valósulna meg, a két kapu közötti szoros allosztérikus csatolás ellenére. A negatív membránpotenciálok melletti kapuzási átmenetek tanulmányozásának az ad élettani jelentőséget, hogy a CI állapot betöltöttsége, azaz a CI állapot kialakulása és az inaktivációból történő visszatérés jelentősen meghatározza a potenciálisan aktív csatornák számát, ami a sejtek ingerelhetőségének egyik meghatározó tényezője.

Mindkét kérdéskör vizsgálatára olyan újszerű és érzékeny módszereket alkalmaztunk, amelyek révén olyan, eddig nem ismert eredményekre tehetünk szert, ami új megvilágításba helyezi az ioncsatornák kapuzásának finomhangolásával kapcsolatos jelenlegi tudásunkat. Azt, hogy a KV ioncsatornák esetében melyik funkcionális domént (VSD, PD, vagy a két domén közti csatolási apparátus) befolyásolja elsődlegesen a membránban levő koleszterin, kételektródás voltage-clamp fluorimetriás (TEVCF) technikával vizsgáltuk. Ez a technika lehetővé teszi, hogy a feszültségszenzor extracelluláris részére pontmutációval bevitt cisztein szelektíven megjelenő egy cisztein specifikus fluoreszcens festékkel, így a kapuzás során a VSD mozgása végig nyomonkövethetővé válik, míg a pórus aktuális állapotáról az egyidejű ionárammérések segítségével kapunk információt. Ahogy az a későbbiek során látható, mind az ionáramok, mind pedig a fluoreszcenciás jelek nagysága, valamint azok minősége (jó jelháttér és jel-zaj arányok), lehetővé tették számunkra, hogy érzékeny és pontos betekintést nyerjünk a koleszterin ioncsatornán belüli elsődleges, eddig ismeretlen támadáspontját illetően.

A C-típusú inaktivációval kapcsolatos kísérletek során az általunk alkalmazott, a kísérletek céljaihoz tervezetten alakított, többszörösen mutáns Shaker ioncsatornák lehetővé tették a zárt állapotból bekövetkező C-típusú inaktiváció (C→CI), valamint a nyitott aktivációs kapu melletti inaktivációiból történő visszatérés (OI→O) lehetőségének szelektív tanulmányozását. A C→CI átmenet meglétét olyan kísérletes körülmények között vizsgáltuk, ahol az aktivációs kapu nyitását a negatív membránpotenciálokon tapasztalható kis hajtóerő és az alacsony nyitási valószínűség ellenére is érzékenyen tudtuk nyomonkövetni az átalunk alkalmazott gyorsperfúziós rendszer, illetve állapotfüggő cisztein specifikus módosítási esszé segítségével. A C→CI átmenet vizsgálatánál az aktivációs kapu nyitott állapotban történő rögzítésének alapja egy Cd²⁺-híd kialakulása volt a mutációval bevitt cisztein, illetve egy natív hisztidin aminosav között. A C→CI átmenet vizsgálatánál a negatív membránpotenciálok aktivációs kapu nyitott állapotban történő rögzítésének alapja egy Cd²⁺-híd kialakulása volt a mutációval bevitt cisztein, illetve egy natív hisztidin aminosav között. Mindkét kísérlet sorozatban az átalunk beépített cisztein és a gyorsperfúzióval alkalmazott Cd²⁺ között létrejövő kémiai kölcsönhatás biztosította a kísérletek specifikusságát.

A Cd²⁺-ot tartalmazó oldatok gyorsperfúziós rendszerrel történő precíz alkalmazása
biztosította, hogy a Cd\(^{2+}\)-ot szelektíven, csak a csatorna általunk kiválasztott kapuzási állapotaiban alkalmaztuk.

1.2 A feszültségkapuzott káliumcsatornák (K\(V\)) felépítése: a feszültségszenzor domén és a pórusdomén szerkezete, valamint a két domén közti csatolási mechanizmusok bemutatása

A K\(V\) csatornák négy alegységből felépülő tetramerek, amelyek együttesen alakítják ki a csatorna két fő funkcionális doménjét, a feszültségszenzor domént (VSD), illetve a pórusdomént (PD) \(^1\) (1A). Az egyes alegységek hat transzmembrán helikális szegmenst tartalmaznak (S1-S6), amelyek közül az első négy (S1-S4) a VSD felépítésében, míg az S5-S6 szegmensek az azokat összekötő linkerekkel együtt a centrális pórus domén kialakításában vesznek részt \(^2,3\) (1B). A feszültségkapuzott káliumcsatornák elnevezésére használt K\(V\) rövidítés a csatornák kálium iránti szelektivitására, illetve az elsődleges kapuzási ingerükre (feszültség-voltage) utal, ezt követően a számok 1-12 között pedig a funkcionális- és szekvenciahomológia alapján felállított fő családokat jelölők. A K\(V\) csatornák (K\(V\)1.x–K\(V\)12.x) belül az ioncsatornák alegységeinek általános szerkezeti és funkcionális fenotípusa erősen konzervált, így sokszor a különböző alegységek heterotetramereket alkotnak egymással, amely révén különböző szövetekben számos eltérő sejtfunkció szabályozásában tudnak részt venni. A K\(V\)1.x–K\(V\)4.x, K\(V\)7.x, K\(V\)10.x–K\(V\)12.x alegységek homo- és heterotetramereket (pl. K\(V\)1.3 és K\(V\)1.5 alegységből álló heterotetramerek) hoznak létre, míg a K\(V\)5.x, K\(V\)6.x, K\(V\)8.x és K\(V\)9.x számára nélkülözhetetlen partner a K\(V\)2.x \(^4\). A különböző szövetekben a K\(V\) csatornák funkciójának finomhangolásában az alegységösszetétel mellett fontos tényezők a csatornákkal kölcsönható járulékos fehérjék, mint a K\(V\)\(\beta\), KCHIP („K\(^+\) channel–interacting protein” káliumcsatornával kölcsönható fehérje), KCNE („K\(^+\) voltage-gated channel subfamily E” feszültségfüggő káliumcsatorna járulékos alegység „E” alesalád) vagy a kalmodulin, amelyek a csatornákhoz általában azok N- vagy C-termínális citoszolikusan elhelyezkedő doménjein keresztül kötődnek \(^5\).

Az általam részletesen tanulmányozott egyik ioncsatorna a Shaker csatorna, amely a Drosophila melanogaster feszültségkapuzott káliumcsatornája. A csatorna fontos szerepet játszik a kifejlett rovar és az azt megelőző fejlődési alakok harántcsíkolt izom, illetve idegenszövetének működésében, ugyanis a csatornán átfolyó káliumáram részt vesz többek között a lárvák neuromuszkuláris junktiójában a preszinaptikus neurotranszmitter felszabadulás terminálisában \(^6\). A Shaker elnevezés az éter anestéziában jelentkező lábremegsőlőből adódik,
amely a csatornát kódoló génben leírt mutáció eredményeképpen jelentkezik. Ugyan a Shaker az emberi szervezetben nem fordul elő, mégis kiemelt szerepet kap számos humán ioncsatorna szerkezet-funkciójának tanulmányozásában. Ennek oka, hogy a csatorna nagymértékű szekvencia homológiát, ezáltal mind strukturális, mind pedig funkcionális hasonlóságot mutat az emberi szervezetben előforduló, szintén feszültségkapuzott káliumsatornák egyik csoportjával, a Shaker-típusú káliumcsatornákkal (Kv1.x), így ezen csatornák kapuzásának, szerkezet-funkciójának megismerésére vonatkozó korábbi kutatások nagy része a Shaker csatornát használta fel modellként.

A csatorna pórusdoménjét az S5-S6-os szegmentumok és az ezeket összekötő hurok hozza létre. Ez több fontos strukturális elemet tartalmaz. Az S5-S6-os szegmentumokat összekötő hurok szekvenciáiban található többek között az egyéb kationokkal (pl. Na⁺) szembeni K⁺ szelektivitást biztosító, a különböző eredetű káliumcsatornákban igen konzervatívan megőrzött GYGD szekvencia (úgynevezett „signature” szekvencia, 1. ábra A és B panel sötétkék), ami a csatorna szelektivitású szűrőjének felépítéséért felelős. A bakteriális K⁺ csatorna (KcsA „K channel of Streptomyces A” Streptomyces A káliumsatornája) és a magasabb rendű élőlények feszültségkapuzott káliumcsatornák kristályszerkezetének tanulsága szerint a csatornák pórusai négy szekvenciális kálium kötőhelyet tartalmaznak. Ezen felül egy szintén extracelluláris elhelyezkedésű rehidrációs-dehidrációs kötőhelyet is feltételezik a modern szerkezetbiológiai vizsgálómódszerekkel nyert eredmények tehát megerősítették az elektrofiziológiai módszerek korábban leírt kötőhelyek létezését, ahol a Ba²⁺ ionok póruson keresztüli áramlásának mérésével négy K⁺ kötőhelyet feltételeztek a pórusban. Az S5-S6-os szegmentumokat összekötő hurok szekvenciája további érdekes, hogy a csatorna ezen régióján található „torony régió” felelős számos fentebb említett peptid típusú gátlószertojúsággal (pl. skorpiótoxin) kötődéséért is. A toxin-csatorna kölcsönhatás elemzése, mint molekuláris méröszalag, indirekt módon számos információt nyújtott a pórusrégió és a szelektivitási filter struktúrájáról. Az így nyert következtetéseket röntgenkrisztallográfiai kísérletekkel igazolták a Shaker családban sorolható Kv1.2 csatorna esetén.
követlenül vezető konformációváltozás, ami jórészt feszültségtől független, az S6 szegmensek intracelluláris végén történik és az itt található aktivációs kapu nyitását eredményezi. Azt a folyamatot, amely során a VSD-k mozgása a pórusra tevődik át a csatorna feszültségfüggő nyitását eredményezve, csatolásnak nevezzük. Általánosságban a Kv csatornák esetén ez a VSD és PD között levő S4-S5 linker (1A, 1B ábra szürke) által létrehozott rigid kapcsolódáson alapul, ami a VSD aktivációját követően emelőként működve nyitja ki a PD-n található aktivációs kaput. Ezzel szemben néhány Kv csatorna esetén a domének közötti csatolás a VSD és PD egymással szomszédos hélixinek lazább, nehezebben definiálható kölcsönhatásain alapul15-17. Kv1.3 és Shaker ioncsatornák esetén az előbbi mechanizmus figyelhető meg, amely szoros „lineáris” csatolást biztosít a VSD és a PD között, míg az ether-à-go-go (eag) család tagjainál, így Kv10.1-nél a két funkcionális domén közötti csatolás a lazább mechanizmus szerint valósul meg17,18. Ezt jól bizonyítja, hogy míg a Kv10.1 feszültségfüggő kapuzása intakt marad az S4-S5-linker által kialakított „emelő” enzimatikus átvágása vagy mutációval történő deléciója esetén is, addig a lineáris modell szerint kapuzó Kv csatornák esetén ezek a módosítások az aktivációs kapuzás megszűnését eredményezik19.

A Kv10.1 csatornák másik karakterisztikus tulajdonsága a Cole-Moore shift jelensége, amely során az áram aktivációs kinetikája módosul a depolarizáció előtti tartófeszültség függvényében. A jelenség következményeként, amikor a csatornát negatívabb tartófeszültségekről depolarizáljuk, az áram aktivációs kinetikája lassabban és az áramgörbe kezdeti szigmoid fázisa kifejezettebb, mivel a csatornák aktivációja ilyenkor mélyebb zárt állapotokból (C_D) indul. Így például −160 mV-os tartófeszültség mellett a C_D→C→C→C→O átmenetek miatt kifejezetten lassú és szigmoid az aktivációs kinetika, míg a −60 mV-os tartófeszültség mellett mért áramok esetében az aktivációs kinetika gyorsul, és az áramgörbe kezdeti szakasza kevésbé sigmoid, mivel a C_D állapotok közötti átmenetek jó része már lezajlik ezen a tartófeszültségen.
1. ábra A feszültségkapuzott káliumcsatornák általános felépítése

(A) A feszültségfüggő káliumcsatornák (Kv) négy alegységből épülnek fel. A K⁺ átjutását lehetővé tevő pórus kialakításáért a pórusdomén (PD, kék), míg az aktuális membránpotenciál érzékeléséért a feszültségssenzor domén (VSD, lila, illetve az S4 hélix, sárga) a felelős. (B) Minden alegység hat transzmembrán hélixből épül fel, amelyek intra- vagy extracelluláris hurkokon keresztül kapcsolódnak egymáshoz. Az A panel felülnézetből ábrázolja a Kv1.2 ioncsatorna mind a négy alegységét, a B panel pedig a Kv1.2 ioncsatorna két, egymással szemben fekvő alegységének felépítését mutatja oldalnézetből, a csatorna zárt állapotában. Mind az A, mind pedig a B panelen levő ábrát a PyMol program segítségével szerkesztettek a 3LUT jelű PDB fájlt fájlt felhasználva, amely a Kv1.2 kiméra ioncsatorna röntgenkrisztallográfiás vizsgálatokból származó szerkezeti adatait tartalmazza. A Kv1.2 felépítését tekintve jól reprezentálja a disszertációban bemutatott káliumcsatornák szerkezeti sajátosságait. Az S1-S4 hélikex (lila és sárga) a VSD kialakításában, míg az S5 és S6 hélikex (világoskék) a PD felépítésében vesznek részt. A PD-ben az S5-S6-os hélikexet összekötő hurrokban sötétkék színnel a szelektivitási szűrőt (GYGD szekvencia) jelöltük. Az S4 hélixben (sárga) pozitív töltésű rendelkező aminosav oldalláncok találhatóak (hat darab a Kv1.3 ioncsatorna esetén), amelyek a membránpotenciál-változás érzékelésének kulesfontosságú szerepet játszanak. A Kv1.3-ban a VSD és a PD közötti kapcsolódási felület felülnézetből ábrázolja a benne található belső belső részét (GYGD szekvencia) jelöltük. Az S4 hélixben (sárga) pozitív töltésű hat aminosav oldallánc található (hat darab a Kv1.3 ioncsatorna esetén), amelyek a membránpotenciál-változás érzékelésének kulesfontosságú szerepet játszanak. A Kv1.3-ban a VSD és a PD közötti kapcsolódási felület felülnézetből ábrázolja a benne található belső belső részét (GYGD szekvencia) jelöltük. Az S4 hélixben (sárga) pozitív töltésű hat aminosav oldallánc található. (C) Az S4-S5 linkeren keresztül felépül a csatorna csatolási apparátusán, a Kv1.3 ioncsatorna esetén az intracellulárisan található S4-S5 linkeren (szürke, nyíllal jelölt) keresztül a pórusdomére, lehetővé téve a káliumionok átjutását a membránon. Az egyes hélikexet a rajtuk feltüntetett számoz jelzik. A Kv1.3 ioncsatorna mind az N-terminális, mind pedig a C-terminális intracelluláris végükön számos speciális domén tartalmazhatnak, amelyek a csatornák működésének finomhangolásában vesznek részt. A Kv ioncsatorna esetén számos koleszterinkötő motívumot (CRAC: narancssárga oválisok; CARC: sárga oválisok) írtak le (lásd később az 1.6.1-es fejezetben). A C-terminális, intracellulárisan elhelyezkedő CARC4 és CARC5 motívumok (kitöltött sárga oválisok) jelentősége funkcionális szempontból kíséreltesen is bizonyított.

1.3 A Kv csatornák kapui: az aktivációs kapu, valamint az N- és C-típusú inaktivációs kapuk bemutatása

A Kv csatornák alapvetően háromféle kapuval rendelkezhetnek, működésük során meghatározó az aktivációs és a különböző inaktivációs (N-, illetve C-típusú) kapuk összehangolását. Az aktivációs kapu a PD S6-os hélixének intracelluláris végénél helyezkedik el, felépítésében a 475-478-as pozíciójú aminosavak által alkotott peptidszakaszok vesznek részt, amelyek a csatorna zárt állapotában keresztkeresztül egymást. A depolarizáló impulzus hatására az aktivációs kapu nyitásával az ioncsatorna képessé válik a K⁺ ionok szelektív vezetésére. A fenntartott depolarizáció hatására a csatorna egy funkcionálisan nem vezető, úgynevezett inaktivált állapotba kerül. Az inaktiváció alapvetően két mechanizmus révén mehet végbe a Kv ioncsatornákban.

A másik, ettől eltérő mechanizmus a C-típusú inaktiváció, ami szerkezetileg a szelektivitási szűrő konformációváltozásaihoz kötődik, és a pórusdomén extracelluláris térhez közeli, az alegység C-terminusához közelebb eső, C-típusú inaktivációs kapu záródása révén jön létre 25,32-36. Az N-típusú inaktiváció folyamatával szemben a C-típusú inaktiváció pontos molekuláris mechanizmusa, annak kiemelt biológiai jelentősége ellenére, a mai napig sem tisztázott. A kapu alkotásában részt vesz a szelektivitási szűrő, annak kölcsönhatásai a pórust alkotó hélikekkel, és újabb tanulmányok a szelektivitási szűrő mögötti üregben elhelyezkedő „inaktivációs” vízmolekuláknak is jelentős szerepet tulajdonítanak az inaktiváció 37,38 és az inaktivációból való visszatérés 39 folyamataiban kapcsolódó molekuláris átrendeződések szabályozásában. A mechanizmust tekintve bizonyítást nyert, hogy a C-típusú inaktivációt a csatornát alkotó négy alegység kooperatív módon hozza létre 40, ami hozzájárulhat ahhoz, hogy a C-típusú inaktiváció kINETIKÁJÁT TEKNINTVÉ LÉNYEGESEN LASSEBB FOLYAMAT, MINT A FENTEBB BEMUTATOTT TíPUSÚ INAKTIVÁCIÓ. A C-típusú inaktiváció sebessége számos tényezővel mutat összefüggést. Ezek közül kiemelendő a Shaker csatorna 449-es pozíciójában található aminosav minősége. Ha az ebben a pozícióban a vad típusú csatornában megtalálható treonint alaninra cserélik, az inaktiváció jelentősen gyorsul, míg a hisztidinrel, vagy más aromás aminosavval történő cserére a vízastalakítást eredményez. Továbbá ismert tény az is, hogy az N-típusú inaktiváció 42 és bizonyos intracelluláris pórusblokkolók 43 gyorsítják a C-típusú
inaktiváció sebességét, míg az extracelluláris K⁺ koncentráció növelésével az inaktiváció lassulása figyelhető meg 44. Ezek a megfigyelések azzal magyarázhatók, hogy a csatorna pórusában a szekvenciálisan elhelyezkedő K⁺ kötőhelyek közül a legkülső kötőhely telítettsége gátolja a C-típusú inaktivációhoz vezető molekuláris átrendeződéseket, egy hasonlattal élve úgy, mint egy láb az ajtó becsukódását („foot-in-the-door” mechanizmus) 43. Érdekes az extracelluláris pH és a C-típusú inaktiváció sebességének kapcsolata, ugyanis míg a Shaker csatornában 45 és a legtöbb Shaker családba sorolható Kv1.1 csatorna esetén az extracelluláris pH csökkenésekor az inaktiváció gyorsulása figyelhető meg, addig a szintén a Shaker családba sorolható Kv1.3 esetén a C-típusú inaktiváció kinetikája lassul. Ennek kulcsfontosságú szerepe lehet a limfociták gyulladásos szövetekben történő aktivációjának szabályozásában 46. A Shaker családba sorolható ioncsatornák egy része mindkét inaktivációs mechanizmus révén inaktiválódhat, míg kiemelendő, hogy a limfociták domináns káliumcsatornája, a Kv1.3 ioncsatorna kizárólag C-típusú inaktivációt mutat, ugyanis nem rendelkezik N-terminális inaktivációs labdáakkal.

Míg az N-típusú inaktiváció milliszekundumos időskálán alakul ki, addig a C-típusú inaktiváció folyamata ettől eltér, és sokkal lassabb, több 10 ms-tól több s-ig terjedő időskálán jön létre. Ennek megfelelően a kiváltott áramok fenotípusa alapján a Kv csatornákat két fő csoportba sorolhatjuk: az N-típusú inaktiváció révén gyorsan inaktiválódó A-típusú áramot vezető csatornák; illetve a lassan vagy egyáltalán nem inaktiválódó késői egyenirányító (delayed rectifier) csatornák. Az első csoportba tartozók főleg a neuronok és izomsejtek ingerekéntőségét szabályozzák 47-49. A második típusba sorolt C-típusú inaktivációval inaktiválódó csatornák fontos szerepet játszanak különféle biológiai folyamatok szabályozásában, így a neuronok akciós potenciáljának modulációjában 50, szívizomsejtekben az akciós potenciálok időtartamának és frekvenciájának regulációjában 51,52, illetve nem ingerekéntőségét szabályozzák. A Drosophila melanogaster Shaker káliumcsatornája hasonló felépítésű és kapuzású, mint a humán Kv csatornák. Az N-típusú inaktivációs labdából mentes Shaker-IR („Shaker inactivation-removed” N-típusú inaktivációval nem rendelkező Shaker ionsatorna csatorna) ezáltal az egyik leginkább elfogadott modellecsatorna a Kv ionsatornák C-típusú inaktivációjának szelektív tanulmányozásához 25,26,57.
1.4 Az általunk vizsgált K_V csatornák kapuzása: az aktivációs és C-típusú inaktivációs kapuzás, valamint a két kapu közötti kommunikáció bemutatása

Az N-típusú inaktivációtól mentes Shaker-IR csatornában (valamint a szintén N-típusú inaktivációtól mentes K_V1.3 ioncsatornában) az ionok áramlását a pórus intracelluláris oldalán, a négy S6 helix egymással való kereszteződése révén kialakított aktivációs kapu $^{21-24}$, valamint a pórus extracelluláris bejáratánál, a szelektivitási szűrő régiójában található C-típusú inaktivációs kapu egymással összehangolt nyitása és zárása szabályozza. Ennek megfelelően négy fő kapuzási (szerkezeti) állapotot különböztetünk el a csatorna kapuzási ciklusa során: a zárt (C), nyitott (I), nyitott-inaktiválódott (OI) és a zárt-inaktiválódott (CI) állapotokat, amelyeket részleteiben a 2. ábra mutatja be 24,38,39,58. A négy kapuzási állapot meglétét korábban számos funkcionális (pl. elektrofiziológia), és szerkezeti információt szolgáltató módszert (pl. röntgenkrisztallográfia, krio-elektronmikroszkópia), valamint molekuláris dinamikai modellezést alkalmazó tanulmány bizonyította 15,32,34,35,59,60.

2. ábra A négyállapotos kapuzási modell, illetve a kapuzási folyamatot kísérő káliumáram bemutatása

(A) A Shaker-IR csatornák kapuzása egy négyállapotos kapuzási modell segítségével írható le, amelyben a négy fő kapuzási állapotot az aktivációs (sötétzöld gömbök) és inaktivációs (piros gömbök) kapuk aktuális állapota alapján különböztetjük el egymástól. Az ioncsatornákat ábrázoló piktogramok mindegyike két egymással szemben elhelyezkedő pórusdomén ábrázol. A zárt (C), nyitott (O), nyitott-inaktivált (OI) és zárt-inaktivált (CI) állapotok közül egyedül a nyitott állapot képes K^+ ionok vezetésére. Az ábrán fekete nyilakkal jelöltük a kapuzási állapotok között elméletileg lehetséges átmeneteket. A B panel egy tipikus, -120 mV-ról $+50$ mV-ra történő depolarizáció során kapott káliumáram sémáját mutatja be az idő függvényében. Jól látható rajta, hogy a depolarizáció kezdetén amíg a csatorna zárt állapotban van (C) áram nem folyik, ami csak az aktivációs kapu nyitása (O) révén jelenik meg, ami előbb elér egy maximális amplitúdót, majd az ionáram a fenntartott depolarizáció hatására végbejutott (steady-state áram", O). Végül a depolarizáció végezése után az aktivációs kapu bezárul (CI), az ionáram eltűnik, és a csatornáink az inaktivációból való visszatérés révén újra a kiindulási zárt állapotba (C) kerülnek. Az áramgörbe alatti feliratok az ioncsatorna aktuális kapuzási állapotait mutatják.
Az aktivációs kapu nyitását és zárását a membránpotenciállal szabályozza. Az aktivációs kapu a membrán depolarizációjának hatására kinyílik, míg a repolarizáció hatására bezáródik21,24. A depolarizáció hatására kinyíló aktivációs kapu lehetővé teszi a csatornán keresztül az ionok áramlását, azaz alapesetben a sejtek belsejéből kifejtő irányuló káliumáram megjelenését (\textbf{2B ábra}). Az aktivációs kapu nyitását követően a hosszantartó depolarizációt az inaktivációs kapu záródása révén a C-típusú inaktiváció kialakulásához vezet (O\textarrowright OI), ami mivel egy nem vezető állapot, az ionáram csökkenésével jár együtt. Az ionáram nagysága az egyensúly beálltát követően nem nulla, hanem egy olyan egyensúlyi (steady-state) áramot tudunk mérni ilyenkor, amelynek nagyságát az adott membránpotenciál értéken a vezető és nem vezető állapotban lévő csatornák aránya határozza meg. Olyan depolarizáció mellett, ahol minden csatorna kinyit (a nyitási valószínűség (P\textsubscript{o}) \textasciitilde 1) az egyensúlyi áram szempontjából a nyitott, illetve inaktivált csatornák aránya lesz meghatározó. Ezt követően, az impulzusprotokoll szerint, a negatív membránpotenciál az aktivációs kapu záródását okozza (OI\textarrowright CI). A CI állapotú csatornák inaktivációától való visszatéréséhez megfelelő ideig kellően negatív membránpotenciál jelenléte szükséges (CI\textarrowright C)25,58. A C-típusú inaktivációától való visszatérés folyamatáról és pontos molekuláris mechanizmusáról a többi kapuzási átmenethez képest szintén keveset tudunk. Az inaktivációától való visszatérés mértékét több tényező is befolyásolja, többek között az extra- és intracelluláris kationok koncentrációja, az extracelluláris pH és a membránpotenciál nagysága61-65. Az inaktivációától történő visszatérés több szekundumos folyamata során a sebesség meghatározó lépés a CI\textarrowright C átmenet, mivel az OI\textarrowright CI igen gyorsan végbeesik (ms-os nagyságrendű) a \textit{Shaker} csatornában58. Az aktivációs és inaktivációs kapuk csatolnak egymással. Ismert, hogy az aktivációs kapu nyitása elősegíti az inaktivációs kapu záródását, tehát elősegíti a C-típusú inaktiváció kialakulását, a zárt inaktivációs kapu pedig gyorsítja az aktivációs kapu nyitását és lassítja annak záródását.32,58-60,66 A csatolás a kapuk közötti allosztérikus kommunikációs útvonalak révén valósul meg67. Ezek alapján feltételezhető, hogy az aktivációs kapu állapota a kapuk közötti kommunikáció és az inaktivációától történő visszatérést lehetővé tevő szerkezetes változásokat. A disszertáció egy része ennek a kérdésnek a megválaszolására irányul, azt vizsgáltuk, hogy az aktivációs kapu záródása feltétele-e az inaktivációától történő visszatérésnek.

A két kapu közötti csatolás vizsgálatára, valamint az egyes kapuzási átmenetek valószínűségeinek meghatározására irányuló kísérletek pozitív membránpotenciálok alkalmazása mellett történtek, mivel a pozitív membránpotenciálok mellett van jelen akkora hajtóerő, és olyan magas csatornanyitási valószínűség, amely jól mérhető, viszonylag nagy amplitúdójú ionáramok kialakulását biztosítja, ezáltal azok egyszerű patch-clamp mérésekkel
is vizsgálhatók. Ezzel szemben negatív membránpotenciálokkal mellett mind a hajtóerő, mind pedig a nyitási valószínűség kicsi, így a kialakuló ionáram is alacsony amplitúdóval bír, emiatt az ionáramok mérése jelentős hibát hordoz magában. Ezáltal a negatív membránpotenciálokkal mellett bekövetkező kapuzási átmenetekről lényegesen kevesebbe információval rendelkezünk. A csatorna nyitását eredményező átmenet (C→O) valószínűsége csak az egyik meghatározója a depolarizáció során megjelenő ionáramnak. Hasonlóan fontos tényező annak megismerése, hogy a csatornának mekkora hányada van nyitásra alkalmas, zárt állapotban (C). Utóbbit elsősorban a negatív membránpotenciálok esetén végbemenő átmenetek határozzák meg, azaz az egyensúlyi állapotban a CI és C állapotban található csatornák egymáshoz viszonyított aránya, amit az egyensúlyi inaktiváció jelensége jól tükrözi. Mi határozza meg a CI és C egyensúlyt? A káliumcsatornák kapuzási sémája alapján elképzelhető, hogy létezik direkt C→CI átmenet, míg a kapuk csatolásának ismeretében valószínűbb, hogy negatív membránpotenciállal mellett, ahol az egyensúlyi inaktiváció kialakul, a csatorna aktivációs kapuja kinyilik, és a CI állapot az OI→CI útvonalon töltődik be. Ezek a kérdések továbbra is részben megválaszolhatóak, annak ellenére, hogy a mind az egyensúlyi inaktiváció, mint pedig az inaktivációdból történő visszatérés döntően meghatározza a potenciálisan aktiválható csatornák számát, ami a sejtöktől ingerelhetőségének egyik meghatározó tényezője. A fentiek alapján az aktivációs kapu kontrollálhatja mind az egyensúlyi inaktivációt, mind pedig az inaktivációdból történő visszatérést, ezáltal az OI→CI→C átmenetek részletesebb vizsgálata hozzájárulna a kapuzási folyamatok részletes megismeréséhez és ezen keresztül hatékonyabb, a csatornákhoz állapotfüggő módon kötődő gyógyászok tervezéséhez, amelyek csatornákhoz való kötődésének valószínűségét a csatorna aktivációs és/vagy inaktivációs kapuainak nyitott állapota határozza meg.

1.5 A koleszterin szerkezete és membránbeli eloszlása

1.5.1. A koleszterin szerkezete

A koleszterin a gerincesek sejtmembránának fontos szerkezeti alkotóeleme. A sejtmembránban sokféle különböző funkciót ellátó fehérje található, így ioncsatornák, ATP-függő ionpumpák, ABC („ATP-binding cassette” ATP-t kötő kazetta) transzporterek, G-féherjehez kapcsolt receptorok és receptor tirozin kinázok, amelyek mindegyikének működését szabályozhatja a koleszterin. A koleszterin széleskörű biológiai hatásai annak köszönhetőek, hogy a molekula egyedi amfipatikus kémiai szerkezete révén számos kölcsönhatást alakíthat ki
mind lipidekkel, mind fehérjékké. Egyrészt a kisméretű, poláris részét létrehozó hidroxil csoportja hidrogénkötést alakíthat ki a membránlipidek és –fehérjék poláris csoportjaival, másrészt pedig nagyméretű apoláris rigid tetraciklikus gyürürendszerének planáris α felszíne kötődhet fehérjéhez C-H-π kölcsönhatásokon keresztül. A molekula β felszínén található alifás csoportok pedig a fehérjék elágazó aminosavaihoz kapcsolódhatnak van der Waals kölcsönhatások segítségével 68,69. A 7-dehidrokoleszterin (7DHC) a koleszterin prekurzora, amely attól csupán annyiban különbözik, hogy egy extra kettős kötést tartalmaz a szterol gyűrű 7-es pozíciójában, illetve a vegyület felhalmozódik a 7-dehidrokolink-reduktáz enzim veleszületett defektusa által okozott Smith-Lemli-Opitz (SLO) szindrómában (részletesen lásd az 1.8-as fejezetben) 70.

1.5.2 A koleszterin vertikális megoszlása a sejtmembránban

A koleszterin a sejtmembrán külső és belső rétegében egyaránt megtalálható, pontos vertikális megoszlásával kapcsolatban azonban számos ellentmondás merül fel az irodalomban 71. Bár gyors flip-flop mozgása alapján várható lenne a molekula homogén vertikális megoszlása 72, lipidekkel vagy fehérjékké mellett preferenciális kölcsönhatásai aszimmetrikus megoszlásának kialakulását eredményezhetik. Mivel a sejtmembránban preferált kölcsönható partnere a csaknem kizárólag a membrán külső rétegében található szfingomielin, kezdetben azt valószínűsítették, hogy főleg exofaciálisan fordul elő 73. Ezzel szemben a későbbi kutatások többségének eredményei azt mutatták, hogy a koleszterin koncentrációnja magasabb a sejtplazma felé néző rétegben 74. A koleszterin belső rétegben való lokalizációját magyarázhatja az a megfigyelés, hogy modellmembránokban erős affinitást mutat a nagy görbülettel rendelkező membránrégiók iránt. Ennek hátterében az állhat, hogy a koleszterin lecsökkenti az ílyen területeken szintén fedésrol felosztható foszfatidil-ethanolamin jelenléte által okozott kedvezőtlen szabadenergia-változás mértékét 75. Az előbbiekkel éles ellentétben egy nemrég megjelent tanulmány 12-szer magasabban koleszterin mennyiséget mutatott ki a membrán exofaciális rétegében a citoszolikus felszíniehez képest, amely eltérés hátterében az ABC-transzporterek aktivitását valószínűsítették 76, bár újabb eredmények megkérőjelezték az adatok megbizhatóságát 77. A koleszterin vertikális megoszlásában bekövetkező változásokkal kapcsolatban felvetették, hogy azok befolyásolhatják különböző sejtfunkciók működését 76.
A koleszterin membránkomponensekkel kialakított kölcsönhatásai miatt laterális megoszlása nem homogén a sejtmembránban. A transzmembrán fehérjéket egy alacsonyabb mobilitással rendelkező lipidekből álló burok veszi körül, amelyet gyakran lipid annulusnak neveznek. Az annulushoz képest való elhelyezkedés szerint a koleszterin lokalizációja lehet nonannuláris (a fehérjék szerkezetén belül az egyéb lipidektől elfedve), annuláris (a fehérje felszínével szomszédos lipidburokban), illetve az annuluson kívül (a membránban található fehérjét körülvevő lipidburkokon kívül) 78. Egyedi kémiai szerkezete miatt a koleszterin preferenciálisan kötődik szfingolipidekhez és glikoszfingolipidekhez. A glicerolipidekhez képest a (gliko)szfingolipidek telítettebbek és több hidrogénkötés kialakítására képesek, mivel amid és hidroxil csoportjuk révén ezen kötéseken akceptorként és donorként egyaránt viselkedhetnek. Ennek eredményeképpen a (gliko)szfingolipidek hajlamosak asszociálni egymással, bár feji csoportjaik nagy mérete limitálja pakolódási denzításukat 69. Az „esernyő modell” alapján ez a helyzet kedvező a koleszterinnel való kölcsönhatásuk számára: a koleszterin a szfingolipidek közé ékelődhet oly módon, hogy nagyméretű apoláris részét elfedik a szfingolipidek nagyméretű feji csoportjai, kivédve így a koleszterin vízzel történő energetikailag rendkívül kedvezőtlen érintkezését 79. A koleszterin és (gliko)szfingolipidek közötti kölcsönhatásokat erősítheti sztöchiometrikus „kondenzált complexek” képződése, amely további nagyméretű molekula klaszter kialakulását facilitálhatja 80. A lipidek közötti ilyen jellegű preferenciális kölcsönhatások képezték a kezdeti lipidutaj-hipotézis alapját, amely szerint a lipidutajok 10-200 nm méretű termodinamikusan instabil klaszterek, amelyekben nagy mennyiségben találhatóak koleszterin molekulák, telített foszfolipidek és (gliko)szfingolipidek és jellemző tájuk a lipidek magas fokú rendezettsége és pakolási sűrűsége 81. A lipidutaj-elméletet megalkotása óta számos vita övezte 82, különösen a transzmembrán fehérjék és az aktin citoszkeleton elemeinek aktív szerepét illetően, amely végül a tutajok kiterjesztett definíciójának megalkotásához vezetett. A jelenleg leginkább elfogadott nézet szerint a tutajok létrejöttének alapját a szfingolipid és koleszterin molekulák asszociációs potenciálja képezi, amelyet azonban jelentősen, precízen és aktív módon befolyásol a transzmembrán fehérjék jelenléte, illetve az aktin citoszkeleton hálózat, továbbá ezek specifikus kémiai kölcsönhatásai. A lipidutaj-mikrodomének asszociálódhatnak egymással funkcionálisan aktív nagyméretű platformokat képezve 83-85.

A membránban található molekulák dinamikus módon bejuthatnak ezekbe a mikrodoménekbe, illetve kijuthatnak onnan, bár bizonyos fehérjék különösen nagy affinitást
mutatnak a lipidtutajok iránt, amelynek hátterében ezen proteinek glükózil-foszfatidilinozítol (GPI)-horgonya, palmitoilációjára vagy mirisztolációjára, szterol konjugációja, transzmembrán doménjének speciális tulajdonsága vagy koleszterinkötő motívuma állhat. A tutajok koncentrált platformot képezhetnek a kölcsönható molekulák számára, míg mások kiszorulhatnak onnan, amely révén ezen mikrodoménének hatékonyan modulálhatnak különböző jelátviteli útvonalakat, ezen keresztül pedig szerepet játszhatnak az apoptózis, a sejtosztódás, -adhézió és -migráció, a szinaptikus transzmisszió, a citoszkeletális szerveződés, a fehérje sorting folyamataiban, valamint a patogének sejtbe jutása, az amiloid plakkok képződése és az extracelluláris vezikulák formációja során. A fehérjék tutaj és nem-tutaj membránrégiók közötti megoszlásának megváltozása patogenetikai jelentőséggel bírhat tumorokban, immunológiai, anyagcsere, illetve neurodegeneratív betegségekben. Ezzel összhangban számos transzmembrán fehérje esetén kimutatták azok funkcionális szempontból releváns lipidtutaj lokalizációját, így K\textsubscript{V}1.3, K\textsubscript{V}1.4, K\textsubscript{V}2.1, K\textsubscript{V}4.2, K\textsubscript{V}7.1, K\textsubscript{V}10.1, K\textsubscript{V}11.1, Na\textsubscript{V}1.8, Na\textsubscript{V}1.9 és TRPM8 (transzien receptorpotenciálú csatorna, melasztatin alcsoport 8. tagja) ioncsatornák esetén, valamint egyéb transzmembrán fehérjékben, így nikotinerg acetilkolin receptoroknál (nAchR), Na+-K+ ATPáznál, β2-adrenerg receptoroknál, CXCR4, metabotrop glutamat receptoroknál, CB1 endokannabinoid receptoroknál, opioid receptoroknál és ErbB fehérjéknél, amint azt a témában írt összefoglaló közleményünkben részletesen bemutattuk.

1.6 A koleszterin és a K\textsubscript{V} ioncsatornák közötti kölcsönhatások bemutatása

A koleszterin és transzmembrán fehérjék, így az ioncsatornák közötti kölcsönhatások mechanizmusait három fő csoportba sorolhatjuk (3. ábra). Az első csoportba tartoznak azok a kölcsönhatások, amikor a koleszterin, mint ligand kötödik az ioncsatorna specifikus koleszterinkötő motívumaihoz, régióhoz, vagy doménjeihez, ami eredményeként a csatorna kapuzását módosítja (3A ábra). A másik lehetséges kölcsönhatási típus olyan indirekt, a membrán biofizikai paramétereinek a megváltoztatásán keresztül végbemenő kölcsönhatásokat foglal össze, ahol a koleszterin elsődlegesen a membrán mint közeg tulajdonságait változtatja meg, aminek eredményeként a benne levő transzmembrán fehérjék működése is módosul (3B ábra). A harmadik mechanizmus a lipidtutajok által mediált kölcsönhatás, ami nem különíthető el teljesen a direkt és indirekt kölcsönhatásoktól, hanem azok egyfajta közös metszéspontjaként képzelhető el (3C ábra). A lipidtutajok ugyanis más membránrégiókhoz képest magasabb koleszterin koncentrációval rendelkeznek, és sokszor bennük az egyes membránfehérjék, így bizonyos ioncsatornák koncentrációja is magasabb (pl. K\textsubscript{V}1.3, K\textsubscript{V}10.1), ami a direkt
kölcsönhatások kialakulásának kedvez. Ezek mellett a lipidtutajokban pont az eltérő membránösszetétel miatt a membrán biofizikai paraméterei is eltérőek, ami az indirekt kölcsönhatások jelentőségét is valószínűsíti. A további alfejezetekben ezeket a kölcsönhatásokat mutatjuk be részletesen.

3. ábra A koleszterin transzmembrán fehérjékre gyakorolt hatásának lehetséges mechanizmusai

Az ábra A, B és C panelje azt mutatja be, hogy a koleszterin a transzmembrán fehérjék, így az ioncsatornák működését is, három fő szinten módosíthatja. (A) A koleszterin befolyásolhatja a fehérjé szerekezetet és funkcióját oly módon, hogy direkt kölcsönhatást alakít ki annak bizonyos régiójával. A koleszterin kötődhet a protein (az ábrán Kir2.2 ioncsatorna) egy speciális koleszterin kötő szekvenciájához, mint amilyen például a CRAC (naranccsárga) és a CARC motivumok (sárga). Továbbá a fehérje egyéb régiói, doménjei is képesek lehetnek közvetlen koleszterin-kötőhelyek kialakítására (lila és rózsaszín). (B) A direkt kölcsönhatás alternatívájaként a koleszterin kifejtheti transzmembrán fehérjékre (sötétkék henger) gyakorolt hatásait indirekt módon a membrán biofizikai paramétereinek, így rendezettségének (S), vastagságának (d) vagy az elasztikus kompresszibiliségét (Kc), valamint gőrbületi (Kb) modulusával jellemzhető rigiditásának megváltoztatásán keresztül is. (C) A hatás harmadik lehetséges szintjének megfelelően a koleszterin módosíthatja a fehérjék lipidtutajok (azaz vastagabb membrán régiók) és nem-tutaj mikrodoménének közötti megoszlását (sötétkék henger, kétfejű nyíl), megváltoztatva ezáltal a tutajban lokalizált (zőld henger) vagy azokkal asszociált (világoskék), illetve nem-tutaj doménében található (piros henger) fehérjék kifejezett hatásainak hatékonyságát. A tutajok által kifejtett hatás nehezen különböthet el a direkt és indirekt kölcsönhatásoktól, azok metszéspontjában található, ugyanis a tutajokban azok magasabb koleszterin-tartalma, valamint eltérő biofizikai tulajdonságai és fehérjekörnyezete révén mind a direkt, mind pedig az indirekt kölcsönhatások szerepe jelentős lehet.

1.6.1 A koleszterin és fehérjék közötti direkt kölcsönhatások: koleszterinkötő motivumok, régiók és domének

A transzmembrán fehérjék esetén az első olyan motivum, amelynek szerepét felvetették a fehérjék koleszterinnel való közvetlen kölcsönhatásában a Cholesterol Recognition Amino Acid Consensus (CRAC) motivum volt, amely aminosavak speciális, jóllehet lazan definiált sorrendjét jelenti. A szekvencia sorrendje (L/V)-X1-5-(Y)-X1-5-(K/R), ahol az X szimbólum bármely aminosavat jelentheti. Később a fordított irányú, CARC -nak („reverse or mirror version of the CRAC” koleszterinkötő motivum) elnevezett (K/R)-X1-5-(Y/F)-X1-5-(L/V) szekvenciáról is leírták, hogy szerepet játszhat a koleszterin megkötnésében 68,91,92, sőt, ioncsatornák esetén energetikailag kedvezőbbnek is bizonyult a koleszterin kötődésének szempontjából 68. A harmadik, koleszterinkötésben fontos szerepe, a Cholesterol Consensus
Motif (CCM) létrehozásában két szomszédos alegység vesz részt oly módon, hogy a köthelyet az egyik hélix (K/R)(I/L/V)(W/Y) szekvenciája és a szomszédos hélix (F/Y/W) aminosavjai alakítják ki. Ezen motívumok megtalálhatóak számos fehérjében, így Kv, BK („big potassium = large conductance calcium-activated potassium channel” feszültség és kalcium által aktivált nagy konduktanciájú káliumszorontorna), Kir („inward rectifier potassium channel” befelé egyenirányító káliumszorontorna), Nav1.9, TRPV1 (transziens receptorpotenciálú csatorna, vanilloid alcsorport 1. tagja) és TRPV4 (transziens receptorpotenciálú csatorna, vanilloid alcsorport 4. tagja) csontnákban, nAChR-ban, ABCG1 („ATP-binding cassette sub-family G member 1” ATP-t kötő kazettász subfamily G alcsaládjának 1. tagja) és ABCG2 („ATP-binding cassette sub-family G member 2” ATP-t kötő kazettász subfamily G alcsaládjának 2. tagja) transzporterekben, valamint különböző G-fehérjéhez kapcsoló receptorokban. Ezek a motívumok a fehérjék transzmembrán és/vagy sejtoplazmai doménjeiben helyezkednek el és sok esetben ezen a koleszterin hatások legfontosabb meghatározói. A három motívumban közös, hogy aminosavai a koleszterin molekulával hidrofób kölcsönhatásokat (a koleszterin alkil csoportja és a motívum izoleucinja, leucinja és valinja között), hidrogénkötéseket (a koleszterin hidroxil csoportja és a motívum pozitív töltéssel rendelkező argininje, lizinje között), valamint a koleszterin gyűrűje és a motívum aromás hidrofób aminosav oldalláncai között létrejövő kötések alakíthatnak ki.

Az utóbbi években azonban számos kritika merült fel azzal kapcsolatban, hogy ezen motívumok mennyire meghatározó a koleszterin által kiváltott hatások szempontjából. A CRAC és CARC definíció szerint lineáris aminosavszekvenciát tartalmazó motívumok, így alkalmazhatóságuk limitált a fehérjék háromdimenziós szerkezete miatt, illetve nem magyarázzák a több alegység által létrehozott köthelyek kialakulását. A másik ellentmondás, hogy bizonyos fehérjéknél, így Kv, Kir, BK vagy P2X ioncsatornák esetén a motívumok a csatornák citoszolikus doménjeiben találhatóak, így valószínűl, hogy azok medíálják az integráns membránlipid koleszterinnel való kölcsönhatásait. Ennek ellenére Kv és BK esetén kimutatták, hogy ezek a citoplazmatikus motívumok nélkülözhetetlenek a koleszterinvaló kölcsönhatásban, hiszen a csatornák ezen régióinak eltávolítása után a koleszterin nem képes a jól ismert módon befolyásolni a csatornák funkcióját. A Kir2.1 ioncsatornában kimutatták, hogy a CRAC, CARC és CCM szekvenciákon alapuló koleszterinkötő motívumok nem mutatnak átfedést az MD szimulációk és dokkolások során azonosított koleszterint kötő régiókkal. A számítások alapján Kir csatornákban két koleszterint érzékelő nagyobb fehérjerégió definiálható, amelyeken belül különböző kötőhelyeket találtak számítógépes simulációk során. Mivel más fehérjékben, így nAChR, GABA_A

24
(„gamma-aminobutyric acid” gamma-aminovajsav receptor A típusa), ABCG2 és GPCR („G protein-coupled receptor” G-proteinhez kapcsolt receptor) esetén is kimutatták, hogy számos CRAC és CARC motívum nem funkcionál koleszterin-kötőhelyként, egyéb módon definiálták a fehérjék koleszterinre érzékeny régióit, amelyek több esetben különböznak a korábban leírt koleszterint kötő motívumoktól 90.

Újabb számítások és kísérletes eredmények arra mutattak rá, hogy a három fentebb említett koleszterinkötő motívum a koleszterin hatását mediáló és koleszterint kötő régiók csak egy részének kialakításáért felelősek 94. Emiatt a koleszterinkötésében fontos régiók általános definícióját kiterjesztették. Az új elméletek továbbra is azt hangsúlyozzák, hogy a koleszterin kötésében fontos az erőteljesen hidrofób környezet, amely lehetővé teszi a koleszterin stabil kapcsolódását annak gyűrűje és az aromás/hidrofób aminosavak közötti kölcsönhatások révén, valamint a koleszterin hidroxil csoportja és különböző aminosavak között képződő hidrogénkötések kialakulásán keresztül. A koleszterin kötő aminosavak azonban az új értelmezések szerint nem csak egy lineáris szekvencia mentén helyezkedhetnek el a fehérjén belül, így a CRAC és CARC motívumok meglétével kapcsolatos egyik legfontosabb limitáló tényező eliminálásra került az új definíciókban 94.

A koleszterinre érzékeny régiók mellett bizonyos fehérjék esetén, (pl. ABC transzporterek, Niemann-Pick fehérje, Patched) külön koleszterinkötő domének felelősek a koleszterinnel való interakciók kialakításáért 104, de ezek száma lényegesen limitált a koleszterinkötő régiókhoz képest.

1.6.2 A koleszterin és fehérjék közötti indirekt kölcsönhatások

A direkt kölcsönhatások mellett a koleszterin a membrán biofizikai paramétereinek, így rendezettségének, hidrációjának, vastagságának, görbületének, illetve dipólpotenciáljának megváltoztatásán keresztül is befolyásolhatja a fehérjék működését. Már a korai vizsgálatok során kiderült, hogy a koleszterin jelentősen módosítja modellmembránok lipidjéinek rendezettségét. A hatás kettős természű, gél fázisú membránokban ugyanis a rendezettséget jellemző paramétereket csökkenti, míg a biológiai membránokra jellemző folyékony fázisban a membránt felépítő lipidek oldalláncainak rendeződését, a láncok kiegyenesedését és a lipid molekulák átlagos keresztmetszetének csökkentését eredményez 105,106. A rendezettség növekedésével párhuzamosan a membrán fluiditása, és következményesen a membrán alkotóelemekek mobilitása jelentősen lecsökken szterolok hatására 107. A fluiditás csökkénése nemcsak modellmembránok, hanem élő sejtek esetén is megfigyelhető 108. A koleszterin által
okozott rendeződéssel párhuzamosan a vízmolekuláknak a membrán mélyebb rétegeibe történő bejutása, azaz a membrán hidrációja is lecsökken 109.

Amint az a rendezettséget fokozó hatásból várható, a koleszterin mennyiségének emelkedése a membránok vastagságának növekedését is eredményezi 106,110. A membrán vastagsága fontos a fehérjék aktivitásának szabályozása szempontjából. A fehérje-lipid kölcsönhatások során meghatározott jelentőségű tényező ugyanis a fehérjék és lipidek hidrofób régióinak hossza, illetve elsősorban az azok közötti különbség, amelyet a hidrofób „mismatch” elmélet foglal össze. Eszerint egy fehérjék és lipidekből álló rendszer szabadenergiája a molekulák összekeveréséből fakadó entrópiaváltozásból és a lipidek és fehérjék közötti kölcsönhatást jellemző energiatényezőből származik. Az utóbbi tényező komponensei a van der Waals kölcsönhatások, a hidrogénkötések energiája, a hidrofób mismatch-ből eredő ún. hidrofób effektus, illetve a lipid oldalláncok elasztikus deformációjából származó szabadenergia. A komponensek összességéből számított szabadenergia-változás optimális (azaz a lehető legkevésbé pozitív), amennyiben a fehérjék és lipiddek hidrofób doménjeinek hossza megegyezik. Ha azonban a fehérje hidrofób részének hossza (hidrofób hossz) a lipidek hidrofób részénél hosszabb („pozitív mismatch”) vagy rövidebb („negatív mismatch”) a kedvezőtlen energia változás ellensúlyozására adaptációs folyamatok indulnak be. Ilyen alkalmazkodási mechanizmus lehet a fehérjék asszociációja, transzmembrán hélixeknek elhajlása, konformációjának megváltozása, illetve a lipid oldalláncok hosszának módosulása vagy a lipidasszociációja és membrán-mikrodoménék következményes kialakulása 78,111. A koleszterin jelenléte jelentősen befolyásolhatja ezen adaptációs folyamatokat. A koleszterin hiánya esetén a membrán lecsökken vastagsága például alacsonyabb hidrofób hosszal jellemezhető konformációk kialakulását segítheti elő. A koleszterin által megnövelt membránvastagság ezzel szemben a nagyobb hidrofób hosszal rendelkező fehérjekonformációk stabilitását növelheti, illetve nagyfokú mismatch esetén a proteinek aggregációját, valamint más fehérjékhez való kötődését okozhatja. Mivel a fehérjék különböző konfigurációi jellemzően eltérő funkcionális aktivitással bírnak, a koleszterinfüggő membránvastagságból fakadó adaptációs mechanizmusok jelentősen módosíthatják a transzmembrán fehérjék aktivitását, amit ki is mutatták BK és Na+ csatornák, nAchR, Na⁺-K⁺ ATPáz, különféle GPCR-ek, valamint ErbB fehérjék esetén, amint azt részletesen áttekintettük összefoglaló közleményünkben 90.

A biológiai membránok fontos biofizikai paramétere azok görbülete és az abból fakadó görbületi elasztikus energia. A membránok teljes vastagságában jellemző a molekulák között fellépő vonzó és taszító erők egyensúlya, amely révén energetikailag optimális egyensúlyi távolság alakul ki a molekulák között. Amennyiben az egyensúlyi távolság értéke különböző a
membrán felszíni és középső régióiban, a membrán spontán módon begörbül. Ha azonban ez nem lehetséges sztérius okok (például hidrofób mismatch) miatt, görbületi elasztikus stressz és következményesen pozitív szabadenergia-változás alakul ki. A fehérjék konformációtól függő módon csökkenthetik vagy növelhetik ezen stressz mértékét, illetve az elasztikus stressz mértékétől függően megváltozhat a fehérjék különböző konfigurációinak stabilitása, így azok funkcionális aktivitása is \(^{78,112}\). A koleszterin mennyiségének növelése fokozza a membránok kompressziós és görbületi rigiditását \(^{113,114}\), megváltoztatja a membrán különböző mélységeiben a vonzó és taszító erők egyensúlyát jellemző laterális nyomásprofil \(^{115}\), valamint jelentősen módosítja a membránok spontán görbületét \(^{116,117}\). Ezen hatásokon keresztül a koleszterin módosíthatja a fehérjék adott konfigurációjának stabilitását, ami konformáció-változást, illetve az asszociációs hajlam módosulását eredményezheti \(^{112,118}\). Ilyen, a membrán elaszticitásban bekövetkező változások szerepét valószínűsítették a koleszterin hatásainak háttérében rodopszin, szerotonin receptorok, ErbB fehérjék és mechanoszenzitív Piezo csatornák funkciójának vizsgálata során \(^90\).

A membránok kevessé ismert biofizikai paramétere a dipólpotenciál (DP), ami a membránt alkotó lipidek és a membránhoz asszociált vízmolekulák dipóljainak nem véletlenszerű térbeli orientációjából származik. Ez az elrendeződés nagy pozitív (150-450 mV) elektromos potenciál és 10\(^{8}-10^{9}\) V/m erősségű intramembrán elektromos tér kialakulását eredményezi \(^{119,120}\). A DP nagyságának meghatározója a membrán lipidösszetétele, illetve elsősorban a koleszterin mennyisége. A koleszterin ugyanis jelentős mértékben növeli a DP nagyságát, amelynek oka egyrészt a molekula nagy dipólusmomentuma, az általa okozott rendezettségbeli fokozódás, illetve a membrán dielektromos állandójának megváltozása \(^{121,122}\). Mivel a fehérjékben a töltésmegoszlás egyenletlen, ezért a DP az általa generált elektromos erőtér révén jelentősen módosíthatja a proteinek konformációinak stabilitását és ezáltal azok aktivitását is, amint azt ki is mutatták feszültségkapuozott ionszoronnáknak, Na\(^+\)-K\(^+\) ATPáz, ABCB1 („ATP-binding cassette sub-family B member 1” ATP-t kötő kazettát tartalmazó fehérjescsalád B alcsaládjának 1. tagja), szerotonin receptorok, valamint ErbB fehérjék esetén \(^90\).

1.6.3 A koleszterin és membránfehérjék közötti direkt és indirekt kölcsönhatások elküldönitésé

Annak ellenére, hogy a sejtmembrán koleszterinrel való töltésének funkcionális és elektrofiziológiai hatásai számos ionszoronnára, transzporter és transzmembrán receptor esetén igen jól dokumentáltak, a hatások mechanizmusának meghatározása, azaz a direkt és indirekt koleszterin hatások elküldönitésé bonyolult. Nehéz különválasztani ugyanis a közvetlen kötődés
és a szterolok által a membrán biofizikai paramétereiben bekövetkező változások következményeit.

Erre a problémára ad részben megoldást a koleszterin királis analógjainak, az epi- és ent-koleszterinnek az alkalmazása. Az epi-koleszterin csupán annyiban különbözik a koleszterintől, hogy a C3 hidroxil csoportja a 3α pozícióban található (a koleszterinben megfigyelhető 3β helyett), míg az ent-koleszterin a koleszterin tükörképe, mivel a vegyület mind a nyolc sztereocentrumának konfigurációja a koleszterinhez képest ellentétes 107,123. Ezen különbségek miatt a molekulák háromdimenziós szerkezete jelentősen különbözik a koleszterinétől, amelynek eredményeképpen a fehérjékre gyakorolt funkcionalis hatásaik is jelentősen eltérőek lehetnek, annak ellenére, hogy csak kismértékű különbségeket mutatnak az alapvető membránbiofizikai tulajdonságokra gyakorolt hatásaik tekintetében 98,107,123,124 (lásd még lentebb). Ezzel összhangban Kir 125,126, TRPV1 127, BK 128 csatornák, valamint GABA_A 129 receptorok esetén is kimutatták sztereospecifikus hatásokat, azaz ezeknél a fehérjéknél a királis analóg a koleszterintől különböző vagy éppen azzal ellentétes funkcióbeli változásokat váltott ki. A nAChR koleszterin általi szabályozása ezzel szemben nem sztereospecifikus módon történik, a koleszterin és izomerjei ugyanis hasonló funkcionális hatásokat okoznak 130. A korábbi elméletek szerint a sztereospecifikus (különböző vagy ellentétes) hatások hátterében leginkább a szterolok közvetlen fehérjéhez kötődése áll, míg a nem sztereospecifikus (hasonló) hatásokat a koleszterin és analógjai indirekt mechanizmusokon keresztül fejtik ki.

Újabb eredmények azonban a királis analógok használatának limitációira hívtak fel a figyelmet. Amint azt nAChR esetén újabb tanulmányok leírták, annak ellenére, hogy a koleszterin és analógjai hasonlóan befolyásolják a fehérje funkcióját, valószínűleg a hatás hátterében direkt kölcsönhatás állhat, ugyanis kimutatták, hogy a koleszterin és királis analógjai a nAChR egy „laza koleszterint kötő helyére” kötődhetnek 131. Ezen eredmények arra utaltak, hogy a korábbi elméletekkel ellentében a sztereospecificitás hiánya nem zárhatja ki a közvetlen fehérje-koleszterin kölcsönhatás meglétét, így a sztereozomerek használata elsősorban akkor alkalmas a direkt és indirekt hatások elkülönítésére, ha a koleszterin és izomerjei különböző vagy ellentétes hatásokat gyakorolnak a fehérje funkciójára, ez ugyanis a direkt koleszterin-fehérje interakció meglétét valószínűsíti 98,123. Emellett Kir csatornánknál, ahol a koleszterin és izomerjeinek hatása sztereospecifikus (a koleszterin áramcsökkenést, az epi-koleszterin áramnövekedést okoz, míg az ent-koleszterinnek nincs hatása az áram nagyságára), kimutatták, hogy a koleszterin és az izomerek a molekula ugyanazon kötőhelyéhez kapcsolódnak, csak az egyes vegyületek kötőhelyen belüli orientációja különbözik, emiatt az izomerek hatása eltér a koleszterin által kiváltott hatásokhoz képest 98,103.
A koleszterin és izomerjei háromdimenziós szerkezetében megfigyelhető eltérések miatt a lipid kettősrétegekben az egyes vegyületek vertikális pozíciója is különbözik. Az ent-koleszterin elhelyezkedése a tükröképi szerkezetének megfelelően majdnem teljesen hasonló, mint a koleszteriné, az epi-koleszterin azonban a másik két származékhoz képest a membrán síkjában felfelé, annak interfaciális rétege felé eltolt és ferde állásban található 123,132. Ennek eredményeképpen a kettős réteg lipidrendezettségére gyakorolt hatásaik kismértékben eltérnek 124. Így a királis analógiák membránparaméterekre gyakorolt hatásainak pontos leírása további vizsgálatok igényét veti fel 123. Az említett hátrányok ellenére a királis izomerek használata továbbra is az egyik legalkalmazhatóbb módszer a direkt és indirekt koleszterin-fehérje kölcsönhatások elkülönítésére könnyű alkalmazhatóságuk és membránfehérjék sokféle típusával való kompatibilitásuk miatt.

Az általunk is alkalmazott kételektródás voltage-clamp fluorimetria (TEVCF) technika az elektrofiziológiai és fluoreszcenciás módszerek egyedi kombinációja. Használata során a VSD és a PD átrendeződését egyidejűleg monitorozhatjuk a kapuzási folyamat során, így a koleszterin fő intramolekuláris célpontja (VSD vagy PD) könnyen meghatározható válik 133. Bár önmagában a TEVCF segítségével nem különíthetők el egymástól a direkt és indirekt kölcsönhatások, a módszer fontos információt nyújthat a koleszterin intramolekuláris célpontjáról a funkcionális domének szintjén, akkor is, ha az adott fehérje nem rendelkezik specifikus koleszterinkötő motívumokkal, régiókkal vagy doménekkel. A módszert sikeresen alkalmazták PUFA (“polyunsaturated fatty acid” többszörösen telítetlen zsírsav) vegyületek intramolekuláris célpontjának meghatározására különböző Kv ioncsatornák esetén, koleszterin által okozott hatásokat viszont eddig nem vizsgáltak ezzel a módszerrel 134.

Az elmúlt évek során a krio-elektronmikroszkópia és a molekuláris dinamikai szimulációs technikák fejlődése révén számos új koleszterin-kötőhelyet azonosítottak, ami jelentősen kibővítette a direkt koleszterin-fehérje kölcsönhatásokkal kapcsolatos ismereteinket. Bár ezek a módszerek a direkt kölcsönhatások meglétét erősen valószínűsíthetik, nem tudják azokat egyértelműen bizonyítani. A feltételezett kölcsönhatások funkcionális relevanciájának megerősítése további kísérletes bizonyítást igényel, például úgy, hogy a lehetséges kötőhelyen mutációt hozzan létre, ami módosíthatja a fehérje koleszterinrel való kölcsönhatását.

1.7 A koleszterin Kv ioncsatornákra kifejtett hatásai és azok mechanizmusa
A koleszterin \(K_V \) csatornák funkciójára gyakorolt hatásait először a csatornák és a lipidtutajok közötti kapcsolat vizsgálata során vetették fel. A \(K_V1.3 \), \(K_V1.4 \), \(K_V2.1 \), \(K_V4.2 \), \(K_V7.1 \), \(K_V10.1 \) és \(K_V11.1 \) csatornákról is kimutatták, hogy azok preferenciálisan a lipidtutajokban találhatóak, amelynek oka egyrészt az, hogy a csatornák hidrofób doménjeinek hossza a lipidtutajok vastagságához hasonló. Másrészt a tutajbeli lokalizáció háttérében állhatnak specifikus fehérje-lipid kölcsönhatások vagy az ioncsatornák kötődése a tutajokban található egyéb fehérjékhez, úgymint a PDZ doménnel rendelkező fehérjékhez, kaveolínhoz, kiegészítő KCNE alegységekhez. A lipidtutajbeli elhelyezkedés funkcionális szempontból releváns lehet limfocitákban a \(K_V1.3 \) immunológiai szinapszisba jutása és a következményes \(\text{Ca}^{2+} \)-jel kialakulása során. A tutajbeli lokalizáció általánosságban gátló hatást fejt ki a csatornák funkciójára, bár ezzel párhuzamatosan a mikroméretekre jellemző facilitált klaszterizációs folyamatok elősegíthetik a csatornák jelátviteli folyamatokban történő részvételét, amelyek függetlenek az ionáramtól.

A \(K_V \) csatornák és koleszterinben gazdag mikroméretek közötti szoros és sokrétű kapcsolat felderítése indította el a koleszterin és \(K_V \) csatornák közötti kölcsönhatások vizsgálatát. Kimutatták, hogy mind a membrán koleszterintartalmának növelése, mind pedig annak csökkentése megváltoztatja a csatornák feszültségfüggő egyensúlyi aktivációs és inaktivációs folyamatait, valamint az aktivációs és inaktivációs időállandók nagyságát \(K_V1.3 \), \(K_V10.1 \), \(K_V1.5 \) és \(K_V2.1 \) csatornák esetén, a koleszterin általánosságban gátolja ezeknek a \(K_V \) csatornának a működését. Ezzel szemben a \(K_V7.2/ K_V7.3 \) csatornákban azt valószínűsítették, hogy a megfelelő csatornaműködéshez optimális koleszterinkonzentrációra van szükség: ugyanis nemcsak a koleszterin depléciója, hanem érdekes módon annak akkumulációja is lecsökkentette az ionáramok nagyságát. Ezzel szemben minden egyéb \(K^+ \)-ot vezető csatorna esetén a sejtmembránban a koleszterin depléciója (továbbiakban koleszterin depléció) és a sejtmembrán koleszterinnel történő töltése (továbbiakban koleszterin töltés) ellentétes hatást váltott ki. Az ellentmondás háttérében az állhat, hogy a fent említett tanulmányban a sejtek kezelése a koleszterintartalom növekedését okozó MβCD-koleszterin komplexszel a patch-clamp mérések során a sejtek direkt perfúziójával történt, nem pedig a hagyományosnak számító, általánosságban hatásosabb módon. Az ellentmondás háttérében az állhat, hogy a fent említett tanulmányban a sejtek kezelése a koleszterintartalom növekedését okozó MβCD-koleszterin komplexszel a patch-clamp mérések során a sejtek direkt perfúziójával történt, nem pedig a hagyományosnak számító, általánosságban hatásosabb módon. A kiváltott áramcsökkenést a kezelés azonnali hatásaként értelmezték, bár kérdéses, hogy ilyen rövid időskalán elegendő mennyiségű koleszterin képes beépülni a sejtmembránba.

A \(K_V1.3 \) aktivációs kinetikájának koleszterin által okozott lassulása háttérében kezdetben a membrán koleszterintartalmának emelése által okozott megnövekedett viszkozitás hatását valószínűsítették, a feltételezések szerint ugyanis a súrlódási erők nagyságának
növekedése gátolhatja a csatorna aktivációja során a VSD konformációváltozásainak végbemenetelét. A későbbiekben a koleszterin Kv csatornák kapuzási paramétereire gyakorolt hatásaiban felvetették a koleszterin és a csatornaféhérjék közötti direkt kölcsönhatások szerepét, amelyeket elsősorban a Kv csatornák szekvenciájában általánosan előforduló CRAC és CARC motívumok mediálhatnak. A Kv1.3 szekvenciájában összesen két CRAC és öt CARC található, amelyek közül az összes CRAC, valamint a CARC1-3 motívumok az N-terminális doménben vagy a transzmembrán hélixekben helyezkednek el, míg az utolsó két CARC a csatorna C-terminális végén intracellulárisan található (IB ábra narancssárga és sárga ovális alakú kontúrok). Ezzel összhangban kimutatták, hogy a csatorna CARC4 és CARC5 motívumot (IB ábra sárga oválisok) tartalmazó C-terminális végének eltávolítása teljesen megakadályozza a koleszterin által indukált elektrofiziológia változások kialakulását, ugyanakkor nem befolyásolja érdemben a kapuzási paramétereket. A hatás feltételezett mechanizmusá szerint e két intracelluláris CARC motívum az akkori végtagot hidrofób aminosavak segítségével direkt kölcsönhatást alakíthat ki a membránban található koleszterinmellett, amely a csatorna kapuzási paramétereinek megváltozását eredményezi, de ezt kísérletesen még nem bizonyították.

1.8 A Kv1.3 és Kv10.1 ioncsatornák fiziológiás folyamatokban és betegségekben betöltött szerepeinek összefoglalása

A Kv1.3 ioncsatorna jelentősége fiziológiás körülmények között elsősorban az immunsejtek, különösen a T- és B-limfociták aktivációjának szabályozásában játszott szerepéből fakad. Humán B-sejtekben nyugalmi állapotban kevés Kv1.3 fordul elő, izotípusváltás után memória sejtekben azonban expressziójuk megnő és jelentős szerepet játszanak ezen sejtek aktivációjában. Humán T-limfocitákban T-limfocitákban funkcionális szempontból a káliumcsatornák közül a Kv1.3 és KCa3.1 jelenléte nélkülözhetetlen. Nyugalmi állapotban a sejtmembránban kb. 500 Kv1.3 és 10-20 KCa3.1 fordul elő, míg aktiváció során naív, illetve centrális memória sejtekben a KCa3.1, effektor memória sejtekben pedig a Kv1.3 expressziója nő meg, utalva ezen csatornák funkcionális jelentőségére. Ezzel összhangban ezen sejtekben a membránpotenciál szabályozásáért és azon keresztül az aktiváció során megjelenő, azt lehetővé tevő megfelelő Ca2+-jel kialakulásáért felelősek. A Kv1.3 kifejeződik a központi idegrendszer mikroglia sejteiben is, ahol szintén a sejtek aktivációjában és citokin szekréciójában van fontos szerepe. Emellett Kv1.3 csatornák a mitokondrium belső membránjában is találhatóak, amelyeknek a limfociták apoptózisában lehet jelentőségük.
A Kv1.3 megnövekedett expressziójával összhangban ezen csatornák patofiziológiai szempontból fontosak olyan kórképekben, amelyekben az effektor memória sejtek meghatározó jelentőséggel bírnak. Így sclerosis multiplexben 151, I. típusú diabetes mellitusban 151, rheumatoid arthritisben 151, szisztémás lupus erythematosusban 139, psoriasisban 154, colitis ulcerosaban 155, valamint asthma bronchialeban 156 is kimutatták, hogy a betegség patomechanizmusában fontos T-limfocitákban emelkedett a csatorna expressziója, ezáltal a sejtekben mért K⁺-áramok amplitúdója, valamint következményesen a kialakuló Ca²⁺-jel nagysága, a sejtek proliferációja és a proinflammatórikus citokinek szekréciójának mértéke. A Kv1.3 szerepét az elhízásban megfigyelhető inzulin rezisztencia kialakulásában is felvetették állatkísérletek során, amelyekben a csatorna expressziójának lecsökkenése részben kivédte a diéta indukálta obezitás és inzulin rezisztencia kialakulását 157. A Kv1.3 megnövekedett expresszióját leírták Alzheimer-kóros betegek frontális agykérgéből származó mintákban is, valamint a csatorna pozitív kolokalizációt mutatott az amiloid plakkok lokalizációjával 158.

A csatorna kifejeződésének effektor memória limfocitákra, illetve mikrogliaiakra specifikus megnövekedése lehetővé teheti, hogy a Kv1.3 funkciójának szelektív gátlása révén kedvezően befolyásoljuk ezen kóros állapotok lefolyását, amelyet ki is mutattak a betegségek modellrendszereiben a csatornára specifikus gátlószerek alkalmazásával. A csatorna gátlására terápiásan elsősorban skorpiótoxinokat, illetve mesterséges kismolekulájú inhibitorokat használnak. In vitro vizsgálatok során, illetve állatkísérletekben a skorpiótoxinok közül például különböző módon módosított ShK toxinok kedvező hatását bizonyultak a sclerosis multiplex, az I. típusú diabetes mellitus, illetve a rheumatoid arthritis 151, az allergiás kontakt dermatitis 159, a szisztémás lupus erythematosus 139, a colitis ulcerosa 155, valamint az asthma bronchiale 156, a HsTx1 pedig késleltetett típusú hipersenzititivitási reakció 160 modellrendszereiben, gátolva az effektor memória fenotípusú T-limfociták proliferációját, aktivációját, citokin termelését, valamint az in vivo gyulladásos folyamatok kialakulását. A kismolekulájú gátlószerek közül az ADWX-1 a sclerosis multiplex 161, a PAP-1 a colitis ulcerosa 155 és a psoriasis 154 modelljeiben bizonyult hatékonynak. In vitro kísérletek, valamint egérmodellben nyert adatok alapján a mikrogliaiakban található Kv1.3 csatornák PAP-1 inhibitorral történő gátlása kedvező volt a β-amiloid plakkok kialakulása, aggregációja, valamint a következményes proinflammatórikus állapot megakadályozása szempontjából 152.

A Kv10.1 csatorna fiziológiai körülmények között gyakorlatilag kizárólag a központi idegrendszer különböző régióiban fejeződik ki, pontos funkciója azonban jelenleg nem ismert 162. Patkányokban végzett kísérletek szerint a nigrostriatalis rendszer dopaminerg neuronjaiban lehet szerepe az elektrofiziológiai aktivitás mintázat szabályozásában 163. Kv10.1 knockout

A Kv10.1 daganatképzést serkentő hatásaival kapcsolatban leírták, hogy azok elsődlegesen az ioncsatorna nonkanonikus funkcióinak tekinthetők, azaz a csatorna a K+-vezetőképességtől független módon, sejtosztódáshoz vezető intracelluláris jelátviteli útvonalak aktivációján 174,175, illetve a belső magmembránban elhelyezkedve a heterokromatinnal történő kölcsönhatás segítségével a génexpresszió szabályozásán keresztül 176 fejti ki hatásait. Hasonló nonkanonikus funkciók egyéb csatornák, így Kv1.3 esetén is felmerülnek, azonban ezek részletes vizsgálatára még nem történt meg 90,140,141.

Az 1.6 és 1.7 fejezetekben leírtak alapján a koleszterin, illetve származéka jelentős mértékben befolyásolják a különféle ioncsatornák, így a Kv1.3 és Kv10.1 működését. Ennek megfelelően a sejtmembrán szterolmennyiségének megváltozásával járó betegségek esetén a csatornák funkcionális működése is módosulhat, amely akár a betegség kialakulása szempontjából is fontos lehet. A jól ismert hiperkoleszterinémia mellett a másik általunk vizsgált betegség, amelyben a szterolok szintje megváltozik, a Smith-Lemli-Opitz (SLO) szindróma. Az ebben a kórban szenvedő betegek vérplazmájában és sejtjeinek membránjában a 7DHC felhalmozódik, ami alapvető tényező a betegség patomechanizmusa szempontjából 70.
A betegség oka a 7-dehidrokolín-reduktáz enzim veleszületett defektusa, amely a 7DHC koleszterinné történő átalakítását végzi a koleszterin bioszintézisének utolsó lépése során. Az enzim defektusa révén a prekurzor 7DHC szintje megnő, míg a reakciótermék koleszterinnnek a szintje lecsökken. Az még nem tisztázott, hogy a klinikai tüneteket, ami magába foglalja az arcdiszmorfiát, hipospadiázist, szomatomentális retardációt, illetve immunszupressziót, a 7DHC emelkedett szintje, annak toxicitása vagy a koleszterinszint csökkenése okozza. A betegség autoszomális recesszív módon öröklődik, monogénes, komplex malformációs szindróma, amelynek hátterében a 7-dehidrokolénserin-reduktáz több, mint 150 mutációját azonosították. Munkacsoportunk korábbi vizsgálatai alapján a betegek T-limfocitáiban, valamint egészséges sejtek 7DHC-val történő kezelése után a Kv1.3 csatorna kinetikai és egyensúlyi paraméterei megváltoznak, amely a limfociták aktivációjában és proliferációjában megfigyelhető eltérések megjelenéséhez vezet, amelyek pontos mechanizmusa azonban nem tisztázott.
2. Célkitűzések

Annak ellenére, hogy a \(K_v \) ioncsatornák kapuzásának strukturális alapjai, főbb lépesei és a kapuzást befolyásoló tényezők alapvetően ismertek, a kapuzás finomhangolását biztosító több tényező ezidáig feltáratlan maradt a megfelelően módszerek hiányában. Munkánk során ezért a \(K_v \) csatornák aktivációs és C-típusú inaktivációs kapuzásának eddig feltáratlan részleteit vizsgáltuk meg két fő kérdés mentén:

1. A \(K_v \) csatornák melyik doménje a membránban található szterolok elsődleges célpontja? A membránban található szterolok hatásukat a VSD-n keresztül fejtik-e ki, amelyek a későbbiekben áttevődnek a csatolási apparátusra, majd a PD régióira, vagy pedig elsődlegesen, közvetlenül ez utóbbiak valamelyikének működését befolyásolják (4. ábra)?

2. Az aktivációs kapu állapota meghatározza-e az egyensúlyi inaktiváció kialakulását és az inaktivációból történő visszatérését? A csatorna kapuzási állapotait is feltüntetve két alapvető kérdést vizsgáltunk: a zárt állapotú csatorna képes-e közvetlenül inaktiválódni negatív membránpotenciállok esetén, tehát lehetséges-e a C\(\rightarrow \)CI átmenet (5. ábra, bal oldali piros nyíl), vagy a CI állapot az OI\(\rightarrow \)CI útvonalon töltődik be negatív membránpotenciállok mellett is? Másrészt a nyitott-inaktiválódott csatornák (OI) a CI állapoton keresztül témek-e vissza az inaktivációból, azaz, szükséges-e az aktivációs kapunak bezáródni ahhoz, hogy az inaktivációból történő visszatérés bekövetkezzen, vagy elképzelhető az OI\(\rightarrow \)O útvonal a folyamat során, negatív membránpotenciál jelenléte mellett (5. ábra, jobb oldali piros nyíl)?

Az 1. célkitűzési pontban megfogalmazott, a membrán szterolok \(K_v \) ioncsatornákon belüli támadáspontjára vonatkozó problémára az eddigi kísérletek nem adtak választ, ugyanis a hagyományos patch-clamp mérésekkel csak az ionáramok mérhetők, a VSD kapuzás során bekövetkező mozgásáról közvetlenül nem kapunk információt. Ezáltal az egyszerű ionárammérések alapján a szterolok ioncsatornán belüli elsődleges célpontját nem tudjuk meghatározni. A kérdés megválaszolásához a dolgozatban bemutatott kísérletek során a kételektródás voltage-clamp fluorimetria (TEVCF) módszert alkalmaztuk, amely segítségével egyrészt a hagyományos patch-clamp mérésekhez hasonlóan képesek vagyunk az ionáramok mérésére, és ezáltal számos, a csatornát vagy annak kapuzását jellemző biofizikai paraméter meghatározására (pl. egyensúlyi aktiváció és inaktiváció feszültségfüggése, nyitási
valószínűség, egyedi csatorna konduktancia, áram aktivációs és inaktivációs kinetikák). Ezentúl a TEVCF lehetőséget ad, hogy az ionáramok mérésével egyidőben a VSD mozgását leíró paramétereket is meghatározzuk (\(F_{\text{norm}}\)-V görbe és fluoreszcenciás jel aktivációs kinetikája). Ehhez a VSD S3-S4 linkerébe pontmutációval bevitt ciszteint egy ciszteinre specifikus fluoreszcens festékkel jelöljük meg. Az aktivációs kapasz során a VSD-ben található S4-es hélix a membrán síkjából kifelé mozgul el, ami révén megváltozik a festék kvantumhatásfoka. A fluoreszcens jel intenzitás változása ezáltal jól tükrözi a VSD mozgását. A kísérleteket afrikai karmosbéka petesejtjeiben expresszált A309C \(\text{KV}1.3\) és L322C \(\text{KV}10.1\) humán ioncsatornákon végeztük. Az oocita expressziós rendszer biztosította számunkra a TEVCF mérésekhöz szükséges nagy csatornaexpressziót. A szterol moduláció ioncsatornán belüli célpontjának és a hatások csatorna specificitásának meghatározásához a különböző kapuzási mechanizmussal rendelkező \(\text{KV}1.3\) és \(\text{KV}10.1\) csatornák esetén hasonlítottuk össze a VSD aktivációt és pórusnyitást leíró feszültségfüggő egyensúlyi és kinetikai paramétereket kontroll sejtekben, valamint szterolokkal történő kezelése után. A szterol hatások specificitásának vizsgálatához a koleszterin által kiváltott változásokat összehasonlítottuk a 7-dehidrokoleszterin (7DHC) kezelés esetén megfigyeltetekkel. Utóbbi vegyületet a koleszterinhez képest megfigyelhető kismértékű szerkezetbeli eltérése és a Smith-Lemli-Opitz-szindrómban leírt patofiziológiai jelentősége miatt választottuk. A kísérletekkel közelebb kerülhetünk a koleszterin hatásmechanizmusának megértéséhez, ami számos olyan betegség molekuláris alapjainak a megértését segíthetné elő, amelyek a sejtmembrán koleszterintartalmának megváltozásával járnak együtt (pl. hiperkoleszterinémia, SLO-szindróma, Niemann-Pick betegség, Gaucher-kór)\(^{85,87-89,181-184}\).
4. ábra Első célkitűzés

A disszertációban megfogalmazott első célkitűzésünk a koleszterin K_V ioncsatornának belüli elsődleges támadáspontjának meghatározása volt. Ehhez egy új módszert, a kételektródás voltage-clamp fluorimétriás technikát (TEVCF) alkalmaztuk. Az ábra a $\text{K}_{\text{V}10.1}$ ioncsatorna egy alegységének felépítését mutatja oldalnézetből. A számok a hélixeket jelölik, a VSD (lila, azon belül az S4 sárga), illetve a PD (kék) színkódja az 1-es ábrahoz hasonló. A barna szín a $\text{K}_{\text{V}10.1}$ PAS (Per-Arnt-Sim) doméjét, a narancssárga a C-linkerét, a piros pedig a C-terminálisan található intracelluláris doméjét jelöli (lásd később a 4.3 és 5.1 fejezetek). Az ábrán továbbá jelöltük az S4-S5 linkert, ami a $\text{K}_{\text{V}1.3}$ ioncsatorna VSD-PD csatolása szempontjából fontos, $\text{K}_{\text{V}10.1}$ esetén a két domén közti csatolás bonyolult interhelikális kölcsönhatások révén valósul meg. A TEVCF módszer lényege, hogy miután a VSD S3-S4-es linkérében, extracellulárisan (rózsaszín gömb, L322-es pozíció $\text{K}_{\text{V}10.1}$ esetén) létrehozunk egy ciszteint egy rá specifikus, esetünkben MTS-TAMRA fluoreszcencs festékkel megjelöljük. Ahogy az S4-es hélix a depolarizáció során a membrán síkjából elmozdul (fekete nyíl), megváltozik a festék kvantumhatásfoka, így a fluoreszcencia intenzitásának változása értékes információt hordoz számunkra a VSD mozgásával kapcsolatban. Emellett a PD működéséről az egyidejű ionárammérések révén kapunk információt. Ezáltal a módszerrel tehát a PD és a VSD kapuzás során bekövetkező változásai is nyomonkövethetőek, ami nélkülözhetetlen a koleszterin ioncsatornán belüli támadáspontjának azonosításához.

A 2. célkitűzési pontban megfogalmazott kérdések középpontjában az áll, hogy milyen szerepet tölt be az aktivációs kapu az egyensúlyi inaktiváció és az inaktivációból történő visszatérés során. Mindkét folyamat negatív membránpotenciálok mellett zajlik le. Az ezekben potenciálisan részt vevő kapuzási átmenetek (C→CI ill. O→OI→Cl→O) negatív potenciálok melletti vizsgálatát több tényező is hátráltatja. Az egyik, hogy ilyen membránpotenciálok mellett a csatornának nyitási valószínűsége kicsi, aminek eredményeképpen a létrejövő áramok kis amplitúdóval rendelkeznek. Emellett a K^+ számára a hajtóerő is kicsi, amely szintén a kis áramok kialakulását segíti elő, ezáltal az aktivációs kapu állapotának árammérések segítségével történő meghatározása során a mérések hibája nagyon nagy. Ezekben felül az átmenetek egy része nemvezető állapotok között történik, így a kapuk változásai árammérések alapján nem feltérképezhető. Ezekre a problémákra ad megoldást számunkra az állapotfüggő cisztein modifikációs módszer 185, aminek segítségével az aktivációs kapu mozgásai pontosan.
nyomonkövethetővé és adott állapotban rögzíthetővé válnak negatív membránpotenciálok mellett is. Az aktivációs kapu állapotát az egyensúlyi inaktiváció kialakulása során HEK-293 humán embrionális vesesejtekben kifejezett T449A/V474C Shaker-IR csatornában vizsgáltuk, inside-out patch konfigurációban, állapotfüggő cisztein modifikációs essé segítségével, gyorsperfúziós rendszert alkalmazva. A 474-es pozícióban levő cisztein csak nyitott aktivációs kapu mellett hozzáférhető az intracellulárisan alkalmazott Cd2+ számára58,185,186, ami bekötődve gátolja a pozitív tesztpotenciálokon jól mérhető ionáramot. Emiatt az aktivációs kapu negatív membránpotenciálon bekövetkező nyitása is tetten érhető. A nyitott állapotban rögzített aktivációs kapu mellett bekövetkező inaktivációból való visszatérés lehetőségét (vagyis alternatíváváé a direkt OI→O átmenet lehetőségét) negatív membránpotenciálok esetén T449A/V476C Shaker-IR csatornában vizsgáltuk. A Cd2+ keresztkötést hoz létre az egyik alegységen levő cisztein, valamint a szomszédos alegységen levő natív hisztidin között23,187, így az aktivációs kapu mindvégig nyitott állapotban rögzíthető az inaktivációból történő visszatérés lehetőségének vizsgálata során. A Cd2+ és a ciszteinek között létrejött kölcsönhatás specifikussága, valamint a Cd2+-ot tartalmazó oldatok állapotfüggő és precíz alkalmazása a gyorsperfúziós rendszer segítségével az általunk megtervezett pulzusprotokollok mellett biztosították számunkra, hogy a patch-clamp technika segítségével a fent részletezett kapuzási átmeneteket negatív membránpotenciálok mellett is tanulmányozni tudjuk. A negatív membránpotenciálok melletti kapuzási átmenetek vizsgálatának az ad relevanciát, hogy mind az egyensúlyi inaktiváció, mind pedig az inaktivációból történő visszatérés jelentősen meghatározza a potenciálisan aktiválható csatornák számát, ami a sejtek ingerelhetőségének egyik meghatározó tényezője.
5. ábra Második célkitűzés
A disszertációban megfogalmazott második célkitűzésünk annak vizsgálata volt, hogy az aktivációs kapu állapota meghatározza-e az egyensúlyi inaktiváció kialakulását és az inaktivációból történő visszatérést. Ez egyidejüleg annak meghatározását is jelentette, hogy létezik-e a C→Cl átmenet az egyensúlyi inaktiváció során, illetve elképzelhető-e az OI→O kapuzási átmenet az inaktivációból történő visszatérés során negatív membránpotenciálon, *Shaker*-IR csatornában. A C→Cl átmenet lehetőségének vizsgálata során az aktivációs kapu esetleges nyitását a 474-es pozícióba bevitt cisztein Cd²⁺ általi módosíthatósága alapján határoztuk meg, míg az OI→O átmenet lehetőségének tanulmányozásához a 476-os pozícióban ciszteint tartalmazó *Shaker*-IR csatornát használtuk, amelynek aktivációs kapuja nyitott állapotban rögzíthető Cd²⁺ által.
3. Anyagok és módszerek

3.1 Molekuláris biológia

Az S3-S4 linkerben cisztein mutációkat tartalmazó humán Kv1.3 (KCNA3, Uniprot B2RA23) csatornákat pontmutáció segítségével állítottuk elő a vad típusú csatornát tartalmazó pBSTA vektorban (QuikChange; Agilent, Santa Clara, CA, USA). A pontmutáció sikerességét szekvenálással igazoltuk. A pSGEM vektorban található humán Kv10.1 (KCNH1, Isoform 1, Uniprot O95259-2) L322C mutáns csatorna L. A. Pardotól származik (Max Planck Institute, Göttingen, Németország). A plazmidokat HindIII (Kv1.3) vagy NheI (Kv10.1) enzimmel linearizáltuk, majd átírtuk mRNS-sé Invitrogen mMESSAGE mMACHINE T7 Transcription Kit (ThermoFisher, Waltham, MA, USA) segítségével.

A disszertációban bemutatott, a C-típusú inaktiváció természetére vonatkozó kísérletek alapjául szolgáló Shaker-IR konstruktból (a Shaker-IR ioncsatorna GW1-CMV plazmidban R. Horn ajándéka, Thomas Jefferson University, Philadelphia, PA, USA) a 6-46 aminosavak hiánya miatt nincs N-típusú inaktiváció, a C301S és C308S pontmutációk pedig kivédték a Cd²⁺ és az endogén ciszteinek közötti kölcsönhatás zavaró hatását. A konstruktból a Shaker B számozás szerinti 449-es (T449A) és 474-es (V474C) vagy 476-os (V476C) pozícióban létrehozott aminosavcseréket QuikChange célzott mutagenezis kitel állítottuk elő, végül szekvenálással ellenőriztük a mutációk sikerességét.

3.2 Expressziós rendszerek, transzfekció és mRNS injektálás

A kételektródás voltage-clamp fluorimetriás (TEVCF) kísérletekhez a Xenopus laevis afrikai karmosbéka oocitákat az EcoCyte Bioscience-től (Dortmund, Németország) vásároltuk. A sejtek 30-50 nl mennyiségű, ~1 μg/μl koncentrációjú mRNS-sel injektáltuk, majd 1-3 napig 18°C-on inkubáltuk 93 mM NaCl-ot, 5 mM KCl-ot, 1,8 mM CaCl₂-ot, 1 mM MgCl₂-ot, 5 mM
HEPES-t és 50 mg/l gentamycint tartalmazó ND93 oldatban (pH=7,4). A dolgozatban szereplő összes oldat előállításához szükséges anyagot a Sigma-Aldrich-tól (Sigma-Aldrich, St. Louis, MO, USA) szerezünk be.

A humán embrionális vesesejteket (HEK-293) az American Type Culture Collection-től (ATCC, Manassas, VA, USA) vásároltuk és a gyártó utasításainak megfelelően tenyésztettük. Az EGFP („enhanced green fluorescent protein” javított fluoreszcenciájú zöld fluoreszcens protein) plazmid és a mutáns Shaker konstruktok 1 μg : 10 μg arányú ko-transzfekciójához kalcium-foszfát alapú transzfekciós kitet (Invitrogen, Carlsbad, CA, USA) használtunk. A transzfektált sejteket 35 mm átmérőjű polisztirolből készült Corning tenyésztő edényekbe helyeztük, amelyet a sejtek inside-out patch-ek létrehozásához szükséges jobb adhéziója érdekében poli-L-ornitinnel (Sigma-Aldrich) előkezeltünk. A transzfekció után a sejtekben a csatornákat 12-36 óráig expresszáltattuk. Az EGFP pozitív transzfektált sejteket Nikon TE2000U fluoreszcenciás mikroszkóppal (Nikon, Tokió, Japán) azonosítottuk 455-495 nm-es áteresztésű gerjesztés és 515-555 nm között áteresztő emissziós sávszűrők alkalmazásával. Általánosságban az EGFP pozitív sejtek több, mint 60%-a fejezte ki a ko-transzfektált Shaker-IR csatornákat.

3.3 A sejtmembrán szterol tartalmának módosítása

A sejtmembrán szterol tartalmának módosítása koleszterin (Sigma-Aldrich), 25-[N-[7-nitro-2,1,3-benzoxadiazol-4-il]metil]amino]-27-norkoleszterin (NBD-koleszterin, Avanti Polar Lipids, Alabaster, AL, USA) vagy 7-dehidrokoleszterin (7DHC) (Sigma-Aldrich) vegyületek metil-béta-ciklodextrinnel (MβCD) képzett komplexei (CycloLab Cyclodextrin R&D Laboratory, Budapest, Magyarország) segítségével történt. A szterol-MβCD kompleksek töltéshez használt koncentrációt úgy határoztuk meg, hogy azok 195 µM szterolt tartalmazzanak. A koleszterin-MβCD komplexek töltéséhez használt koncentrációit úgy határoztuk meg, hogy azok 195 µM szterolt tartalmazzanak. A koleszterin-MβCD komplexes működésének kezelésünk nagyobb, de a hiperkoleszterinémiás betegekben mérsékelhető azonos nagyságrendű koleszterinszintbeli emelkedést okozott 190. Ehhez hasonlóan, az SLO- szindrómában szenvedő betegek esetén a 7DHC dúsulása összemérhető az in vitro 7DHC-MβCD komplexes működésének töltés során
tapasztalhatókkal 146,191. Ezek révén modellünk patofiziológiai szempontból relevánsnak tekinthető. Az elektrofiziológiai vagy mikroszkópos kísérletek előtt a komplexekkel 60 percen keresztül kezeltük szobahőmérsékleten mind az oocitákat, mind a HEK-293 sejteket. Elektrofiziológiai mérésekhez a szterol-MβCD komplexeket ND93-ban, míg mikroszkópiához 150 mM NaCl-ot, 5 mM KCl-ot, 1,5 mM CaCl₂-ot, 1 mM MgCl₂-ot és 10 mM HEPES-t tartalmazó 7,36-7,38 közötti pH-jú oldatban oldottuk fel. Mindkét esetben inkubáció után az oocitákat, illetve HEK-293 sejteket alaposan mostuk a komplexektől mentes oldatokkal.

3.4 Elektrofiziológia

3.4.1 Kételektródás voltage-clamp fluorimetria (TEVCF)

Kételektródás voltage-clamp fluorimetriás (TEVCF) mérésekhez az oocitákat jégen 30 percen keresztül jelöltük 10 µM 2-((5(6)-tetrametilrhodamin)karboxilamino)etil metántioszulfonátot (TAMRA-MTS, Toronto Research Chemicals, Toronto, ON, Kanada) tartalmazó depolarizáló oldatban (110 mM KCl, 1,5 mM MgCl₂, 0,8 mM CaCl₂, 0,2 mM EDTA, 10 mM HEPES, pH 7,1). Jelölés után az oocitákat alaposan mostuk ND93 oldattal, majd sötétben és jégen tartottuk a mérések megkezdését. A mérésekhez ND93-at használtunk extracelluláris oldatként, míg az intracelluláris oldat 3 M KCl oldat volt. A mérésekhez használt pipettákat GC 150 F-15 boroszilikát üvegkapillárisokból (Harvard Apparatus Kent, Egyesült Királyság) húztuk és ellenállásuk 2–3 MΩ volt.

A TEVCF során az oocita membránpotenciál beállítását és az ionáramok mérését Oocyte Clamp OC-725C erősítővel (Warner Instruments, Hamden, CT, USA) végeztük. A fluoreszcens jel intenzitását Nikon Eclipse FNI mikroszkóp (Nikon, Tokió, Japán), 40×, 0,8-NA CFI Plan Fluor Nikon víz immerziós objektív és fotodióda (PIN-040A; United Detector Technology, OSI Optoelectronics, Hawthorne, CA, USA) segítségével mértük. A TAMRA-MTS jelének detektálásához 545/25 gerjesztési szűrőt, 565LP dikroikous tükröt és 605/70 emissziós szűrőt használtunk. A fotodióda jelét Axopatch 200A erősítővel amplifikáltuk, és az ionáramokkal együtt az adatokat pClamp10 programcsomag (Molecular Devices, San Jose, CA, USA) által vezérelt Axon Digidata 1550 (Molecular Devices) illesztőegységgel digitalizáltuk. A megvilágításhoz M530L2-C1 zöld (530 nm-es) LED-et (ThorLabs, Newton, NJ, USA) használtunk. A TEVCF mérések során az ionáramok és fluoreszcens jelek mérése esetén a mintavételezés 5 kHz frekvenciával történt. Az ábrák a fluoreszcencia görbék egyedi mérések során nyert Gauss-szűrővel filterezett átlagolás nélküli adatot mutatnak. Az online
szűrözés a mintavételezési frekvencia felénél kisebb frekvenciaértékkel történt, jellemzően a mintavételezés: szűrözés aránya 2:1 volt. A fluoreszcens jelek analízise során további offline szűrözést alkalmaztunk.

3.4.2 Patch-clamp mérések outside-out konfigurációban

Az egyedi csatorna paramétereket mechanikusan devittelinizált oociták outside-out konfigurációban történő patch-clamp méréseivel határoztuk meg. A 7,36-7,38 közötti pH értékre beállított standard intracelluláris oldat 105 mM KF-ot, 35 mM KCl-ot, 10 mM EGTA-t és 10 mM HEPES-t tartalmazott. A 7,36-7,38 közötti pH értékre beállított standard extracelluláris oldat 150 mM NaCl-ot, 5 mM KCl-ot, 1,5 mM CaCl$_2$-ot, 1 mM MgCl$_2$-ot és 10 mM HEPES-t tartalmazott. A mérésekhez használt pipettákat GC 150 F-15 boroszilikát üvegkapillárisokból (Harvard Apparatus, Kent, Egyesült Királyság) húztuk és ellenállásuk 8–9 MΩ volt. A mérések során Axopatch 200B és Multiclamp 700B erősítőket használtunk és az adatokat Axon Digidata 1550 segítsével digitalizáltuk.

3.4.3 Patch-clamp mérések inside-out konfigurációban

Az adatgyűjtéshez Axopatch 200B erősítőt (Molecular Devices) használtunk, az adatok digitalizálása Axon Digidata 1550 (Molecular Devices) illesztőegységgel történt. A mérés során a mintavételezés frekvenciája a szűrők sarokfrekvenciájának legalább kétszerese volt. A mérésekhez használt pipettákat GC 150 F-15 boroszilikát üvegkapillárisokból (Harvard Apparatus) húztuk és ellenállásuk 8–9 MΩ volt. A mérések során csak azon patch-ek adatait vettük figyelembe, amelyek esetén az aspecifikus szivárgó áram nagysága a csúcsáram kevesebb, mint 5%-a volt. A méréseket minden esetben szobahőmérsékleten (20–24°C) végeztük. A könnyebb érthetőség kedvéért az inside-out mérések során nyert K$^+$ áramok irányát, valamint a feszültségprotokollokat a dolgozatban mindvégig az általános konvencióknak megfelelően tüntettük fel, tehát a pozitív töltéshordozó sejtből kifelé irányuló áramát pozitív áramjelként ábrázoltuk.

Az inside-out méréseknek használt intracelluláris oldat 105 mM KF-ot, 35 mM KCl-ot, 10 mM EGTA-t és 10 mM HEPES-t tartalmazott. Az oldat pH-ját KOH-dal titráltuk 7,36-7,38-as értékre, így végül az összesített K$^+$-konzentráció 160–165 mM-nak, az ozmolaritás pedig 285–295 mOsm/L-nek adódott. A perfúziós rendszer kinetikájának karakterizálása során használt belső oldat hasonló összetételű volt, annyi különbséggel, hogy az 50 mM K$^+$-ot tartalmazott és a megfelelő káliumsókat 100 mM NaF-dal helyettesítettük. A Cd$^{2+}$-modifikációs
kísérletekhez az intracelluláris oldat a standard K⁺-bázisú oldathoz hasonló volt, azzal a módosítással, hogy 125 mM KF, 35 mM KCl és 10 mM HEPES mellett EGTA-t nem tartalmazott. A standard extracelluláris (az inside-out konfiguráció miatt a pipettában levő) oldat 150 mM NaCl-ot, 2 mM KCl-ot, 1,5 mM CaCl\(_2\)-ot, 1 mM MgCl\(_2\)-ot és 10 mM HEPES-t tartalmazott, ozmolaritása 290 mOsm/L, pH-ja 7,36-7,38 volt.

A mérések során a gyors oldatcseréhez egy három kimenetellel rendelkező perfúziós fejjel ellátott Warner Instruments SF-77A Perfusion Fast-Step perfúziós rendszert használtunk. A mikroperfüzió kimenetein folyamatos volt a folyadékok áramlása, a precíziós motor az adatgyűjtéssel szinkronizálva pozicionálta a megfelelő kimenetet az inside-out patch intracelluláris felszínével szemben. Az inside-out patch-eket 0,5 ml/perc áramlási sebességgel perfundáltuk a megfelelő intracelluláris oldatokkal. Az oldatsere sebességének meghatározásához használt tesztprotokoll elvét és módját már korábban leírták \(^58,186\). Az oldatsere teljes mértékben végbement 30 ms alatt.

3.5 Konfokális lézer pásztázó és stimulált emisszió depléció (STED) mikroszkópia

A mikroszkópos analízis során a HEK-293 sejteken kétféle módszerrel jelöltük a lipidtutajokat a korábban leírtak szerint \(^192\). Egyrészt a GM1-ganglioizidban gazdag membrán mikrodoméneket 8 μg/ml AlexaFluor647 fluorofórral konjugált koleratoxin B alegységgel (CTX-B) (ThermoFisher) jelöltük 20 percig jégen, hogy a CTX-B internalizációját elkerüljük. Másrészt a GFP-GPI-t tartalmazó lipidtutajok jelöléséhez a sejteket GFP-GPI-t kódoló plazmiddal transzfektáltuk.

Az ioncsatornák jelöléséhez K\(_V\)1.3_FLAG vagy K\(_V\)10.1_FLAG fehérjéket expresszáló sejteket inkubáltunk 2 μg/ml anti-FLAG M2-Cy3 antitest (Sigma-Aldrich) jelenlétében 30 percig jégen. Mivel K\(_V\)10.1 esetén a FLAG epitóp a fehérje intracelluláris részén helyezkedik el, a sejteket előbb 3,7%-os formaldehidben fixáltuk, majd a jelölés 0,1% BSA-t és 0,1% Triton X-100-at tartalmazó PBS-ben történt.

Stimulált emisszió depléció (STED) mikroszkópos méréseink során Kv1.3\textsubscript{FLAG} fehérjét kifejező sejteket 2 μg/ml anti-FLAG M2 antitesttel jelöltünk (Sigma-Aldrich) 30 percig szobahőn, amelyet 8 μg/ml AlexaFluor594-CTX-B (ThermoFisher) és StarRed-GAMIG (Abberior, Göttingen, Németország) jelenlétében jégen 30 perces incubáció követett. STED modullal (Abberior) ellátott Olympus BX53 mikroszkóppal felvételeket készítettünk a sejtmembrán fedőlemezhez tapadó lapos régióról Olympus 100x/1.4 objektív segítségével 594 és 640 nm-es gerjesztést és 775 nm-es STED nyalábot alkalmazva. Az AlexaFluor594 és StarRed esetén a detektálás rendre a 608-627 nm és 650-700 nm tartományokban történt.

3.6 Adatok elemzése

3.6.1 Kételektródás voltage-clamp fluorimetriás (TEVCF) mérések elemzése

Az elektrofiziológiai mérések során nyert adatok elemzését minden esetben Clampfit (v10; Molecular Devices), SigmaPlot (v10; Systat Software, San Jose, CA, USA) és Excel (Microsoft, Redmond, WA, USA) programokkal végeztük.

A TEVCF mérések során az ionáramok és fluoreszcens jelek mérése esetén a mintavételezés 5 kHz frekvenciával történt. A fluoreszcens jelek nagyságát a ΔF/F százalékos arányban jeleztük ki, ahol ΔF a jel amplitúdójának változását, míg F a tartófeszültségen az alap fluoreszcencia szintjét jelöli. A fotoelhalványítás okozta hatások korrekciójához a különböző membránpotenciálokon nyert fluoreszcencia adatokból kivontuk a \(-100\) mV-os tesztfeszültséghez tartozó fluoreszcens jelet. A Kv1.3 309C F\textsubscript{norm}-V értékeinek meghatározásához a fluoreszcens jelek egyensúlyi komponenseit normáltuk a maximális intenzitásra és a kapott értékeket a tesztpotenciál függvényében ábrázoltuk. Az MTS-TAMRA fluorofórral jelölt Kv10.1 322C a Kv1.3 ioncsatornával ellentétben komplex fluoreszcens jelet adott, amely felbontható hiperpolarizált (\(-180\) és \(-90\) mV közötti) és depolarizált (\(-80\) és +60 mV közötti) membránpotenciál mellett mért komponensekre. A hiperpolarizált membránpotenciál mellett mért jelekhez két azonos polaritású komponense volt (10A ábra lila színű fluoreszcens jel, 11D betét ábra), így azokat a Kv1.3 jeleihez hasonló módon elemeztük. Ezzel szemben a depolarizált membránpotenciál mellett mért jelekhez két ellentétes polaritású komponense volt (10A ábra világoskék színű fluoreszcens jel, 11D betét ábra). A jel abszolút értékének meghatározásához a második komponent két ellentétes polaritásal hozzáadtuk az első komponenshez.
Az I-V görbék meghatározásához a szívárgó árammal korrigált csúcsáramokat a tesztpotenciál függvényében ábrázoltuk. A K_V1.3 309C és K_V10.1 322C konduktancia-feszültség (G-V) görbét jellemző V_{1/2} és k paramétereinek meghatározásához a feszültség-áramerősség (I-V) görbékhez az

\[I = V \times G_{\text{max}} \times \left(\frac{1 - e^{-(V-E_{\text{ekv}})/25}}{1 - e^{-V/25}} \right) \times \frac{1}{1 + e^{-(V-V_{1/2})/k}} \]

egyenletet illesztettük, amely a Goldman-Hodgkin-Katz rektifikációt kombinálja a Boltzmann-függvény által leírt feszültségfüggéssel. Itt V a feszültséget, míg I az áramerősséget jelöli és a függvény szabad paraméterei a maximális konduktancia (G_{\text{max}}), az egyensúlyi potenciál (E_{\text{ekv}}), valamint a Boltzmann-függvény félaktivációs feszültsége (V_{1/2}) és meredekségi együtthatója (k). A 25-ös szám a Goldman-Hodgkin-Katz egyenletből az egyetemes gázállandó és abszolút hőmérséklet szorzatának, illetve az ion töltésének és a Faraday-állandó szorzatának hányadosa mV-ban mérve. Ezután az adott tesztpotenciálok esetén a normált G értékeit minden sejt esetén a

\[G(V) = \frac{1}{1 + e^{-(V-V_{1/2})/k}} \]

függvény alapján számítottuk, ahol G(V) az adott tesztpotenciálon számított konduktanciát, V az aktuális membránpotenciált, V_{1/2} a félaktivációs feszültséget, k pedig a meredekségi együtthatót jelölik. A G meghatározása az oocitában történő mérések esetén azért történt másképp, mint a hagyományos patch-clamp mérések esetén, mivel az oocitákban méretüknel fogva nem ismerjük adott belső oldat alkalmazása mellett az intracelluláris káliumkoncentrációt, így az egyensúlyi potenciál értékét sem.

Az ionáramok aktivációs időállandóinak meghatározásához az áramgörbék emelkedő szakaszára egykomponensű, elsőfokú, telítésbe futó exponenciálisan emelkedő függvényt illesztettünk:

\[I(t) = I_0 \times (1 - e^{-t/\tau_{\text{act}}}) + C \]

ahol I(t) az áramamplitúdó az adott t időpillanatban, I_0 a maximális áramamplitúdó, \(\tau_{\text{act}} \) az aktivációs időállandó, C pedig egy konstans, nem időfüggő áramkomponens.

A fluoreszcens jelek esetén a gyors (\(\tau_f \)) és lassú (\(\tau_s \)) időállandók meghatározásához kétkomponensű, telítésbe futó, exponenciálisan emelkedő függvényt alkalmaztunk:
\[F(t) = F_{0f} \times \left(1 - e^{-t/\tau_f}\right) + F_{0s} \times \left(1 - e^{-t/\tau_s}\right) + C \]

(3.6.1.4)

ahol \(F(t) \) a t időpontban mért fluoreszcencia intenzitás, \(F_{0f} \) a fluoreszcens jel gyors komponensének amplitúdója, \(\tau_f \) a fluoreszcens jel gyors komponensének időállandója, \(F_{0s} \) a fluoreszcens jel lassú komponensének amplitúdója, \(\tau_s \) a fluoreszcens jel lassú komponensének időállandója, \(C \) pedig a nem időfüggő fluoreszcencia intenzitás.

Az egyensúlyi inaktiváció feszültségfüggését jellemző görbék (SSI) meghatározásához minden feszültségen kiszámítottuk a nem inaktiválódó csatornák hányadát \(I/I_{-120} \) szerint, ahol \(I \) a különböző tartófeszültségekről történő \(+50\) mV-os depolarizáció által kiváltott csúcsáram, míg \(I_{-120} \) a \(-120\) mV-os tartófeszültségől történő depolarizáció során kiváltott csúcsáram nagysága.

A különböző egyensúlyi paramétereket leíró összefüggések (\(F_{\text{norm}}-V \), SSI) kvantifikálásához az adatpontokra Boltzmann-függvényt illesztettünk, ami alapján meghatároztuk a féleaktivációs feszültség (\(V_{1/2} \)) és a meredekségi együttható (\(k \)) értékeit:

\[y = \frac{1}{1 + e^{-(V-V_{1/2})/k}} \]

(3.6.1.5)

A függvényben \(y \) a normált fluoreszcencia intenzitás (\(F_{\text{norm}}-V \) esetén) vagy a normált áram amplitúdó (SSI esetén), \(V \) az aktuális membránpotenciált, \(V_{1/2} \) a féleaktivációs feszültséget, \(k \) a meredekségi együtthatót jelöli.

A \(K_{V10.1} \) csatornák Cole-Moore shiftjének vizsgálatához 10 s hosszúságú \(-160 \) és \(-60\) mV közötti tartományban változtatott tartófeszültségről \(+40\) mV-ra depolarizáltuk a sejteket 500 ms-ig. Az ionáramok aktivációs időállandóinak meghatározásához elsőfokú exponenciális függvényt illesztettünk a különböző pulzus előtti potenciálok alkalmazása esetén kiváltott áramok esetén kapott adatokra. Az illesztés során nem vettük figyelembe az áramok első sigmoid fázisát.

A TEVCF mérések során a szterolokkal történő töltések által okozott áramcsökkenés meghatározásához a \(K_{V1.3} \) esetén \(+40\) mV-os, \(K_{V10.1} \) esetén \(+60\) mV-os depolarizáló pulzusok által kiváltott csúcsáramok adatait átlagoltuk az adott napon mért kontroll, koleszterinnel, illetve 7DHC-val kezelt oociták esetén, majd a számított értékeket normáltuk az adott napon mért kontroll sejtek csúcsáramainak átlagára. Ezáltal minden mérési napon számítottunk egy
normált áramamplitúdót, a bemutatott SEM adatok pedig a normált amplitúdók nap

variabilitásából származnak.

3.6.2 Outside-out konfigurációban történő patch-clamp mérések elemzése

A nem-egyensúlyi zajanalízis során az oocitákban lévő outside-out konfiguráció jú

patch-eket −100 mV-os tartófeszültségről +50 mV-ra depolarizáltuk 200 ms hosszúságú pulzusokkal és

együttható után 200 alkalommal 2 másodpercenként. Az elemzés során nem vettük

figyelembe azokat az áramgörbék, amelyek a mérés végére az áramok nagysága jelentősen

lecsökken a átlagos értékehez viszonyítva. Az így kapott áramgörbe teljes hosszában

meghatároztuk az egyes időpillanatokhoz tartozó áram átlagos értékeit (<I>), valamint annak

varianciáját (σ²). A σ² értékét az <I> függvényében ábrázoltuk, amely egy parabolát

eredményezett az

\[\sigma^2_i = i < I > - (< I >^2 / N) \]

egyenlet alapján, ahol i az egyedi csatornán átfolyó áram és N az adott membrán dérban

található csatornák száma. Az egyedi csatornákon átfolyó áram nagyságát a parabola

gyökeinél számított első deriváltból határoztuk meg, míg az egyedi csatornák kondukciója

<i> / (V-E_{ekv}) alapján számoltuk, ahol V az alkalmazott tesztpotenciál, E_{ekv} pedig a K⁺ áram

egyensúlyi potenciáljának nagysága. A nyitás valószínűségét az <I> maximális értékeinek és a

másodfokú függvény gyökének hányadosaként számítottuk, ahol iN az <I> elméleti maximum

értéke, amennyiben P_o = 1.

3.6.3 Inside-out konfigurációban történő patch-clamp mérések elemzése

Kiértékelés előtt az inside-out áramgörbék minden esetben digitálisan szűrőztük

hárompontos boxcar filterrel. Az elemzés előtt minden, a kondukció-feszültség (G-V) és az

SSI görbék előállítása ehez felhasznált ionáramot korrigáltunk az ohmikus szivárgási áramra.

A mutáns Shaker-IR csatornák G_{norm}-V görbéknek meghatározásához az inside-out

patch-eket −120 mV-os tartófeszültségről depolarizáltuk −100 és +70 mV közötti

tesztfeszültségekre 10 mV-os léptékenként 100 ms hosszan 60 s-onként. Az adott tesztpotenciálak

(V) esetén a kondukció értékeket a szivárgási árammal korrigált csúcsáramok (I_{peak}) és a K⁺

egyensúlyi potenciálja (E_{ekv}) segítségével határoztuk meg a G=I_{peak}/(V-E_{ekv}) képlet alapján.
Bár nem-inaktiválódó áramok esetén a G-V görbe meghatározásához az általános módszer az izokronális farokáram analízise, az általunk alkalmazott Shaker-IR/T449A csatornák inaktiválódnak, ami a farokáram analízisének értelmezését megbonyolítja, ezért nem ezt a módszert alkalmaztuk. Az adott G értékeket a maximális konduktancia nagyságára normáltuk (G_{norm}) és a tesztpotenciálú függvényében ábrázoltuk. A G_{norm}-V görbéket Boltzmann-függvény illesztésével kvantifikáltuk:

$$y = \frac{1}{1 + e^{-(V-V_{1/2})/k}}$$ \hspace{1cm} (3.6.3.1)

ahol y a normált konduktancia értéke adott membránpotenciál mellett (V). Az illesztett függvény segítségével határoztuk meg a félaktivációs feszültséget (V_{1/2}) és a meredekségi együtthatót (k).

Az áramok inaktivációs időállandójának (τ_{inact}) meghatározásához 2000 ms hosszúságú +50 mV-os depolarizáló pulzusokat alkalmaztunk. Az áramgörbék csökkenő szakaszára a csúcsáram 90%-ának megfelelő értéktől kezdődően elsőfokú egykomponensű exponenciálisan csökkenő függvényt illesztettünk:

$$I = I_0 \times e^{-t/\tau_{inact}} + C$$ \hspace{1cm} (3.6.3.2)

ahol I az aktuális áramamplitúdó, C az egyensúlyi (steady-state) áram nagysága, I_0 az inaktiválódó komponens amplitúdója, t az illesztés kezdetétől számított idő, τ_{inact} pedig az inaktivációs időállandó.

Az áramok aktivációs időállandójának (τ_{act}) kiszámításához −120 mV-os tartófeszültségről kiinduló 5 ms hosszúságú +50 mV-os depolarizáló pulzust használtunk, majd a kiváltott áramok görbéjét a Hodgkin-Huxley n^4-modell szerint illesztettük:

$$I = I_0 \times (1 - e^{t/\tau_{act}})^4 + C$$ \hspace{1cm} (3.6.3.3)

A függvényben I az aktuális áramerősséget, I_0 a maximális áramamplitúdó, τ_{act} az aktivációs időállandót, t az illesztés kezdetétől számított időt, C az egyensúlyi (steady-state) áram nagyságát jelöli.

Az inaktivációból való visszatérés kinetikájának méréséhez −120 mV-os tartófeszültségről kiinduló párban alkalmazott, ioncsatorna konstrukttól függően 200, illetve
400 ms hosszúságú +50 mV-os pulzusokat használtunk. A pulzusok közötti −120 mV-os intervallumok (ipi) időtartamát 0,5 és 60 s között változtattuk. A visszatérési hányadot az

\[
\frac{I_2 - I_{SS1}}{I_1 - I_{SS1}}
\]

képlet alapján számítottuk, ahol I_2 a második, I_1 az első pulzus által kiváltott csúcsáram, I_{SS1} pedig az első depolarizáció végén mérhető egyensúlyi áram nagyságát jelöli. Az inaktivációból való visszatérés időállandójának (\(\tau_{rec}\)) számításához az adatpontokra egykomponensű, elsőfokú, telítésbe futó exponenciálisan emelkedő függvényt illesztettünk:

\[
I = I_0 \times (1 - e^{-t/\tau_{rec}})
\]

ahol I a t időpontban az áramamplitúdó, I_0 a maximális áram amplitúdója, \(\tau_{rec}\) pedig az inaktivációból való visszatérés időállandója.

Az egyensúlyi inaktivációt jellemző görbék (SSI) leírásához minden feszültség esetén kiszámítottuk a nem-inaktiválódó csatornák hányadát I/I_{−120} szerint, ahol I az adott pulzus előtti tartófeszültségről, míg I_{−120} a −120 mV-os tartófeszültségről a depolarizáció által kiváltott áram nagyságát jelöli. A \(V_{1/2}\) és k értékeit az adatpontokra illesztett Boltzmann-függvény segítségével határoztuk meg.

3.6.4 Konfokális lézer pásztázó és (STED) mikroszkópiás mérések elemzése

HEK-293 sejtek jelölése és konfokális lézerpásztázó vagy STED mikroszkópos képalkotás után az ioncsatornák és a lipidtutajok közötti kolokalizáció mértékét a korábban leírtak szerint határoztuk meg. Ehhez a lipidtutaj marker, az ioncsatornához kötődő antitestek és bizonyos esetekben a fluoreszcens jelzett koleszterin fluoreszcencia intenzitásai közötti Pearson-féle korrelációs koefficiens értékét számítottuk ki. A képelemzés során a számításokat a manuálisan egy „sejt maszk” definiálásával kijelölt sejtmembránból származó pixelekről adattal végeztük. A Pearson-együttható értékeit egyedi sejtekben határoztuk meg a pixelenkénti intenzitás adatokból egy erre a célra készített Matlab (Mathworks, Natick, MA, USA) algoritmus segítségével. A együttható számítása során elvileg véletlenszerűen is adódhat pozitív érték valós pozitív kolokalizáció hiányában is. Az ilyen nem valós pozitív korreláció lehetőségének kizárását Costes módszere szerint végeztük a korábban leírt módon.
módszer során az adott sejt esetén a két fluorofórról készített felvételeken a pixelenkénti intenzitásokat egy erre a célra készített algoritmus véletlenszerűen összekeveri, majd az így keletkező két új kép pixelenkénti adataiból kiszámítja az intenzitások közötti Pearson-koefficiens nagyságát, amelynek értéke a véletlenszerű keverés és a korreláció ebből fakadó hiánya miatt 0 körül ingadozik. Ezt a folyamatot az algoritmus 100 alkalommal megismétli, majd az így nyert adatokból kiszámítja az együtttható 95%-os konfencia intervallumát, amely statisztikai értelemben a koefficiensnek a korreláció hiányában várható tartományát határozza meg. Amennyiben a valós adatokból számított együtttható értéke ezen tartományon kívülre esik, statisztikai értelemben szignifikánsnak tekinthető a fluorofórok jele közötti korreláció. Positív kontrollként pedig két ismert és elfogadott lipidtutaj marker között számítottuk ki mödszerünkkel a korrelációs koefficiens nagyságát.

3.7 Statisztika

Az elektrofiziológiai mérések során nyert adatok legalább három független transzfekcióból, illetve injektálásból származnak. A mikroszkópos elemzés során legalább három független kísérlet adatait használtuk.

A disszertációban az adatokat átlag ± SEM formában ábrázoltuk. Az adott elemzés során felhasznált sejtek számát (n) a szövegben jelöltük. Az eltérések statisztikai vizsgálata során a p értékeket ANOVA analízist követően Tukey’s HSD (honestly significant difference) teszt segítségével számítottuk ki. Az eltéréseket p<0,05 esetén tekintettük szignifikánsnak (*). A 19C, D ábrákon a (**) szimbólum a kontrollon kívül minden más mintától szignifikáns mértékben különböző mintákat jelöli (p<0,05).
4. Eredmények

4.1 Szterolok hatása a Kv1.3 ioncsatorna feszültségfüggő kapuzásának egyensúlyi és kinetikai paramétereire

A Kv1.3 ioncsatorna szterolok iránti érzékenységének vizsgálata során kapott korábbi eredményeink alapján a sejtmembrán koleszterin vagy 7DHC tartalmának növelése lecsökkenti a teljessejt-áramok nagyságát, a konduktancia feszültségfüggését leíró Gnorm-V görbe jobbra tolldását eredményezi, valamint lelassítja a csatorna aktivációs kinetikáját mind humán limfocitákban, mind pedig CHO sejtekben. A kísérleteink kezdetekor a hagyományos emlőssejtes rendszerekben, illetve humán mintákban megfigyelt fenti eltéréseket kíséreltük meg reprodukálni Xenopus laevis afrikai karmosbéka oocita expressziós rendszerben kifejezett vad típusú Kv1.3 csatornákon (6. ábra). A 6A ábrán mutatom be a Kv1.3 áramok regisztrálására használt feszültségprotokollt és az ionáramokat. Az így nyert ionáramokból származtatott, a normált konduktancia feszültségfüggését ábrázoló grafikonok azt mutatják, hogy a sejtmembrán koleszterinnel és 7DHC-val történő töltése jelentősen módosítja ezt az összefüggést (6B ábra). A mérések során nyert adatok statisztikai analízise azt mutatja, hogy a V1/2 érték szignifikánsan depolarizált koleszterin és 7DHC töltést követően (6C ábra), hasonlóan az emlős sejtekben tapasztaltakhoz. Az áramok aktivációs kinetikáját jellemző időállandókat szintén szignifikánsan megnövelte a sejtmembrán koleszterinnel vagy 7DHC-val történő töltése, azaz ilyen körülmények között az áramok lassabban kinetikával aktiválódtak a kezeletlen (kontroll) oocitákban mértékhez képest. Az egyensúlyi inaktiváció feszültségfüggése szintén depolarizáció irányába tolldott el a sejtmembrán szterolokkal történő töltésének hatására (6E ábra), a V1/2 értékek kvantitatív analízise szignifikáns különbséget mutat a kontrollhoz képest mind koleszterin, mind pedig 7DHC töltést követően (6F ábra). Eredményeink azt mutatják, hogy a membránösszetételbeli eltérések ellenére a Xenopus rendszer megfelelően modellezi az emlős sejtekben megfigyelhető ilyen jellegű fehérje-membrán kölcsönhatásokat.
6. ábra A szterol töltések hatása a vad típusú Kv1.3 ioncsatornára

A koleszterin (üres körök, piros vonal) és 7DHC (fékete háromszög, kék vonal) Xenopus laevis oocitákban expresszált vad típusú Kv1.3 (WT Kv1.3) csatornára gyakorolt hatásainak meghatározása során azt vizsgáltuk, hogy a membrán szteroltartalmának növelése hasonló változásokat hoz-e létre a csatorna különböző elektrofiziológiai paramétereihein az általunk alkalmazott oocita expressziós rendszer esetén, mint amelyeket korábban emlős sejtekben tapasztaltak. Az A panel a B, C, D panelekben feltüntetett dataplónkhoz szükséges mérések során alkalmazott feszültségprotokoll, valamint az ennek hatására kiváltott ionáramokat mutatja. Az ionáramok meghatározásához az oocitákat −100 mV-os feszültségen tartottuk, majd −140 és +40 mV közötti tartományban 10 mV-os lépésekben változtattunk tesztpotenciálukkal depolarizáltuk 30 s-onként. A depolarizáló pulzus időtartama 250 ms volt. (B) A grafikonon ábrázolt szaggatott (Gnorm-V) vonalak az adatpontokra legjobban illeszkedő Boltzmann-függvényeket mutatják (3.6.1.2 egyenlet). A C panelen a vad típusú Kv1.3 esetén átlagolt V1/2 értékeket ábrázoltuk (3.6.1.1 egyenlet alapján). A csíkozott oszlopok a Gnorm-V görbék V1/2 értékeit mutatják.

A grafikonokon a minták sorrendje: kontroll (fekete), majd a koleszterinnel (piros), illetve 7DHC-vel (kék) kezelt minta. Mindkét szterollal történő töltés hatására az egyensúlyi aktiváció feszültségfüggése (n=5-9), szignifikáns mértéken depolariázott irányába tolódott. (D) Az aktivációs időállandók (τact) meghatározásához elsőfokú exponenciális függvényeket illesztettünk a különböző tesztpotenciálok esetén (lásd Anyagok és módszerek 3.6.1.3 egyenlet) és ezek átlagait tüntettük fel kontroll (fékete körök, fekete vonal), koleszterinnel (üres körök, piros vonal) vagy 7DHC-vel kezelt sejtek (fekete háromszög, kék vonal) esetén. Az aktivációs időállandók nagysága a Gnorm-V görbék mértéken megnőtt a kontroll mintákhoz képest (n=4-5), ami szintén megegyezik a szterol emlős sejtekben lért Kv1.3-ra kifejlett hatásaival. (E) Az egyensúlyi inaktiváció feszültségfüggésének vizsgálatára a sejtek −120 és +10 mV közötti (AV = 10 mV) tartományba eső feszültségen tartottuk 20 s-ig, majd egy 100 ms hosszúságú +40 mV-os tesztpulzust alkalmaztunk a K+ áramok kiváltására. A nem inaktiválódó csatornák hányadát minden feszültségen esetén az I/I−120 képlettel határozottuk meg, ahol I az adott feszültségről kiváltott csúcsáram nagysága, míg I−120 a −120 mV-os feszültségről történő depolarizáció által kiváltott csúcsáram nagysága. Az egyensúlyi inaktivációt a kiváltott boltzmann-függvény illesztettünk (lásd Anyagok és módszerek, 3.6.1.5 egyenlet). (F) A szterol töltések hatására az egyensúlyi inaktiváció feszültségfüggését jellemező V1/2 érték szignifikáns mértéken depolarizáció irányába tolódott (n=3). A grafikonokon a minták sorrendje: kontroll (fekete), majd a koleszterinnel (piros), illetve 7DHC-vel (kék) kezelt minta. Az eltolódások iránya megegyezik a B panelekben bemutatott Gnorm-V görbék eltolódásának irányával.
Ahhoz, hogy a Kv1.3 feszültségzenszorának mozgásait TEVCF technikával tanulmányozni tudjuk, a fluorofórral történő jelöléshez pontmutáció segítségével egy ciszteint aminosavat kellett beírniuk a csatorna extracellulárisan található S3-S4 linkerébe. Mivel korábban még nem írtak le a TEVCF mérésekhez leginkább megfelelő, cisztein mutációt hordozó Kv1.3 ioncsatornát, a mérésekhez legoptimálisabban használható (nagy amplitúdójú, könnyen elemezhető fluoreszcens jelet adó csatorna, amely konduktanciája és főbb elektrofiziológiai paraméterei nem térnek el a vad típusú csatorna megfelelő paramétereitől) cisztein szubsztitúciós hely megtalálásához az S3-S4 linker aminosavait pontmutációval egyenként ciszteinre cseréltük, majd az így létrehozott mindegyik mutáns csatornát leteszteltük TEVCF-fel (1. táblázat). Az S4-es hélix tetejéhez közeli 309-es pozíciójában létrehozott Ala (alanin) → Cys (cisztein) mutáció bizonyult a leginkább alkalmas választásnak a TEVCF mérések számára a konstrukt nagy és feszültségfüggő, egyfázisú fluoreszcens jele miatt.

<table>
<thead>
<tr>
<th>Kv1.3 S3-S4 linker cisztein mutánsok</th>
<th>A fluoreszcens jel intenzitása</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AlexaFluor488-maleimid</td>
</tr>
<tr>
<td>N301C</td>
<td>Alacsony</td>
</tr>
<tr>
<td>G302C</td>
<td>Alacsony</td>
</tr>
<tr>
<td>Q303C</td>
<td>Alacsony</td>
</tr>
<tr>
<td>M306C</td>
<td>Alacsony</td>
</tr>
<tr>
<td>S307C</td>
<td>Közepes</td>
</tr>
<tr>
<td>L308C</td>
<td>Nem sikerült a mutáció</td>
</tr>
<tr>
<td>A309C</td>
<td>Magas</td>
</tr>
<tr>
<td>I310C</td>
<td>-</td>
</tr>
<tr>
<td>L311C</td>
<td>-</td>
</tr>
</tbody>
</table>

1. táblázat A megfelelő intenzitású fluoreszcens jelet adó S3-S4 cisztein pontmutáció és cisztein specifikus fluoreszcens festékpár meghatározása Kv1.3 esteén TEVCF technikával

A Kv1.3 ioncsatornán a TEVCF mérések megkezdése előtt meghatároztuk azt a cisztein pontmutációs helyet és ciszteinre specifikus fluoreszcens festékpárt, amely segítségével a legnagyobb intenzitású, feszültségfüggő fluoreszcens jelet tudjuk detektálni, a csatorna kapuzását jellemző alapvető biofizikai paraméterek megváltozása
nélkül. Ehhez egyenként cisztein pontmutációkat hoztunk létre a Kv1.3 S3-S4 linkerén (301-től a 311-es pozícióval bezárólag), majd háromféle ciszteinekre specifikus fluorescens festékekkel (AlexaFluor488-maleimid; tetrametilrodamin (TMRM)-maleimid; 2-((5(6)-tetrametilrodamin)karboxilamino)etil metántioszulfonát (MTS-TAMRA)) jelöltük meg azokat, és vizsgáltuk, hogy létrejön-e feszültségfüggő fluorescenciás jel, és ha igen, az milyen intenzitású. A megfelelő intenzitású, feszültségfüggő fluorescens jel jelenléte ugyanis csak ilyen feltételek mellett határozható meg a számunkra szükséges egyensúlyi aktivációs és kinetikai paraméterek. A mérések alapján a 309-es pozíciójú mutáció az MTS-TAMRA festékkel bizonyult a legalkalmasabbnak, ezért a későbbiek során ezt a mutáció-festékpárt alkalmaztuk a TEVCF mérések során.

Az A309C mutáns megőrizte a Kv1.3 alapvető kapuzási tulajdonságait (v.ő.: 6. és 7. ábra), bár a legtöbb TEVCF méréshez létrehozott cisztein mutációhoz hasonlóan kissé módosította a konduktancia feszültségfüggését leíró G_{norm}-V görbét. Az A309C jelölése MTS-TAMRA fluorescens festékkel adta a legnagyobb intenzitású fluorescens jelet (1. táblázat), ezért a kísérletek során ezt a festéket használtuk AlexaFluor488 vagy tetrametilrodamin-maleimid (TMRM) helyett. A Kv1.3-ban nincsenek natív extracelluláris ciszteinek, ami ezáltal kizárja a csatorna nemspecifikus jelölődésének lehetőségét. Mivel a disszertáció további része elsősorban az elektrofiziológiai kísérletekhez használt cisztein mutánsokkal nyert eredményeket írja le, a továbbiakban a Kv1.3 és Kv10.1 a módszer során használt mutánsokat (A309C a Kv1.3 esteén, illetve L322C a Kv10.1 esetén) jelölik, míg a ciszteineket nem tartalmazó variánsokra vad típusú (WT Kv1.3, illetve WT Kv10.1) csatornáként utalunk. A bemutatott cisztein mutációt hordozó csatornákkal kapott eredményeket MTS-TAMRA jelölés után kaptuk, a be nem mutatott mérések alapján ugyanakkor a festék alkalmazása nem befolyásolta szignifikáns módon a vizsgált elektrofiziológiai paramétereket vagy a szterolok hatását.

A Kv1.3 A309C csatornákat kifejező *Xenopus laevis* oocitákat −100 mV-os tartófeszültségről kiindulva különböző tesztpotenciálokra depolarizáltuk −140 és +40 mV között 10 mV-os lépésekben, 250 ms-on keresztül 30 s-onként. Az ekkor kialakuló ionáramokat és fluorescens jelket TEVCF módszerrel egyidejűleg detektáltuk (7A ábra) és így megkaptuk az áram-feszültség (I-V) és relatív fluorescencia intenzitás változásának feszültségfüggését leíró $\Delta F/F$-V görbét. Ezekből a görbékből az Anyagok és módszerek fejezetben részletezetetteknak megfelelően a normált konduktancia-feszültség (G_{norm}-V) és normált fluorescencia változás-feszültség (F_{norm}-V) összefüggéseket számitottuk, és határoztuk meg azok félaktivációs feszültségét ($V_{1/2}$) és a meredekségi együttthatót (k) (7B ábra). A várákozásoknak megfelelően az F_{norm}-V görbét jellemző félaktivációs feszültség hiperpolarizáltabb volt a G_{norm}-V görbe félaktivációs feszültségéhez képest ($V_{1/2} = –41,1 \pm 1,8$
mV (n=12) vs. −15,8 ± 0,5 mV (n=10)), amely arra utalt, hogy a VSD aktivációja negativabb potenciálonokon elkezdődik, mint a pórusz nyitása.

A kísérleteket a kontroll mérések után koleszterinnel, illetve 7DHC-val törtölt sejteken is elvégeztük. Mindkét szterol hiperpolarizációs irányú, kismértékű, de szignifikáns eltolódást okozott a pórus nyitását jellemző G_{norm}-V görbéken ($V_{1/2} = −15,8 ± 0,5$ mV (n=10) kontroll; −21,1 ± 1,5 mV (n=11), p = 0,049 koleszterin; és −29,0 ± 1,9 mV (n=12), p=0,001 7DHC esetén), míg a VSD mozgását leíró F_{norm}-V görbe félaktivációs feszültségértékét nem befolyásolta a szterolokkal történő előzetes kezelés ($V_{1/2}$= −41,1 ± 1,8 mV, n=12 kontroll; −41,5 ± 1,8 mV, n=11, p = 0,992 koleszterin; és −42,1 ± 2,4 mV, n=12, p=0,937 7DHC esetén) (7B, ábrák).

Ez arra utal, hogy a szterolok nem a VSD aktivációra, hanem közvetlenül a pórusra vagy a két domén közötti csatolási mechanizmusra hatnak. A kezelések az F_{norm}-V görbék meredekségeit kismértékben megváltoztatták a koleszterin a VSD feszültségfüggését leíró görbe szignifikáns ellapulását eredményezte (k = 15,4 ± 0,4, n=12 kontroll; 22,2 ± 1,8, n=11, p=0,002 koleszterin; és 18,7 ± 0,8, n=12, p=0,099 7DHC esetén) (7B ábra).

7. ábra Szterol töltések hatásai az A309C mutációt hordozó Kv1.3 csatorna egyensúlyi aktivációjának feszültségfüggésére
(A) A Kv1.3 csatorna esetén az egyensúlyi aktiváció feszültségfüggését jellemző fluoreszcens jelek ($\Delta F/F$) és ionáramok meghatározásához az oocitákat−100 mV-os feszültségen tartottuk, majd −140 és +40 mV közötti tartományban 10 mV-os lépésekben változtattuk a tesztpotenciálalak depolarizáltuk 30 s-onként. A depolarizáló pulzus időtartama 250 ms volt. Az A panelen a feszültségprokollokat (bal felül) és az általuk kiváltott áramokat (jobb felül) ábrázoltuk. A Kv1.3 csatornák MTS-TAMRA-val történő jelölésénk követően egyfázisú fluoreszcens jelet bocsátottak ki a membrán depolarizációkor, amint az az A panel alá részen is látszik. (B) Az egy grafikonon ábrázolt folytonos (F_{norm}-V; 3.6.1.5 egyenlet) és szaggatott (G_{norm}-V; 3.6.1.2 egyenlet) vonalak az F_{norm}-V (fekete szimbólumok) és G_{norm}-V (üres szimbólumok) adatpontokra legjobban illeszkedő Boltzmann-függvényeket mutatják. A C panelen a sejtenként meghatározott $V_{1/2}$ értékek átlagát ábrázoltuk (3.6.1.1 egyenlet). Az üres oszlopok az F_{norm}-V görbék $V_{1/2}$ értékeit, míg a csíkozott oszlopok a G_{norm}-V görbék $V_{1/2}$ értékeit mutatják. A grafikonokon a minták sorrendje minden paraméter esetén elsőként a kontroll (fékete), majd a koleszterinnel (piros), illetve 7DHC-val (kék) kezelt minta. Kv1.3 ioncsatornánál a G_{norm}-V görbék $V_{1/2}$ értékeit mind a
koleszterin, mind pedig a 7DHC szignifikánsan (*: p<0,05) megváltoztatja hiperpolarizáció irányába, míg a szterol kezelések az Fnorm-V görbék V1/2 értékeit nem változtatták meg (n=8-12).

A Kv1.3 csatorna feszültségfüggő kapuzásának egyik fontos jellemzője, hogy negatív membránpotenciálokon a csatornák egy része inaktivált állapotba megy át, amit egyensúlyi inaktivációknak (SSI) nevezzünk. A koleszterin hatását a Kv1.3 egyensúlyi inaktivációjára korábban nem vizsgálták. A Kv1.3 309C egyensúlyi inaktivációját leíró SSI görbe hasonlóan viselkedett, mint a korábban leírt Gnorm-V görbe, azaz balra tolódott a szterolok hatására, bár az eltérés csak a 7DHC esetén bizonyult statisztikailag szignifikánsnak (8. ábra).

8. ábra Szterolok hatása a Kv1.3 309C egyensúlyi inaktivációjának feszültségfüggésére
Az egyensúlyi inaktiváció feszültségfüggésének vizsgálatára a sejteket −120 mV és +40 mV közötti (∆V = 10 mV) tartományba eső feszültségen tartottuk 20 s-ig, majd egy 100 ms hosszúságú +40 mV-os teszt pulzust alkalmaztunk a K⁺ áramok kiváltására. A nem inaktiválódó csatornák hányadát az I/I−120 képlettel határoztuk meg, ahol I az adott pulzus előtti tartófeszültségről a depolarizáció által kiváltott csúcsáram nagysága, míg I−120 a −120 mV-os tartófeszültségről történő depolarizáció által kiváltott csúcsáram nagysága (A). Az egyensúlyi inaktiváció feszültségfüggését leíró pontosorokhoz Boltzmann-függvényt (folytonos vonalak; 3.6.1.5 egyenlet) illesztettünk (kontroll: fekete kör, fekete vonal; 7DHRC töltés: fekete háromszög, kék vonal; koleszterin töltés: üres körök, piros vonal). A B panelen az illesztés eredményeként kapott, sejtenként külön-külön meghatározott V1/2 értékek átlagai láthatóak (n=7-8). Kontroll: fekete oszlopok; koleszterin töltés: piros oszlopok; 7DHC töltés: kék oszlopok, *: p<0,05.

4.2 Szterolok hatása a Kv10.1 feszültségfüggő kapuzásának egyensúlyi és kinetikai paramétereire

Az oocitákban kifejeztetett vad típusú Kv10.1 csatornák esetén hasonló eltéréseket tapasztaltunk a sejtmembrán szterol tartalmának növelése hatására, mint Kv1.3-ban, azaz a kezelések lecsökkentették az áram amplitúdóját, lassították az áram aktivációs kinetikáját és a Gnorm−V görbe jobbra tolódását eredményezték (9. ábra). Ezek a megfigyelések ellentétesek a koleszterin kivonás vad típusú Kv10.1-re gyakorolt hatásaival, amelyeket korábban már leírtak 141.
Az A panel az általunk alkalmazott feszültségregotokként, valamint az ennek hatására kiváltott vad típusú Kv10.1 ionáramokat mutatja az oocita expressziós rendszerben. Az ionáramok meghatározásához az oocitákat −100 mV-os feszültségen tartottuk, majd −180 és +60 mV közötti tartományban 10 mV-os lépéseken változtattott tesztpotenciállokkal depolarizáltuk 10 s-önként. A depolarizáló pulzus időtartama 800 ms volt. (B) Az aktivációs időállandóinak (τ_{act}) meghatározásához elsőfokú exponenciális függvényeket illesztettünk a különböző tesztpotenciálokon mért ionáramokhoz (3.6.1.3 egyenlet) és ezek átlagait tüntettük fel kontroll (fekete körök, kék vonal), koleszterinnel (üres körök, piros vonal) vagy 7DHC-vel kezelt sejtek (fekete háromszög, kék vonal) esetén. Mindkét szterollal történő töltés hatására a τ_{act} szignifikánsan megnövekedett minden vizsgált feszültség esetén (n=3-9). (C) A szterolok Cole-Moore shiftre gyakorolt hatásainak vizsgálatahoz meghatároztuk a −160 és −60 mV közötti tartófeszültségek mellett a +40 mV-os depolarizáló pulzus által kiváltott áramok aktivációs időállandóit és ábrázoltuk az így kapott értékeket a tartófeszültség függvényében (n=7-8). A vonalak és a szimbólumok kódja a B panellel egyezik. (D) A grafikonon ábrázolt szaggatott (G_{norm}-V) vonalak a G_{norm}-V adatpontokra legjobban illeszkedő Boltzmann-függvényeket mutatják (lásd Anyagok és módszerek fejezet, 3.6.1.2 egyenlet). A vonalak és a szimbólumok kódja a B panellel egyezik. (E) A $V_{1/2}$ értékek meghatározása a 3.6.1.1-es egyenlet alapján történt (n=7-11). A grafikonon a kontroll, a koleszterin, illetve 7DHC-val kezelt mintából származó átlagot $V_{1/2}$ értékeket rende fekete, piros és kék színű satírozott oszlopokkal jelentettük meg. (F) A koleszterin és 7DHC kezelés szignifikáns mértéken lassan kicsökkentette az oocitákon a teljes sejtben mérhető áramok nagyságát mind a vad típusú Kv1.3, mind Kv10.1 vizsgálat esetén. Az áramok nagyságát az ugyanazon a napon mért kontroll sejtek áramainak átlagára normáltuk (n=3-5 nap). A grafikonon a kontroll, a koleszterin, illetve 7DHC-val kezelt mintából származó átlagot normált áram értékeket rende fekete, piros és kék színű oszlopokkal jelentettük meg. *: p<0,05.

A Kv10.1-én végzett TEVCF mérésekhez a korábban mások által már használt és jellemzett L322C mutánt alkalmaztuk 194, azzal a különbséggel, hogy kisérleteink során MTS-
TAMRA fluoreszcens festéket alkalmaztunk TMRM helyett. Ez az új mutáció-festék párosítás a korábbinál nagyobb amplitúdójú, többfázisú, feszültségfüggő fluoreszcens jel megjelenését eredményezte (10A ábra) a csatorna kapuzási paraméteréinek szignifikáns megváltozása nélkül (9. és 10. ábra). Az I-V és ΔF/F-V görbék felvételéhez −180 és +60 mV között 10 mV-os lépésekben növekvő, 800 ms-ig tartó depolarizáló impulzusokat alkalmaztunk. A pulzusokat −100 mV-os tartófeszültségről kiindulva alkalmaztuk 10 s-onként. A korábbi eredményekkel összhangban a VSD aktivációja Kv10.1-ben már igen negatív potenciálok mellett megjelenik (Fnorm-V: V1/2 = −113,6 ± 1,9 mV; n=9), míg a pórus nyitása a Kv1.3-ban megfigyeltekez hasonló tartományban történik (Gnorm-V: V1/2 = −25,8 ± 2,1 mV; n=8) (10B, C ábrák). Emiatt a VSD aktivációja és a pórus nyitása közötti feszültségkülönbség jóval nagyobb Kv10.1 esetén, mint Kv1.3-ban, amely a két funkcionális domén közötti, a bevezetésben is bemutatott lazább csatolási mechanizmusra utal. A szterolok Kv10.1-re gyakorolt hatása hasonlóan bizonyult a Kv1.3 esetén tapasztaltakhoz. Mind a koleszterin, mind pedig a 7DHC szignifikáns negatív irányú eltolódást okozott a Gnorm-V görbében (V1/2 = −25,8 ± 1,9 mV (n=8) kontroll, −33,2 ± 1,8 mV (n=8), p = 0,043 koleszterin töltés és −38,2 ± 2,2 mV, p=0,002 (n=9) 7DHC töltés esetén), ugyanakkor egyik kezelés sem változtatta az Fnorm-V görbe felaktivációs feszültségét (V1/2 = −113,6 ± 1,9 mV (n=9) kontroll, −113,5 ± 0,6 mV (n=9), p = 0,999 koleszterin töltés és −114,0 ± 1,6 mV (n=8), p= 0,981 7DHC töltés esetén (10C ábra)). Ezek alapján Kv10.1 esetén, Kv1.3-hoz hasonlóan, a szterolokkal történő töltés valószínűsíthetően nem a VSD aktiváció módosításán keresztül változtatja meg a PD működését.
10. ábra Szterol töltések hatása az L322C mutációt hordozó Kv10.1 egyensúlyi aktivációjának feszültséggfüggésére
(A) A Kv10.1 csatornák esetén az egyensúlyi aktiváció feszültséggfüggését jellemző fluoreszcens jelek (∆F/F) és ionáramok meghatározásához az oocitákat −100 mV-os feszültségén tartottuk, majd −180 és +60 mV közötti tartományban 10 mV-os lépésekben változtattuk testpotenciálokkal depolarizáltuk 10 s-onként. A depolarizáló pulzus időtartama 800 ms volt. A feszültséggprofollokat (bal felül) és az általuk kiváltott áramokat (jobb felül) az A panelen ábrázoltuk. A Kv10.1 csatornák MTS-TAMRA-val történő jelölésével a membrán depolarizációjakor, amint az A panel alsó részen is látszik. (B) Az egy grafikonon ábrázolt folytonos (F\text{norm}-V; 3.6.1.5 egyenlet) és szaggatott (G\text{norm}-V; 3.6.1.2 egyenlet) vonalak az F\text{norm}-V (fekete szimbólumok) és G\text{norm}-V (üres szimbólumok) adatpontokra legjobban illeszkedő Boltzmann-függvényeket mutatják be. Kv10.1-nél a legjobbban illeszkedő F\text{norm}-V görbék mindhárom esetben teljesen átfednek egymással, ezért itt egy görbét tüntettünk csak fel az ábrán. A C panelen a sejtenként kapott adatokból származó V\text{1/2} értékeket átlagát ábrázoltuk (3.6.1.1 egyenlet). Az üres oszlopok az F\text{norm}-V görbék V\text{1/2} értékeit, míg a csíkozott oszlopok a G\text{norm}-V görbék V\text{1/2} értékeit mutatják. A grafikonokon a minták sorrendje minden paraméter esetén elsőkent a kontrol (fekete), majd a koleszterinnel (piros), illetve 7DHC-val (kék) kezelt minta. Kv10.1 ioncsatornánál (hasonlóan a Kv1.3 ioncsatornához; 7. ábra) a G\text{norm}-V görbék V\text{1/2} értékeit mind a koleszterin, mind pedig a 7DHC szignifikánsan (*: p<0,05) megváltoztatta hiperpolarizáció irányába, míg a kezelések az F\text{norm}-V görbék V\text{1/2} értékeit nem változtatták meg (n=8-12).

4.3 Szterolok hatása a VSD és az ionáram aktivációs kinetikájára

Következő lépésben a szterol töltések VSD aktivációs és áramaktivációs kinetikájára gyakorolt hatásait vizsgáltuk meg az A309C Kv1.3 és a L322C Kv10.1 konstruk felhasználásával (11. ábra). A Kv1.3 áram aktivációs kinetikájának meghatározásához az ionáramokra egykomponensú exponenciális függvényt illesztettünk, az aktivációs kinetikát a τ\text{act} időállandóval jellemeztük. A 11A ábra az mutatja, hogy mind a koleszterin, mind a 7DHC hatására az áram aktivációs kinetikája szignifikáns mértékben lelassult. Ezt jól demonstrálják az időállandók változásain túl (p<0,05 minden feszültségen) az egymásra normált áramgörbék is (11A betét ábra). A VSD aktivációs kinetikáját jellemző fluoreszcens jelek esetén egy, az amplitúdó döntő részét (>85%-át) meghatározó gyors és egy kisebb amplitudójú lassabb komponens volt megfigyelhető. Ennek megfelelően a fluoreszcenciás jel aktivációs kinetikáját két exponenciális tag összegét tartalmazó függvényen lehetett jól illeszteni. A két komponenst
jellemző időállandók egyikét sem változtatta meg a sejtmembrán szterolokkal történő töltése (11B ábra). Emellett az egyes komponensek amplitúdóinak aránya sem változott szignifikáns mértékben a szterol töltések hatására (az adatok a dolgozatban nem kerültek bemutatásra).

A Kv10.1 áram aktivációs kinetikája a depolarizáló pulzus előtti tartófeszültségtől és a külső Mg²⁺ koncentrációtól függően komplex, szigmoid görbével írható le, szemben a Kv1.3 ionáram elsőfokú, egy exponenciális taggal jellemezhető aktivációs kinetikájával. Azért, hogy a szterolok aktivációs kinetikára gyakorolt hatásait különböző csatornákon összehasonlíthatjuk, az irodalomban elfogadott eljárás szerint 194,195 a Kv10.1 áram kezdeti sigmoid fázisát nem vettük figyelembe az illesztés során, csak az ionáram aktivációs kinetikájának elsőfokú, egy exponenciális tagot tartalmazó függvényel jellemezhető részét karakterizáltuk. Mind a koleszterin, mind a 7DHC kezelés megnövelte az áram aktivációs időállandóját, különösen jelentős depolarizációk esetén (11C ábra). Ezután a szterolok VSD aktivációs kinetikájára gyakorolt hatásait vizsgáltuk a −180 és +60 mV közötti tartományban. A 11D betét ábráján −180 és +60 mV-okon mért reprezentatív fluoreszcens jeleket tüntettünk fel. A hiperpolarizáló (−180 és −110 mV közötti) membránpotenciálokon a mélyebb zárt állapotok felé irányuló, a depolarizáció során tapasztalhatóhoz képest ellentétes irányú VSD mozgást jellemző fluoreszcens jelek két, erőteljesen feszültségfüggő kinetikai komponenssel rendelkeztek, amelyek egyike sem változott meg a szterol töltések hatására (11D ábra). Ezzel szemben a depolarizáló (−100 és +60 mV közötti) pulzusok két ellentétes polaritású komponensből álló bifázisos jelet váltottak ki, amelyben az depolarizáló impulzus kezdetén megjelenő, negatív polaritású gyors komponens egyre prominensebbé vált a pozitívabb membránpotenciálokon esetén (10A ábra). Valószínű, hogy ez a gyors komponens egy, a pórus nyitásához szorosan kapcsolt VSD átmenetet tükröző a kinetikája és azon feszültségtartomány alapján, ahol a jel megfigyelhető. A lassú komponens időállandója jelentős feszültségfüggést mutatott és nem változott szterol kezelés hatására, míg a gyors komponens nagyon kis mértékben függött az alkalmazott feszültségtől, viszont szignifikáns mértékben lassult a koleszterin és a 7DHC alkalmazása esetén (11D, E ábrák). Ezek a megfigyelések arra utaltak, hogy a szterolok nem befolyásolják a VSD mély zárt állapotok közötti átmeneteit, lassítják ugyanakkor a pórus nyitásával összefüggő konformációváltozásait.
11. ábra Szterol töltések hatása az áram és a VSD aktivációs kinetikáira
A Kv1.3 és Kv10.1 áramok és fluorescens jelk a kinetikai paraméterek és vizsgálatához a 7. és 10. ábrákon leírt protokoll használtuk. (A, C) Az ionáramok aktivációs időállandóinak (τact) meghatározásához elsőfokú, egy exponenciális tagot tartalmazó függvényeket (3.6.1.3 egyenlet) illesztettünk kontroll (fekete körök, fekete vonal), koleszterinnel (üres körök, piros vonal) vagy 7DHC-val kezelt sejtek (fekete háromszög, kék vonal) ionáramaira. A betét ábrák kontroll (fekete), koleszterinnel (piros), illetve 7DHC-val kezelt sejtekről (kék) nyert normált áramgörbüket mutatnak. (B, D) A fluorescens jelk a kinetikai paraméterek és vizsgálatához (3.6.1.4 egyenlet). Az (A) panelen a Kv1.3 áram aktivációs időállandói (n=7-11), míg a (B) panele a fluorescens jel gyors (üres szimbólumok) és lassú (fekete szimbólumok) komponenseinek aktivációs időállandói (n=4-8) láthatók a tesztfeszültség függvényében. A (C) panel a Kv10.1 áramok aktivációs időállandói (n=4-8) láthatók a tesztfeszültség függvényében. A betét ábrán a hiperpolarizáló (–180 és –110 mV között, sárga négyzet) és depolarizáló (–90 és +60 mV közötti, narancssárga négyzet) feszültségek esetén a Kv10.1 ioncsatorna fluorescens jelk gyors (üres szimbólumok) és lassú (fekete szimbólumok) komponenseinek időállandói ábrázoltuk a tesztfeszültség függvényében. A betét ábrán a hiperpolarizáló (–180 és –110 mV között, sárga négyzet) és depolarizáló (–90 és +60 mV közötti, narancssárga négyzet) feszültségek esetén a Kv10.1 ioncsatorna fluorescens jelk legjobban illeszkedő, két exponenciális tagot tartalmazó függvényeket tüntettük fel. Az (E) panele a gyors komponens depolarizáló feszültségek esetén kapott értékeit ábrázoltuk a tesztfeszültség függvényében nagyított skála kontroll (üres körök, fekete vonal), koleszterinnel (üres háromszög, piros vonal) és 7DHC-val (üres négyzet, kék vonal) töltött sejtek esetén (n=5-10).
A Kv10.1 csatornák karakterisztikus tulajdonsága a Cole-Moore shift jelensége, azaz az áram aktivációs kinetikájának módosulása a depolarizáció előtti tartófeszültség függvényében. Amikor a csatornák nagyon negatív tartófeszültségről aktiválódnak, több zárt állapoton kell áthaladniuk a nyitás előtt, amelynek háttérében strukturalisan a csatorna VSD és PAS doménjei közötti kölcsönhatás áll. A jelenség következményeként, amikor a csatornát negatívvabb tartófeszültségekről depolarizáljuk, az áram aktivációs kinetikája lassabb és a kezdeti szigmoid fázis kifejezettebb, mivel a csatornák aktivációjá a ilyenkor a mélyebb zárt állapotokból indul (12. ábra). A jelenség vizsgálatához +40 mV-os depolarizáló pulzusok által kiváltott áramok aktivációs kinetikáját hasonlítottuk össze a pulzus előtti tartófeszültség függvényében. A tartófeszültség értékét –160 és –60 mV közötti tartományban változtattuk kontroll és szterolokkal töltött sejtekben. Míg a kezdeti legnegatívvabb tartófeszültségek mellett (–160 és –140 mV) a kontroll és a szterolokkal töltött sejtekben az időállandók értékei hasonlóak voltak, addig –120 mV-os vagy annál pozitívvabb tartófeszültség alkalmazása esetén az áramaktivációs kinetika szignifikánsan lassabbnak bizonyult a szterolokkal kezelt esetekben. Ez arra utal, hogy a mély zárt állapotok közötti átmenetek nem változnak, viszont az utolsó, csatornányitást eredményező átmenetel lelassul szterol töltése hatására.

12. ábra A Cole-Moore shift változása szterolok hatására Kv10.1 csatornákban

Kv10.1 esetén a szterolok Cole-Moore shiftre gyakorolt hatásának vizsgálatához egy 500 ms hosszúságú +40 mV-os pulzussal depolarizáltuk a sejtek, hogy a pulzus előtt 10 s-ig almazott tartófeszültség értékét –160 és –60 mV között változtattuk 20 mV-os lépésekben. A betét ábra reprezentatív normált Kv10.1 áramgörbéket mutat. A betét ábra reprezentatív normált Kv10.1 áramgörbéket mutat. A betét ábra reprezentatív normált Kv10.1 áramgörbéket mutat –160 és –60 mV-os pulzus előtti tartófeszültségek esetén. Az áramgörbékre elsőfokú, egy exponenciális tagot tartalmazó függvényt illesztettünk (3.6.1.3 egyenlet) úgy, hogy a kezdeti szigmoid fázist nem vettük figyelembe. Koleszterin (üres kör, piros vonal) és 7DHC (fekete háromszög, kék vonal) töltés hatására pozitívvabb pulzus előtti tartófeszültségekről kiváltott áramok τ_{act} értékei szignifikánsan növekedtek a kontroll mérések esetén tapasztaltakhoz képest (7DHC esetén –120 és –60 mV, míg koleszterin esetén –80 és –60 mV között) (n=7-8).
4.4 A szterolok által okozott áramcsökkenés mechanizmusának vizsgálata

Jóllehet a sejtek kapacitására vonatkozó információ hiányában az áramsűrűségek adatai nem hasonlíthatók össze közvetlenül egymással, mindkét szterol származék szignifikánsan lecsökkentette az oocitákban mért teljessejt-ionáramok nagyságát mind az A309C K\textsubscript{V}1.3, mind pedig az L322C K\textsubscript{V}10.1 ioncsatorna esetén azonos mennyiségű RNS injektálása és az injektálás után a mérésig eltelt azonos időtartamok alkalmazása mellett (13A ábra). A K\textsubscript{V}1.3 esetében a koleszterin 71,1 ± 8,2%-ra, a 7DHC pedig 54,0 ± 10,6%-ra csökkentette az áramok nagyságát, míg a K\textsubscript{V}10.1 esetén a szterolokkal történő kezelések után az amplitúdók rendre a kontroll érték 71,3 ± 8,6% és 58,5 ± 1,3%-ára csökkentek (13B ábra).

Az áramredukció okának meghatározására, vagyis annak eldöntésére, hogy az egyedi csatornák vezetőképességének vagy nyitási valószínűségének csökkenése okozza a teljes sejt ionáramának csökkenését, a K\textsubscript{V}10.1 csatornákat expresszáló oocitákon patch-clamp technika segítségével, outside-out konfigurációban az Anyagok és módszerek 3.6.2 fejezetében bemutatott feszültsépgrofetokol segítségével nyert ionáramokon nem-egyensúlyi zajanalizist végeztük. Az outside-out konfigurációra a nem-egyensúlyi zajanalizis kivitelezése miatt volt szükségünk. A TEVCF mérésekhez használt erősítő érzékenysége sokkal kisebb, valamint az erősítő elektronikus zaja is sokkal nagyobb, mint a patch-clamp erősítő esetében. A teljes sejtek esetén tapasztalható nagy áramokhoz képest a patch-clamp technika outside-out konfigurációját adó „miniatűr sejtben” sokkal kevesebb csatorna van, a kisebb áramamplitúdó miatt pedig jobb a feszültség-zár minősége, gyorsabb az elektronika, és jóval érzékenyebbet erősítés fogja át a mérhető áramok tartományát. Ezáltal a variancia mérése pontosabb kisebb átlagáramok mellett.

A patch-clamp mérések során detektált áram időbeli fluktuációja az egyedi csatornák vezetőképességétől és azok nyitási valószínűségétől függ. Az ionáram varianciáját az egyes időpillanatokhoz tartozó átlag áramerősség függvényében ábrázolva egy parabolát kapunk, amelynek paraméterei segítségével meghatározhatók az egyedi csatornák fenti tulajdonságai (13C ábra). A zajanalizis eredményei alapján mindkét szterol szignifikánsan lecsökkentette az egyedi csatornák konduktanciáját (kontroll: 19,73 ± 1,44 pS, n=8; koleszterin: 13,30 ± 1,11 pS, n=6, p=0,009; 7DHC: 14,33 ± 1,04 pS, n=4, p=0,046) a nyitási valószínűségek szignifikáns módosítása nélkül (kontroll: 0,678 ± 0,018 n=8; koleszterin: 0,715 ± 0,035 n=6, p= 0,628; 7DHC: 0,573 ± 0,044 n=4, p=0,067) (13D ábra).
13. ábra A szterol töltések hatása az oociták áramamplitúdójára és az egyedi csatornákat jellemző paraméterekre

Az (A) panel TEVCF segítségével ugyanazon a napon mért kontroll és szterolokkal kezelt oociták reprezentatív áramgörbét mutatja. (B) Az adott napon mért koleszterinnel vagy 7DHC-val töltött sejtek áramainak átlagát normáltuk az ugyanazon a napon mért kontroll sejteken kapott átlagára. Az így kapott normált áramok átlagát (n=3-4 nap) tüntettük fel kontroll (fekete), koleszterinnel (piros) vagy 7DHC-val (kék) töltött sejtekre. Az áramokat K\textsubscript{v1.3} esetén +40 mV-ra, míg K\textsubscript{v10.1} esetén +60 mV-ra történő depolarizáló pulzussal változtuk ki. A C panel az oocitákban expresszált K\textsubscript{v10.1} csatornákon kívált áramok nem-egyensúlyi zájánalízessel történő kiértékelését mutatja. Az adatgyűjtés során az oociták membránjából húzott outside-out konfigurációjú patch-eket a –100 mV-os tartófeszültségről kiindulva 200 ms-os +50 mV-os pulzusokkal depolarizáltuk egymás után 200 alkalommal. Az áram varianciáját az egyes időpillanatokhoz tartozó átlagos áramerősségek függvényében ábrázoltuk és a K\textsubscript{v10.1} egyedi csatorna paramétereit az adatpontokra illeszett parabola segítségével határoztuk meg (3.6.2.1 egyenlet). (D) A grafikonon a csatornák kontroll (fekete), koleszterinnel (piros), illetve 7DHC-val (kék) kezelt sejtekben meghatározott egyedi konduktanciáját és nyitási valószínűségét ábrázoltuk (n=5-8). A (B) és (D) panelekben bemutatott oszlopgátlagon az eredményeket a kontroll, koleszterinnel, illetve 7DHC-val kezelt minták sorrendjében ábrázoltuk. Az ábrán a kontroll mintához képest szignifikáns eltéréseket jelöltünk (*, p< 0,05, ANOVA után végzett Tukey’s HSD teszt alapján).
Mind a Kv1.3, mind pedig a Kv10.1 csatornák testvéreként a sejtmembrán szfingolipidekkel és koleszterinből gazdag lipidtutaj mikrodóménjeiben helyezkednek el 138,141,197. Mivel a lipidtutajbeli lokalizáció befolyásolhatja a csatornák szerkezeti és funkcionális tulajdonságait 138,197-199, valamint a koleszterin a tutajok egyik legfontosabb alkotóeleme 85, a csatornák és tutajok szterol töltés hatására végzsen van átrendeződése szerepet játszhat a szterolok elektrofiziológiai hatásainak kialakulásában, ahogy azt a Bevezetésben is részletesen bemutattuk. Ennek alátámasztására megvizsgáltuk a Kv1.3 és Kv10.1 tutaj és nem-tutaj mikrodómének közötti megoszlásának szterol töltés hatására bekövetkező változását oly módon, hogy meghatároztuk az ioncsatornához kötődő antitest és a lipidtutaj jelölőként használt koleratoxin B alegység (CTX-B) fluoreszcencia intenzitásait közötti Pearson-féle korrelációs együttható nagyságát hagyományos konfokális lézer pásztázó és stimulált emisszió depléció (STED) mikroszkópia segítségével a korábban részletesen leírt módon 192. A fluorofórral konjugált antitestek a Kv1.3 és Kv10.1 csatornákba épített FLAG epitópot ismerték fel (Kv1.3\text{FLAG} és Kv10.1\text{FLAG}). A korábbi megfigyelésekkel összhangban markánsan pozitív Pearson-együttthatókat kaptunk a Kv1.3, illetve Kv10.1 és a CTX-B fluoreszcens jele között (Kv1.3 vs CTX-B: 0,416 ± 0,013, n=27 és Kv10.1 vs CTX-B: 0,298 ± 0,019, n=30, 14E és 2. táblázat). A számított együtthatók jelentősen kivül estek a korreláció feltételezett hiánynak esetén várható 95%-os konfidencia intervallum határain (2. táblázat) és nagyságuk összeméréhető volt a pozitív kontroll minta esetén számított értékkel, amelyet két általánosan elfogadott lipidtutaj marker, a GFP-GPI és a CTX-B fluoreszcencia intenzitásai közötti koeficient kvantifikálásával kaptunk (0,551 ± 0,020, n=23, 14E és 2. táblázat). A pozitív kolokalizációt jól látszik az egymásra vetített konfokális felvételeken (14A-C ábrák) és a pixelenkénti intenzitások korrelációját bemutató reprezentatív kontúr plot ábrán is (14D ábra). Mindkét ioncsatorna esetén a Pearson-együttthatók nagysága szignifikánsan megnőtt mind koleszterin, mind 7DHC kezelés hatására konfokális lézer pásztázó mikroszkópos vizsgálatok eredményei alapján (Kv1.3: 0,492 ± 0,013, n=34, p=0,001 koleszterin és 0,500 ± 0,015, n=32, p=0,001 7DHC esetén; Kv10.1: 0,373 ± 0,017, n=29, p=0,010 koleszterin és 0,395 ± 0,018, n=24, p=0,002 7DHC esetén, 14E ábra és 2. táblázat). Kv1.3 esetén a szterolok hatására megnövekedett tutajbeli lokalizáció megerősített jobb (46-60 nm) feloldóképességű STED mikroszkópia alkalmazásával. Szterol töltés után a korrelációs koeficientek nagysága STED felvételekből számítva is szignifikánsan pozitívabb volt (koleszterin: 0,361 ± 0,019, 95%-os konfidencia intervallumban 0,551 ± 0,020, n=23, 14E és 2. táblázat). A szterol hatására megnövekedett tutajbeli lokalizáció megerősített jobb feloldóképességű STED mikroszkópia alkalmazásával. Szterol töltés után a korrelációs koeficientek nagysága STED felvételekből számítva is szignifikánsan pozitívabb volt (koleszterin: 0,361 ± 0,019, 95%-os konfidencia intervallumban 0,551 ± 0,020, n=23, 14E és 2. táblázat).
n=32, p=0,012, 7DHC: 0,366 ± 0,019, n=28, p=0,010), mint a kontroll minták esetén (0,274 ± 0,025, n=25) (14E ábra és 2. táblázat). A fluoreszcens koleszterin analóg (NBD-koleszterin) beépülése a membránba nem volt egyenletes, a konfokális mikroszkópos képek alapján a számított markánsan pozitív Pearson-együtthatók arra utaltak, hogy a fluoreszcens koleszterin analóg preferenciálisan a CTX-B által jelölt lipidtutaj mikromódjainkban inkorporálódott (0,234 ± 0,025, n=24), elsősorban a Kv1.3 csatornák közelében (0,358 ± 0,023, n=24) (14F ábra és 2. táblázat). Ezen eredmények a fluorofórral konjugált és natív koleszterin korábban kimutatott hasonló viselkedése alapján arra utalhat, hogy az exogén módon bejuttatott koleszterin elsősorban a tutajokba épül be, azok közül is főleg azon mikromódjaink, amelyek Kv1.3 fehérjét tartalmaznak, lehetőséget adva a szterolok és ionszámítot kölcönhatására.

14. ábra Szterolok hatása a Kv1.3 és Kv10.1 lipidtutajokba történő partíciójára
A Kv1.3-at, illetve Kv10.1-et kifejező szterolokkal kezelt vagy kontroll HEK-293 sejtekben a csatornák és a lipidtutajok jelölése után konfokális lézer pasztázó mikroszkóppal felvételleket készítettünk a sejtmembrán fedőlemezhez tapadó régiójáról. A reprezentatív képek a tutajok (A) és a Kv1.3 ioncsatornák (B) jellemző eloszlását mutatják. A két jel kolokalizációja jól látszik az egymásra vetített képeken (C) és a pixelenkénti intenzitások közötti korrelációt mutató kontúr plot ábrán (D). (E) A kolokalizáció mértéket a lipidtutajokat és csatornákat jelző fluorofórkon intenzitásai közötti Pearson–fönt korrelációs együttátható kiszámításával kvantifikáltuk kontroll (fekete), valamint koleszterinnél (piros), illetve 7DHC-val (kék) kezelt sejtekben. Az oszlopdiagramokon az adatokat a kontroll, koleszterinnel, illetve 7DHC-val töltött minták sorrendjében ábrázoltuk. Kísérleteinket
Kv1.3 esetén megismételtük a jelentősen jobb (46-60 nm-es) felbontást biztosító STED mikroszkópia alkalmazásával. A panelen a kontrollhoz viszonyított szignifikáns eltéréseket jelöltünk (*, p< 0.05, ANOVA után végzett Tukey’s HSD tesz alapján). (F) Konfokális mikroszkópos felvételenak elemzésével a panelen jelzett molekula párók között is meghatározottuk a Pearson-együttátható értékét 25-[N-[(7-nitro-2-1,3-benzoxadiazol-4-il)metil]amino]-27-norkoleszterinellen (NBD-koleszterinellen) töltött sejtkeben (n=23-34 sejt).

<table>
<thead>
<tr>
<th>Jelölés</th>
<th>Kezelés</th>
<th>Átlag ± SEM</th>
<th>Konfidencia intervallum, ha r=0</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFP-GPI vs. CTX-B</td>
<td>kontroll</td>
<td>0,551 ± 0,020</td>
<td>-0,017 0,039</td>
<td>23</td>
</tr>
<tr>
<td>Kv1.3FLAG vs. CTX-B</td>
<td>kontroll</td>
<td>0,416 ± 0,013</td>
<td>-0,017 0,036</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>koleszterin</td>
<td>0,492 ± 0,013</td>
<td>-0,019 0,038</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>7DHC</td>
<td>0,500 ± 0,015</td>
<td>-0,019 0,035</td>
<td>32</td>
</tr>
<tr>
<td>Kv10.1FLAG vs. CTX-B</td>
<td>kontroll</td>
<td>0,298 ± 0,019</td>
<td>-0,022 0,036</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>koleszterin</td>
<td>0,373 ± 0,017</td>
<td>-0,018 0,032</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>7DHC</td>
<td>0,395 ± 0,018</td>
<td>-0,020 0,039</td>
<td>24</td>
</tr>
<tr>
<td>Kv1.3FLAG vs. CTX-B (STED)</td>
<td>kontroll</td>
<td>0,274 ± 0,025</td>
<td>-0,006 0,013</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>koleszterin</td>
<td>0,361 ± 0,019</td>
<td>-0,007 0,011</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>7DHC</td>
<td>0,366 ± 0,019</td>
<td>-0,009 0,016</td>
<td>28</td>
</tr>
<tr>
<td>Kv1.3FLAG vs. CTX-B</td>
<td>NBD-koleszterin</td>
<td>0,532 ± 0,038</td>
<td>-0,022 0,045</td>
<td>24</td>
</tr>
<tr>
<td>Kv1.3FLAG vs. NBD-koleszterin</td>
<td>NBD-koleszterin</td>
<td>0,358 ± 0,023</td>
<td>-0,024 0,040</td>
<td>24</td>
</tr>
<tr>
<td>CTX-B vs. NBD-koleszterin</td>
<td>NBD-koleszterin</td>
<td>0,234 ± 0,025</td>
<td>-0,024 0,040</td>
<td>24</td>
</tr>
</tbody>
</table>

2. táblázat A lipidtutaj markerek, Kv1.3- vagy Kv10.1-ellenes antitestek, illetve fluorofórral konjugált koleszterin molekulák fluorescencia intenzítéséi közötti korreláció vizsgálata

A mérésekhez HEK-293 sejteket transzfektáltunk glükozilfoszfatidilinozitol-horgonyzott zöld fluorescens fehérjét (GFP-GPI), illetve Kv1.3FLAG vagy Kv10.1FLAG fehérjét kódoló plazmidokkal, majd jelöltünk AlexaFluor647-CTX-B-vel és anti-FLAG M2-Cy3 antitestekkel vagy AlexaFluor594-CTX-B-vel és anti-FLAG M2 + StarRed-GAMIG antitestekkel. Mikroszkópos képalkotást követően a pixelenkénti intenzitás adatokból kvantitatív képanalízis során meghatározottuk a táblázatban jelölt markerek közötti Pearson-féle korrelációs együtthatók nagyságát. A kiértékelés során csak a sejtmembránnak megfelelő pixelek ("membrán maszk") adatait vettük figyelembe. A táblázat a korrelációs koefficiensek n különböző sejt adataiból számított átlagértékét (± SEM), valamint a korreláció feltételezett hiánya esetén számított együttható (r=0) 95%-os konfidencia intervallumának adatait tartalma.
4.6 A kísérleti stratégia bemutatása a *Shaker-IR* T449A/V474C ioncsatornában negatív membránpotenciálokon végbemenő, inaktivációhoz vezető útvonalak tanulmányozásához

A *Shaker-IR* csatornában a 474-es pozíció az S6-os hélixen helyezkedik el, a csatorna nyitott aktivációs kapuja mellett a pórus vízzel telt ürege felé néz 185. Az ebe a pozícióba helyezett cisztein aminosav csak akkor módosítható Cd\(_{2+}\) vagy MTS reagensek által, amennyiben az aktivációs kapu nyitva van 58,185,186. Az aktivációs kapu nyitása, azaz a 474C Cd\(_{2+}\) általi módosítása az ionáramok méréseével jól nyomon követhető, ugyanis a bekötődő Cd\(_{2+}\) gátolja a depolarizáció során jól és pontosan mérhető ionáramot. Az általunk alkalmazott konstruktor továbbá tartalmazott egy T449A mutációt, ami ismerten felgyorsítja a C-típusú inaktivációt és így lehetővé teszi számunkra annak tanulmányozását 33,41.

Az inaktiváció során az aktivációs kapu állapotának monitorozására szolgáló pulzusprotokoll megtervezéséhez először karakterizáltuk a T449A/V474C *Shaker-IR* konstruktor főbb elektrofiziológiai paramétereit patch-clamp technika segítségével, inside-out konfigurációban. Az inside-out konfiguráció alkalmazását ezen kísérelteink során az követelte meg, hogy az inside-out konfigurációban az intracelluláris oldat összetétele az átalunk alkalmazott gyorsperfúziós rendszerre könnyen és gyorsan változtatható ugyanazon mérés alatt, ami lehetővé tette az intracelluláris oldal felől ható, különböző koncentrációjú Cd\(_{2+}\)-ot tartalmazó, valamint Cd\(_{2+}\)-mentes (kontroll) oldok cseréit. A részletes protokollokat és kiértékelést az Anyagok és módszerek fejezet 3.6.3. pontja tartalmazza. Először különböző tesztpotenciálokon regisztráltuk az áramokat (15A ábra), majd a csúcsáramok és a hajtóerő (V-E\(_{E_{cv}}\)) ismeretében az adott membránpotenciálon a csúcs konduktanciát (G), annak normálását követően pedig a normált konduktancia-feszültség (15B ábra, G\(_{norm}\)-V görbe) összefüggését határoztuk meg. A félaktivációs feszültség (\(V_{1/2}=-51,6 \pm 2,5\) mV) és meredeksgő egyútható (k= 16,9 \(\pm\) 2,1 mV) meghatározása az egyes sejtek normált konduktanciájának tesztpotenciáltól való függését leíró, adatpontakra illesztett Boltzmann-függvény alapján történt (átlag \(\pm\) SEM, n=5). A 15B ábrán feltüntetett G\(_{norm}\)-V görbét az egyes potenciálokon nyert G\(_{norm}\) értékek átlagolása (\(\pm\) SEM) alapján szerkesztettük. Az aktivációs és inaktivációs időállandók +50 mV-on mért értékeit a 15C ábra mutatja. Mind az áram aktivációs, mind pedig az inaktivációs kinetikája elég gyorsnak bizonyult ahhoz, hogy a mérések rationális idő alatt elvégezhetők legyenek, a protokollok időbeli lefutásának tervezésekor ezeket a paramétereket vettük figyelembe. Meghatároztuk továbbá az egyensúlyi inaktiváció (SSI) feszültségfüggését (lásd 3.6.3 fejezet), aminek jellemzéséhez meghatároztuk a nem inaktivált csatornák hányadának (I/L.
depolarizáló pulzus előtti tartófeszültségtől való függését. Az egyedi sejtekre kapott pontsorokhoz a Boltzmann-függvényt illesztettük, és meghatároztuk a felaktivációs feszültséget \(V_{1/2} = -81,7 \pm 0,7 \text{ mV} \) és meredekségi együtthatót \(k = -5,8 \pm 0,6 \text{ mV} \) \(\pm \text{ SEM, n=4} \). A 15D ábrán a feltüntetett görbét az egyes tartófeszültségeken mért \(I/I_{-120} \) értékek átlagolásával szerkesztettük \(\pm \text{ SEM, n=4} \). +50 mV-os pulzuspárok alkalmazásával és a pulzusok közötti időintervallumok (ipi) változtatásával (15E ábra) meghatároztuk az inaktivációból való visszatérés kinetikáját \(-120 \text{ mV-on}, ezt a potenciált később a kísérletek során a pulzusprotokollok közötti tartófeszültségnek használtuk. Ezen a tartófeszültségen az inaktivációból való visszatérés kinetikáját jellemző időállandó \(4,4 \pm 0,6 \text{ s-nak adódott (n=5) (15F ábra).} \)

15. ábra HEK-293 sejtekben kifejezett T449A/V474C Shaker-IR ioncsatorna elektrofiziológiai paraméterei

(A) Az inside-out konfigurációban történő K⁺ áramok méréséhez a T449A/V474C Shaker-IR ionsatornát kifejező sejtekből kitépett patch-eket \(-120 \text{ mV-os tartófeszültségről depolarizáltuk \(-100 \text{ és } +70 \text{ mV közötti tesztfeszültségekre } 10 \text{ mV-os léptékkel } 100 \text{ ms hosszan } 60 \text{ s-onként (lásd pulzusprotokoll a görbék felett). A panelen belüli betét ábra a feltüntetett tesztfeszültségek mellett mutat reprezentatív áramgörbéket jobb felbontásban, a görbék színkódolása a tesztpotenciálok színkódolásával egyezik meg. (B) Az n=5 sejt adataiból számított \(G_{\text{norm}} \) értékeket tesztfeszültségenként átlagoltuk és a vonatkozó tesztfeszültség függvényében ábrázoltuk.

(B) Az n=5 sejt adataiból számított \(G_{\text{norm}} \) értékeket tesztfeszültségenként átlagoltuk és a vonatkozó tesztfeszültség függvényében ábrázoltuk. Az ábrán az átlagolt adatpontokra legjobban illeszkedő Boltzmann-függvényt folytonos vonallal jelöltük. (C) Az aktivációs időállandó meghatározásához \((t_{\text{act}}) 5 \text{ ms hosszúságú } +50 \text{ mV-os depolarizáló pulzusokat használtunk \(-120 \text{ mV-os tartófeszültségről kiindulva és a kiváltott áramok görbét a Hodgkin-Huxley n⁺-modell szerint illesztettük (n=6). Az inaktivációs időállandó \((t_{\text{max}}) \) számítása a 2000 ms hosszúságú \(+50 \text{ mV-os pulzusok által} \)
kiváltott áramgörbék leszálló szárára (ладs E panel) illesztettek exponentiációs csőkkenő függvény segítségével történt (n=5). (D) Az egyensúlyi inaktivációs feszültségfüggések vizsgálatához a patch-eken a tartófeszültséget 3 s-ra a −120 mV-os tartófeszültségről −110 mV és −50 mV közötti értékekre változtattuk 5 mV-os lépésekben, majd a K⁺ áramokat (I) rövid (5 ms-os) +50 mV-os teszt pulzus segítségével változtattuk ki. Minden lépés után −120 mV tartófeszültségről indulva egy második teszt pulzust alkalmaztunk (I120). Minden feszültség mellett n=4 méred adatait átlagolva meghatároztuk a neminaktivált csatornák arányát ([I −I120]/I120) és a pulzus előtti potenciál függvényében ábrázoltuk. Az ábrán az átlagolt adatpontkra legjobban illeszkedő Boltzmann-függvényt folytonos vonallal jelöltük. (E) Az egyensúlyi inaktiváció feszültségfüggésének vizsgálatához a patch-eken a tartófeszültséget 3 s-ra a −120 mV-os depolarizációs pulzust alkalmaztunk −120 mV-os tartófeszültségről indulva. A két impulzus közötti időt (ipi) 0,5 s és 60 s között változtattuk, a második pulzus által kiváltott áramamplitúdójára (I2) jelentőséggel függött az ipi-től. Az pip=0,5 s (piros), illetve pip=60 s (zöld) mellett nyert áramgörbéket emeltük ki az ábrán. (F) A kiváltott áramhányadot az (I2 −I1SS)/(I1 −I1SS) képlet alapján számítottuk, ahol az I1, II, és I2 a második pulzus esetén mért csúcsmáramokat jelöli, IISS pedig az egyensúlyi áram nagysága az első depolarizáció végén. A számított visszatérő áramhányad értékeit n=5 sejt adataiból átlagoltuk minden ipi esetén és az ipi függvényében ábrázoltuk. Az ábrán feltüntetett hibák a SEM értékeit jelölik.

A T449A/V474C csatorna biofizikai paramétereit figyelembe véve terveztük meg a kísérletes stratégiát az állapotfüggő cisztein modifikációs kísérletekhez, amellyel a zárt állapotból bekövetkező inaktiváció (C→CI átmenet) lehetőségét vizsgáltuk. A kísérletekhez a Cd²⁺-ot az intracelluláris oldal felől alkalmaztuk (16A ábra). A protokoll három, egyenként 5 ms hosszúságú +50 mV-os depolarizáló pulzust tartalmazott, amelyek a biofizikai karakterizáció alapján teljesen aktiválják a K⁺ áramot (15B ábra). Az első pulzus (P1) során kontroll oldat alkalmazása mellett (150 mM K⁺, 0 µM Cd²⁺) határoztuk meg az adott inside-out patch-en mérhető maximális K⁺ áramot (I1). Ezt egy 30 ms-os −120 mV-ra történő hiperpolarizációt követte (16A ábra, x szimbólum), amelynek hatására az aktivációs kapu bezáródott a Cd²⁺ applikáció előtt. Ezután a membránpotenciált olyan értékre, például −90 mV-ra (16A ábra) állítottuk, ahol a csatorna kismértékű egyensúlyi inaktivációt mutat (15D), makroszkópos áram viszont nem detektálható (15A betét ábra, 15B ábra). Bár a 15D ábra alábbelső a −90 mV-on mérhető egyensúlyi inaktiváció mértékét a viszonylag rövid (3s) tartási potenciálak miatt, a grafikon jól meghatározza azt a negatív membránpotenciál tartományt, ahol az állapotfüggő cisztein modifikációs kísérleteket végezhetjük. A −90 mV-on megfigyelhető egyensúlyi inaktiváció mértékét a második depolarizációs pulzus (P2) által kiváltott áram (I2) adatainak határozottak meg az I2/ I1 hányados alapján, az inaktiválódó áramhányadot (IF) pedig IF= 1−(I2/ I1) alapján. A 20 s hosszúságú pulzus alatt 20 µM vagy 200 µM Cd²⁺-ot tartalmazó intracelluláris oldatot perfundáltunk a patch-ei citoszolikus felszínére. A patch-ek Cd²⁺ exposíciója közvetlenül a P1 után kezdődött és a −90 mV-os tartófeszültséget alkalmazó lépés befeléjedésével, a P2 előtt ért véget. A P2-t megelőzte egy 30 ms hosszúságú lépés −120 mV-ra, hogy elkerüljük a P2 elején a nyitott állapotú csatornák Cd²⁺-exposícióját (elektromechanikus késleltetés a perfúziós rendszerben, lásd 58., 16A ábra x szimbólum). P2-t
követően a patch-et −120 mV-on tartottuk 60 s-ig, amely elegendő volt ahhoz, hogy kontroll körülmények között biztosítsa az inaktivált csatornák inaktivációból történő teljes visszatérését. Ezt követte a harmadik 5 ms hosszúságú depolarizációs pulzus (P₃), amelynek felhasználásával számoltuk a visszatért áramhányadot az RCF=(I₃−I₂)/(I₁−I₂) képlet alapján (16B ábra), amelyben az I₁, I₂ és I₃ rendre a három szekvenciális pulzus által kiváltott és aspecifikus szivárgó árammal korrigált amplitúdókat jelöl. Amennyiben az inaktiváción C→CI átmenettel jön létre, vagyis az aktivációs kapu nem nyílik ki inaktiváció előtt, az RCF elméletileg várható értéke 1, mert az aktivációs kapu zárt állapota megakadályozza a 474C Cd²⁺ általi modifikációját és az áram csökkenését (15B ábra, felső modell). Ezzel szemben, ha az aktivációs kapu nyitása megelőzi az inaktivációt, a Cd²⁺ módosítja a 474C-t és áramcsökkenés látható. Ha az egyensúlyi inaktivációban részt vevő összes csatorna aktivációs kapuja nyitott −90 mV-on és a Cd²⁺ módosítja az összes ilyen csatornát, az RCF értéke 0 (15B ábra, alsó modell). 0 <RCF <1 azt mutatja, hogy egyensúlyi inaktiváció során a csatornák a Cd²⁺ számára elérhető állapotban voltak (további magyarázat a Diszkusszió 5.10-es pontjában).

16. ábra A T449A/V474C Shaker-IR ioncsatornában a zárt állapotú inaktiváció vizsgálatára alkalmazott kísérletes stratégia leírása
(A) A pulzusprotokoll három, egyenként 5 ms hosszúságú +50 mV-ra történő depolarizációból állt (P₁, P₂ és P₃), a pulzusok által kiváltott csúcsáramokat a B panelen I₁, I₂ és I₃ jelöli. A P₁ és P₂ között az inside-out patch-eket Cd²⁺-ot tartalmazó intracelluláris oldattal perfundáltuk −90 mV-os tartófeszültségen 20 s-ig. A nyitott állapotú csatornák P₁ és P₂ alatti Cd²⁺ expozíciójának elkerülésére egy 30 ms hosszúságú −120 mV-os lépést alkalmaztunk közvetlenül a P₁ után és a P₂ előtt, amelyet az ábrán „x” szimbólum jelez. A P₁ és P₂ között a patch-eket −120 mV-os tartófeszültségen tartottuk 60 s-ig. (B) Az aktivációs (S6 hélixek intracelluláris része, sötétzöld színnel) és C-típusú inaktivációs kapuk (piros gömbök) között elhelyezkedő, 474-es pozícióban található cisteinek (sárga gömbök) módosíthatóságát az inaktiváció során intracelluláris oldalról alkalmazott Cd²⁺ (szürke gömbök) segítségével határoztuk meg. A Cd²⁺ ugyanis a 474C-hez való kötődés eredményeképpen gátolja a K⁺ áramot, ezáltal az aktivációs kapu esetleges nyitása pontosan nyomonkövethetővé válik az ionáramok mérésével a C-típusú inaktiváció kifejlődése során. Az RCF (visszatért áram aránya) értékének modell szerinti előrejelzése a szövegben található, míg az I₁, I₂ és I₃ paraméterek definíciója az A panelben szerepel.
Három különböző kontroll kísérletben vizsgáltuk, hogy az előző fejezetben bemutatott hárompulzusos protokollunk képes-e specifikusan az aktivációs kapu nyitását jelezni. Az első kísérlet során a P₁ és P₂ között 20 s-ig −120 mV-os tartófeszültség mellett Cd²⁺ hiányában az I₂ nem csökkent az I₁-hez képest (17A ábra). Inaktiváció nem volt megfigyelhető (IF ~0) és ezzel összhangban az RCF értéke 1-hez közelített (17D, E ábrák csíkozott oszlopok). Ebből arra következtettünk, hogy a hárompulzusos protokollban −120 mV mellett elkerültük az egyensúlyi inaktiváció kialakulását (I₂=I₁), a pulzusok időtartama és az azok között eltelt idő elegendő ahhoz, hogy az I₁ és I₃ azonos legyen, amikor nincs inaktiváció (RCF~1, 17E). A második kontroll mérés során P₁ és P₂ között −120 mV-os tartófeszültségen a csatornák intracelluláris felszínét 200 µM Cd²⁺ tartalmú oldattal perfundáltuk. Mivel ekkor nem csökkent sem az I₂ (azaz IF~0, 17B, D ábrák), sem az I₃ (RCF~1, 17B, E ábrák), arra következtettünk, hogy egyrészt a Cd²⁺ expozícióinak nincs aspecifikus hatása, ha az aktivációs kapu nem nyílik ki (17B ábra), másrészt a Cd²⁺ perfúzió megfelelően kontrollált, ezáltal a protokoll során a Cd²⁺ applikáció kezdete és vége optimális ahhoz, hogy a nyitott csatornák elkerüljék a Cd²⁺ expozíciót, amikor zárnak (a P₁ végén), illetve amikor a zárt csatornák nyílnak (a P₂ alatt). A harmadik kontroll kísérlet azt mutatja, hogy Cd²⁺ hiányában a P₁ és P₂ között a −90 mV-os tartófeszültség által inaktiválódott összes csatorna (17D ábra, üres oszlopok, IF szignifikáns növekedése, p<0,05) visszatér az inaktivációból (17C ábra, valamint 17E ábra, üres oszlopok, RCF~1).
17. ábra A hárompulzusos protokoll, kontroll mérések
A kontroll mérések elvégzéséhez három különböző kísérleti helyzetet vizsgáltunk T449A/V474C Shaker-IR csatornákat kifejező HEK-293 sejtekben inside-out patch konfigurációban. Az A, B és C paneleken a reprezentatív áramgörbék a három +50 mV-ra történő depolarizációs pulzus (P₁, P₂ és P₃) által kiváltott áramokat mutatjuk −120 mV-os tartófeszültségről indulva. Az A panelen a P₁ és P₂ között −120 mV-on Cd²⁺ hiányában, a B panelen −120 mV-on 200 µM Cd²⁺ jelenléteiben, a C panelen −90 mV-on Cd²⁺ hiányában tartottuk az inside-out patch-eket. A protokollok többi része mindhárom esetben azonos volt. A szaggatott referencia vonalak az I₁ értékét jelzik. (D) Az egyes oszlopok az inaktiválódott csatornák arányát mutatják (IF= 1−I₂/I₁) a P₁ és P₂ között −120 mV-os tartófeszültségen (csíkozott oszlop), −120 mV-on 200 µM Cd²⁺ jelenléteben (tele oszlop) és −90 mV-on Cd²⁺ hiányában (üres oszlop). (E) Az oszlopok az inaktivációban visszatért áram arányát (RCF=(I₁−I₂)/(I₁−I₃)) mutatják a P₁ és P₂ között −120 mV-os tartófeszültségen (csíkozott oszlop), a P₁ és P₂ között −120 mV-os tartófeszültségen 200 µM Cd²⁺ jelenléteben (tele oszlop) és a P₁ és P₂ között −90 mV-os tartófeszültségen Cd²⁺ hiányában (üres oszlop). Az ábrán az adatok átlagát ± SEM (n=5) ábrázoltuk. A kontrollhoz (−120 mV Cd²⁺ nélkül) viszonyított eltéréseket szignifikánsnak tekintettük (*), amennyiben p<0,05.

Az RCF különböző negatív tartófeszültségtől való függésének vizsgálatához −90, −80 vagy −70 mV-os tartófeszültségeket alkalmaztunk a P₁ és P₂ között 20 µM vagy 200 µM intracelluláris Cd²⁺ jelenléteben. A 18A ábrán 20 µM Cd²⁺ és −90 mV tartófeszültség esetén elvégzett kísérlet során mért reprezentatív áramgörbék láthatók. Jóllehet makroszkópos áram nem mérhető −90 mV-on (15A, B ábrák), kismértékű egyensúlyi inaktiváció megjelenik (IF, 17D ábra, üres oszlop). −80 és −70 mV tesztpotenciálokon teljessejt-áram már mérhető (15A betét ábra) és ezzel párhuzamosan az inaktiváció egyre prominensebbé válik (15D ábra). Ennek megfelelően, ahogy azt a 18B ábra mutatja, az IF értéke szignifikáns mértékben nőtt −90 mV-os tartófeszültségen 200 µM Cd²⁺ alkalmazása esetén, valamint −80 és −70 mV-os tartófeszültségek mellett mind 20, mind 200 Cd²⁺ jelenléteben az ugyanazon
membránpotenciálokon mért Cd$^{2+}$ mentes körülményekhez képest. A 18C ábrán bemutatott adatok azt mutatják, hogy az RCF adott tartófeszültség mellett szignifikáns mértékben csökkent, ha Cd$^{2+}$ volt jelen a P$_1$ és P$_2$ közötti tartófeszültség alatt összevetve a Cd$^{2+}$ mentes mérések során kapott adatokkal (18C ábra). Ez azt mutatja, hogy az aktivációs kapu nyitása a −90 és −70 mV közötti potenciáltartományban megtörténik. Ennek megfelelően a Cd$^{2+}$ −90 mV-on módosítja a 474-es pozícióban levő ciszteint makroszkóposan megfigyelhető áram hiányában is (15A betét ábra). Az RCF szignifikánsan csökkent 20 µM és 200 µM Cd$^{2+}$ jelenlétében (18C ábra, csíkozott és tele oszlopok) minden tartófeszültségen. Cd$^{2+}$ hiányában az RCF értékei gyakorlatilag megegyeznek minden tartófeszültség esetén (18C ábra, üres oszlopok).

18. ábra Az inaktiválódott áram arányának (IF) és a visszatért áram arányának (RCF) meghatározása intracellulárisan alkalmazott Cd$^{2+}$ segítségével
(A) A T449A/V474C csatornákat kifejező inside-out patch-et 20 µM Cd$^{2+}$ jelenlétében tartottuk a P$_1$ és P$_2$ között −90 mV-os tartófeszültség mellett (panel felső része, a kísérleti stratégia bemutatását lásd a 16. ábrán). A P$_3$ előtt a tartófeszültség −120 mV volt. Az “x” szimbólum a 30 ms hosszúságú −120 mV-os pulzust jelöli. Az ábrán a
szaggatott referencia vonalak az \(I_1\), \(I_2\) és \(I_3\) értékeit jelölik. (B) Minden pulzus esetén a csúcscsáramok értékeiből kiszámoltuk az inaktiválódott áram arányát (IF = 1 - (\(I_2/I_1\))) a jelölt tartófeszültségek esetén először Cd\(^{2+}\) hiányában (üres oszlopok), majd 20 \(\mu M\) (csíkozott oszlopok), illetve 200 \(\mu M\) Cd\(^{2+}\) (tele oszlopok) jelenlétiében. (C) Meghatározuk a visszatért áram arányát (RCF = (\(I_3-I_2\))/(\(I_1-I_2\))) a \(P_1\) és \(P_2\) között alkalmazott \(-90\), \(-80\), vagy \(-70\) mV-os tartófeszültségek esetén Cd\(^{2+}\) expozíció hiányában (üres oszlopok), illetve 20 \(\mu M\) (csíkozott oszlopok) vagy 200 \(\mu M\) Cd\(^{2+}\) (tele oszlopok) jelenlétiében. Az ábrán az adatok átlagát ± SEM (n=5) ábrázoltuk. A kontrollhoz (az adott tartófeszültség mellett a 0 \(\mu M\) Cd\(^{2+}\)-ot tartalmazó adatok) viszonyított eltéréseket szignifikánsnak tekintettük (*), amennyiben \(p<0,05\).

Ezt követően azt mutattuk meg, hogy hasonló áramvesztesést tudunk előrni akkor is, ha rövid ideig sokszor alkalmazzuk a Cd\(^{2+}\)-ot. Ehhez több ciklus keresztüli, \(-90\) vagy \(-80\) mV-os tartófeszültségek között 200-ig 20 \(\mu M\) Cd\(^{2+}\)-ot tartalmazó oldatot áramoltattunk az inside-out patch-ekre (19. ábra). A kísérletes protokoll ezekben az estekben (19A, B ábrák) egy 5 ms hosszúságú +50 mV-os depolarizációval kezdődött, ami alapján egy \(I_1\) amplitúdóval rendelkező csúcscsáramot határoztunk meg, majd ezt követően \(-120\) mV-os tartófeszültséget alkalmaztunk 60 s-on keresztüli. Ezután következett a ciklus egy egysége, amely egyrészt egy 200 ms-os \(-90\) mV-os (vagy \(-80\) mV-os) pulzusból, illetve egy 800 ms-os \(-120\) mV-os pulzusból állt. Ezt ismételtük meg \(n=200\) vagy 50, vagy 100 alkalommal. A ciklosok után egy 60 s-ig tartó \(-120\) mV-os tartófeszültség következett Cd\(^{2+}\) hiányában, végül a szekvenciát egy 5 ms-os +50 mV-ra történő depolarizáció zárta le, ami alapján meghatározuk az \(I_2\)-t. A méréseket Cd\(^{2+}\) hiányában (19A ábra) vagy 20 \(\mu M\) intracelluláris Cd\(^{2+}\) jelenlétiében (19B ábra) végeztük az ábrán jelölt ciklusszám mellett. A Cd\(^{2+}\) által módosított csatornák kumulált hányadát az IF = 1 - \(I_2/I_1\) szerint határoztuk meg, a korábban leírtakhoz hasonlóan. Amint azt a 19C és 19D ábrák mutatják, a 474C kumulált Cd\(^{2+}\) expozíciója által történő módosítása idő- és feszültségfüggő. \(-80\) mV alkalmazása mellett a modifikáció jelentősebb mértékű és az IF értéke jobban növekszik, mint \(-90\) mV esetén. A pulzusszekvencia során a kumulált Cd\(^{2+}\) expozíció 100-as ciklusszám mellett hasonló, mint 20 \(\mu M\) Cd\(^{2+}\) egyszeri 20 s-os alkalmazása esetén.
19. ábra A T449A/V474C csatornák Cd$^{2+}$-általi módosítása függ a membránpotenciáil nagyságától és az alkalmazás időtartamától

(A) A kumulált Cd$^{2+}$-expozíció hatásának mérésére a pulzusszekvencia során kontrroll esetben a ciklus egy egysége egy 200 ms hosszúságú −90 mV-os és egy 800 ms hosszúságú −120 mV-os pulzust tartalmazott, amelyet n=200 alkalommal ismételtünk. A ciklusok elején és végén 5 ms hosszúságú +50 mV-os pulzust alkalmaztunk, így a vizsgált inside-out patch ciklus előtti (I$_1$) és ciklus utáni (I$_2$) csúcsáramait határoztuk meg. Az első +50 mV-os pulzus után, valamint a második +50 mV-os pulzus előtt 60 s-on keresztül −120 mV-os tartófeszültséget alkalmaztunk. A szaggatott referenciaáronl az I$_1$ értékét jelölő. (B) Kumulált Cd$^{2+}$-expozíció esetén a ciklus felépítése ugyanannyi volt, mint a kontroll esetekben, azzal a különbséggel, hogy 20 μM Cd$^{2+}$ volt jelen az oszloppal jelzett időtartamnak megfelelően. A ciklus egy egységét szintén n=200-szor ismételtük. Az ábrán a szaggatott referenciaáronalak az I$_1$ és I$_2$ értékeit jelölők. (C) −90 mV mellett (amelyet a ciklus egy egységenek 200 ms-os szegmenet alatt alkalmaztunk) meghatároztuk az 1−I$_1$/I$_2$ értékét különböző ciklusszám mellett Cd$^{2+}$ hiányában (üres oszlop, ciklussszám n=50), illetve 20 μM Cd$^{2+}$ jelenléteben n=50 (bal oldali csíkozott oszlop), n=100 (jobb oldali csíkozott oszlop), n=200 (tele oszlop) ciklusszám mellett. (D) A C-ben ismertett méréseket elvégeztük úgy, hogy a ciklus 200 ms-os szegmensében a tartófeszültség −80 mV volt. Az ábrán n=3-7 független mérés átlagait ± SEM tüntettük fel. A kontrollhoz viszonyított eltéréseket szignifikánsnak tekintettük (*), amennyiben p<0,05. A (***) jelölés azokat a mintákat jelzi, amelyek a kontroll mellett minden egyéb mintától szignifikáns mértékben különbözték (p<0,05).

Eredményeink összességében azt mutatjuk, hogy azokon a tartófeszültségeken, ahol jelentős mértékű egyensúlyi inaktiváció megy végre (−90, −80, −70 mV), az aktivációs kapu megfigyelhető áram hiányában is kinyil. Ez a megfigyelés arra utal, hogy negatív membránpotenciálhoz mellett a csatornák a C→O→OI útvonalon kerülnek CI állapotba, nem
pedig a sokak által javasolt közvetlen C→Cl átmeneten keresztül 200-203 (további magyarázat a Diszkusszó 5.10-es fejezetében).

4.8 A nyitott állapotban rögzített aktivációs kapu megakadályozza a Shaker-IR T449A/V476C csatornák C-típusú inaktivációból történő visszatérését

A fenti kísérletek eredményei arra utalnak, hogy negatív tartófeszültségek esetén az inaktiváció bekövetkezéséhez fontos az aktivációs kapu nyitása. A csatornák inaktivációból való visszatérésének képessége szintén függhet az aktivációs kapu konformációs állapotától, mozgásától. Az aktivációs kapu nyitott állapotban történő rögzítése ezáltal alkalmas módszer az inaktivációból való visszatérést meghatározó tényezők vizsgálatára.

Korábbi megfigyelések alapján a Shaker-IR 476C mutáns csatorna aktivációs kapuja nyitott állapotban rögzíthető az intracelluláris oldal felől alkalmazott Cd\(^{2+}\) segítségével 23. Ennek hátterében az egyik alegység 476C és egy szomszédos alegység natív H486 aminosavai között kialakuló Cd\(^{2+}\)-híd áll, amely gátolja a csatorna aktivációs kapujának zárását még negatív potenciálokkal esetén is. A HEK-293 sejtekben kifejezett T449A/V476C Shaker-IR csatorna inside-out patch-clamp konfigurációban végzett biofizikai karakterizálását ebben az esetben is elvégeztük a kísérletek során alkalmazott pulzusprotokollok tervezése előtt. A karakterizáció során a 474C mutánsval megegyező protokollokat, illetve azonos kiértékelési módszert használtunk (20. ábra).
20. ábra T449A/V476C Shaker-IR csatorna biofizikai karakterizációja

(A) A T449A/V476C mutáns csatornák egyensúlyi aktivációjának karakterizálásához az inside-out konfigurációjú patch-eket –120 mV-on tartottuk, majd –100 és +70 mV közötti tesztpotenciáloakra depolarizáltuk 10 mV-os lépőközökre közlőként. A depolarizáló pulzusok időtartama 100 ms volt (mint a korábban leírt protokoll esetén). Az A panelen egy, a mérések során nyert reprezentatív áramgörbe látható, ahol Ipeak az adott V tesztpotenciál esetén nyert csúcsáram nagysága, E_{ekv} pedig a K⁺ egyensúlyi potenciálja. A számított G értékeket a maximális konduktancia értékére normáltuk (G_{norm}).

(B) A G-V adatpontokat a G = I_{peak}/(V – E_{ekv}) képlet alapján határoztuk meg, ahol I_{peak} az adott V tesztpotenciál esetén nyert csúcsáram nagysága, E_{ekv} pedig a K⁺ egyensúlyi potenciálja. A számított G értékeket a maximális konduktancia értékére normáltuk (G_{norm}) közötti függvényében ábrázoltuk. Az adatok kiértékelése során a Boltzmann-függvényt n=5 patch G_{norm}-V adatpárjaira illesztettük (3.6.3.1 egyenlet). A sejtenként illesztett paraméterek átlagolásából V_{1/2} = –38,8 ± 2,1 mV, valamint k = 15,3 ± 1,8 mV értékeket kaptunk (n=5, átlag ± SEM). Az ábrán a panel alapján illesztett Boltzmann-függvényt ábrázoltuk.

(C) Az aktivációs időállandó (τ_{act}) meghatározásához –120 mV-os tartófeszültségről indulva 5 ms hosszúságú +50 mV-os depolarizáló pulzusokat alkalmaztunk. Az áramgörbéket a Hodgkin-Huxley n°-modell alapján illesztettük (3.6.3.3 egyenlet), az aktivációs kinetika jellemzésére a τ_{act} értékeket használtuk. A +50 mV-on kapott áram inaktiválódást meghatározásához a 2000 ms hosszúságú depolarizáló pulzus által kiváltott áram csökkenését egy exponenciális tagot tartalmazó függvényt illesztettünk (3.6.3.2 egyenlet). Az egyensúlyi inaktiváció feszültségfüggésének leírására az eredeti –120 mV-os tartófeszültségről indulva a pulzus előtti potenciált –110 és –50 mV közötti értékekre állítottuk be (ΔV = 5 mV) 3 s on keresztül, majd egy 5 ms hosszúságú +50 mV-os teszt pulzust alkalmaztunk a K⁺ áramok kiváltására (lásd protokoll a panel felső részén). A nem inaktiválódó csatornák hányadát minden feszültség esetén az I/I_{−120} képletet számítottuk, amelyben I a pulzus előtti potenciálról 5 mV-os esetén az azonos depolarizáló áramot a csúcstrom nagysága, míg I_{−120} a –120 mV-os tartófeszültségről a Boltzmann-függvényt alakította. Az egyensúlyi inaktiváció feszültségfüggését a Boltzmann-függvényt alakította.

(D) Az inaktivációból való visszatérés kinetikájának méréséhez 200 ms hosszúságú, 50 mV-os depolarizáló pulzusokat alkalmaztunk. A két impulzus közötti időt (ipi) 0,5 s és 60 s között változtattuk, a második pulzus a 60 s között visszatért az egyensúlyi állapotba (lásd protokoll a panel felső részén). A két impulzus közötti időt (ipi) 0,5 s és 60 s között változtattuk, a második pulzus a 60 s között visszatért az egyensúlyi állapotba.
amplitudója (I_2) jelentősen függött az ipi-től. Az $\text{ipi}=0,5$ s (piros), illetve $\text{ipi}=60$ s (zöld) mellet nyert áramgörbéket emeltük ki az ábrán. (F) A visszatétesi hányadot az (I_2-I_{SS1})/(I_1-I_{SS1}) képlet alapján számítottuk, ahol I_2 és I_1 rendre a második és első pulzus során kiváltott csűcsáramok nagysága, míg I_{SS1} az első depolarizáció végén mért egyensúlyi áram nagysága. A számított visszatére arrived hámhányad értékeit $n=5$ sejt adataiból átlagoltuk (\pm SEM) minden ipi esetén és az ipi függvényében ábrázoltuk. Az inaktivációiból való visszatétes időállandójának (τ_{rec}) meghatározásához az adatpontokra egykomponensű, elsőfokú, teltésbe futó exponenciálisan emelkedő függvényt illesztettünk (3.6.3.5. egyenlet). A $\tau_{rec} = 4,6 \pm 0,6$ s-nak adódott ($n=3$).

A biofizikai karakterizáció során kapott eredmények alapján megterveztük azt a kísérleti protokollt, amivel később az aktivációs kapu nyitott állapotban történő rögzítésének hatását vizsgáltuk a csatornák inaktivációból való visszatétesére. A protokollt először kontroll körülmények között teszteltük. T449A/V476C csatornákban az inaktivációból való visszatétes mértékét -120 mV tartófeszültségről induló, 2 s hosszúságú, $+50$ mV-os, egymás után ismétlődő depolarizáló impulzusok által kiváltott áramok amplitudójának mérésével határoztuk meg. A pulzusok közötti időintervallum (ipi) 60 s volt (21A ábra). Az áramokat normáltuk az első pulzus által kiváltott csűcsáramra és az első depolarizáló pulzus kezdetétől számított idő függvényében ábrázoltuk (21B ábra). Cd$^{2+}$ hiányában az ismételt depolarizációk által kiváltott áramok amplitudójához hasonló volt T449A/V476C csatornák esetén, így az általunk használt ipi hossza kontroll körülmények között elégéssé az áram inaktivációból történő teljes visszatéteséhez.

A 21C és 21D ábrák bemutatott második kontroll kísérlet alapján 476C hiányában az intracellulárisan alkalmazott Cd$^{2+}$ nem okoz csökkenést a csűcsáram nagyságában, nem okoz pórusblokkot. A mérések során a pulzusprotokoll ugyanolyan volt, mint a 21A ábrán ismertetett esetben, kivéve, hogy a patch citoszolikus felszínére (inside-out konfiguráció) 20 μM Cd$^{2+}$-ot tartalmazó oldatot áramoltattunk 1 s-on keresztül. A 21C ábrán jól látható, hogy az áram inaktivációja teljes a Cd$^{2+}$ perfúzió kezdetén, a depolarizált membrán miatt viszont az aktivációs kapu nyitva van, ezért a Cd$^{2+}$ alkalmazása az OI kapuzási állapotban lévő csatornákon történik (2. ábra). A T449A/V476C csatornákban azonos csűcsáramokat tapasztaltunk még hosszú (akár 8 s-ig terjedő) kumulált Cd$^{2+}$ expozíció mellett is (21D ábra), ami arra utal, hogy a Cd$^{2+}$ nem befolyásolja az áramok nagyságát 476C hiányában.
21. ábra Kontroll mérések az OI→O átmenet vizsgálatához
(A) Az ábrán bemutatott, egymásra vetített áramgörbék méréséhez egy T449A/V476C Shaker-IR csatornákat kifejező HEK-293 sejtből húzott inside-out patch-et −120 mV-os tartófeszültségről ismétlődően depolarizáltunk +50 mV-ra 2 s-on keresztül a panel felső részén bemutatott pulzusprotokoll szerint. A pulzusok közti idő (ipi) 60 s volt. (B) Minden pulzus esetén meghatároztuk a csúcsáram nagyságát és normáltuk az első pulzus csúcsáramára, majd az így kapott értékeket ábrázoltuk az első depolarizáló pulzus kezdetétől eltelt idő függvényében. (C) T449A/V476 (cisztein mutáció nélküli) csatorna esetén szintén az A panelen bemutatott protokollt használtuk, annyi eltéréssel, hogy intracellulárisan 20 μM Cd2+-ot tartalmazó oldatot alkalmaztunk inside-out patch konfigurációban. A Cd2+ applikáció kezdetét (1 s-mal a +50 mV-os depolarizáció után a csatornák teljesen inaktivált állapotában) és időtartamát (1 s) az ábrán a vízszintes oszlop jelzi. (D) Minden pulzus esetén meghatároztuk a csúcsáram nagyságát és normáltuk az első pulzus csúcsáramára és az így kapott értékeket ábrázoltuk a kumulált Cd2+ expozíciós idő függvényében. Az ábrán feltüntetett hibasávok a SEM értékét jelzik, n=5.

A C-típusú inaktivációból való visszatérésnek az aktivációs kapu állapotától való függésének meghatározására a T449A/V476C Shaker-IR csatornák aktivációs kapuját nyitott állapotban rögzítettük 20 μM Cd2+-ot tartalmazó oldat intracelluláris alkalmazása segítségével a +50 mV-os depolarizáció során, az áram teljes inaktivációját követően (azaz az OI állapotban) (22A, B ábrák). Először megismételtük a 21C ábrán bemutatott kontroll kísérletet, ezúttal a T449A/V476C Shaker-IR csatornán. A Cd2+ expozíció a 2 s hosszúságú depolarizáló pulzus utolsó 1000 ms-a alatt történt (22A ábra). A T449A/V476C konstruk t eljes mértékben
inaktiválódik a Cd\(^{2+}\) kezelés kezdetére (20D és 22A ábrák, \(\tau_i = 136\) ms, a Cd\(^{2+}\) alkalmazása az inaktivációs időállandó több, mint 7-szeresének megfelelő idő elteltét követően történik). A fennmaradó időtartam alatt a patch-et standard intracelluláris oldattal perfundáltuk. A kezelés a csúcšáram teljes eltűnését eredményezte már egy impulzust követően, azaz a Cd\(^{2+}\) által nyitott állapotban rögzített aktivációs kapuval rendelkező csatornák nem képesek az inaktivációból való visszatérésre (n=5). Ezek alapján azt gondoljuk, hogy a csatornák a Cd\(^{2+}\) kezelés hatására az OI állapotban rögzültek, így vezetőképtelenek maradtak még a 60 s időtartamú –120 mV-os tartófeszültséget követően is, ami a kontroll körülmények között elegendők bizonyult az inaktivációból történő visszatéréshez. Az áram csökkenése irreverzibilis volt. Az áramcsökkenés kinetikáját az OI állapotú csatornák rövidebb, egymás után ismétlődő 200 ms-os Cd\(^{2+}\) exposíciójával határoztuk meg (22B ábra). Ez a kezelés a kumulált expozíció során a csúcšáramok kvantált és szignifikáns mértékű csökkenését eredményezte (22C ábra). Az áramcsökkenés mértéke a kumulált modifikációs idő függvényében exponenciális csökkenést mutatott, amely a 476C pozícióban elhelyezkedő cisztein aminosav és a Cd\(^{2+}\) közötti specifikus kölcsönhatás jelenléte utal.

22. ábra Az inaktivációból való visszatérés mértékének meghatározása Cd\(^{2+}\) révén nyitott állapotban rögzített aktivációs kapuval rendelkező T449A/V476C Shaker-IR csatornákban
A-B: Az ábrán bemutatott, egymásra vetített áramgörbék méréséhez egy T449A/V476C Shaker-IR csatornát kifejező HEK-293 sejtőből húzott inside-out patch-et standard intracelluláris oldattal perfundáltuk +50 mV-ra 2 s-on keresztül a −120 mV-os tartófeszültségről indulva a panel felső részén bemutatott pulzusprotokoll szerint. Az ipi 60 s volt. A patch intracelluláris irányból történő, 20 μM-os Cd\(^{2+}\)-os exposíciójának kezdétét és időtartamát az ábrán az üres vízszintes oszlopok jelzik. (A) Az 1000 ms hosszúságú 20 μM Cd\(^{2+}\)-os perfúzió 1000 ms-mal a depolarizáló pulzusok kezdete után indul. A fennmaradó időben, valamint a pulzusok közötti tartófeszültség tartama alatt Cd\(^{2+}\) mentes intracelluláris oldattal perfundáltuk a patch-et. Az A panelen a számok az első és a második áramgörbét jelzik. (B) A 200 ms hosszúságú 20 μM Cd\(^{2+}\)-os perfúzió per megindulás 1800 ms-mal a depolarizáló pulzusok kezdete után indul. A fennmaradó időben, valamint a pulzusok közötti tartófeszültség tartama alatt Cd\(^{2+}\) mentes intracelluláris oldattal perfundáltuk a patch-et. A B panelen a számok az első és az utolsó áramgörbét jelzik. (C) A mérések kiértékelése során meghatározottuk a csúcšáramok nagyságát és normáltuk az első áramulás alatt nyert csúcšáramra (amely még Cd\(^{2+}\) mentes környezetben lett meghatározva), majd az így kapott értékeket a 20 μM Cd\(^{2+}\) kumulált exposíció idéjének függvényében ábrázoltuk. A folytonos vonal az átfogott adatpontokra legjobban illeszkedő exponenciális függvényt mutatja. Az ábrák az n=5 kísérlet során nyert adatok átlagát ± SEM mutatják.
Annak igazolására, hogy az általunk használt inaktiválódó V449A konstruktban a funkcionálisan nem vezető OI állapotot a 476C és H486 aminosavak között kialakuló Cd\(^{2+}\)-hid hozza létre, megvizsgáltuk, hogy a Cd\(^{2+}\) által okozott áramcsökkenést kivédi-e a H486 alacsony pH-n végbemenő protonációja. A deprotonált állapotú H486 nélkülözhetetlen a 476C aminosavval Cd\(^{2+}\) segítségével alkotott fémhid kialakulásához\(^{23,187}\). Ennek vizsgálatához +50 mV-os depolarizáló pulzusokat alkalmaztuk 15 s-onként −120 mV-os tartófeszültségről indulva. A Cd\(^{2+}\) applikációja minden pulzus előtt 200 ms-mal kezdődött és a depolarizáció befeléjezésével egyidőben végződött. A Cd\(^{2+}\)-ot tartalmazó intracelluláris oldat pH-ját 7,36-ra (23A ábra) vagy 5,3-ra (23B ábra) állítottuk. Az aktivációs kapu nyitott állapotban történő rögzítését 7,36-os pH-n (23A ábra) a farokáramok 23B panelhez képest megnövekedett relatív amplitúdója jelzi, ami ezt követően az inaktivációból fakadóan lassan csökkeni kezd. A mérések során a +50 mV-os pulzusok által kiváltott csúcsáramok pulzusról pulzusra bekövetkező folyamatos csökkenése azt mutatja, hogy a nyitott állapotban rögzített és inaktivált csatornák nem térnek vissza az inaktivációból (23A ábra). A nyitott állapotban rögzített aktivációs kapuval rendelkező Shaker csatornák inaktivációját, valamint az általunk megfigyelhető hasonló farokárammal rendelkező áramfenotípus a korábban leírtak V476C mutációit hordozó Shaker esetén\(^{23,185,187}\). Ezzel ellentétben 5,3-as pH-n, ahol a fémhid kialakulása gátolt, a +50 mV-os pulzusok által kiváltott csúcsáramok amplitúdója nem változik az ismételt depolarizációk alatt (23B ábra). A normált csúcsáramok nagysága csökken a Cd\(^{2+}\) kumulált applikációja során 7,36-os pH-n (fekete körök), ezzel szemben 5,3-as pH jelenlétében (fekete háromszögek) a csúcsáramok nagysága állandó marad (23C ábra) (n=4-5).

23. ábra Az alacsony pH megakadályozza a fémhid képződését a Cd\(^{2+}\) alkalmazása során
A-B: T449A/V476C csatornákat kifejező inside-out patch-eket −120 mV-os tartófeszültséggről ismétlődően depolarizáltunk +50 mV-ra 15 s-onként 20 µM Cd\(^{2+}\) jelenléteiben 7,36-os (A) és 5,3-as pH-n (B). A Cd\(^{2+}\)-ot 200 ms-on keresztül intracellulárisan alkalmaztuk a csatornák nyitása előtt és a +50 mV-os depolarizáció alatt. A pulzusprotokollokat a megféléző pulzusok közötti intervallumok mellett három-négy alkalommal futattuk le Cd\(^{2+}\) hiányában a csúcsáramok stabilitásának igazolása céljából (be nem mutatott adatok). (C) Minden pulzus esetén a
csúcsáramok nagyságát normáltuk az első pulzus során kapott csúcsáramra és a kumulált modifikációs idő függvényében ábrázoltuk. A különböző szimbólumok által jelzett eredményeket 7,36-os (fekete körök) és 5,3-as pH-n (fekete háromszögek) kaptuk. A feltüntetett hibák a n=4-5 kísérlet adataiból számított SEM értékeit mutatják.
5. Diszkusszió

5.1 A szterolok nem a VSD-n keresztül fejtik ki hatásukat Kv ioncsatornákban

A dolgozatban bemutatott kísérleteink első csoportja során azt kívántuk meghatározni, hogy a koleszterin a Kv csatornák melyik funkcionális doménjén fejti ki a csatornák kapuzására gyakorolt már korábban leírt hatásait. E célból két különböző VSD-PD csatolási mechanizmussal rendelkező Kv csatornát expresszáltattunk afrikai karmosbéka oociták membránjában, amelyek koleszterin, illetve 7DHC tartalmát a szterolok MβCD-vel alkotott komplexeivel növeltük. A két funkcionális domén feszültségfüggő egyensúlyi és kinetikai paramétereit egymástól független módon követettük nyomon voltage-clamp fluorimetria segítségével egyszerre vizsgálva az ionáramokat és fluoreszcens jeleket. Hasonló hatásokat figyeltünk meg Kv1.3 és Kv10.1 csatornákon a szterol kezelések eredményeként, a két esetben tapaszolt kis különbségeket a csatornák különböző kapuzási mechanizmusai okozhatták.

Kísérleteink arra utalnak, hogy a szterolok moduláló hatásának elsődleges közvetlen célpontja a pórusdomén vagy a domének közötti csatolási apparátus, és nem a VSD átmeneteinek szterolok által indukált változásai tevődnek át a pórusra. Ezt több megfigyelésünk is alátámasztotta:

i) A szterol töltések hatására a pórus nyitásának feszültségfüggése eltolódott a VSD aktivációjának változása nélkül, amely a pórusnyitás energetikájában bekövetkező változásra utal (7. és 10. ábrák). Ez a megfigyelés magában fogalja a két funkcionális domén közötti csatolás esetleges megváltozását is, hiszen a Gnorm-V és Fnorm-V görbék nem egymással párhuzamosan változtak. A Kv csatornák kristályszerkezetei és MD szimulációs vizsgálatai is alátámasztják megfigyeléseinket, amelyeken jól látszik, hogy a VSD-k a membránba beágyazott helyezkednek el, míg az S4 hélixek a lipidektől elzárva találhatók. Bár Kv1.3 esetén az Fnorm-V görbék középpontja nem tolódott el, a görbék meredeksége kis mértékben csökkent koleszterin kezelések hatására, ugyanakkor 7DHC esetén a hatás nem volt szignifikáns (7B ábra). Ez azt mutatta, hogy a VSD nyugalmi és aktivált állapotainak energiája közötti különbség nem változott, viszont a látszólagos kapuzási töltés (gating charge) lecsökkent koleszterin töltés hatására. Ennek hátterében valószínűleg a membrán elektromos térerősségeloszlásának változását és észlelhető mértékben módosíthatja a kapuzási
töltést (gating charge-ot)204. Hasonló meredeksváltozást K\textsubscript{V}10.1 esetén nem figyeltünk meg (10B ábra), a kontroll és kezelt sejtek F\textsubscript{norm}-V görbéi ennél a csatornánál teljes mértékben átfedtek. A két csatorna közötti különbséget magyarázhatja az a K\textsubscript{V}10.1 krioelektronmikroszkópos szerkezetének elemzésén alapuló megfigyelés, mely szerint K\textsubscript{V}10.1-ben az S4 egy 3\textsubscript{10} hélix csavarulattal a membrán citoplazma felé néző oldal felé van eltolva a K\textsubscript{V}1.2-2.1 kiméra csatorna S4 hélixéhez képest17. Az utóbbi csatorna szerkezete a K\textsubscript{V}1.3-hoz hasonlít. Ez azt jelenti, hogy a két csatorna VSD-je valószínűleg a membrán különböző szegmensein halad keresztül az aktiváció során és ezáltal a mozgás alatt eltérő térerősségprofil hat rájuk.

Mind a 309C, mind pedig WT K\textsubscript{V}1.3 csatornák esetén a szterolok az egyensúlyi inaktivációt leíró görbét a G\textsubscript{norm}-V görbénél megfigyeltekkel azonos irányban tolták el, bár ezek az eltolódások ellentétes polaritásúak voltak a két konstruktban (6B, C és 9C, D ábrák valamint 7B, C, és 10B, C ábrák). K\textsubscript{V}1.3-ban megfigyelhető a C-típusú inaktiváció jelensége, amely a szelektivitási szűrő átrendeződésével jár és megakadályozza a K+ ionok átjutását a póruson.

Ahogy azt a dolgozat második részében bemutattuk, illetve korábban mások is utaltak rá60, a két kapu közti szoros csatolás miatt a C-típusú inaktiváció csak a pórus nyitása után megy végbe még olyan tartófeszültségeken is, ahol makroszkópos áramok nem figyelhetők meg és az egyedi csatornák csak nagyon alacsony valószínűséggel nyitnak. Így a nyitási átmenet feszültségfüggőséget eltoló szterol dúsítástól várható, hogy az SSI görbét is ezzel párhuzamosan tolja el (6. és 8. ábrák), ahogy azt kísérleteink során mi is megfigyeltük.

ii) Mindkét csatorna esetén a pórus nyitásának kinetikája lelassult, míg a VSD aktivációs kinetikája nem változott jelentősen a szterolokkal történő kezelés hatására (11. ábra). K\textsubscript{V}1.3-nál az áram aktivációjának időállandói szignifikánsan megmőttek az általunk vizsgált teljes feszültségtartományban (11A ábra), míg K\textsubscript{V}10.1-ben a növekedés elsősorban +10 mV felett volt nyilvánvaló (11C ábra). Utóbbi csatornánál csak a VSD aktiváció gyengén feszültségfüggő, gyors komponense, amely depolarizált membránpotenciálok esetén a pórus nyitásához kapcsolódik, lassult a szterol töltések hatására (11E ábra), a hiperpolarizált membránpotenciálok esetén megfigyelhető fő feszültségfüggő átmenetek viszont függetlennek bizonyultak a szterol töltésektől. A K\textsubscript{V}10.1 VSD-jének kétfázisú aktivációját már korábban leírták194, amely során elkülöníthetők a hiperpolarizált potenciálok esetén megfigyelhető lassú átmenetek és a nyitott állapot kialakulását közvetlenül megelőző gyors átalakulások. Eredményeink alapján a szterol töltések utóbbiakat modulálják az előbbiek módosítása nélkül (11D, E ábrák). A VSD-mozgás gyors komponensének lassulása hátterében a pórus VSD-re gyakorolt retrograd irányú hatásai állhatnak. K\textsubscript{V}10.1 esetén a csatolás eltér a K\textsubscript{V}1.3-ban
leírtakhoz képest, ugyanis előbbiben az S4-S5 linker nem szükséges a VSD és PD közötti kommunikációhoz, mivel annak átvágása vagy teljes deléciója sem akadályozza meg a pórus feszültségfüggő nyitását. A \(\text{K}_\text{V}10.1 \)-ről azt feltételezik, hogy a VSD-PD csatolás közvetlen hélix-hélix kölcsönhatások segítségével megy végbe, így lehetséges, hogy a PD késleltetett konformációváltozása retrograd irányban hatva befolyásolja a VSD végső konformációjának átrendeződését.

iii) \(\text{K}_\text{V}10.1 \) csatornákban a szterolok befolyásolták a Cole-Moore shiftet, így amikor a csatornákat a mélyebb zárt állapotok valamelyikéből nyitottuk ki (erősen hiperpolarizált membránpotenciállok esetén), az áram aktivációs kinetikáját nem befolyásolták a szterolok, amikor azonban a nyitás közvetlenül a nyitás előtti zárt állapotból történt (depolarizáltabb membránpotenciállok esetén), az áram aktivációs kinetikája szignifikánsan lelassult (12. ábra). Ez összeegyeztethető a \(\text{K}_\text{V}10.1 \) krio-EM szerkezetéből levezetett feltételezett kapuzási mechanizmusával. A modell szerint a VSD hiperpolarizált vagy nyugalmi állapotában az S4 hélix citoszolhoz közeli vége meglöki a C-linkert az S6 elhajlását okozva, amely a pórus rotációs konstrukcióját és ezáltal annak zárását eredményezi (4. ábra a Célkitűzésekben). Depolarizált vagy aktivált állapotban az S4 az extracelluláris tér irányába mozog, ami megszünteti az S6 elhajlását, lehetővé téve a csatorna nyitását. Feltételezések szerint nyugalmi állapotban a PAS domén (4. ábra barna gömb) N-terminális vége kölcsönhat az S4 hélixszel, stabilizálva azt, és ez okozza a hiperpolarizált membránpotenciállok esetén megfigyelhető Cole-Moore hatást. Mivel a krio-EM szerkezet alapján a PAS domén S4 hélixszel való kölcsönhatása valószínűleg a citoplazmában és nem a membránban történik, így lehetséges, hogy a VSD mély zárt állapotok közötti átmenetei során fellépő konformációs változásait nem befolyásolja a membrán összetétele. Ezzel szemben kevésbé hiperpolarizált membrán mellett az S4 hélix fentebb említett kölcsönhatása az S6 hélixszel és a következményesen kialakuló, az S6 hélixnek a pórus konstrukcióját okozó elhajlása, valamint annak a csatorna nyitását eredményező kiegyenesedése várhatóan a membránban zajlik, ezáltal befolyásolja azokat a körülvevő membránlipid-környezet.

iii) A szterolok lecsökkentették az áramok amplitúdóit mind vad típusú, mind a cisztein mutációt hordozó csatornákban annak ellenére, hogy nem okoztak eltolódást az \(\text{F}_\text{norm-V} \) görbékben, illetve ellentétes előjelű eltolódást eredményeztek a vad típusú és a cisztein mutáns csatornák \(\text{G}_\text{norm-V} \) görbéiben (9. és 13. ábrák). Ezek arra utalnak, hogy az áramcsökkenés a pórusra és nem a feszültséget érzékelő apparátusra gyakorolt hatásból ered. Nem-egyensúlyi zajanalízis során kapott eredményeink alapján a szterolok által okozott áramredukció oka elsősorban az egyedi csatorna konduktancia csökkénése és nem a nyitási valószínűség...
változása. Az egyedi vezetőképesség változása is arra utal, hogy a szterolok inkább közvetlenül a pórusra, mint a VSD-PD közötti csatolási apparátusra hatnak.

5.2 A membránstressz szerepe a szterol hatások mediálásában

Jól dokumentált megfigyelés, hogy a membrán feszülése, amit például a patch pipetta is okoz, alapvetően befolyásolja az ioncsatornák, így a Kv csatornák kapuzását. Egyszerű mechanisztikus modell alapján a membrán feszülése kedvező a pórus terület / térfoğat expanziójával járó nyitása során fellépő konformációváltozások számára, így az a csatorna aktivációs kinevitájának gyorsulását, feszültségfüggésének hiperpolarizáció irányába történő tololódását és az áramamplitudó növekedését eredményezi. Régóta ismert, hogy a koleszterin megnöveli a laterális stressz nagyságát a lipid membránokban, ami nagyban hozzájárulhat a membránba ágyazott fehérjékre gyakorolt hatásaihoz. A feszüléssel ellentétben a megnövekedett laterális stressz várhatóan inkább a csatorna zárt állapota számára kedvező, így lassíthatja a nyitási kinevitákat és csökkentheti a konduktanciát.

Ezekkel a megfigyelésekkkel összhangban a legtöbb irodalmi adat szerint a koleszterin mennyiségének növekedése általában lecsökkenti a csatornák konstrukt esetén (WT és csisztein mutánsok) konzisztens módon az áram aktivációs kinevitájának lassulását okozta, míg a szterolokkal történő töltések eredményeképp létrejött G_{norm}-V eltolódások ellentétes előjelűek voltak a vad típusú és a koleszterin mutáns konstruktkon (6B, 7B, 7C, 9D, 9E, 10B, 10C ábrák). Ezek alapján egy egyszerű előre irányú (C--C→O) átmenet koleszterin kezelés hatására bekövetkező lassulása nem magyarázza az összes megfigyelt hatás kialakulásának mechanizmusát.

5.3 Lipidtutajbeli lokalizáció változása szterol töltések hatására

A sejtmembrán szterolokkal való töltése különböző csatornákra eltérő hatást gyakorol, aminek hátterében a csatornák és szterolok membránbeli eloszlásának különbségei is állhatnak. Több csatornáról, így a Kv1.3-ról és a Kv10.1-ról is kimutatták, hogy preferenciálisan a szfingolipidekben és koleszterinben gazdag lipidtutajokban helyezkedik el, míg más csatornák ezen mikrodoméneken kívül találhatóak. Az irodalmi adatokkal összhangban
preferenciális lipidtutajbeli lokalizációt jelentő erőteljesen pozitív Pearson-együthatókat kaptunk mindkét csatorna vizsgálatá során, amelyek nagysága tovább növekedett a membrán mindkét szterollal való töltése után (14. ábra és 2. táblázat). A jelenséget bizonyítottuk Kv1.3 esetén a sokkal jobb felbontást biztosító STED mikroszkópia alkalmazásával is, így a hagyományos konfokális mikroszkópiához képest jóval kisebb feloldható távolságok mellett is megerősítettük a csatorna preferenciális tutajbeli lokalizációját és ezen mikrodöménekben való további dúsulását a szterol kezelések hatására. NBD-koleszterinrel végzett méréseink azt mutatták, hogy az exogén módon bejuttatott koleszterin szintén preferenciálisan a lipidtutajokban akkumulálódik. Pozitív korrelációt tapasztaltunk továbbá a Kv1.3 és az NBD-koleszterin között, a koefficiens nagysága szignifikánsan magasabb volt, mint a fluoreszcensbel jelzett koleszterin és a lipidtutaj marker között meghatározott érték. Ez azt sugallja, hogy az exogén módon bejuttatott koleszterin elsősorban a Kv1.3 csatornákat tartalmazó tutajokban dúsul, amely a koleszterin és Kv1.3 molekulák közötti kölcsönhatásra utalhat.

A csatornák körüli lokális szterolkörnyezetet erőteljesen meghatározza azok lipidtutajok iránti affinitása, amely függhet a szterolok koncentrációjától. A Kv1.3 és a Kv10.1 hasonlóan reagált a szterol kezelésekre erőteljes preferenciát mutatva a lipidtutajbeli elhelyezkedés iránt. Figyelembe véve az ismert tényt, hogy a tutajbeli lokalizáció jelentősen módosítja az ioncsatornák konduktanciáját, eredményeink felvetik annak a lehetőségét, hogy a szterolok Kv1.3-ra és Kv10.1-re gyakorolt funkcionális hatásait legalábbis részben ezen csatornák megváltozott tutaj és nem-tutaj membránmikrodömének közötti megoszlása mediálja.

5.4 A szterol töltések által okozott áramcsökkenés oka

Több csatorna esetén leírták, hogy a membránfeszülés hatására növekszik a teljes sejtben mérhető ionáram nagysága, amelynek háttérében a csatornák nyitási valószínűségének növekedése áll az egyedi csatornák konduktanciájának változása nélkül 206-209. A legtöbb vizsgált ioncsatorna, így a Kv csatornák esetén is a koleszterin mennyiségének növekedése az áram amplitúdójának csökkenését eredményezi, összhangban azzal, hogy a koleszterin növeli a laterális stressz mértékét. Az áram redukciójának háttérében azonban nem mindig a stressz által okozott csökkent nyitási valószínűség áll. Az áramcsökkenés oka különböző csatornák esetén eltérő lehet. Kimutatták ugyanis, hogy bizonyos csatornák esetén a csatornák nyitási valószínűségének 210,211, az aktív csatornák számnak 212 vagy az egyedi csatornák konduktanciájának 205 csökkenése is eredményezhet áramcsökkenést.
Kísérleteink során mind a WT, mind a cisztein mutációt hordozó $K_{v1.3}$ és $K_{v10.1}$ csatornákban a szterol töltések hatására lecsökkent a szterol töltések hatására nem a nyitási valószínűség változik, mivel a nyitott állapotba vezető átmenet módosítása esetén a G_{norm}-V görbék is a többi paraméterrel megegyező irányban tolnának el. Membránfeszülés hatására ilyen párhuzamos eltéréseket írtak le a félaktivációs feszültségben, a G_{norm}-V görbék meredekségében és a P_{max} maximális értékében, amely eltérések egyszerre magyarázhatóak a nyitási átmenet egyedüli módosulásával, szemben a szterol töltések esetén általunk megfigyeltekkéval 213.

BK csatorna esetén ismert, hogy a membránban található koleszterin mennyiségénél növekedésére a nyitási valószínűség és az egyedi konduktancia is egymással párhuzamosan lecsökken 205. Az egyedi csatornán átfolyó áram csökkenésének hátterében a pórus laterális stressz hatására bekövetkező kompresszióját valószínűsítették, a szelektivitási szűrőre gyakorolt hatás nélkül. Mivel sem korábbi irodalmi adatok, sem pedig a mi méréseink nem utaltak arra, hogy szterol töltés hatására megváltozik a csatorna szelektivitása, a szelektivitási szűrő valószínűleg intakt marad. Korábbi számítások alapján az egyedi csatornák konduktanciájának csökkenését a pórus szelektivitási szűrője és az intracelluláris oldalon található aktivációs kapu közötti hidrofil üreg üreg méretcsökkenése okozhatja 205,214,215. Az üreg térületcsökkenése miatt lecsökkenhet a csatorna szelektivitása, illetve a megváltozott alakú pórusban a felszínre kerülő töltések miatti lokális elektromos potenciál is módosulhat, melyek magyarázhatják a csökkent vezetőképességet. Újonnan leírt szerkezeti információkon alapuló számítások megerősítették, hogy az egyedi konduktancia nagyon érzékenyen az üreg átmérőjének kismeretkőző módosulásaira is 216, így a pórus kismeretkőző stressz indukált alakváltozása is és az egyedi csatornák konduktanciáinak csökkenését okozhatja.

5.5 A szterolok által okozott változások specificitása, a koleszterin és a 7DHC által kifejtett hatások összehasonlítása

Kísérletes rendszerünkben a koleszterin és a 7DHC kezelés nagyon hasonló módon változtatta az ioncsatornák funkcióját. Nem találtunk érdemi különbséget a csatornák kinetikai paramétereire, illetve lipidtutajokkal való asszociációjára gyakorolt hatásaik között. A 7DHC minőségében hasonlóan, de kissé nagyobb mértékben módosította a pórusnyitás feszültségfüggését és csökkentette az ionáramok nagyságát.
A koleszterin és a 7DHC hatásait összehasonlító korábbi adatok ellentmondásosak, mivel néhány tanulmány szerint a két szterol hatása megkülönböztethetetlen egymástól, míg mások a lipidekkel és fehérjékkal való kölcsönhatásaikban jelentős különbségeket találtak. A 7DHC-ről például leírták, hogy szarvasmarha eredetű lipidekből felépülő liposzómamembránokban ugyanolyan hatékonysággal épül be a tutajokba, mint a koleszterin, ugyanakkor a 7DHC-ben gazdag tutajok fehéreősszetétele eltér a koleszteringazdag mikrodoménekétől. Koleszterint, illetve 7DHC-t nagy mennyiségben tartalmazó membránok szerveződése és dinamikája között jelentős különbségeket találtak, míg egy másik tanulmányban különböző összetételű liposzómákban ezen szterolok eltérő hajlamot mutattak a gél, illetve fluid fázisú lipiddomének formációjára. Egy MD szimuláció alapuló tanulmányban nem mutattak ki különbséget a koleszterin és a 7DHC membránok kondenzációja és rendezettségére gyakorolt hatása között, míg egy másik MD-alapú tanulmányban a membrán laterális nyomás profilja és elasztikus paraméterei jelentősen megváltoztak, amikor a koleszterin molekulákat 7DHC-ra cserélték. Szerkezetük nagyfokú hasonlóságának tükrében váratlanul nagy kvantitatív különbségeket találtak a két szterol hatásai között, különösen telített lipidekből felépülő bilayeres esetén. Ezen adatok arra utalnak, hogy a koleszterin és a 7DHC membránok szerveződésére és dinamikájára gyakorolt hatásai közötti különbség nagysága erősen függ a membrán összetételétől, valamint valószínűleg nagyobb mértékű szaturált lipideket tartalmazó környezetben. A lipidtutajok telített lipidekben gazdag régiók, eredményeink alapján pedig mindkét csatorna és mindkét lipid preferenciálisan a tutajokba lokalizálódik. Ez a lipid környezet felerősítheti az indirekt, membrán által mediált szterol hatások különbségeit.

Szerotonin 1A receptorral végzett kísérletek a szterolokkal való specifikusabb kölcsönhatásra utaltak, mivel ezen fehérjék ligand kötése lecsökken, amikor a membránban a koleszterin molekulákat 7DHC-ra cserélték, annak ellenére, hogy fluoreszcencia anizotrópia méréseken alapján pedig mindkét csatorna és mindkét lipid preferenciálisan a tutajokba lokalizálódik. Ez a lipid környezet felerősítheti az indirekt, membrán által mediált szterol hatások különbségeit.

A specifikus szterol-csatorna kölcsönhatások vizsgálata során nyert legfrissebb bizonyítékok alapján kismértékű szerkezetbeli eltérések nem befolyásolják a hasonló szterolok bekötődését a csatornafehérjéken található kötőhelyekre, a funkcionális hatás kiváltásához ugyanakkor specifikus ligand bekötődésére van szükség. Így amikor a 7DHC mennyisége megnő, a kötőhelyen helyettesítheti ugyan a koleszterint, de a 7DHC valószínűleg nem viselkedik a csatorna funkcióját befolyásoló fiziológias ligandként. Az ebben az esetben megfigyelt 7DHC hatások tehát inkább a koleszterin kötődés hiánya miatt funkcionális következményekre vezethetők vissza.
5.6 A Kv1.3 és Kv10.1 ioncsatornák szterolok általi modulációjának jelentősége különböző betegségekben

A szérum szterolszintek patológiás állapotokban megfigyelhető eltérései esetén a sejtmembrán összetétele is megváltozhat, ami befolyásolhatja a membránfehérjék, így az ioncsatornák funkcióját. A Bevezetés 1.8-as fejezete alapján is belátható, hogy mivel mind a Kv1.3, mind pedig a Kv10.1 számos fiziológiai és pathológiás folyamat szabályzásában részt vesz, ezáltal az ioncsatornák szterolok általi modulációjának kimelt szerepét lehet az adott folyamatok befolyásolása tekintetében. Munkacsoportunk korábban kimutatta, hogy hiperkoleszterinémiás (HC) betegek T-sejteinek membránjában a kontrollokhoz képest megnő a koleszterin mennyisége, de ezen eltérések nem érik el azt a mértéket, ami az in vitro MβCD komplexekkel való töltés után figyelhető meg 190. A Kv1.3 kapuzásában csak kismértékű eltéréseket találtunk és azokat is inkább az oxidált LDL partikulumok által okozott lipidutajokat roncsoló hatásnak, mint a szérum koleszterin direkt hatásának tulajdonítottuk. Mindazonáltal a T-sejtek proliferációs válasza, amelyben kulcsszerepet játszik a Kv1.3, eltérő volt HC betegekben, mivel a spontán aktivációs ráta magasabbnak, a CD3/CD28 útvonalon történő aktiváció ugyanakkor gátoltuk.

Munkacsoportunk korábbi kutatásainak eredményei azt mutatták, hogy SLO betegekből származó vörösvértestek membránjában a 7DHC szintje emelkedett, míg a koleszteriné csökkent, továbbá a 7DHC az általunk is megfigyelt elektrofiziológiai hatásokat fejtette ki az SLO-ban szenvédő betegek T-sejteiben található Kv1.3 ioncsatornára 146. Ennek funkcionális következményeként az SLO-s T-sejtek aktivációja és proliferációja lecsökkent, amely a CD154+ sejtek arányának csökkenésében és alacsonyabb osztódási indexben nyilvánult meg. Ezek a jelenségek hozzájáwarthatnak az SLO-ban jellemző immundeficiencia kialakulásához 223,224. Egy másik tanulmányban SLO-s betegek bőről származó, a sejtmembránban megnövekedett 7DHC tartalommal bíró fibroblasztokban az általunk tapasztaltakhoz nagyon hasonló eltéréseket írtak le a nagy konduktanciájú kalcium által aktivált KCa1.1 csatornákban: a G-V görbe eltolódott és az egyedi csatornák konduktanciája lecsökkent 225. A csatorna különböző szövetekben megfigyelhető széleskörű előfordulását figyelembe véve a funkciójának SLO-ban megfigyelhető megváltozása szerepet játszhat a betegség tüneteinek kialakulásában.

Tumorsejteken a koleszterin akkumulációját és a lipidutajok következményes expanzióját figyelték meg, amelynek az onkogén szignalizációs útvonalak felerősödésében
lehet szerepe. A tutajok integritása kulcsfontosságú a tumorsejtek tülélése és proliferációja szempontjából, mivel azok MβCD-vel történő roncsolása potens gátoló hatásúnak bizonyult 226,227. Sokféle tumorsejt fejez ki KV10.1-et, ami döntően a lipidtutajokban helyezkedik el, és ismert, hogy a csatorna fontos a sejtproliferáció és a tumorprogresszió szempontjából 141. Jelen kísérleteinkben kimutattuk, hogy a szterol töltés tovább növeli a KV10.1 tutajbeli lokalizációját, amely potenciórozhatja az onkogén jelátviteli útvonal hatékonyságát. Bár eredményeink alapján a szterolok szintjének növekedése gátolja a KV10.1 ionáramát, korábbi feltételezések szerint a csatorna onkogén potenciálja annak nonkanonikus funkciójával és nem feltétenül az ionkonduktanciájával függhet össze 228.

5.7 A koleszterin KV ioncsatornákra gyakorolt hatásmechanizmusának általunk javasolt modellje

Eredményeink azt mutatják, hogy a membrán megnövekedett szterol tartalma nem a feszültségszenzor domén működését befolyásolja, és valószínűsíthetően nem a két domén közti csatolásai befolyásolják, hanem közvetlenül a pórusdoménen fejti ki a hatását. A szterolok által a pórusra gyakorolt hatások hátterében szerintünk fontos tényező a laterális stressz mértékének nem-specifikus megnövekedése, amely hárulatja a pórusnyitáshoz vezető átrendeződéseket és csökkenti a konduktanciát a pórus belső üregének deformálása révén. Emellett a korábban leírtak szerint 205,229 a szterolok koncentrációjának növekedése a membránban megfigyelheti a zárt-nyitott átalakulás entalpiáját, azonban a nyitás alatt bekövetkező konformációváltozás ezzel párhuzamosan az entrópia mértékét is növeli, így a szabadenergia-változás előjele és ezáltal a G_{norm}-V görbe eltolódásának iránya is ezen tényezők egymáshoz viszonyított relatív nagyságától függ. Méréseink során érdekes megfigyelés volt, hogy vad típusú KV1.3 és KV10.1 csatornáknál a szterol töltés a G_{norm}-V görbéket jobbra tolta el, míg a TEVCF kísérletek során használt ciszein mutációit hordozó csatornák esetén ezzel szemben a szterol töltések balra történő eltolódást eredményeztek. Az egyéb hatások, így az áramcsökkenés és az áram aktivációs kinetikájának lassulása tekintetében hasonlóan viselkedtek a WT és a ciszteinmutáns csatornák. Ehhez hasonlóan, ellentétes irányú G/V eltolódásokat megfigyeltek WT és ILT mutáns Shaker csatornák esetén, amely mutánspecifikusnak, nem pedig artefaktumnak bizonyult, és a jelenséget a membránfeszülés hatásának tulajdonították 229. A mi eredményeinkhez hasonlóan az ILT mutáns Shaker csatornában is azt mutatták ki, hogy a VSD-k elmozdulását követően a végző sebességmeghatározó lépés az aktivációs kapu nyitása, és ez a lépés az, ami a membrán tenziójára érzékeny. Ennek következtében a membrán stressz csatornafunkcióra gyakorolt
hatásának előrejelzése nem egyértelmű, amely megmagyarázhatja a témában publikált eredmények közötti gyakori ellentmondásokat. Továbbá a szterolok bizonyos csatornákkal történő specifikus kölcsönhatásai a hatásokat várhatlan irányba téríthetik el. Méréseink alapján a direkt hatások elsődleges hozzájárulása a szterolok Kv ioncsatornáakra gyakorolt hatásaihoz nem valószínű, mivel mind a koleszterin, mind pedig a 7DHC hasonló változásokat okozott két különböző csatolási mechanizmussal rendelkező Kv csatorna esetén is. A végző, koleszterin által kifejtett hatáshoz hozzájárul bizonyos csatornák lipidtutajokban történő dúsulására való hajlama is, mivel a csatornák lipidtutajbeli lokalizációja nagyban befolyásolja a csatornák által érzékelő lokális szterol koncentráció nagyságát.

Összegezve megfigyeléseinket, Kv csatornákban a szterolok fő támadáspontja a PD, nem pedig a VSD, továbbá a szterol hatások tekintetében a domináns tényező a laterális stressz, ami a szterolok membránbeli szintéjének növekedése hatására növekszik. A laterális stressz hatását továbbá valószínűleg specifikusabb, direkt szterol-csatorna kölcsönhatások is modulálhatják. Így bár modellünkben az indirekt koleszterin hatások Kv csatornáakra gyakorolt szerepét hangsúlyozzuk, a globális hatás tekintetében nem zárható ki a direkt kölcsönhatások szerepe sem, mivel nem mindegyik vizsgált kapuzási paraméter esetében figyeltük meg az egymással párhuzamos változásokat, ami várható lenne kizárólagosan indirekt hatásmechanizmus esetén. Kv csatornákban ugyanakkor, más csatornákhoz és transzmembrán fehérjékhez hasonlóan, megkérdőjelezhető a CRAC és CARC motívumok direkt koleszterin hatások mediálásában betöltött szerepe. Ezt támasztja alá, hogy míg Kv1.3 esetén az S4 hélix C-terminális végén található egy CARC szekvencia, ennek ellenére a membrán koleszterin töltésének nincs funkcionális következménye a VSD csatorna aktiváció során bekövetkező mozgásaira. Ezzel szemben, ahogy azt a kísérleteink során kimutattuk, TEVCF mérések során nem változik a fluoreszcenc jel feszültségfüggőséget leíró \(F_{norm-V} \) görbe, valamint a fluoreszcens jel aktivációs időállandója, így a VSD mozgása sem szterol töltéseik hatására.

5.8 Az aktivációs kapu szerepe az egyensúlyi inaktiváció és az inaktivációból való visszatérés folyamatainak szabályozásában negatív membránpotenciálok esetén

A Shaker-IR csatorna kapuzásának leírására jól használható közelítés a négyállapotos kapuzási modell (2A). A modell bár érvényes minden membránpotenciál esetén, a különböző állapokok betöltöttsége és a kapuzási átmenetek kinetikája erősen feszültségfüggő, a membránpotenciál aktuális értéke így meghatározza az adott állapotba vezető lehetséges útvonalakat, illetve azok valószínűségeit is. Munkánk során felderítettük a Shaker-IR
elektrofiziológiaiak „csendes”, azaz mérhető áram megjelenésével nem járó kapuzási átmeneteit az egyensúlyi inaktiváció és az inaktivációból való visszatérés folyamatai során. Mind az inaktiváció, mind az inaktivációból való visszatérés során a zárt-inaktivált (CI) állapotba történő belépés, illetve az abból való kilépés döntő fontosságú. Negatív membránpotenciállok esetén azt találtuk, hogy a Shaker csatorna a C→O→OI→CI útvonalon kerülhet a CI állapotba, másrészt az OI→CI átmenet nélkülözőhetetlen feltétele az inaktivációból való visszatérésnek. Ezeket alátámasztották egyrészt azok a megfigyeléseink, melyek szerint az aktivációs kapu kínálik olyan negatív membránpotenciálókon, amelyeken a CI állapot kialakul. Másrészt az inaktivációból való visszatérést megakadályozza, ha az inaktivált csatornákban az aktivációs kaput nyitott állapotban rögzítjük (tehát az OI állapot stabilizáljuk). Részletesebben kifejtve megfigyeléseinket azt találtuk, hogy a Cd\(^{2+}\) módositja a T449A/V474C Shaker-IR csatornákat −90 mV-on olyan membránpotenciál mellett, ahol az egyensúlyi inaktiváció kialakul mérhető ionáram hiányában. Az intracellulárisan alkalmazott Cd\(^{2+}\) akkor képes módosítani az aktivációs kapu mögött elhelyezkedő 474-es pozícióban levő aminosavat és ezáltal gátolni az ionáramot, ha a csatorna aktivációs kapuja kínálik. A T449A/V476C konstruktban pedig a 476C és H486 aminosavak között kialakuló Cd\(^{2+}\)-híd nyitott állapotban rögzíti az aktivációs kaput, ez a csatornát permanensen inaktivált állapotban tartja, még negatív membránpotenciálókon esetén is, és megakadályozza az inaktivációból való visszatérést. Korábbi kísérletek eredményeinek alapján tudjuk, hogy a Shaker csatorna aktivációs és C-típusú inaktivációs kapui egymással csatoltak, mivel az aktivációs kapu nyitása elősegíti az inaktivációs kapu záródását. Ezt figyelembe véve eredményeink alapján azt gondoljuk, hogy negatív membránpotenciálókon esetén a Shaker-IR csatorna a C→O→OI→CI útvonalon keresztül jut a CI állapotba. A két kapu allosztérikus csatolásával kapcsolatos ismereteink továbbá azzal a megfigyeléssel egészíthetjük ki, miszerint a nyitott állapotú aktivációs kapu képes az inaktivációs kaput non-konduktív (zárt) konformációban rögzíteni, ezáltal nem lehetséges az OI→CI átmenet.

5.9 A zárt állapotból bekövetkező inaktiváció különböző ioncsatornák esetén

A zárt állapotból történő inaktiváció (C→CI átmenet) lehetőségét számos ioncsatornában leírták, így feszültségfüggő nátrium-, kalcium- és káliumszoros csatornáknak esetén is, ahol ez az átmenet fiziológiás körülmények között is fontos eleme a csatornák inaktivációs kapuzásának. Mivel ezeknek a csatornáknak a szerkezetének, valamint az inaktivációjuk mechanizmusa jelentősen különbözik a Shaker-IR csatorna felépítésétől, valamint C-típusú
inaktivációjától, nem meglepő, hogy az általunk javasolt kapuzási séma eltér a más csatornák esetében leírt irodalmi adatoktól.

Na\textsubscript{V} csatornákban például számos tanulmány jellemezte mind kvantitatív, mind kvalitatív módszerekkel a zárt állapotból bekövetkező inaktivációt 50,232. A jelenség ezen fehérjékben szerkezetileg a III és IV doménekben található feszültségszenzorok külön-külön bekövetkező extracelluláris tér irányába történő elmozdulásához kötődik, amely a csatornák inaktivációjához vezet a pörus nyitása nélkül 233,234. A Na\textsubscript{V} csatornákkal ellentétben HCN („hyperpolarization-activated cyclic nucleotide–gated channel” hiperpolarizáció által aktivált és ciklikus nukleotid által szabályozott csatorna csatornák) esetén egyetlen kapu felelős mind az aktiváció, mind az inaktiváció folyamatáért. A részlegesen aktivált, inaktiváció szempontjából permisszív állapotból bekövetkezhet az inaktiváció, így ebben a részlegesen nyitott állapotban az egyedüli kapu ismételten zárodására eredményezheti a csatorna inaktivációját 230,235. Bakteriális KcsA csatornákban a zárt állapotú inaktiváció a szelektivitási szűrő összeesése révén következik be 37,38,59, de a KcsA és K\textsubscript{V} csatornák krisztagrafikus módszerekkel meghatározott szerkezetei között megfigyelhető jelentős eltérések arra utalnak, hogy a C-típusú inaktiváció mechanizmusa különböző lehet ezen fehérjékben 34.

K\textsubscript{V} csatornákban a zárt állapotból létrejövő inaktiváció lehetősége az egyes altípusok esetén különbözik egymástól. A jelenséget leírták K\textsubscript{V}4 236,237, K\textsubscript{V}3 200,231, K\textsubscript{V}11.1 (HERG „humán Ether-à-go-go-Related Gene”) 238,239, K\textsubscript{V}2 240 és K\textsubscript{V}1.5 esetén 59. Ezen megfigyelések Shaker csatornákra való alkalmazhatóságát azonban megkérdőjelezi, hogy a Shaker inaktivációja több szempontból jelentősen eltérő. Például K\textsubscript{V}4 csatornák inaktivációját nem befolyásolja az extracellulárisan alkalmazott TEA+ 241, a magas külső K+ koncentráció ugyanakkor gyorsítja az inaktivációs kinetikát 236. Ezek a Shaker csatorna esetén fordítva jellemzőek. Ezek, illetve egyéb fontos különbségek miatt vezették be K\textsubscript{V}4 esetén az “A/C-típusú inaktiváció” elnevezést 231. Az A/C-típusú inaktiváció a C-típusú inaktivációval együtt fordul elő N-terminálisan csonkolt K\textsubscript{V}1.5 csatornákban 242. K\textsubscript{V}11.1 (vagy másnéven HERG) csatornákban a Shaker-hez hasonló C-típusú inaktiváció figyelhető meg, néhány különbséggel 243. Egyrészt az inaktiváció és az inaktivációból való visszatérés gyorsabban időskálan zajlik le, mint Shaker-ben 52,238, másrészről pedig az inaktiváció nem kapcsolt közvetlenül az aktiváció feszültségfüggéséhez 239.

A zárt állapotból bekövetkező inaktiváció lehetőségét korábban már leírták Shaker-IR csatornában is. TEVCF technikával kimutatták, hogy az ILT mutáns Shaker csatona, pH=5 esetén 201,202 képes a zárt állapotból közvetlenül inaktiválódni, viszont fiziológiás pH mellett (pH=7,5) az inaktiváció a zárt állapotból már nem következik be. Ezeknek a kísérleteknek a
legfőbb korlátját az adja, hogy amennyiben az S4-es hélix három nem töltött aminosavát ILT aminosavakra mutáljuk, az alapvetően megváltoztatja a feszültségszenzor és a pórusdomén közötti csatolás kooperativitását és megbontja az aktivációs és C-típusú inaktivációs kapuk közötti fiziológiás kommunikációt, amit a G-V görbe jobbra tolódása és lassuló áramaktivációs kinetika is jelez. Így az ILT mutáció jelentősen befolyásolja magának a tanulmányozni kívánt C-típusú inaktivációk a folyamatát is. A másik mutáció, amely mellett felvetették Shaker ioncsatornában a C→CI átmenet lehetőségét az L382I mutáció. A mutáció mellett egy olyan inaktivációs modellt írtak le, amely alapján a csatorna a Shaker-IR-rel ellentétben a négy mély zárt állapot bármelyikéből képes közvetlenül inaktiválódni. A 382-es pozíció az S4 aljhoz közel helyezkedik el, amely régió az aktivációs és inaktivációs kapuk közötti csatolás fontos eleme, ezáltal az L382I mutáció új lehetséges átmeneteket hozhat létre a zárt és zárt-inaktivált állapotok között. A C→CI átalakulás meglétét szintén felvetették T442A mutációt hordozó Shaker-IR csatornákban is, amelyekben a szelektivitási szűrőben levő, a K⁺ szelektivitást alapvetően meghatározó TTVGYGD szekvencia (úgynevezett „signature” szekvencia) második treoninjának alaninra történő mutációja követően írtak le zárt állapotból létrejövő inaktivációt. Ez a mutáció az ILT, valamint L382I mutációkhoz hasonlóan jelentősen megváltoztatja a csatorna kapuzási tulajdonságait, mivel a T442A mutánsban az aktivációs kapu nyitása nem vezet C-típusú inaktivációhoz, hanem inkább gátolja azt (inverz allosztérikus csatolás az aktivációs és C-típusú inaktivációs kapuk között).

A fentebb bemutatott kísérletek során, ahol sikerült kimutatni a C→CI átmenetet Shaker csatornák esetén egyrészt a vad típusúhoz képest drámai eltérést mutatott, másrészt pedig a leírt konklúziókat alacsony Hajtóerő melletti ionáram-mérésekre alapozták. Ezzel szemben mi a kísérletes rendszerünk két szempontból is továbbfejlesztettük. Egyrészt T449A/V474C és T449A/V476C mutációval rendelkező Shaker mutánsokat használtunk, amelyekben a természetes kapuzási folyamatok megőrződtek, így a kapuzási paraméterek mindkét általunk alkalmazott csatorna esetén összehasonlíthatóak a vad típusú csatornák jellemzőivel (15. és 20. ábrák). Másrésztt a kísérletek során mi közvetlenül az aktivációs kapu állapotát monitoroztuk vagy manipuláltuk a Cd²⁺ modifikáció segítségével. Ez hatékony módszer az aktivációs kapu nyitásának nyomon követésére és nyitott állapotban történő rögzítésére. A 474C és 476C csatornákban a Cd²⁺ ciszteinhez kötődése, valamint a Cd²⁺ által mediált fémhid képződése szennitív és specifikus kémiai kölcsönhatásokon alapul. Ezáltal a kísérletes stratégiának köszönhetően képesek voltunk felderíteni az elektrofiziológiai alag csendes átmeneteket, továbbá
az általunk alkalmazott gyorsperfúziós rendszer lehetővé tette a Cd\(^{2+}\) modifikációs és keresztkötési esszék pontos elvégzését.

5.10. A T449A/V474C Shaker-IR csatorna esetén kapott kísérletes eredmények kritikus elemzése, a C→CI átmenet lehetőségének vizsgálata negatív membránpotenciállokkal esetén

Korábban kimutatták, hogy a Shaker-IR csatornában a 474-es pozícióban levő cisztein Cd\(^{2+}\) általi módosításának mértéke jól korrelál a csatorna nyitási valószínűségével (P\(_{o}\)), vagyis az aktivációs kapu annak nyitásától függő módon teszi hozzáférhetővé a mögötte elhelyezkedő 474C-t a Cd\(^{2+}\) számára\(^{22}\). Mivel a P\(_{o}\)-V kapcsolat folytonos függvényt jellemzhető, az RCF értékéből levont következtetéseink megbízhatóságának igazolására kísérleteink megkezdése előtt megfelelő negatív kontrollt kellett találnunk (17. ábra). Bemutattuk, hogy a P\(_{1}\) és P\(_{2}\) között –120 mV-os tartófeszültségen magas koncentrációban (18A ábra esetén használt koncentráció 10-szeresének megfelelő, 200 µM-ban) alkalmazott Cd\(^{2+}\) igen hosszú (20 s-os) expozíciója esetén is 1 volt az RCF értéke (17B, E ábrák). Ezáltal a 17B ábrán bemutatott kísérlet jó negatív kontrollként szolgál a 18. ábrán bemutatott eredmények értelmezéséhez. Bár zárt állapotban a Shaker-IR csatornák nagyon kicsi, ám mérhető konduktanciával rendelkeznek (az amelynek nagysága 16 fs alatti\(^{24\text{c}}\)), a 17B ábrán bemutatott negatív kontroll méréseink arra utalnak, hogy ez a konduktancia –120 mV-on nem élcséges a 474C Cd\(^{2+}\) által történő szignifikáns módosításához.

A 17. és 18. ábrákon bemutatott kísérletek és a fenti elemzés alapján az RCF csökkenését az aktivációs kapu mögött elhelyezkedő ciszteinek Cd\(^{2+}\) által történő módosításának tulajdonítjuk. A Cd\(^{2+}\) és a ciszteinek közötti specifikus kölcsönhatás meglétét az a megfigyelés is megerősíti, hogy a Cd\(^{2+}\) magasabb koncentrációja az RCF nagyobb mértékű csökkenését eredményezte, amint azt a ciszteinek és Cd\(^{2+}\) közötti látszólagosan-elsőrendű kémiai reakció esetén várhatjuk (18C ábra). Emellett a tartófeszültség ciklikusan ismételt rövid, –90 mV-ra vagy –80 mV-ra történő változtatása Cd\(^{2+}\) jelenlétében az IF hasonló mértékű növekedését eredményezte (19C, D ábrák), mint Cd\(^{2+}\) egyszeri, hosszú ideig történő applikációja (18. ábra). Ez az eredmény annak kizárását is elősegíti, hogy a Cd\(^{2+}\) hosszabb, egyszeri alkalmazása során esetlegesen egy nem-specifikus kölcsönhatás vezet a megfigyelt RCF redukcióhoz. Összegezve a 17., 18. és 19. ábrákon bemutatott eredményeinket megállapíthatjuk, hogy kísérletes rendszerünkben a 474C és Cd\(^{2+}\) közötti specifikus kölcsönhatáson alapuló, gyorsperfúziós rendszer segítségével kivitelezett Cd\(^{2+}\) módosítási
esszé megfelelő eszköz az aktivációs kapu nyitásának detektálására az RCF csökkenésének meghatározása segítségével.

A 18. ábrán bemutatott adatok alapján látható, hogy az RCF értéke minden vizsgált membránpotenciál esetén 0-tól különbözik. Ez egyrészt azt jelentheti, hogy az egyensúlyi inaktivációban részt vevő csatornákban csak egy része van olyan állapotban, amelyben képesek kölcsönhatni a Cd\(^{2+}\)-mal, másrészt viszont arra is utalhat, hogy bár minden csatorna hozzáférhető Cd\(^{2+}\) számára, a Cd\(^{2+}\) nem módosítja az összes csatornát a 20 s-os alkalmazás időtartama alatt. Utóbbi esetben az RCF értékének csökkennie kell a Cd\(^{2+}\) koncentrációjának növekedése esetén. A 18C ábrán bemutatott adatainkból ez következik, a Cd\(^{2+}\) koncentrációjának emelése az RCF jelentősebb csökkenését okozza. A Cd\(^{2+}\) megnövekedett kumulatív exposíciós időt eredményező sorozatos, rövid applikációja nagyobb mértékű áramcsökkenéshez vezetett nagyobb cikluszám esetén (mgnövekedett IF, 19. ábra), amely szintén alátámasztja feltevésünket, amely szerint a csatornák Cd\(^{2+}\) számára hozzáférhető állapotban vannak, amikor az egyensúlyi inaktiváció végbejut. A várakozás alapján mind az IF, mind az RCF paraméter értéke függ a membránpotenciál nagyságától, amelyet a 18. és 19. ábrákon mutatunk be.

Kísérleteink egyértelműen azt mutatják, hogy a Shaker-IR csatornák szignifikáns hányada rendelkezik nyitott aktivációs kapuval és kölcsönhat Cd\(^{2+}\)-mal olyan negatív membránpotenciálakon, amelyek mellett az egyensúlyi inaktiváció végbejut. Egyszerű értelmezés szerint ezek a megfigyelések arra utalnak, hogy −90 mV-on néhány csatorna kinyítható, majd inaktiválódik és ezek azok a csatornák, amelyek módosíthatók Cd\(^{2+}\)-mal. Ezek alapján a csatornák nyitása megelőzi az inaktivációt és az egyensúlyi inaktivációt eredményező kapuzásai lépések a C→O→OI útvonalon haladnak. Mivel irodalmi adatok alapján mind az O, mind pedig az OI állapotú csatornák 474C-he módosítható Cd\(^{2+}\)-mal 186, így nem zárható ki annak a lehetősége, hogy az RCF csökkenését −90 mV-on a Cd\(^{2+}\) C→CI→OI átmenetekben keresztülmegy csatornákkal való kölcsönhatása eredményezi. Véleményünk szerint azonban az utóbbi lehetőség kevésbé valószínű két ok miatt is. Egyrészt az OI állapotú csatornák Cd\(^{2+}\) általi módosítása körülbelül 20-szor lassabb az O állapotban levő csatornákhoz viszonyítva 186. A másik érv pedig egy nemrég megjelent tanulmányból következik, amely szerint Shaker csatornában az aktivációs kapu nyitása a C-típusú inaktivációs kapu zárását eredményezi, így az OI állapotba jutáshoz vezető elsődleges átmenet az O→OI átalakulás 59. Ezek alapján a Cd\(^{2+}\) modifikáció valószínűleg sokkal inkább az OI-t megelőző O állapotban történik. Ez több Shaker konstrukcióban is igaz lehet, így T449A esetén is, ahol az inaktiváció folyamatát a C-típusú inaktiváció dominálja 203.
Az egyéb kapuzási átmenetekhez viszont keveset tudunk a C-típusú inaktivációból való visszatéréshez vezető útvonalról és a folyamat során végbemenő molekuláris átrendeződésekéről. A hagyományos forgatókönyv szerint elnyűjtött depolarizáció során a C-típusú inaktivációs kapu záródik (OI állapot), majd a negatív membránpotenciállra való visszatérés indukálja az aktivációs kapu záródását, az OI→CI átmenetet. Ezt követően a megfelelő ideig tartó, kellően negatív membránpotenciál melletti polarizációs periódus során a CI állapotú csatornák visszatérnek az inaktivációból, inaktivációs kapujuk kinyílik, így újból a zárt állapotba (C) kerülnek (2. ábra). Az inaktivációból való visszatérés folyamán a sebességmehatározó lépés a CI→C átmenet, mivel Shaker esetén az OI→CI átalakulás nagyon gyors, ms-os nagyságrendű 58, míg az inaktivációból történő visszatérés másodperces időskállán megy végbe. A korábbi megfigyelésünk, amely szerint az inaktiv állapotban levő csatornák aktivációs kapuja viszonylag gyorsan záródik (a folyamat időállandója 23 ms –120 mV-on, 58) nem zárja ki nyitott aktivációs kapuval rendelkező csatornák esetén az inaktivációból való visszatérés lehetőségét.

Amennyiben az aktivációs kapu záródása nélkülözhetetlen a visszatéréshez, a nyitott állapotban rögzített aktivációs kapuval rendelkező csatornák inaktiv állapotban maradnak, vagyis az inaktivációból való visszatérésük gátolt. Ezt a jelenséget demonstráltuk Shaker-IR esetén a 22. ábrán. Ahogy az az ábrán látható, az aktivációs kapu nyitott állapotban történő rögzítése inaktivált csatornákban (OI állapot) egyszeri 1 s-os Cd$^{2+}$ applikációval vagy 200 ms hosszúságú Cd$^{2+}$ pulzusok ismételt alkalmazásával, teljes mértékben megakadályozta a csatornák inaktivációból való visszatérését. Kumulált Cd$^{2+}$ expozió esetén a csúcssáramok 22C ábrán látható csökkenése elsőfokú, egy exponenciális taggal leírható csökkenést mutatott, amely a Cd$^{2+}$-ről is kimutatták, hogy több ioncsatornát is képes gátolni 249,250. Emiatt a következtetésünket alátámasztására
nélkülözhetetlen volt annak igazolása, hogy a Cd$^{2+}$ nem gátolja a 476-os pozícióban a kritikus císzteint nem tartalmazó Shaker-IR csatornát amit a 21C, D ábrákon be is mutattunk. Emellett azt is bemutattuk, hogy a repetitív depolarizáló pulzusok közötti 60 s hosszúságú ipi legénységes a císztein mutációit hordozó csatornák esetén az inaktivációból való teljes visszatéréshez (21A, B ábrák). Ezekből következik, hogy a 22. ábrán látható áramesőkkenést nem magyarázhatja az sem, hogy túlságosan rövid ideig vártunk −120 mV-os tartófeszültségen a pulzusok között. A fentiek alapján az áram csökkenése egyértelműen abból következik, hogy a nyitott aktivációs kapuval rendelkező OI állapotú csatornák nem képesek visszatérni az inaktivációból.

Az aktivációs kapu nyitott konfigurációban való rögzítését korábban részletesen leírták a Shaker-IR csatornában a 476-os císzein és az egyik szomszédos alegység 476-as pozíciójú natív hisztidinde közötti Cd$^{2+}$-híd kialakításával. Az inaktiválódó T449A/V476C Shaker-IR konstruktionban a H486 és 476C aminosavak közötti Cd$^{2+}$-híd kialakulásának igazolására megváltoztattuk az intracelluláris oldat pH-ját. Alacsony, 5.3-as intracelluláris pH esetén, amikor a hisztidinek protonáltak (pKa~6.0), a Cd$^{2+}$ nem volt képes az ionáramok módosítására (23B, C ábrák). Ez alátámasztja a Cd$^{2+}$, H486 és 476C közötti specifikus kölcsönhatást, ami a Cd$^{2+}$-híd kialakulásához, ezáltal az aktivációs kapu nyitott állapotban való rögzítéséhez vezet.

Megfigyeléseink alapján megállapítható, hogy az aktivációs kapu záródása az inaktivációból való visszatérés szükséges előfeltétele és negativ membránpotenciál esetén a kapuzási átmenetek az O→OI→CI→C átalakulások sorrendjében történnek. Ezen séma alapján egy intracellulárisan alkalmazott, nyitott csatornákat blokkoló vegyület, ami megakadályozza az aktivációs kapu záródását, lelassíthatja és késleltetheti a csatorna inaktivációból való visszatérését. A Shaker csatorna kapuzására általunk javasolt séma összhangban van a Nav csatornákra korábban leírtakkal, miszerint az inaktivációból történő visszatérést meg kell előznie a csatorna aktivációs kapujának bezáródása révén létrejövő deaktivációjának.

5.12 Általános összefoglalás

A dolgozatban bemutatott kísérletek segítségével a Kv csatornák kapuzásának finomhangolását befolyásoló két tényező szerepét vizsgáltuk. Az egyik tényező a sejtmembránban található koleszterin, amelyről már korábban kimutatták, hogy befolyásolja a Kv ioncsatornák aktivációs kapuzását, viszont eddig nem tisztázták, hogy a koleszterin ezt pontosan milyen, az ioncsatornán belüli támadásponton keresztül valósítja meg. A dolgozatban vizsgált másik kérdéskör a negatív membránpotenciálok melletti kapuzási átmenetek vizsgálata volt. Ezen kísérletek során azt vizsgáltuk, hogy egyrészt a C-típusú inaktiváció
végbemenetének szükséges feltétele-e az aktivációs kapu nyitása, másrészt az inaktivációból való visszatérés folyamatához szükség van-e az aktivációs kapu bezáródására.

A koleszterin K_V ioncsatornákon belüli támadáspontjának meghatározása, valamint a negatív membránpotenciálok melletti átmenetek direkt vizsgálata nem lehetséges az ionáram-méréseken alapuló patch-clamp technika segítségével. Egyrészt a patch-clamp mérések esetén ugyanis hagyományos körülmények között nem kapunk információt a VSD kapuzás során bekövetkező mozgásairól az ionáramok mérésével egyidőben. Másrészt a negatív membránpotenciálokon történő ionárammérések jelentős hibát hordoznak az ilyen membránpotenciálok melletti alacsony hajtóerőből és alacsony csatornanyitási valószínűségekből fakadóan. Így azért, hogy a disszertáció célkitűzéseiben megfogalmazott két kérdésre pontos választ tudjunk adni, új módszereket kellett alkalmaznunk, amelyek révén új megközelítésből vizsgálhattuk a K_V ioncsatornák kapuzását.

A disszertáció első felében bemutatott TEVCF technika az ionáramok mérése mellett lehetővé tette számunkra a VSD mozgásának nyomonkövetését a teljes kapuzási folyamat során (24. ábra). A módszert használva így a koleszterin klasszikus elektrofiziológiai paraméterekre gyakorolt hatásai mellett meg tudtuk határoznak annak csatornán belüli elsődleges célpontját (VSD, PD vagy a két domén közti csatolási apparatúst). Eredményeink alapján a koleszterin fő támadáspontja maga a PD, nem pedig a VSD vagy a csatolási apparatúst, mind a lineáris kapuzási modellnek megfelelően kapuzó $K_V1.3$, mind pedig a komplex kapuzási modellel leírható $K_V10.1$ esetén.

A disszertáció második részében bemutatott kísérleteink során az általunk megtervezett feszültségprotokollok és cisztein modifikációs stratégiák egy új kombinációját használtuk a Shaker ioncsatorna negatív membránpotenciálok mellett bekövetkező, egyensúlyi inaktivációját jellemző kapuzási sémájának leírására, valamint az inaktivációból való visszatérés előfeltételeinek meghatározására. A Cd^{2+}, illetve az általunk pontmutációval bevitt ciszteinek között létrejövő specifikus kölcsönhatások lehetővé tették számunkra az aktivációs kapu nyitásának detektálását (474C), illetve annak rögzítését (476C) negatív membránpotenciálok mellett is (24. ábra). Eredményeinket összegezve, az egyensúlyi inaktiváció kialakulásának legvalószínűbb útvonala a C→O→OI⇌CI átalakulás, következtetésünk az, hogy nem a direkt C→CI átmenet vezet az egyensúlyi inaktiváció kialakulásához Shaker ioncsatornában. Emellett az inaktivációból való visszatéréshez nélkülözhetetlen az aktivációs kapu záródása, azaz az OI→CI átmenet. Ebből az a következtetés is levonható, hogy a direkt OI→O átmenet sem lehetséges negatív membránpotenciálon. Legfontosabb következtetésünk az, hogy az aktivációs kapu aktuális helyzete kiemelten fontos
az egyensúlyi inaktiváció és az inaktivációból történő visszatérés folyamatainak szabályozásán.

24. ábra A disszertációban bemutatott kísérletek során alkalmazott speciális technikák
A szterolok ioncsatornán belüli támadásának méréséhez a kételektródás voltage-clamp fluorimetriás technikát (TEVCF) alkalmaztuk, amely a hagyományos patch-clamp technikával szemben, az ionáramok mérése mellett képes a feszültségszenzor működését is nyomonkövetni a kapuzási folyamat során. Következtetéseinket, miszerint a pórusdomán az ioncsatornán belüli fő célpontja a membránszteroloknak, főleg az egyensúlyi aktivációs paraméterek, illetve az áram és a fluoreszcens jel aktivációs kinetikájának meghatározásával vontuk le. Ezért az egyszerűség kedvéért a módszert, illetve a koleszterint csak a nyitási lépést reprezentáló felső piros nyílnál tüntettük fel. Valójában a szterolok az összes kapuzási lépést képesek modulálni, illetve a TEVCF technikával egy megfelelő helyre elhelyezett ciszein pontmutációval nemcsak a feszültségszenzor, hanem akár a pórus, vagy a C-típusú inaktivációs kapu mozgását is tudnánk tanulmányozni. A disszertáció második részében egyrészt a direkt C→CI átmenet lehetőségét vizsgáltuk T449A/V474C Shaker-IR csatornában (bal oldali piros nyíl), másrészt a direkt CI→O átmenet lehetőségét T449A/V476C csatornában (jobb oldali piros nyíl) negatív membránpotenciálok mellett. A pontmutációval bevitt ciszeinek és a Cd²⁺ közötti specifikus kémiai reakció az általunk létrehozott sajátos felépítésű pulzusprotokollok mellett biztosította azt, hogy a negatív membránpotenciálokban jelen levő alacsony nyitási valószínűség és kis hajtóerő mellett is szelektíven tudjuk tanulmányozni ezeknek a kapuzási átmeneteknek a lehetőségét.

Eredményeink motivációt nyújthatnak a koleszterin-membránfehérje kölcsönhatások további tanulmányozásához, illetve perspektivikusak a későbbi szerkezet-funkció és farmakológiai vizsgálatok számára. Megfigyeléseink az indirekt koleszterin hatások és azok hatékonyságának megértéséhez, amelyekben az egyik fontos eltérés a sejtmembránban található koleszterin koncentrációja növekedése vagy meg változása. Ilyen, a szterolok koncentrációjának eltéréseivel járó kórképek közé tartoznak különböző tumorok, anyagcsere, neurodegeneratív és immunológiai betegségek, illetve maga az öregedés folyamata is 85,87-89,181-184. A negatív membránpotenciálon végbemenő kapuzási átmenetek lehetőségének vizsgálata szintén biológiai szempontból is
jelentős, ugyanis mind az egyensúlyi inaktiváció, mind az inaktivációból történő visszatérés jelentősen meghatározza a potenciálisan aktiválható csatornák számát, ami a sejtek ingerelhetőségének egyik meghatározó tényezője.
6. Összefoglalás

Annan ellenére, hogy a feszültségkapuzott káliumcsatornák (Kv) kapuzásának strukturális alapjai, főbb lépsei és szabályozásának alapvető elemei ismertek, a kapuzási folyamat finomhangolását biztosító több tényező a megfelelő módszerek hiányában ezidáig feltáratlan maradt. Munkánk során ezért a Kv csatornák aktivációs és C-típusú inaktivációs kapuzásának finomhangolását vizsgáltuk meg két fő kérdés mentén, új módszereket alkalmazva.

Kímtattuk, hogy a membrán koleszterin és a 7-dehidrokoleszterin tartalmának emelése jelentősen módosítja a Kv1.3 és a Kv10.1 csatornák feszültségfüggetlen kapuzását jellemző egyensúlyi és kinetikai paramétereket. A kételektródás voltage-clamp fluorimetria technikát alkalmaztuk annak kiderítésére, hogy a membrán szterol koncentrációjának növelése az ioncsatorna feszültségszenzor doménjére (VSD) fejti-e ki hatását. Ezzel a technikával követni tudjuk a VSD mozgását az ionáram-mérésekkel egyidőben a kapuzási folyamat alatt a hozzá kapcsolt molekula fluoreszcencia intenzitásának változásán keresztül. Eredményeink azt mutatták, hogy a membrán szteroloknak nincs közvetlen hatása a VSD-re. A VSD és a pórus domén (PD) közötti csatolási apparátusra gyakorolt hatást többek között azzal zártuk ki, hogy a két vizsgált ioncsatorna esetén VSD és PD közötti csatolás különböző, Kv1.3 esetén szoros, míg Kv10.1 esetén e kapcsolat laza, a membrán szterolok hatása PD működésére viszont hasonló a két csatornában. Következtetésünk tehát, hogy a membrán szterolok elsődleges ioncsatornán belüli célpontja a PD, amit a szterolok hatása a csatorna vezetőképességre is megerősít.

7. Summary

Although the structural foundations, main steps, and essential elements of the gating of voltage-gated potassium channels (K\text{V}) are known, several factors that ensure fine-tuning of the gating process have so far remained unexplored in the absence of proper methods. In our work, therefore, we examined the fine-tuning of activation and C-type inactivation gating of K\text{V} channels along two main issues applying modern biophysical methods.

We have shown that increasing the cholesterol and 7-dehydrocholesterol content of the cell membrane significantly modifies the steady-state and kinetic parameters characterizing the voltage-dependent gating of K\text{V}1.3 and K\text{V}10.1 channels. We used the two-electrode voltage-clamp fluorometry technique to determine whether increasing the sterol concentration of the membrane affects the voltage sensor domain (VSD) of the ion channel. With this technique, the movement of the VSD can be tracked simultaneously with ion current measurements during the gating process through changes in the fluorescence intensity of the fluorophore attached to the top of the VSD. Our results showed that membrane sterols exert no direct effects on the VSD. Effects on the coupling apparatus between VSD and the pore domain (PD) were also ruled out by the fact that although the coupling between VSD and PD is different in the case of the two ion channels studied, i.e. it is tight in K\text{V}1.3 and loose in K\text{V}10.1, membrane sterols had similar effects on PD function in the two channels. Therefore we concluded that the PD is the primary target of membrane sterols within the ion channels, which was also confirmed by the effects of sterols on channel conductivities.

One of the distinguished structural elements of the PD is the activation gate (A-gate), the operation of which we investigated using state-dependent cysteine modification and cross-linking assays in Shaker-IR channels at negative membrane potentials. This method makes it possible to detect the opening of the A-gate through the interaction between the Cd2+ entering the cavity of the PD and a cysteine strategically introduced here, which is manifested in a decrease in the current flowing through the channel. With this method, we showed that the opening of the A-gate precedes the inactivation of the channel at negative membrane potentials, i.e. during the development of steady-state inactivation. In the Shaker-IR channel, a Cd2+ bridge between the introduced cysteine at position 476 and a histidine of the adjacent subunit locks the A-gate of the channel in the open state. In our experiments, the A-gate of inactivated channels was locked in the open state with a Cd2+ bridge, subsequently, the channel did not recover from inactivation even at a prolonged hyperpolarization of \(-120\) mV. Therefore, the A-gate controls the gating transitions (steady-state inactivation, recovery from inactivation) that are critical determinants of the number of available potassium channels at negative membrane potentials.
8. Irodalomjegyzék

Perez-Cornejo, P. H+ ion modulation of C-type inactivation of Shaker K+ channels. *Pflugers Arch* 437, 865-870 (1999).

115

Tu, Y. C., Yang, Y. C. & Kuo, C. C. Modulation of NMDA channel gating by Ca(2+) and Cd(2+) binding to the external pore mouth. *Sci Rep* **6**, 37029, doi:10.1038/srep37029 (2016).
9. Tárgyszavak

Tárgyszavak:
- Sejtmembrán
- koleszterin
- feszültségkapuzott káliumcsatornák
- *Shaker* csatorna
- aktivációs kapu
- C-típusú inaktiváció
- inaktivációból történő visszatérés
- patch-clamp
- kételektródás voltage-clamp fluorimetra
- konfokális mikroszkópia

Keywords
- Cell membrane
- cholesterol
- voltage-gated potassium channels
- *Shaker* ionchannel
- activation gate
- C-type inactivation
- recovery from inactivation
- patch-clamp
- two-electrode voltage-clamp fluorometry
- confocal microscopy
10. Köszönetnyilvánítás

Köszönettel tartozom Prof. Dr. Panyi Györgynak, hogy témavezetőként, és az Intézet jelenlegi vezetőjeként gyakorlati és elméleti tanácsaival tudományos diákkörös munkám kezdete óta folyamatosan támogatta és segítette fejlődésemet, előrehaladásomat, valamint doktori értekezésem elkészítését.

Szeretném megköszönni a Biofizikai és Sejtbiológia Intézet korábbi vezetőjének, Prof. Dr. Szöllősi Jánosnak, hogy lehetőséget adott arra, hogy elkezdhessek az Intézetben dolgozni és biztosíttotta számomra a folyamatos magas színvonalú munka és szakmai fejlődés lehetőségét.

Szeretnék köszönetet mondani Prof. Dr. Mátyus Lászlónak, az Általános Orvostudományi Kar dékijnánjának, az OTDK Orvos-és Egészségtdományi Szakció Szakmai Bizottságának elnökének, Intézetünk tanszékevezető professzorának, hogy biztosíttotta számomra a folyamatos magas színvonalú munka és szakmai fejlődés lehetőségét a tudományos diákköri munkám során.

Köszönetet szeretnék mondani Dr. Varga Zoltánnak, aki munkacsoportvezetőként, közvetlen főnökömként folyamatosan támogatta és segítette fejlődésemet, előrehaladásomat, a kísérletek gyakorlati kivitelezését, valamint a tudományos közleményeim megszületését.

Köszönet illeti Nagy Cecília és Bagosi Adrienn asszisztens kollégáimat, valamint kollaborációs partnereimet, Prof. Dr. Nagy Pétert, Prof. Dr. Carol J. Deutsch-ot, Prof. Dr. Szentélyi Jánost, Dr. Szántó G. Tibort, Dr. Papp Pált, Dr. Papp Ferencet, Dr. Kovács Tamást, Dr. Péter Máriát a kísérletek technikai kivitelezésében nyújtott segítségükért, tanácsaikért, baráti támogatásukért. Továbbá köszönetet szeretnék mondani Munkacsoportunk és Intézetünk összes kollégájának a munkám során nyújtott támogatásukért.

Végezetül, de nem utolsó sorban szeretném megköszönni Családomnak, Édesanyámnak, Édesapámnak, Nővéremnek és életem legfontosabb „kollaborációs társának”, Férjemnek, Dr. Kovács Tamásnak azt a mérhetetlen szeretetet, támogatást és türelmet, amelyet a munkám során kaptam és amely nélkül ez a disszertáció nem készülhetett volna el.

11. Függelék

A PhD értekezés alapjául szolgáló közlemények

 J. Gen. Physiol. 152 (8), 1-12, 2020.
 DOI: http://dx.doi.org/10.1085/jgp.202012591
 * These authors contributed equally to this work.
 IF: 4.256 (2018)

 DOI: http://dx.doi.org/10.1016/j.bbalip.2018.12.006
További közlemények

DOI: http://dx.doi.org/10.1016/j.bbalip.2020.158705

DOI: http://dx.doi.org/10.1194/jlr.M077339
IF: 4.505

DOI: http://dx.doi.org/10.1038/srep35850
IF: 4.269

A közlő folyóiratok összesített impakt faktora: 21,826
A közlő folyóiratok összesített impakt faktora (az értékezés alapján szolgáló közlemények): 8,66

A DEENK a Jelölt által az IDEa Tudostérbe feltüntött adatok bibliográfiai és tudománymetriai ellenőrzését a tudományos adatbázisok és a Journal Citation Reports Impact Factor lista alapján elvégezte.

Debrecen, 2020.05.28.