Szerkezetmeghatározási módszerek alkalmazása cianobakteriális toxinok és szintetizált biológiaillag aktív vegyületek körében

Doktori (PhD) értekezés

Fejesné Tóth Eszter

Témavezető: Dr. Borbély György
egyetemi tanár

Készült:
A Debreceni Egyetem Orvos- és Egészség tudományi Centrum
Doktori Iskolájának keretében
A Debreceni Egyetem Növénytani Tanszékén

Debrecen, 2007
Rövidítésjegyzék:

cpcBA-IGS a fikocianin alfa és béta alegységei közti, génen belüli elválasztó
(intergenic spacer between the alfa and beta subunits of phycocyanin)
CE kapillárelektroforézis (Capillary Electrophoresis)
CYN cilindrospermopszin (cylindrospermopsin)
DHB 2,5-dihidroxi-benzoesav (2,5-dihydroxybenzoic acid)
HEPES 4-(2-hidroxi-etil)-1-piperazin-etánsulfonsav (4-(2-HydroxyEthyl)-1-
Pyperazine EthaneSulfonic acid)
HPLC nagynyomású folyadékkromatográfia (High Pressure Liquid
Chromatography)
IC₅₀ 50 %-os gátlást okozó koncentráció (concentration required for 50 %
inhibition)
IR infravörös (infrared)
MEK micelláris elektrokinetikus kromatográfia (Micellar Electrokinetic
Chromatography)
MS tömegspektrometria (Mass Spectrometry)
nifH a dinitrogenáz reduktázt kódoló gén
NRPS nem riboszomális peptid szintáz (Non-Ribosomal Peptide Synthetases)
rRNS riboszómális RNS (ribosomal RNA)
rpoC1 RNS polimeráz C1 alegység (RNA polymerase C1 subunit)
PKS poliketid szintáz (polyketide synthase)
PP1A proteinfoszfátáz 1A (Protein Phosphatase 1A)
PP2A proteinfoszfátáz 2A (Protein Phosphatase 2A)
SDS nátrium-dodecil-szulfát (sodium dodecyl sulphate)
SIM egyedi iondetektálás (Selected Ion Monitoring)
SRM egyedi reakciódetektálás (Selected Reaction Monitoring)
Tris trisz(hidroximetil)aminometán (tris(hydroxymethyl)aminomethane)
UV ultraibolya (ultraviolet)
VRK vékonyrétegkromatográfia
1. BEVEZETÉS, CÉLKITŰZÉSEK .. 5
2. IRODALMI ÁTTEKINTÉS .. 7
2.1. A cianobaktériumok általános jellemzése ... 7
2.2. A vízvirágzások és a toxikus cianobaktériumok ... 8
2.3. A cianobaktériumok által termelt toxikus metabolitok (cianotoxinok) általános
jellemzése ...10
2.4. A cianobaktériumok által termelt toxikus metabolitok (cianotoxinok) laboratóriumi
vizsgálata .. 12
2.5. A Cylindrospermopsis raciborskii nitrogénkötő, fonalas cianobaktérium részletes
bemutatása .. 14
2.6. A cilindrospermopszin részletes ismertetése .. 16
2.7. A Microcystis aeruginosa és a mikrocisztin ..18
2.8. A környezeti tényezők hatása a cianobaktériumokra ... 18
2.9. A pterokarpánok ... 19
3. ANYAGOK ÉS MÓDSZEREK ... 21
3.1. Anyagok és eszközök ... 21
3.2. A munka során vizsgált cianobaktérium törzsek és azonosításuk 21
3.3. A planktonikus cianobaktériumok izolálása és nevelése laboratóriumi körülmények
között .. 21
3.4. A fehérmustár-növényteszt (Blue-Green Sinapis Test) .. 22
3.5. A Cylindrospermopsis raciborskii növekedési görbékének meghatározása 23
3.6. A spektrofotometrálás körülményei ... 23
3.7. A klorofill-a tartalom meghatározása ... 24
3.8. Az A_{800} értékének meghatározása ... 24
3.9. A fehérjetartalom meghatározása ... 24
3.10. A szárazanyagtartalom meghatározása .. 24
3.11. A toxicitás meghatározása mustárnövény teszettel ... 24
3.13. A C. raciborskii sejtek előkészítése a toxikus metabolitok izolálására 25
3.14.1. Az anioncsersőlő oszlop (DEAE-52, Whatman) elkészítése 26
3.14.2. A Toyopearl HW-40 oszlop előkészítése ... 26
3.14.3. A szilikagéloszlop elkészítése .. 26
3.14.4. A HPLC tisztítási módszerek .. 26
3.15. A kromatográfiás frakciók toxicitásának meghatározása 27
3.16. A vékonyrétegkromatográfiá .. 27
3.17. Az NMR analízis ... 27
3.18. A tömegspektrometria mérések ... 28
3.19. Az IR spektrumok .. 29
3.20. A cianobakteriális nyers kivonattal történő kezelés hatásának vizsgálata mustár csíranövényeken ... 29
3.21. A mustárnövények cianotoxinnal történő kezelése és a kezelés hatásának vizsgálata 30
3.22. A fehérjemintázat vizsgálata gélelektroforézissel ... 30
3.23. Az ssDN-áz aktivitás vizsgálata gélelektroforézissel ... 31
3.24. A proteázaktivitás vizsgálata gélelektroforézissel, cianotoxinokkal kezelt mustárnövényekből ... 32
3.25. A környezeti hatások vizsgálata .. 33
3.26. A cianotoxinok izolálás a terepi mintákból .. 33
3.27. A pterokarpán és deuterált származékanak szintézise 34
4. EREDMÉNYEK ÉS ÉRTÉKELÉSÜK ... 37
4.1. A C. raciborskii (BGSD 266) cianobaktérium laboratóriumi körülmények közötti nevelése ... 37
4.2. A cianotoxinok izolációja .. 40
4.3. A tisztított, cianobakteriális ismeretlen metabolit szerkezetazonosítása 45
4.4. A nominális molekulatömeg meghatározása .. 45
4.5. A pontos tömeg és az összegképlet meghatározása ... 47
4.6. Az NMR módszerekkel kapott eredmények és értékelésük 48
4.6.1. Egydimenziós NMR-spektrumok (1H, 13C) spektrumok kiértékelése 48
4.6.2. A kétdimenziós NMR-spektrumok kiértékelése ... 49
4.6.2.1. A HSQC-spektrumok kiértékelése .. 49
4.6.2.2. A TOCSY spektrumok kiértékelése .. 51
4.6.2.3. A HMBC-spektrumok kiértékelése .. 53
4.6.2.4. A NOESY-spektrumok kiértékelése .. 57
4.6.3. A cserélhető hidrogének számának meghatározása (hidrogén-deutérium csere) .. 60
4.6.4. Az NMR és MS mérések ből következő részeredmények 62
4.6.5. A molekula aglikonrészének szerkezetfelderítése... 63
4.7. Az infravörös spektrum értelmezése .. 65
4.8. Az MS-MS spektrumokból levont következtetések .. 66
4.9. Az UV-spektrum értelmezése.. 69
4.10. A cianotoxin szerkezetének felírása ... 69
4.11. Az aglikonra vonatkozó NMR adatok értelmezése ... 70
 4.11.1. A HMBC spektrum értelmezése .. 70
 4.11.2. A NOESY spektrum értelmezése .. 72
4.12. A fragmentációs útvonalak ... 72
4.13. Az izolált metabolit (CYC) biológiai hatásainak előzetes analízise 82
4.15. A fehérjemintázat változása a C. raciborskiiival kezelt növényekben 86
4.16. Enzimvizsgálatok a C. raciborskii nyers kivonatával és a szervezetből izolált
 cilindrospermopsziklinnel kezelt mustárnövényekkel .. 88
 4.16.1. A proteázok gélelektroforézise ... 88
 4.16.2. Az izolált cianotoxin (CYC) hatása a mustárnövény-nukleázok aktivitására 90
4.17. A tápeleméheztetés hatása a C. raciborskii cianobaktérium növekedésére és
toxintermelésére .. 91
4.18. A Kis-Balatonból izolált cianobaktériumok mikrocisztintartalmának meghatározása . 96
4.19. A pterokarpán váz jellegzetes fragmentációs útvonalai ... 97
5. ÖSSZEFOGLALÁS ... 106
6. SUMMARY ... 107
7. KÖSZÖNETNYILVÁNÍTÁS ... 108
8. A JELÖLT TUDOMÁNYOS TEVÉKENYSÉGE ... 109
9. IRODALOMJEGYZÉK ... 112
1. BEVEZETÉS, CÉLKITŰZÉSEK

A természetben előforduló biológiai aktív anyagok azonosítása és koncentrációjuk minél pontosabban történő meghatározása a környezeti analitika egyik fontos feladata. A szerkezeti meghatározásra számos lehetőség nyílik, mint például az NMR-spektroszkópia és a tömegspektrometria. A tömegspektrometria előnye, hogy nagyon kis mintamennyiség (pg/ml) is elegendő az analízishez, ezért egyre elterjedtebben alkalmazzák a felszíni vizekben jelenlévő toxikus anyagok vizsgálatánál, illetve a növényekben található kismennyiségű hatóanyagok kimutatására. A toxikus vízvirágzások esetén, – amely fontos környezetanalitikai probléma – a tömegspektrometriának kiemelt jelenősége van. A vízvirágzás a planktonszervezetek felszíni vizekben való tömeges elszaporodását jelenti. Ilyenkor a vizek felszínén zavarosodás és intenzív elszínezés figyelhető meg. Toxikus vízvirágzásról abban az esetben beszélünk, ha az ilyenkor nagyszámban elszaporodó planktonikus szervezetek egértesztben toxikusnak minősülő anyagcserettermékeket termelnek. A toxikus vízvirágzást mind prokarióta, mind eukarióta szervezetek okozhatják. A prokariótták csoportjában tartoznak a cianobaktériumok, közöttük toxikus anyagcseretterméket (cianotoxint) termelő és nem termelő szervezetek is előfordulhatnak. A cianobaktériumok toxintermélésének vizsgálata csupán néhány évtizedes múltra tekint vissza, de a cianobaktériumok által termelt toxikus anyagcserettermékeknek tulajdonított mérgezésekről több száz évvel ezelőtt is maradtak fenn feljegyzések.

A Növénytani Tanszék kutatócsoportja a Aphanizomenon ovalisporum, Microcystis aeruginosa és a Cylindrospermopsis raciborskii nevű fajok cianotoxinjainak analízisével és a cianotoxinok hatásának növényi rendszereken történő tanulmányozásával foglalkozik. A Microcystis aeruginosa toxinjairól, a mikrocisztinekről tudjuk, hogy azok a növényi protein foszfátázokat specifikusan gátolják és megzavarják a sejtciklust, a sejtanyagcserét. A Cylindrospermopsis raciborskii toxinjairól, azok hatásmechanizmusáról nincsenek ilyen adataink, a fenti szervezet szekunder metabolitjainak a hatásmechanizmusát nem ismerjük.

A kutatási területeink másik iránya a növényekben előforduló biológiai aktív anyagok tanulmányozása, ezen aktív metabolitok közül a PhD értekezés a pterokarpánokkal és azok tömegspektrometriai vizsgálatával foglalkozik részletesen.

Az előbbiek alapján alakítottuk ki a kutatási céljainkat, amely a Balatonból izolált cianobaktérium, a Cylindrospermopsis raciborskii egy új, növényi növekedést gátló metabolitjának (cianotoxin) szerkezetzfelderítésével és annak a mustámövény anyagcseréjére
kifejtett, tájékoztató jellegű vizsgálatával foglalkozik. A munka során a másik cianobaktérium faj, a *Mycrocytis aeruginosa* cianotoxinjai is az érdeklődési körünkre kerültek, amelyekben olyan cianotoxinokat találtunk, amelyek ismeretlenek voltak az eddig Magyarországon talált szervezetekben.

A munka során a problémafelvetés természetéből adódóan olyan szerkezetfelderítő megközelítéseket alkalmaztunk, melyek alkalmasak új kémiai struktúrák felderítésére.

A célkitűzéseket az alábbiakban fogalmazhatjuk meg:

1. Az 1995-ben a Balatonból izolált *Cylindrospermopsis raciborskii* törzs laboratóriumi körülmények között történő nevelésének megvalósítása, a tömegtermelés optimalizálása toxintisztítás céljából.
2. A törzs által termelt ismeretlen cianotoxin izolálása.
3. A törzs által termelt ismeretlen cianotoxin szerkezetének meghatározása.
4. A törzs által termelt ismeretlen cianotoxin hatásának vizsgálata mustár csíranövényeken, gélelektroforézises technikák segítségével.
5. A törzs tápanyagéheztetésének tanulmányozása.
7. Egy már ismert biológiailag aktiv vegyület deuterált származékainak szintézise az alapváz tömegspectrometria vizsgálatának céljából.
2. IRODALMI ÁTTEKINTÉS

2.1. A cianobaktériumok általános jellemzése

elterjedését az akinétaképzés teszi lehetővé. Az akinéták cianobaktériális spórák, melyek gazdag glikogénkészletekkel és tartalék nitrogénnel rendelkeznek. Ezen túléléő képletekkel a légtérben való terjeszkedésre is képes a faj.\(^1\) Alapvető jellemvonásaikat és életmódjukat magyar nyelven Kis Keve Tihamér foglalta össze\(^2\), de a mikrobiológiai stúdiumok anyagát is képezik\(^3\).

2.2. A vízvirágzások és a toxikus cianobaktériumok

A vízvirágzás a felszíni vizekben a planktonszervezetek tömeges elszaporodását jelenti. Ilyenkor a vizek felszínén zavarosodás és intenzív elszíneződés figyelhető meg, összetömörülő elhalt planktontömeg, amely hab, hártya, illetve darabos massza formájában jelenik meg\(^4\) (1. ábra).

1. ábra Cianobaktériális vízvirágzás

A cianobaktériumok tömeges elszaporodásának feltételeként négy kritériumot állapítottak meg: (1) szélcsendes vagy enyhén szeles idő, (2) 15-30 °C közötti vízhőmérséklet, (3) pH 6-9 közötti víz pH-érték és (4) elegendő növényi tápanyag.\(^6\) Toxikus vízvirágzásról abban az esetben beszélhetünk, ha az ilyenkor nagyszámú pl. Elszaporodó planktonikus szervezetek egértesztben toxikusnak minősülő mérgező anyagcseretermékeket termelnek.\(^4,5\) A Földön számos helyen megfigyeltek toxikus vízvirágzást. Az első vízvirágzást Giralduis Cambrensis 1188-ban „írta le” a Langrose-tóban.\(^6,7\) A XX. század ötvenes évei előtt a vízvirágzás jelensége igen ritka volt.\(^8\) Jelenleg nem csupán az eutrofizáló (nitrát- és foszfátterhelt) vizekre jellemző és nem mondható ki egyértelműen, hogy a toxikus cianobaktériumok elszaporodását közvetlenül emberi tevékenység okozta szennyezés idézi elő.\(^6\) Magyarországon először Sebestyén Olga figyelt meg vízvirágzást a tiháni Kis-öböbben
1934 augusztusában. Ekkor a vízvirágzást a *Microcystis aeruginosa* és *Microcystis flos-aquae* fajok okozták. Azóta többször is megfigyelték a Balatonban vízvirágzást, melyek közül a legnagyobb visszhangot a *Cylindrospermopsis raciborskii* szervezet tömeges elszaporodása váltotta ki 1994-ben. A toxikus vízvirágzást nem csak prokarióta, hanem eukarióta szervezetek is okozhatják. Elmondható, hogy a toxikus vízvirágzásokban általában egy domináns cianobaktérium faj a jellemző. Az egyes cianobaktérium törzsek között előfordulhatnak toxikus anyagcsereterméket (cianotoxint) termelő és nem termelő szervezetek is. A toxikus anyagcsereterméket termelő izolátumok toxicitása több nagyságrenddel eltérhet egymástól, így előfordulhat olyan eset is, hogy túlnyomó részben nem toxikus cianobaktériumot tartalmazó biomassza kis mennyiségben jelenlevő toxikus faj miatt erősen toxikusnak mutatkozik.

A toxikus cianobaktériumok elszaporodása akkor különösen veszélyes, ha a vízvirágzás ivóvízkészletet érintő vízterén történik, mivel a cianotoxinokat a szokásos víztisztítási eljárás nem tudja eltávolítani. Általánosul az alkalmazott eljárások a cianobaktériumok lízisét idézhetik elő, ezáltal megnövelhetik az ivóvizek cianotoxin-koncentrációját. Kísérletek folytán a cianotoxinok felszíni vizekből történő eltávolítására, ezek a cianotoxinok megkötésén vagy lebontásán alapulnak. A cianotoxinok megkötésére aktív szenet alkalmazták, de a módszer drága, ezenkívül a kezelt víz gyakran toxinmaradványokat tartalmazott. A cianotoxinok degradálása történhet klórral. Ezen kísérletek alapján elmondható, hogy a klórral (nátrium-hipoklorit formában) történő lebontás során keletkező melléktermékek (trihalometánok, haloecetsavak) koncentrációja a megengedett határérték alatt marad. Az ilyen módon kezelt vizet transzgén egérkísérletekben vizsgálva, a vizek elfogyasztása nem okozott mérgezési tüneteket, de a cindropermopszint, mint cianotoxint tartalmazó vízminta esetén – a minta klóros kezelését követően – zsír rakódott le a hím egerek 40 %-ánál, amire nem tudtak magyarázatot adni. Egy nemrég megjelent közleményben a klórozás kinetikáját vizsgálták cindropermopszin és anatoxin esetén. Oxidálószerként nátrium-hipokloritot, monoklórmint valamint kálium-permanganátot használtak. A reakciókra másodrendű kinetikát tudtak felírni, az oxidálószerek közül a klórfolyadék a leghatékonyabb, a legideálisabb pH-értékeknél a pH=7 bizonyult. A cianotoxinok lebontása UV-fennel is történhet, katalizátorként titán-dioxidot használva. Megállapították, hogy a pH-nak és a szervesanyagtartalomnak hatása van a lebontás sebességére. Tekintettel arra, hogy a cianotoxinok nagyon hidrofil anyagok, mivel poláris (néha ionos) funkciós csoportokat tartalmaznak (cindropermopszin), kísérletek folytán olyan adsorbensek előállítására, melyek szelektíven képesek ezen hidrofil toxinokat megkötni, így teszik
lehetővé dúsításukat vízanalízis céljából, illetve eltávolításukat a vízterekből.19 Mivel a cianobakteriámfajok jelentős része gázvaküllommal rendelkezik, a felszínre tudnak emelkedni. Onnan az áramlatok és a szél a szárazföld felé sodorja a felgyülemlétt biomasszát, így halálós dözőst jelenthetnek az állatok számára, amennyiben azt elfogyasztják.20,21 A humán mérgezéseket általában a cianobakteriáli sejtekkel vagy toxikus metabolitokat tartalmazó ivóvíz, vagy a táplálék elfogyasztása okozza.22 Magyarországon az emberi egészségére legveszélyesebb vizvirágzás a Velencei-tavon történt, amikor a \textit{M. aeruginosa} faj szaporodott el.23 A Balatonban az 1970-es évektől kezdődően komoly gondot okoz az eutrofizáció a növekvő foszforterhelés következtében. A hatvanas évek végén az \textit{A. flos-aquae} terjedt el, a hetvenes évek végétől kezdődően a \textit{C. raciborskii} és a \textit{M. aeruginosa} is tömegesen fordult elő. 1995-től a tó külső foszforterhelésének csökkenése következtében megindult az oligotrofizálódás folyamata, ami az \textit{A. flos-aquae} újbóli dominanciájával jár együtt.23,24,25,26,27,28,29

2.3. A cianobaktériumok által termelt toxikus metabolitok (cianotoxinok) általános jellemzése

A cianobaktériumok által termelt toxikus metabolitokat két szempont szerint csoportosíthatjuk: kémiai szerkezetük, illetve hatásmechanizmusuk szerint.

Kémiai szerkezet alapján a cianotoxinokat a következő csoportokba sorolhatjuk: ciklikus peptidek, alkaloidok, lipopoliszacharidok.4,5,11 A ciklikus peptidek csoportjába tartoznak a mikrocisztinek (\textit{Microcystis}, \textit{Anabaena}, \textit{Planktothrix} és \textit{Nostoc} fajok termelik) és a nodularin (csak a \textit{Nodularina spumigena} termeli).4,5 Ezen ciklikus peptidek szerkezetét az 1980-as évek elején határozták meg, a variánsok száma az 1990-es években ugrásszerűen megnőtt. Kémiai szerkezetükrol elmondható, hogy a nodularin esetén öt, míg a mikrocisztinek esetén hét aminosavból álló ciklikus peptiddel van szó.4,11 Mind a mikrocisztinek, mind a nodularin esetén leírtak nem toxikus módosulatokat is. Ilyen esetekben a kettőskötések térrállásának változását vagy a glutaminsav acilezését figyelték meg.4 Léteznek lineáris mikrocisztin formák, melyek viszont kevésbé toxikusak, mint a megfelelő ciklikus forma; úgy vélik ezek a lineáris formák prekurzorok vagy lebontási termékek.4,5 Az alkaloidok csoportjába tartoznak: az anatoxin-a (kis molekulatömegű másodlagos amin, \textit{Anabaena}, \textit{Planktothrix}, \textit{Cylindrospermopsis}30 és \textit{Aphanizomenon} fajok termelik), az anatoxin-a(s) (ciklikus N-hidroxi-guanin észter, amit \textit{Anabaena} fajok termelnek), az aplisiatoxin (\textit{Lyngbya}, \textit{Schizothrix} és \textit{Planktothrix} fajok termelik), a cylindrospermopszin és a lingbiatoxin (\textit{Lyngbya
fajok termelik) cianotoxinok. Fontos megemlíteni még a karbamát alkaloid neurotoxinok egy csoportját alkotó saxitoxinokat, melyek előfordulnak szulfátmentes (saxitoxin), egyszeresen szulfatált (goniautoxinok), és kétzsekesen szulfatált (C-toxin) formában. Az előbbiek az *Anabaena*, *Aphanizomenon*, *Lyngbya* és *Cylindrospermopsis* fajok toxikus metabolitjai. A kémiai besorolás utolsó csoportját a lipopoliszacharidok alkotják, ezek egy cukor-(általában hexóz) és egy lipidrézből épülnek fel. Irritáló toxinok esetén az allergikus reakciót a zsírsavrező válthatja ki, hatásuk a biológiai rendszerek külső felületén fejtik ki. Sejtfalalkotóként minden cianobaktériumban jelen vannak, toxicitásuk fajonként és izolátumonként széles változatosságot mutat.

2. ábra A legismertebb cianotoxinok szerkezeti képlete

2.4. A cianobaktériumok által termelt toxikus metabolitok (cianotoxinok) laboratóriumi vizsgálata

Hosszú időn keresztül a toxikus vízvirágzások jellemzésére egyedül az egérsztetet használták, amely a teljes toxicitás mértékéről néhány órán belül információt nyújthat. Ez a teszt azonban nem nagyon specifikus, illetve érzékeny. Mára már számos, a cianotoxinok bioaktivitásán alapuló egyéb biológiai kimutatási módszert is kidolgoztak. Így ismeretesek hatékony hepatotoxikus, neurotoxikus, citotoxikus enzimaktivitási és immunológiai interakciókon alapuló kimutatási tesztek. Mindezek ellenére – elsősorban tradicionális okok miatt – önmagában egyetlen teszt sem képes az egérsztet helyettesíteni. Az egérsztetben hím svájci egereket használnak. A sterilre szűrt és vízzel vagy fiziológiai sóoldattal hígított cianobakteriális sejtek ki vonatát vagy a toxikus metabolitokat juttatják az egerek hasüregébe. Az egereket 24 órán keresztül figyelik, a megfigyelt tünetek és a halál beállt utáni eredményeket használják fel az LD₅₀ értékének megadására. Többfajta cianotoxin együttes jelenléte esetén azonban a gyorsabb hatású elfedi a többi tünetet. A BGST (Blue-Green Sinapis Test) egy in vitro növényteszt, amelyet Kós és munkatársai a mikrocisztin kimutatására dolgoztak ki, a teszthez axenikus mustár csiranövényt használnak. A teszt kifejlesztése során több növényfajt is kipróbáltak, és bár mindegyik esetén növekedésgátlást tapasztaltak, a cianotoxinokkal szemben a fehér mustár bizonyult a legérzékenyebbek. A teszt előnye hogy olesz és a mikrocisztin kívül más cianotoxinok (cilindrospermopszin) kimutatására is alkalmas.
A biokémiai próbák közül a proteinfoszfatáz inhibíció egy érzékeny módszert jelent a mikrocisztinek és nodularinok kimutatására. A módszer a toxinok biokémiai aktivitásán alapul. Lényege, hogy PP1A és PP2A típusú enzimek által hasított, 32P-vel jelölt szubsztrátok aktivitását, az eltávolított 32P mennyiségét méri. Ez a módszer nanogramm/milliliter alatti mikrocisztin-konzentrációt is képes kimutatni az ivóvizekben, így rövid időn belül több minta analízisét teszi lehetővé.4

Más tesztekben is a cianotoxinok biokémiai aktivitását használják fel kimutatásukra, például az anatoxin-a(s) esetén az acetilkolin-észteráz gátlást detektálják, sajnos azonban ez a teszt nem szelektív, mert más toxikus anyagokat, például szerves foszfor alapú peszticideket is kimutat.

A legígéretesebb, egértesztet helyettesítő módszerek az ELISA módszerek. Ezt a módszert sikeresen alkalmazzák Kínában a mikrocisztinek detektálására.42

A cianotoxinok detektálására használt kémiai módszerek közül a legelterjedtebb a HPLC-vel történő vizsgálat, ahol alkalmazhatnak UV vagy diódasoros detektort.46,47,48,49 Mivel az UV detektálásnál az azonosítás a retenciós idők alapján történik, standardokra van szükség. A diódasoros detektálás specifikusabban lehet, de az egyedi azonosítás a cianotoxinok hasonló spektruma miatt nem megoldható. Pontos szerkezeti információt szolgáltat a cianotoxinről egy olyan a HPLC-rendszers, ahol detektorként tömegspektrométert használnak. A tömegspektrométer nagy érzékenysége mellett (nagyon kis koncentrációban is képes kimutatni a cianotoxinokat) szerkezeti információt is szolgáltat. A méréstechnikától függően detektálhatunk pozitív vagy negatív töltésű ionokat.50,51 Amennyiben tandem készülék áll rendelkezésünkre, SIM (selected ion monitoring) mód helyett választhatunk SRM (selected reaction monitoring) módot, amely még pontosabban azonosítást tesz lehetővé.

Dell’Aversano-nak és munkatársainak 2004-ben sikerült megvalósítani a saxitoxin-analógok, a mikrocisztinszármazékok, a cilindrospermopszin és az anatoxin-a elválasztását egy módosított HPLC-rendszerrrel Amid-80-as oszlopon, a detektálás során SIM és SRM MS/MS módot is kipróbáltak, a két detektálási módozat között nem volt lényeges eltéré; mindkettő során tisztán elkülönült a cilindrospermopszin és a dezoxi-cilindrospermopszin.53

Jelenleg a leghatékonyabb elválaszási technika az elektroforézis elvén alapul. Kapillár-elektroforézis (CE) esetén két pufferoldatot tartalmazó edény között egy 25-100 μm belső átmérőjű, 20-100 cm hosszú kvarckapillárist helyeznek el. A pufferedényekre kapcsolt nagyfeszültség hatására a vizsgálati kivánt komponensek vándorolni kezdenek. A kapillárelektroforézis technikák közé tartozik a micelláris elektrokinetikus kromatográfia (MEK). A MEK esetén a mintakomponensek egy micelláris fázis és egy határelektrolit között
oszlanak meg, a megoszlás mértéke a meghatározni kívánt anyagokra külön-külön jellemező.
Amennyiben anionos felületaktív anyagokat kritikus micellakonzentráció (CMC) feletti mennyiségben adnak az elektrolíthoz, olyan micellák képződnek, melyek felülete negatív töltésű, belső terület hidrofób jellegű. A hidrofilebb jellegű komponensek érik el hamarabb a detektort, azokat pedig a hidrofóbbak követik. 1992-ben kidolgozták a mikrocsiszinek és a saxitoxinok és 2002-ben a cíldrospermopszin CE-vel történő elválasztását. A cianotoxinok kimutatására vékonyréteggzomografáfiás módszereket is alkalmaznak.

2.5. A Cylindrospermopsis raciborskii nitrogénkötő, fonalas cianobaktérium részletes bemutatása

segítségével az egyes izolátumok között tehető különbség. A faj elterjedésének magyarázatát keresve vizsgálták a négy kontinensen izolált törzsek genetikai diverzitását. A genetikai vizsgálatokhoz IST1, rpoC1 és nifH szekvenciákat vizsgálták és megállapították, hogy az európai és amerikai izolátumok elkülönülnek az ausztráliai és afrikai izolátumoktól. Az amerikai és európai izolátumok csoporton belül nagy homológiaját mutatnak, míg az ausztrál és afrikai csoportban a homológia csak 91 %-os. Megállapították, hogy a polimorfizmus vizsgálatára az említett 3 gén közül az IST1 szekvencia a legalkalmazottabb. A faj izolátumainak vizsgálata során megfigyeltek egyenes és feltekeredett cianobaktérium fonalakat is. A faj trópusi eredetű, de megjelent a mérsékelt övben is, így megvizsgálták a faj hőmérséklet-toleranciáját. Azt találták, hogy növekedéséhez 20-35 °C az optimális, alacsony hőmérsékleten (10-19 °C) az izolált törzsek nem nőttek, de amint a hőmérséklet ismételten ideális vált, a törzsek növekedésének indultak. Brazíliában izolált törzsek esetén is vizsgálták azok hőmérséklet-toleranciáját; azt találták, hogy a növekedéshez a már említett hőmérséklet az ideális, viszont a toxintermelés szempontjából az alacsonyabb hőfok (19-25 °C) a kedvezőbb, ahol a baktériumfonalak növekedése nem olyan dinamikus. A cilindrospermopszin-szintézis kapcsán kimutatták, hogy az Ausztráliában izolált C. raciborskii törzs 35 °C-on nem termeli a már említett cilindrospermopszint, viszont a toxintermelés újra megindul, amint a hőmérséklet alacsonyabb lesz.

A C. raciborskii 1979 novemberében került a nemzetközi figyelem középpontjába, amikor is az ausztráliai Palm Island-ben 18 gyerek került súlyos, hányásos kiszáradásos tünetekkel kórházba. A Solomon Dan víztározóban a cianobaktérium vízvirágzást idézett elő, amit réz-szulfátos kezeléssel igyekeztek orvosolni, így került a toxiikus metabolit, a cilindrospermopszin, az ivóvízbe. Azóta számos más helyen izolált C. raciborskii izolátumokból kimutatták a cilindrospermopszint. A cilindrospermopszinon kívül a szervezet más cianotoxinokat is termelhet, ezek lehetnek különböző származékok, például 7-epi-cilindrospermopszin (amely hasonlóan toxikus, mint a cilindrospermopszin), illetve a 7-dezoxi-cilindrospermopszin (amelyről azóta bebizonyították hogy nem toxikus), valamint anatoxin és SPS-toxinok, például saxitoxin, gonyautoxin. 1999 és 2000 között két brandenburgi tó vízvirágzása során a vízvirágzást okozó fajokat és a jelenlévő toxinokat vizsgálták. A toxicitás és a toxinok detektálására CACO-2 és HEP-G2 sejtvonalakat, HPLC-MS/MS rendszert és egértestet használtak. Az adatok alapján kiderült, hogy a vízvirágzásért a C. raciborskii faj a felelős, a terepen izolált biomasszából cilindrospermopszin tudtak kimutatni. A terepről izolált monokulturás tenyészetekből – bár

2.6. A cilindrospermopszzin részletes ismertetése

Jelenlegi ismereteink szerint a cilindrospermopszzin nevű cianotoxint a Cylindrospermopsis raciborskii, az Aphanizomenon ovalisporum, az Aphanizomenon flos-aquae, a Raphidiopsis curvata, a Lyngbya wollei és az Umezakai natans fajok termelik. Szintézisérőt feltehetően a PKS (poliketid szintáz) valamint az NRPS (nem riboszomális peptid szintáz) felelős, ezen fehérjék génkincsiáit nem csak a C. raciborskii toxintermelő szervezetből tudták kimutatni.

komponensektől mentesíti a mintát, a második anioncserélő oszlop szelektíven megköti a cilindrospermopszint.50 A HPLC-vel történő elválasztáskor C18-as47,76 és Amid-80-as oszlop50,51,52 is használható. Detektorként (mint már említettem) mind MS, MS/MS (pozitív, negatív mód) valamint DAD detektorokat használnak. Az MS/MS detektorok előnye, hogy SRM (416-194, 416-176, 416-336, 416-274 átmenetek),52,53 illetve SIM32,50 módban is használhatók. A minőségi meghatározáson kívül szükséges mennyiségi analízis is, amihez HEPES-t (4-(2-hidroxi-etil)-1-piperazin-etánszulfonsav) használnak belső standardként.51 Biológiai vizsgálatokhoz szükséges a cianotoxinnak nagyobb mennyiségében való izolálása. Ehhez a \textit{C. raciborskii} törzseteket laboratóriumban nevelik, majd a megfelelő mennyiségű biomassza összegyűjtése után a cianobaktérium sejteket feltájítják. A sejttartalmat szerves oldószerek (általában metanollal) extrahálják, majd az extraktumot bepárlás után méretkizárásos oszlopon tisztítják. Analitikai tisztságú cilindrospermopszinhoz preparatív HPLC-vel történő tisztítás során jutnak.15,45,93 Stabilitás szempontjából a cilindrospermopszin viszonylag stabilnak mondható: sötétben, 50 ºC-on minimális bomlást tapasztaltak, azonban napfény és cianobaktériális pigment jelenlétében 2-3 nap alatt a toxin több mint 90 %-a elbomlott.4,94

A cilindrospermopszinről elmondható, hogy jellegzetes, alkaloid típusú cianotoxin tulajdonsága ellenére hepatotoxikus sajátosságokkal bír, ellentétben a már említett neurotoxikus alkaloid típusú cianotoxinokkal szemben.40,41,95,96 A már említett egértestben 2,1 mg/kg volt az LD\textsubscript{50} értéke 24 óra expozíció után.40 A toxin biológiája hatását mind állati, mind növényi rendszerekben (pl. dohánypollen97) vizsgálták. Állati rendszerben súlyosbodó szervi elégtelenséget okoz, a késleltetett tünetek miatt a megfigyelést időtartamát 7 napra kellett megnövelni40. Elektronmikroszkóppal végzett kísérletek bebizonyították, hogy egerekben a toxin fő támadási területe a máj, de jelentős elváltozásokat tapasztaltak a vesében, a szivben és a timuszban is.98 A májban történő változásoknak négy lépcsőfoka van: (1) proteinszintézis-gátlás, (2) membránproliferáció, (3) zsírcseppek akkumulálódása és (4) sejthalál.98

\textit{In vitro} kísérletek igazolták, hogy gátolja a glutation-, illetve fehérjeszintézist.99,100 Azt is kimutatták, hogy a CYN \textit{in vitro} körülmények között nem kompetitív módon gátolja az uridin monofoszfát szintáz komplexet.101 Egy 2002-ben megjelent tanulmány rámutat arra, hogy májsejtekben halállos dózisú CYN adását semlegesíteni lehet kolát és taurokolát adagolásával.102
2.7. A Microcystis aeruginosa és a mikrocisztin

A Microcystis aeruginosa a vízvirágzásokban leginkább előforduló cianobaktérium, egyszejtű sokezers kolóniát alkotó szervezet. A Gram-negatív sejtfal külső rétege közös kocsonyaburokban tartja össze a sejteket.

A mikrocisztinek a cianobaktériumok által termelt, a mérgézésekért felelőssé tehető cianotoxinok legkutatottabb csoportját alkotják. Mérgezési tüneteik anatómiai elváltozások alapján a hepatotoxinok csoportjába sorolhatók. Termelésükre több faj is képes: Microsistis, Oscillatoria, Nostoc, Anabaena, Anabenopsis, Planktothrix.4,5 Először 1959-ben Bishop és munkatársai azonosították M. aeruginosa-ból.103 Később dél-afrikai és ausztráliai tenyészetekből is izoláltak hasonló toxikus tüdőjáratot M. aeruginosa-ból.103

Később dél-afrikai és ausztráliai tenyészetekből is izoláltak hasonló toxikus túdjařatot M. aeruginosa-ból.103 Később dél-afrikai és ausztráliai tenyészetekből is izoláltak hasonló toxikus túdjařatot M. aeruginosa-ból.103 Később dél-afrikai és ausztráliai tenyészetekből is izoláltak hasonló toxikus túdjařatot M. aeruginosa-ból.103

Később dél-afrikai és ausztráliai tenyészetekből is izoláltak hasonló toxikus túdjařatot M. aeruginosa-ból.103 Később dél-afrikai és ausztráliai tenyészetekből is izoláltak hasonló toxikus túdjařatot M. aeruginosa-ból.103 Később dél-afrikai és ausztráliai tenyészetekből is izoláltak hasonló toxikus túdjařatot M. aeruginosa-ból.103 Később dél-afrikai és ausztráliai tenyészetekből is izoláltak hasonló toxikus túdjařatot M. aeruginosa-ból.103 Később dél-afrikai és ausztráliai tenyészetekből is izoláltak hasonló toxikus túdjařatot M. aeruginosa-ból.103 Később dél-afrikai és ausztráliai tenyészetekből is izoláltak hasonló toxikus túdjařatot M. aeruginosa-ból.103 Később dél-afrikai és ausztráliai tenyészetekből is izoláltak hasonló toxikus túdjařatot M. aeruginosa-ból.103 Később dél-afrikai és ausztráliai tenyészetekből is izoláltak hasonló toxikus túdjařatot M. aeruginosa-ból.103 Később dél-afrikai és ausztráliai tenyészetekből is izoláltak hasonló toxikus túdjařatot M. aeruginosa-ból.103 Később dél-afrikai és ausztráliai tenyészetekből is izoláltak hasonló toxikus túdjařatot M. aeruginosa-ból.103 Később dél-afrikai és ausztráliai tenyészetekből is izoláltak hasonló toxikus túdjařatot M. aeruginosa-ból.103 Később dél-afrikai és ausztráliai tenyészetekből is izoláltak hasonló toxikus túdjařatot M. aeruginosa-ból.103 Később dél-afrikai és ausztráliai tenyészetekből is izoláltak hasonló toxikus túdjařatot M. aeruginosa-ból.103

2.8. A környezeti tényezők hatása a cianobaktériumokra

Mind a terepi, mind a laboratóriumi adatok mutatják, hogy a környezeti tényezők, mint például a fény, a hőmérséklet, a tápanyagok és a nyomelemek befolyásolják a cianobaktériumok toxintermelő képességét.4,108,109 Bebizonyították, hogy a toxintartalom a növekedés késői exponenciális fázisában a legmagasabb.110 Vizsgálták a mikrocisztintermelést nitrogén- és foszforlimitált, valamint optimalizált laboratóriumi körülmények között.110,111 Mivel a M. aeruginosa nem nitrogénfixáló cianobaktérium, ezért a kötött nitrogén csökkentése limitálja növekedését, ez az általános stresszreakció csökkenti a
mikrocsíztintermalést. Nem régibben közölt adataink rámutattak arra, hogy az *Aphanismenon ovarisperum* esetén a kén-, illetve foszfórlimitált környezet hat a cilindrosporopszintermalésre.

2.9. A pterokarpánok

A természet színpompáját nyújtó színezőanyagok csoportjába tartozó flavanoidokra Kostanecki és munkatársainak az 1890-es években megkezdett úttörő kutatásai hívták fel a figyelmet. Flavanoid összefoglaló névvel elsősorban a C₆-C₃-C₆ szénvázat (difénil-propán vázat) tartalmazó anyagokat illetjük, de e vegyületesoporto soroljuk a C₁₅+C alapvázzal rendelkező homoizoflavanoidokat és rotenoidokat is. A pterokarpánok a természetben előforduló izoflavanoidok egyik farmakológiaiág is értékes csoportját alkotják. Számos képviselőjük figyelemre méltó fungicid hatásuk révén a növényi fitoalexinek családjába is sorolható.,,115,116,117 A legújabb kutatások rámutattak arra, hogy a pterokarpán váz származékai hatásos cikooxigenáz, valamint kígyóméreg elleni szerek. Egy 2006-ban megjelent közleményben beszámoltak arról, hogy a (+)-3,4dihidroxi-9-metoxi pterokarpán és a (+)3-hidroxi-9-metoxi pterokarpán a humán leukémia sejtek apoptózisát idézik el.

Annak ellenére, hogy a pterokarpán váz tartalmazó vegyületek kémiai és spektrális tulajdonságát már részletesen vizsgálták, meglepő módon tőmetspektroszkópiai viselkedésükről csak kevés adat lelhető fel az irodalomban. Először Pelter és munkatársa számoltak be pterokarpán származékok EI tömetspektrometriai sajátosságairól és megállapították, hogy a pterokarpán esetében a kromon vagy kromanon vázat tartalmazó izoflavonoidokra jellemző, úgynevezett retro-Diels-Alder (RDA) átalakulás a molekulaion fragmentációja során nem megy végbe (3. ábra):

![3. ábra A krom(an)on váz RDA átalakulása](image)

Az feltüntetett fragmentáció során a molekulaion ([M]⁺) a kromángyūrű oxigénatomja melletti hidrogént gyökként elveszíti, így az [M-H]⁺ ion keletkezik. Ezenkívül jellegzetes fragmentációs lépések a gyűrű felnyilást követő gyűrűhasadás, ami egy benzofurán származékot (m/z 162) eredményez (4. ábra).
Sanduja és munkatársai137 1979-ben 2’-hidroxi- és 2’-metoxi-izoflavanoidok EI tömegspektroszkópiai viselkedéséről számoltak be. Először mutatták ki, hogy e vegyületek molekulaionja a 2’ helyzetű szubsztituens gyökként való vesztése után pterokarpán vázas ionná alakul át (5. ábra)

1990-ben Mizuno és munkatársai138 a Cladrastis platycarpa növényből izolált (–)-2,3-dihidroxi-8,9-metiléndioxi-pterokarpán, ((–)-2-hidroxi-maackiain) EI tömegspektrometriás vizsgálata során az észlelt m/z 163 és m/z 175 ionokhoz a 6. ábra szerinti szerkezeteket rendelték.

Az eddigi irodalmi adatok arra utalnak, hogy a pterokarpán váz esetében a 6, 6a és 11a helyzetű hidrogénatomoknak a molekulaionok fragmentációja során döntő szerepük van. Logikusnak látszott, hogy a fent említtett fragmentációs hipotéziseket deuterált származékok tömegspektrometriai vizsgálatával igazoljuk.
3. ANYAGOK ÉS MÓDSZEREK

3.1. Anyagok és eszközök

Munkánk során a centrifugáláshoz Beckman Avanti J25 centrifugát és JA10, JA20, valamint JA18.1 rotorokat, a vékonyrétegkromatográfiás vizsgálatokhoz Merck Kieselgel 60 F₂₅₄ típusú szilikagérléteget használtunk. A szilikagéles oszlopokat az eluenszel nedvesített Merck Kieselgel 60 (0,063-0,200 mm szemcseméret) szilikagéllel töltöttük meg. A HPLC-s elválasztáshoz diódasoros UV-VIS detektorral ellátott Shimadzu UV/VIS 1601 készüléket használtunk Supelco Supelcosil SPLC-18 (35 x 10 mm x 5 \(\mu \)m) oszloppal. Használt frakciószedő: Pharmacia Fine Chemicals Frac-300.

3.2. A munka során vizsgált cianobaktérium törzsek és azonosításuk

A kutató munka során a Balatonból 1995-ben izolált Cylindrospermopsis raciborskii (BGSD 266) és a Kis-Balatonból 2001-ben izolált Microcystis aeruginosa (3T) törzset vizsgáltuk. A szervezeteket a Növénytani Tanszék munkatársai azonosították Olympus BX-50 fénymikroszkóp segítségével a Vasas által leírt módon\(^{123}\). A fajok meghatározásához Felföldi\(^{133}\) és Komárek\(^{134}\) határozó műveit használtuk.

3.3. A planktonikus cianobaktériumok izolálása és nevelése laboratóriumi körülmények között

Cylindrospermopsis raciborskii (BGSD 266):

A hígításos módszerrel történő monocianobakteriális tenyészet létrehozása után a laboratóriumi neveléshez híg agart (0,1%) tartalmazó petricsé szét, valamint Erlenmeyer-lombikban (100 ml-es; 30 ml tápoldat) rázatott tenyészeteket (120 fordulat/perc, News Brunswick), illetve cumisüvegben (250 ml-es) és Erlenmeyer-lombikban (1 és 5 literes) buborékoltatott tenyészeteket használtunk. A cumisüvegben nevelt tenyészetekkel végzett a növekedési kísérleteket. A tömegtenyészetek inokulumumának előállítására a 250 ml-es tenyészeteket használtuk, amit 1 literes Erlenmeyer-lombikba oltottunk. A cianotoxin izolálásához szükséges biomasszát biztosító, Allen tápoldatot tartalmazó 5 literes Erlenmeyer-lombikot oltottuk az 1 literes tenyészetekkel.
A törzsek fenntartásához BG-NO₃, illetve Allen tápoldatokat használtunk.¹²⁴ A tenyészeteket fényen (35-100 μmol foton · m⁻² · s⁻¹) neveltük, a megfelelő keveredést, illetve a CO₂-koncentrációt a rázatott lombikokban rázógéppel (100-120 rpm), a buborékoltatott lombikokban steril levegő segítségével értük el. A nevelőhelyiség hőmérséklete 28 °C volt. Ezen a hőmérsékleten a tenyészetekek nem szükséges plusz CO₂-ot biztosítani.

Microcystis aeruginosa (3T): A törzset a Növénytani Tanszék munkatársai, a kis-balatoni vízvirágzásból 2001-ben izolálták oly módon, hogy a víz felszínén úszó biomasszát üvegbe, a vízmintát üvegszcintillációs küvettába gyűjtötték. A toxicitási vizsgálatokra szánt biomasszát tartósítószer nélkül, hűtőszekrénybe helyeztük, majd hígításos módszerrel monocianobakteriális tenyészetet állítottunk elő.

3.4. A fehérmustár-növényteszt (Blue-Green Sinapis Test)

Laboratóriumunk korábban megállapította, hogy a mustár csíranövények alkalmasak a cianotoxinok kimutatására, a módszert *Blue-Green Sinapis Test*-nek nevezték el.²³ A mustár csíranövény teszt alkalmazása több szempontból is kedvező és alkalmas cianotoxinok tisztításánál és azonosításánál. Egyrészt gyors módszer: 1 napos csíráztatás és 3-4 napos nevelés után értékeltő adatot biztosít, másrészt egyszerű: a módosított mustár csíranövény teszt 96-os Titertech-lemezen több ismétlésben elvégzhető. Harmadszor: *könnyen kezelhető*, mert a csíráztatott mustármag mérete megfelelő az ülétéshoz, a kifejlődött növény hosszadatai pedig könnyen lemerőlhettek. Negyedszer: *reprodukálható* adatokat ad, mivel az előcsíráztatás révén kizárólag csírázásnak indult és azonos méretű magokat használtunk. Ötödszor: *költségkimelő*, mivel csak a mustármagokat és a nevelő „plateket” kell biztosítani, ellentétben az egértesztel, amely használata ellen az állatvédelmek is tiltakoznak. A teszt első lépése a használt mustármagok sterilizációjának csíráztatása volt. Azért használtunk előcsíráztatott magokat, mert már a korábbi vizsgálatok alkalmával bebizonyosodott, hogy az előcsíráztatásnak köszönhetően, a növényi minták homogénék és nem kell foglalkozni a csírázási százalék okozta esetleges hibával. A sterilizációs után, 16-24 óra elteltével a kb. 3 mm gyököség védelmező magokat agarral szilárdított cianotoxintartalmú táptalajra tettük. A növekedéságú magokat a mustármagok tengelyesfől hosszadataval jellemeztük. A növénykisérleteket az előzetes adatok alapján etiolált körülmények között végeztük. A tiszta
mikrocsiztin-LR-rel, illetve *M. aeruginosa* nyerskivonattal munkatársaim által végzett kísérletek bizonyították, hogy az etiolált növények érzékenyebben jelzik a cianotoxin jelenlétét, mint a fotoperióduson nevelték. Sötétkében nevelve, kísérlettől függően 2, 3 vagy 4 nap elteltével lemértük a növények hypokotyl-, gyökér-, sziklevél- és teljes hosszát, az adatokat milliméterben adtuk meg. A növényi növekedésgátlás meghatározására mind a nedvestömeg, mind a hosszadatok alkalmasak. A hosszadatok lemérése időigényesebb, de pontosabb eredményt ad, ugyanis a nedvestömeg eredményeket a gyors nedvességvesztés valamint a gyökérzetre tapad agár meghamisíthatja. Ezért, közvetlenül a mérés előtt vettük ki az agarból a növényeket és alaposan megtisztítottuk gyökérzetüket a rátapadt agartól.

A kromatográfiás eljárásoknál alkalmazott toxicitási tesztek közül az ültetéstől számított 3 nap elteltével mértük le a mustárnövény hosszadatait.

3.5. A *Cylindrospermopsis raciborskii* növekedési görbén meghatározása

A *C. raciborskii* növekedési görbét A800, klorofill-a126 és fehérjetartalom127 mérésekkel, illetve száraztömeg méréssel határoztuk meg. A növekedési görbék felvételéhez az előnevelt, exponenciális fázisban lévő tenyészeteket centrifugáltuk (6370 g, 3 perc) majd a szuszpenziót óvatatosan a tápoldatokba pipettáztuk úgy, hogy a kezdeti A800 0,2-nél nagyobb legyen. A különböző mérési módszerekhez felhasznált minták mennyiségeit az 1. táblázat tartalmazza.

1. táblázat A növekedési görbék meghatározásához felhasznált mintamennyiségek

<table>
<thead>
<tr>
<th>Módszer</th>
<th>Klorofill-a</th>
<th>Fehérjetartalom és gélelektroforézis</th>
<th>A800</th>
<th>Szárazanyag-tartalom</th>
<th>VRK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mintamennyiség</td>
<td>3 ml</td>
<td>2 ml</td>
<td>1 ml</td>
<td>2 x 2 ml</td>
<td>2 ml</td>
</tr>
</tbody>
</table>

Az A800 értékeket a vizsgálat időpontjában mértük, a további értéket a kísérlet sorozat végén együtt határoztuk meg, a mérési hiba minimalizálásának érdekében.

3.6. A spektrofotometrálás körülményei

Az fényabszorpció mérésekhez – klorofill-a, fehérjetartalom, A800, kromatográfiás frakciók elnyelése 210, 240 és 260 nm-en – valamint az UV-VIS spektrumok felvételéhez Shimadzu UV/VIS 1601 típusú spektrofotométert használtunk.
3.7. A klorofill-a tartalom meghatározása

A tenyészet klorofill-a tartalmát úgy határoztuk meg, hogy a tenyészetekből 3 ml mintát centrifugáltunk, majd a csapadékot 200 μl tápoldatban szuszpendáltuk. Ezt a 200 μl-es mintát lefagyasztottunk, majd a kísérlet sorozat végén minden egyes mintához 800 μl hideg acetont adtunk. A mintát időnként megkeverve jégen 30 percig állni hagytuk, majd 4 °C-on 15 percig centrifugáltuk (12000 g). A felüllőszót 663 nm-en fotometráltuk, a klorofill-a tartalmat az extincióskoefficiens (ε) segítségével határoztuk meg (ε = 82,04 mg/ml).126

3.8. Az A₈₀₀ értékének meghatározása

A cianobaktérium tenyészetből vett minta abszorbanciáját közvetlenül a mintavétel után 800 nm-en UV-spektrofotométerrel mértük (lásd a 3.6. fejezet).

3.9. A fehérjetartalom meghatározása

A tenyészetből naponta vett mintákat centrifugáltuk (12000 g, 5 perc, szobahőmérséklet), majd a felülőszót eltávolítottuk és a sejteket lefagyasztottuk. A kísérlet sorozat végén a mintákat steril desztiált vízzel 50 μl-re egészítettük ki és 50 μl 10 mM pH=7,5 Tris-HCl pufferoldatot adtunk hozzájuk. A sejtek beltartalmát háromszoros fagyasztással-olvasztással tártuk fel, és Bradford módszerével127 (556 nm-en mért abszorbancia) határoztuk meg a fehérjetartalmat, háromszoros ismétlésben.

3.10. A szárazanyagtartalom meghatározása

A tenyészetekből minden nap 2 x 2 ml mintát vettünk 3 ismétlésben, melyeket centrifugálás (12000 g, 5 perc) után egyesítettünk. A kísérlet sorozat végén a mintákat liofilizáltuk és kiszámítottuk az 1 ml tenyészetben található cianobaktériumok tömegét.

3.11. A toxicitás meghatározása mustárnövény teszttel

A cianobaktérium tenyészetekből 4 ml mintát vettünk, melyet centrifugáltunk (12000 g, 5 perc), majd a felülőszó eltávolítása után lefagyasztottunk. A kísérlet sorozat végén a
mintákat kiolvasztottuk és steril desztillált vízzel 150 μl-re egészítettük ki. Az így kapott
szuszpenzióhoz 75 μl 3%-os agart adtunk. A megszilárdult agar felszínére egy előcsíráztatott,
axenikus mustármagot helyeztünk, majd 3 nap elteltével lemértük a csíranövények
hosszadatait. Kontrollként cianobaktériumtenyészet nélküli 1%-os agart használtunk és a
kíséleteket 3 párhuzamossal hajtottuk végre.

3.12. A cianotoxiváltság változásának vékonyrétegen történő nyomonkövetése

A cianotoxintartalmat vékonyrétegkromatográfia segítségével határoztuk meg. A
tenyészetekből naponta vett 2 ml mintát centrifugáltuk, majd a felülűső eltávolítása után a
csapadéket lefagyasztottuk. A mintákat a kísérletsorozat végén liofilizáltuk, majd 20 μl
víz-metanol 1:1 elegyében szuszpendáltuk. Ebből az elegyből 3 x 2 μl-t vittünk fel
centrifugálás után a szilikagél vékonyrétegre. A futtatóelegyek a következő voltak:
fénnyel megvilágítva az izolált cianotoxinok foltjai jól láthatók.

3.13. A C. raciborskii sejtek előkészítése a toxikus metabolitok izolálására

A késő exponenciális vagy stacioner fázisba jutott (3 hét nevelés után) tenyészetet
centrifugáltuk (6870 g, 5 perc) és a sejtekat fagyasztásos-olvasztásos módszerrel feltártuk és
–20 °C-on tároltuk. A feltárt sejtszuszpenziót 4-szeres térfogatú 75%-os metanollal egy
éjszakán át hűtőben (4 °C-on) mágneses keverővel kevertük (extrakció), majd az így kapott
tsuszpenziót centrifugáltuk (12100 g, 20 perc). A felülűső szerves oldószer tartalmát
rotációs bepárlón, vákuumban elpárolgottuk. A metanolos extrakcióval elsősorban a
fehérjéket és más, metanolban nem oldódó makromolekulákat távolítottuk el.

3.14. A toxikus anyagercseretermékek izolálásához használt kromatográfiai eljárások

A toxikus anyagercseretermékek tisztítása három, különböző típusú töltetet (DEAE-52,
Whatman anioncserélő; Toyopearl HW-40 molekulaszűrő; szilikagél) tartalmazó oszlopon
törönt. A végső tisztításhoz HPLC eljárást használtunk.
3.14.1. Az anioncserélő oszlop (DEAE-52, Whatman) elkészítése

Az oszlop (3,8 x 15 cm) töltetét a gyártó javaslatai szerint a következő módon készítettük elő. Az így előkészített töltetet a megfelelő méretű oszlopba töltöttük és állni hagytuk, majd tömörödés céljából egy éjszakán át eluáltuk. Ezután 3 órán keresztül kondicionáltuk, 10 mM pH=7,5 Tris-HCl pufferoldattal, majd előkészítettük a sógradienst, amely 2 x 280 ml 10 mM pH=7,5 Tris-HCl pufferoldatból áll, az egyik 0,2 M koncentrációban NaCl-ot tartalmazott. A sógradiens oszlopra juttatása periszaltikus pumpával történt. A kromatográfia során 200 csepp/kémső (kb. 8 ml) frakciókat gyűjtöttünk.

3.14.2. A Toyopearl HW-40 oszlop előkészítése

A molekulaszűrő töltetet (HW-40) az eluensben (50%-os etanol) szuszpendáltuk, majd buborékmentesen a kromatográfiás oszlopba (3 x 60 cm) töltöttük. Ezután egy napig ülededni hagytuk, majd egy liter eluens átfolyatásával tömörítettük és kondícionáltuk. Az eluens periszaltikus pumpával juttattuk az oszlopra. A mintákat 50 %-os etanolban oldva vittük fel a töltetre és 400 csepp/kémső (kb. 4 ml) frakciókat szedtünk.

3.14.3. A szilikagéloszlop elkészítése

A száraz szilikagélt az eluensben (izopropanol-etilacetát-víz 10:6:1 elegye) szuszpendáltuk, majd a kromatográfiás oszlopba (3 x 48 cm) töltöttük és egy éjszakán át állni hagytuk. A mintát az eluensben oldva vittük fel a töltetre és 400 csepp/kémső (kb. 6 ml) frakciókat szedtünk.

3.14.4. A HPLC tisztítási módszerek

A minták HPLC-vel történő tisztításakor Supelco Supelcosil SPLC-18 (35x10 mm, 5 μm) szemipreparatív oszlopot, eluensként 3% metanolt és 0,1% TFA-t tartalmazó desztillált vizet használtunk. Az elválasztást 40 °C-on végeztük, az injektált minta mennyisége azonosítás esetén 50 μl, míg a szemipreparatív tisztítás esetén 300 μl volt. Az áramlási sebességként 3 ml/perc-et alkalmaztunk.
Minden kromatográfiás lépés után a kapott frakciókat 210, illetve 260 nm-en fotometráltuk. Amennyiben szükséges volt, ehhez a mintákat 10-szeresére hígítottuk a 0–2 abszorbancia tartomány elérése céljából.

3.15. A kromatográfiás frakciók toxicitásának meghatározása

A frakciók toxicitását a mustár csíranövény teszttel vizsgáltuk.23 DEAE- és szilikagéloszlop esetén az egyes frakciókból 200 μl-t használtunk a növényteszthez. Toyopearl-oszlop esetén 2 x 200 μl-t alkalmaztunk. A mintát 96 helyes Titertech-lemezre vittük és 40 °C-on beszárítottuk. Az egyes kamrákba 1%-os agart pipettáztunk, erre kerültek az előcsíráztatott mustármagok.

3.16. A vékonyrétegkromatográfia

3.17. Az NMR analízis

Az 1H, 13C, HSQC, COSY, HMBC és NOESY mérések Bruker DRX-500 műszeren készültek 500 (1H), illetve 125 (13C) MHz-en, oldószerként D2O-ot, illetve d6-DMSO-ot használva, 298 K hőmérsékleten.

A molekulák szerkezetének pontos meghatározásához elengedhetetlenek az úgynevezett többdimenziós mérések, melyeknél az egyik dimenzióban a protonok kémiai eltolódásainak értékei, míg másikban protonok vagy szénatomok kémiai eltolódásainak értékei szerepelnek attól függően, hogy proton-proton vagy proton-szén spektrumról beszélünk. Előbbiből a proton-proton, utóbbiból a proton-szén korrelációkat ismerjük meg. A proton-proton kölcsönhatás létrejöhet kovalens kötésen keresztül (csatolás), illetve térben is (NOE), amennyiben a hidrogénatomok egymáshoz képest meghatározott távolságon belül helyezkednek el (1.6–5 Å). A kötésen keresztül létrejövő kölcsönhatás erőssége függ a két kölcsönható atom között elhelyezkedő kötések számától, azok növekedével a kölcsönhatás erőssége, így a jelintenzitás csökken. Általában 1, 2 és 3, néhány speciális esetben 4 kötésen
átterjedő csatolásokkal találkozunk.128 Az ismeretlen cianotoxin szerkezetének meghatározásához a következő többdimenziós NMR-technikákat hívtuk segítségül:
COSY (COrrelation SpectroscopY): ebben a mérésben mindkét dimenziót protonspektrumok alkotják. A spektrumból megtudhatjuk, hogy az adott proton milyen más protonnal vagy protonokkal csatol, azaz mely protonok vannak tőle 3 kötésnyi távolságon belül.
TOCSY (TOtal Correlation SpectroscopY): hasonlóan a COSY-hoz mindkét dimenzióban protonok szerepelnek, a mérésből feltérképezhetők az egy spinrendszerbe tartozó hidrogének.
NOESY (Nuclear Overhauser Effect SpectroscopY): az egymással térközelségben lévő hidrogénatomok között kölcsönhatás jön létre (NOE), tehát a molekula konformációjának felderítésére alkalmas ez a módszer.
HSQC (Heteronuclear Single Quantum Correlation): az egyik dimenzióban protonspektrum, a másikban szénспектrom található. A spektrumból megállapítható, hogy melyik proton közvetlenül melyik szénatomhoz kapcsolódik.
HMBC (Heteronuclear Multiple-Bond Correlation): hasonló a HSQC-hez, csak ez esetben a több kötésen (általában 2-3) át kialakuló proton-szén kölcsönhatások is megfigyelhetők.

3.18. A tömegspektrometriai mérések

A szerkezet meghatározásához szükséges tömegspektrometriai mérések az MTA Kémiai Kutatóközpont Tömegspektrometriai laboratóriumban készültek ESI-Q-TOF, illetve Q3 típusú készüléken, valamint a Debreceni Egyetem Alkalmazott Kémiai Tanszékén működő Brucker Biftex MALDI-TOF készüléken. A MALDI mérések esetén a készülék kalibrálása maltooligoszacharidokkal történt (m/z = 527,15, 689,21, 851,26 és 1013,31). A spektrum felvételekor 2,5-dihidroxi-benzoesav (DHB) mátrixot használtunk (10 mg DHB 0,5 ml etanol:víz 1:1 egyenben), a minta deszorcióját/ionizációját 337 nm-es nitrogénlézerrel végeztük. A pontos tömegméréseket ESI-Q-TOF készüléken végeztük pozitív módban, kalibrálással. A módszer lényege az, hogy a mintához kalibráló anyagot (leucin-enkefalin) adunk, amely fragmenseinek ismerjük a pontos, azaz négy tizedesjegyű tömegét. Egy, a vizsgálni kívánt anyag közelében lévő ilyen fragmensre korrigálva a tömegskálát megmérhetjük a vizsgálni kívánt komponens pontos tömegét. A Q-TOF készülék magában egyesíti a TOF (Time Of Flight, repülési idő) valamint a Q3 készülékek tulajdonságait. A mintát elektronspray körülmények között ionizáltuk, amely egy lágy ionizációs technikának tekinthető, így hőbomlómoly biológiai minták is vizsgálhatók vele. A gőzfázisban lévő, pozitív töltéssel rendelkező ionokból kiválasztott ion az ütközési cellába kerül, ahol az
ütközési gázzal ütközve (ez általában nitrogén) fragmentálódik. Az így kapott fragmentek a TOF analizátorban tömeg/töltés arányuknak megfelelően detektálásra kerülnek. Mivel a repülési idő analizátor 4 tizedesjegy pontossággal tudja megadni az ionok tömegét, lehetőség van a fragment ionok elemi összetételének meghatározására.

A mikrocisztinek azonosítása a Debreceni Egyetem Szerves Kémiai Tanszékén működő FAB készüléken történt.

3.19. Az IR spektrumok

Az IR spektrumokat a Debreceni Egyetem TEK Szerves Kémiai Tanszékének IR készülékén (Perkin Elmer 16 PC FT-IR) vettük fel KBr-tablettában.

3.20. A cianobakteriális nyers kivonattal történő kezelés hatásának vizsgálata mustár csíranövényeken

Az előkészületekhez a kísérleti rendszerünket a következők szerint állítottuk össze: a stacioner fázisban lévő C. raciborskii (BGSD 266) cianobaktérium tenyészetet centrifugáltuk, majd liofilizáltuk. Az így kapott száraz anyaggal szuszpenziót készítettünk. A mustármagokat a már leírt módon előcsíráztattuk, és a nyers kivonatot megfelelő koncentrációban tartalmazó (200, 400, 800, 1600, 3000 és 6000 μg/ml, szárazanyag) 1%-os agarra helyeztük. Kísérleteink során azt tapasztaltuk, hogy a Titertech 96-os lemez helyett, amelyben 200 μl agarra egy darab mustármagot helyeztünk, célszerűbb 24-es lemez használni, mivel ekkor a használható agar mennyisége 1 ml, amelyre kényelmesen ráhelyezhető 4 db mustármag. Ebben az esetben a mért hosszadatok között lényegesen kisebb szórást tapasztaltunk. Mivel a kísérlet sorozat során nem csak a toxinhatás koncentrációfüggését, hanem annak időfüggését is vizsgálni kívántuk, a magok ültetését követő 2. 3. és 4. napon megfelelő számú mustárnövényből (átlagosan 10 db) nyers kivonatot készítettünk. A mustárnövény kivonat készítéshez a csíranövényeket kevés kvarchomok segítségével dörszőltük el. A kivonatkészítés előtt lemértük a növények hosszadatait és a nedvestömegüket. A nedvestömeg adatok alapján határoztuk meg a kivonó puffer mennyiségét. A kivonatok elkészítéséhez 10 mM pH=7,5 Tris-HCl puffert használtunk, amely megfelelőnek bizonyult mindkét típusú gél elektroforézishez: natív (proteáz, nukleáz) és denaturáló SDS. A kapott kivonatok fehérjetartalmát Bradford módszerével határoztuk meg. Az SDS gélelektroforézis
vizsgálatokhoz „Cracking” puffert használtunk, abból 4-szeres töménységű adtunk 1:3 arányban a mintához. A „Cracking” mintapuffer összetétele a következő volt:

B2 puffer (0,5 mM, Tris-HCl pH=6,8): 125 μl,
SDS (20%-os): 150 μl,
glicerin (50%-os): 100 μl,
merkapto-etanol (cc.): 50 μl,
desztillált víz: 75 μl.

A natív, proteáz és nukleáz gélekhez 4-szeres töménységű, csökkentett SDS-tartalmú (0,01 %) mintapuffert használtunk.

3.21. A mustárnövények cianotoxinnal történő kezelése és a kezelés hatásának vizsgálata

A mustárnövények tisztított toxinnal történő kezelése során vizsgáltuk a cianotoxinhatás koncentrációfüggését. Az előkísérletek tapasztalatai alapján 200, 400, 600, 800 és 1600 μg/ml-es koncentrációkat használtunk és az ültetéstől számított 2., 3. és 4. napon vettünk mintát. 24 helyes lemezen dolgoztunk, 1 ml össztérfogat mellett, koncentrációkként 5 db mustárnövényvel. Minden méréshez kontrollnövényeket is használtunk. A növények tömegét és hosszadatait kivonatkészítés előtt lemértük, majd a nyers kivonatos kezelésnél használt pufferrel (lásd korábban) növényi kivonatot készítettünk. Ezek fehérjetartalmát is Bradford módszerével határoztuk meg. Mintapufferként itt is „Cracking” mintapuffert használtunk.

3.22. A fehérjemintázat vizsgálata gélelektroforézissel

A cianotoxinnal kezelt mustár növények fehérjéinek elválasztásához 20 x 20 x 0,1 cm-es, SDS tartalmú gradiens (10-18 %) poliakrilamid gélt használtunk.129 A „Cracking” puffert tartalmazó mintákat 3 percen át tartó forralása után az előkészített poliakrilamid gélen futtattuk meg (7 mA/lap, egy éjszakán át, 20 °C-on). Az 5,5 %-os felső koncentráló gélmintatartó helyeire 20 μg fehérjének megfelelő fehérjekivonatot vittünk fel úgy, hogy a minták térfogata azonos legyen. Minden méréshez kontrollnövényeket is használtunk. A mintákkal párhuzamosan az egyes fehérjék molekulatömegének meghatározására szolgáló molekula tömegmarkert (Pharmacia, LMW Calibration kit) is futtatunk, melyet a mintához hasonlóan 3 percig forraltunk a géleire vitel előtt. A megfuttatott géleket Comassie Brilliant
Blue R-250 oldattal megfestettük és lefotóztuk. A kiértékelés Sigma-Gel szoftver segítségével történt.

3.23. Az ssDN-áz aktivitás vizsgálata gélelektroforézissel

A mustárnövény kivonatokhoz (10 μg fehérjetartalom) csökkentett SDS-tartalmú puffert adtunk, mivel azt tapasztaltuk, hogy a nagy mennyiségű SDS jelenléte a pufferben csökkenti a sávok intenzitását a natív gélben. 10 percig szobahőmérsékleten inkubáltunk, majd gradiens (7,5-18 %) poliakrilamid gélben futtattunk. A gélbe előzőleg 15 μg/ml egyfonalú csirkevér-DNS-t polimerizáltunk. A gél mérete 13 x 16 x 0,15 cm volt. A gélek futtatása egy éjszakán át, 7 mA/lap áramerőségével, hűtőszekrényben történt. A futtatás után a gélek mosása, majd inkubálása M-Hamvas szerint történt. A gélek futtatását követően, azokat 20 perccel keresztül steril desztillált vízzel, majd 30 perccel át 10 mM pH=7,5 Tris-HCl pufferrel mostuk. Az SDS eltávolítása végett, 20 % izopropil-alkoholt tartalmazó 10 mM pH=7,5 Tris-HCl pufferrel történő mosás következett (30 perc). A maradék izopropil-alkohol eltávolítása az inkubálásra használt pufferrrel 2 x 15 perces mosással történt. Ezek után a géleket 4 °C-on az inkubációs pufferben pH=6,8-on, illette pH=8,5-on egy éjszakán át állni hagytuk, majd 37 °C-on 4 órán át inkubáltuk. A pH=6,8-on történő inkubáció során az enzimaktivitás növelése céljából az inkubáló pufferhez magnézium-ionokat (10 mM) adtunk. Az egy éjszakás állás hatására a fehérjék renaturálódtak. A gélek kiértékeléséhez etidium-bromidos (0,5-1,0 μg/ml) negatív festést alkalmaztunk. 254 nm-es UV fényvel megvilágítva az ssDN-ázok sötét sávként tünnnek el az etidium-bromid okozta, narancssárga színű fluoreszcenciát mutató háttérben, a megemésztett ssDNS miatt.

M-Hamvas a mikrocisztinnel és a cilindropermopszinnal végzett kísérletei alapján az alábbi mustár izoenzimeket tudta kimutatni:\(^{125}\)

A 90 kDa látszólagos molekulatömegű izoenzim: a mustár izoenzim pH optimuma 6,8-7,5, aktivitása a lúgos tartományban csökken, az izoenzim mind a kontrollban mind a CYN kezelt mintában kimutatható, az enzim valószínűleg a nukleázok „exonukleáz I” csoportjába tartozik.

Az 50 kDa látszólagos tömegű izoenzim: a mustár izoenzim pH optimuma 5,0, csak savas tartományban mutat aktivitást (pH: 4,0-6,0) magnézium-, kalcium- és mangán(II)-ionok (10 mM, 5 mM, 2,5 mM) hatására aktivitása a nem optimális pH-értékeken is megnő. Eddigi
kísérletek alapján úgy tűnik, hogy az etiolált növények gyökérzetében képződik. Aktivitása MC-LR kezelés hatására kismértéken megemelkedett.

A 30 kDa látszólagos molekulatömegű izoenzim: pH optimuma 6,5-7,5. Az eddigi adatok alapján, a mustár sziklevelében mutatja a legnagyobb aktivitást, molekulatömege harmada a 90 kDa-os látszólagos molekulatömegű izoenzimének, aktivitása azzal együtt, az SDS mennyiségének függvényében változik, az aktivitás MC-LR kezelés hatására megemelkedett. Az enzim valószínűleg a nukleázok „exonukleáz I” csoportja tartozik.

A 30 kDa látszólagos molekulatömegű izoenzim: pH-optimuma 8,0-8,5. Aktivitása a semleges és lúgos tartományban (pH=6,5-9,0) jelentős. Az etiolált növényekben nagyobb aktivitást mutat, mint a fény jelenlétében nevelteknél, a növényi szervek közül a mustár gyökerében mutatja a legnagyobb aktivitást, az aktivitás MC-LR kezelés hatására megemelkedett.

3.24. A proteázzaktivitás vizsgálata gélelektroforézissel, cianotoxinokkal kezelt mustárnövényekből

A mustár proteázzaktivitásának változását poliakrilamid gél elektroforézisével a Debreceni Egyetem Növénytani Tanszékének munkatársai már vizsgálták a M. aeruginosa és C. raciborskii cianobaktériumok által termelt cianotoxinok esetén. Megvizsgáltuk, hogy a C. raciborskii nyerskivonat, illetve a C. raciborskii szervezetből izolált új „cianotoxin” hogyan befolyásolja a mustár csíranövény proteáz izoenzimeinek aktivitását. Az általuk használt Schlereth és munkatársai által 2000-ben kifejlesztett módszer használt Schlereth és munkatársai által 2000-ben kifejlesztett módszer módosítása. A módosítás lényege, hogy a 10 %-os poliakrilamid gélbe 0,04 %-os végkonzentrációjú zselatint polimerizáltunk, így lehetővé válik a proteázzaktivitással rendelkező (elsősorban savas proteá佐k) fehérjék kimutatása. A vizsgálatokhoz 13 x 16 x 0,1 cm méretű gélrendszert alkalmaztunk. A mintákat „Cracking” puffer hozzáadása után, forralás nélkül, egyenlő térfogatúakra kiegészítve vittük fel a gélre. A felülréteg gél összetétele megegyezett a fehérjemintázat meghatározásánál használt gélrendszer felülréteg géljével, de nem tartalmazott zselatint. A gélelektroforézist 15 mA/lap erősségű egyenárammal, hűtőszekrényben végzettük. Az elektroforézist követően a gélt steril desztiállált vízzel mosuk, majd az SDS-t 20 % izopropil-alkoholt tartalmazó 100 mM pH=8,0 Tris-HCL pufferrel, vagy 100 mM pH=5,0 NaH₂PO₄ pufferrel való 2 x 20 perces mosással távolítottuk el. Az inkubálás sötétben, 4-8 órán át a megfelelő mosópufferrel történt.
Ezután a géleket Comassie Brilliant Blue R-250 oldattal festettük, így a zselatint histó fehérjék sávjai nem festődnek. Valamennyi gélen a látszólagos molekulatömeg meghatározásához molekulatömeg markert használtunk.

3.25. A környezeti hatások vizsgálata

Munkacsoportunk már korábban vizsgálta a cilindrospermopszint termelő Aphanizomenon ovalisporum esetén a cianotoxintermélés változását kén- és főszforlimitált körülmények között. Ezeket a vizsgálatokat a C. raciborskii (BGSD 266) szervezetén folytatattuk tovább.

3.26. A cianotoxinok izolálás a terepi mintákból

A 2001. évi kis-balatoni vízvirágzásokból származó és izolált M. aeruginosa cianotoxin tartalmát kivántuk meghatározní, jellemezni. Az összegyűjtött biomassza (sejtek centrifugálása, 9000 g, 20 perc) fagyasztásával és felolvasztásával feltártuk a sejteket, majd 4-szeres mennyiségű metanolmal extraháltunk egy éjszakán át. A kapott szuszpenziót 4 °C-on, 8000 g-n centrifugáltuk 30 percen át, majd a felülésző vákuumbepárlással töményítettük. Az így kapott maradékot DEAE-cellulóz oszlopon tisztítottuk. Az elúcióhoz 10 mM pH=7,5 Tris-HCl puffert és 0-0,1 M NaCl sógradienst használtunk. Ezután a sógradienst 0,2 M NaCl koncentrációra emeltük és az oszlopon maradt komponenseket is eltávolítottuk. Az egyes frakciókat 240 nm-en fotometráltuk és mustárnövénytesztel vizsgáltuk toxicitásukat (200 μl

3.27. A pterokarpán és deuterált származékainak szintézise

A pterokarpán (11a) szintézisét a könnyen hozzáférhető szalilcaldehid-metiléterből (1) és 2-hidroxi-acetofenonból (2) kiindulva hat lépéses szintézissel valósítottuk meg. Első lépésben az 1 és 2 vegyűletek lúgos kondenzációjával a 3 2'-hidroxi-kalkont állítottuk elő, melynek tallium(III)-nitrátos oxidatív átrendeződési reakciója a 4 β-keto-aldehid-dimetilacetál származékhoz vezetett. E vegyületből savas kezeléssel jutottunk a Suginome és Iwadare által már leírt 2'-metoxi-izoflavonhoz (5). A szintézis következő lépésében a metil védőcsoportot alumínium-kloriddal vízmentes acetonitrilben hasítottuk le, a reakció a 6 2'-hidroxi-izoflavont eredményezte (7. ábra).

6 nátrium-borohidrides redukciója a 7 alkohol cisz-transz keverékéhez vezetett, melyek gyűrűzárását vízmentes diiklorbenben bóttrifluorid-éteráttal valósítottuk meg, így kaptuk meg a 8 pterokarpánt (7. ábra).

A 6,6a,11a-trideuterop-terokarpán (10) előállítását a 6-os izoflavonból kiindulva oldottuk meg. A redukciót deuteroborohidriddel vízmentes tetrahidrofurán és deuterometanol (CD3OD) oldószerek elegyében végezte a 9 cisz-transz tetradeutero-izoflaván-4-ol származék keletkezett, melyek bóttrifluorid-éterátos gyűrűzárása a kívánt 10 trideutero-pterokarpánt szolgáltatta (7. ábra).

A 6a-deutero-pterokarpán (18) szintézisét a 12-es 2'-metoximetil-izoflavanonból kiindulva oldottuk meg. A 12 izoflavanon 3-as hidrogénjét deutero-metanolból készített nátrium-alkoholáttal, a 15-ös enolformán át cseréltük ki deutériumra. Az így kapott 16 szokásos módon történő (NaBH₄, majd BF₃·Et₂O) átalakításával jutottunk a 18-as
célvegyülethez. 16-ot felhasználva, annak deutero-borohidrides redukciója, majd BF$_3$·Et$_2$O-os gyűrűzárása szolgáltatta a 20 6a,11a-dideutero-pterokarpánt (9. ábra).

9. ábra 18 és 20 előállítása

A 6-deutero-pterokarpán (25), 6,6a-dideutero-pterokarpán (26) és 6,11a-dideutero-pterokarpán (28) előállítása 11-ből történt, mely vegyület kromongyűrűjének redukcióját deutero-LAH-hal hajtottuk végre, majd a dihidro-benzo[b]fürán szerkezeti rész kialakítását a már előzőleg ismertetett módon végezték el. Ezen reakciók összefoglalását tartalmazza a 10. ábra.

10. ábra A 26-hoz, 27-hez és 29-hez vezető szintézis

A vegyületek azonosítása NMR- és tömegspektrumuk alapján történt.
4. **EREDMÉNYEK ÉS ÉRTÉKELÉSÜK**

4.1. **A *C. raciborskii* (BGSD 266) cianobaktérium laboratóriumi körülmények közötti nevelése**

A laboratóriumi körülmények között nevelt tenyészetek növekedési görbéinek meghatározásához a következő adatokat vizsgáltuk: A_{800}, klorofill-a, fehérjetartalom, száraztömeg, toxicitás. Az A_{800}, fehérje- és a klorofill-a tartalomból kitűnik, hogy a lag fázis 3-4 napig tart, majd 2 hét elteltével a tenyészeti átlép a stacioner fázisba. Az előkísérletek azt bizonyították, hogy ha a tenyészeti $A_{800}=0,2$ érték alá oltjuk, úgy olyan kevés sejt van a tenyészetben, hogy nem valósul meg a sejtek ön árnyékolása, így nagyon fénysokk éri a tenyészset, a növekedés nem vagy csak igen lassan indul meg. A *C. raciborskii* nitrogénkötő cianobaktérium, amely a légköri nitrogént képes hasznosítani. A szervezet növekedését kötött nitrogént tartalmazó táptalajon (Allen + NaNO$_3$) és nitrogénkötő körülmények között (BG-NaNO$_3$ nélkül) követtük nyomon. Az adott körülmények között nem találtunk lényeges különbséget a növekedésben (az Allen tápoldatban a kiindulási A_{800} érték 6-szorosára, a BG tápoldatban 4-szeresére nőtt 12 nap alatt) (11. ábra).

![A C. raciborskii növekedési görbéje](image)

11. ábra Az A_{800} értékének változása a kötött nitrogént tartalmazó és nitrogénkötő tenyészetek esetén

A szárazanyagtartalom, fehérjetartalom és a klorofill-a tartalom változása is hasonló tendenciát mutat (12. és 13. ábra).
Felfigyeltünk arra, hogy a kötött nitrogént tartalmazó tápoldatban a tenyészet fehérjetartalma 5-szörösére, a nitrogént kötő tenyészeté pedig 3-szorosára emelkedett (14. ábra).
A különbség magyarázata az lehet, hogy a nitrogént kötő tenyészet növekedési rátája kisebb a kötött nitrogént hasznosító tenyészeténél. Ez utóbbi különbség láthatóan nem mutatkozik meg a fényszórás alapján mért növekedési rátákkban.

![Toxicitás grafikon]

15. ábra A toxicitás változása a kötött nitrogént tartalmazó és nitrogénkötő tenyészetek esetén

A 15. ábrán a csiranövények hosszát tüntettük fel az idő függvényében. Az egyre kisebb növényhossz a toxicitás mértékének növekedését jelenti.

A toxicitási adatokat figyelve elmondható, hogy az Allen tápoldatban nevelt tenyészet végig toxikusabb, mint a nitrátmentes tápoldatban nevelt, tekintettel arra, hogy a toxicitási görbe a növekedési görbe inverze. Mint azt láttuk, az kötött nitrogént tartalmazó tápoldatban nagyobb a cianobaktérium sejtek mennyisége. Az adatok alapján elmondható, hogy a tenyészetben lévő sejtmennyiség és a toxicitás között lineáris összefüggés van. Az IC₅₀ érték hypokotyl esetén (a kezdeti hypokotyl hosszhoz viszonyítva) Allen médium esetén a 4,5-ik napra míg a nitrátmentes médiumban az 5,5-ik napra adódott. Az IC₅₀ érték gyökér esetén (a kezdeti gyökérhosszhoz viszonyítva) Allen médium esetén a 4. napra, nitrátmentes médiumban a 7. napra adódott. Mint látható, a gyökér érzékenyebben reagál a toxikus anyagcseretermékekre, mint a hypokotyl. A növény teljes egészét nézve nem találtunk morfológiai elváltozásokat, pl. nekrotikus foltokat.

A 250 ml-es buborékoltatott tenyészettel folytatott kísérleteket követően meghatároztuk az 5 literes tömegtenyészet neveléséhez szükséges optimális körülményeket. Kísérleteink azt mutatták, hogy az 5 literes tenyészeteket legcélszerűbb 1 liter exponenciális növekedésű, nitrogénkötő tenyészetekkel beoltani. Az előbbi körülmények között a tenyészet 800 nm-en mért fényabszorpciója 0,2-nek adódott. A tenyészet „önárnyékolása”, az inokulum nagysága
lehetővé teszi a cianobaktérium eredményes növekedését a kötött nitrogént tartalmazó tápoldaton. Kipróbáltuk a 10 literes tenyészeteket is az izolációhoz szükséges biomassza előállításához, de ez a méretű edény nem biztosította az ideális fényviszonyokat a növekedéshez, a sejtek szaporodása igen lassú volt.

Eredményeinket összefoglalva elmondható, hogy a Balatonból izolált C. raciborskii (BGSD 266) törzs buborékoltattott tenyészetben történő neveléséhez minimum A=0,2-es értékű 800 nm-en mért kezdő optikai denzitás szükséges. A tenyészet Allen tápoldatban 2 hét alatt éri el a késő exponenciális / korai stacioner fázist (A_{800}=0,7-0,8), centrifugálással 7-8 gramm nedves sejttömeg nyerhető. Megfigyeltük ugyanis, hogy ha tovább hagyjuk a tenyészeteket növekedni, a fona lak eltöredeznek. A nitratmentes tápoldal – mivel csak a nitrogénkötésre képes szervezetek növekedését teszi lehetővé – ideális a törzsfenntartásra, illetve a izoláláshoz szükséges inokulum elkészítésére. A biomassza előállítására az kötött nitrogént tartalmazó Allen tápoldat alkalmasabb, mivel gyorsabban és nagyobb tömegben szaporodnak benne a cianobaktérium sejtek, ráadásul BG-NO3 tápoldatban a tenyészetek több, mint 3 hét alatt (25 nap) érik el az exponenciális fázist és az izolálható cianotoxin mennyisége is kevesebb.

4.2. A cianotoxinok izolációja

A Növénytani Tanszék munkatársai tömegspektrometriai, HPLC-s, valamint kapilláris elektroforézis mérések segítségével folytatott kísérletekkel bebizonyították, hogy a C. raciborskii törzs nem termeli a cilindrospermopszin nevű cianotoxint. A mustár csíranövényekkel folytatott kísérletekben azonban az erősen toxikusnak mutatkozt. A megállapítás meglepő, mert az irodalmi adatok, a fajmeghatározás (Komárek, személyes közlés) arról tanúsodik, hogy a szóban forgó csíranövény az Ausztráliában talált cilindrospermopszint termelő szervezetet. Ezek után felmerült az a kérdés, milyen anyagcseretermékek felelnek a tesztnövényre kifejtett növekedésgátló hatásért. Erre a kérdésre a toxikus anyagcseretermékek(ek) izolálásával és szerkezetük meghatározásával kívántuk megadni a választ.

A többlépcsős izolálás során több toxikus frakciót is sikerült elkülöníteni. A tisztítási műveletet a legtoxikusabbnak ítélt frakciókkal folytattuk tovább. A toxicitási tesztekhez a már ismertetett mustár csíranövény tesztet használtuk. A toxikus anyag izolációjánál 40 g biomasszából indultunk ki, melyet az „Anyagok és módszerek” fejezetben leírt módon

![Tisztítás DE anioncserélő oszlopon](image)

16. ábra A toxikus cianobakteriális extraktum DEAE cellulóz oszlopon történő elválasztása

Toxikusknak a 47-53-ig terjedő frakciók (az ábrán nyíllal jelölve) bizonyultak; ezeket HPLC-vel tisztítottunk tovább. A tisztítás hatékonyságának növelése érdekében a szerves kémiai szintézistermékek tisztításánál használatos szilikagélloszlopot vezettük be, amely a megfelelő eluensek használatával alkalmasnak bizonyult a tisztítás hatékonyságának növelésére. Miután a keresett, ismeretlen anyag már a kezünkben volt, a tisztítást nyomon tudtuk követni kémiárészek is; ez azonban nem jelentette a mustár csíranövényteszt, mint toxicitást jelző próbát elhagyni. Amint az a 18. ábrából is jól látható, az alkalmazott szilikagélloszlopon történő tisztításnál a szennyező- és színanyagok a kromatogram elején jelennek meg, míg a végén, elkölönlve található a vizsgálni kívánt komponens (79-212 frakciók, a 18. ábrán nyíllal jelölve).

17. ábra A DEAE cellulózos tisztítás toxikus frakcióinak tisztítása

Toyopearl molekulaszűrőn

Toxikusnak a 47-53-ig terjedő frakciók (az ábrán nyíllal jelölve) bizonyultak; ezeket HPLC-vel tisztítottunk tovább. A tisztítás hatékonyságának növelése érdekében a szerves kémiai szintézistermékek tisztításánál használatos szilikagélloszlopot vezettük be, amely a megfelelő eluensek használatával alkalmasnak bizonyult a tisztítás hatékonyságának növelésére. Miután a keresett, ismeretlen anyag már a kezünkben volt, a tisztítást nyomon tudtuk követni kémiárészek is; ez azonban nem jelentette a mustár csíranövényteszt, mint toxicitást jelző próbát elhagyni. Amint az a 18. ábrából is jól látható, az alkalmazott szilikagélloszlopon történő tisztításnál a szennyező- és színanyagok a kromatogram elején jelennek meg, míg a végén, elkölönlve található a vizsgálni kívánt komponens (79-212 frakciók, a 18. ábrán nyíllal jelölve).
Ezt a frakciók vékonyrétegkromatográfia vizsgálata is alátámasztotta (19. ábra).

Ez a tisztítási módszer kis mennyiségeknél olyan hatékonynak bizonyult, hogy a toxikus frakciók közvetlenül HPLC-rendszerrel tisztíthatóak voltak. Nagyobb mennyiség esetén azonban szükségessé vált a molekulaszűrős Toyopearl tisztítás.

A vizsgálatok során itt is alkalmaztuk a frakciók vékonyrétegkromatográfia vizsgálatát (21. ábra).
22. ábra A cianotoxin HPLC-kromatogrammja tisztítás előtt és után

Összegzésként elmondhatjuk, hogy a C. raciborskii tenyészetből sikerült egy növényi inhibítor metabolitot izolálni, az izoláláshoz szilikagél- és Toyopearl-oszlopot valamint utolsó lépésként szemipreparatív HPLC-t alkalmaztunk.

4.3. A tisztított, cianobakteriális ismeretlen metabolit szerkezetazonosítása

A már korábban leírt módon megtisztított toxikus anyag szerkezetének felderítéséhez a következő módszereket használtuk: NMR-, IR-, UV-spektroszkópia, tömegspektrometria és molekulamodelllezés. Az egyes módszerekkel párhuzamosan dolgozva, a 23. ábra szerinti séma alapján jutottunk el az izolált toxikus metabolit szerkezetéhez.

<table>
<thead>
<tr>
<th>Nominális molekulatömeg meghatározás</th>
<th>Ionforma meghatározás</th>
<th>Pontostömeg meghatározás</th>
<th>NMR mérések</th>
<th>Cserélhető hidrogének meghatározása</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-TOF fragmentáció</td>
<td></td>
<td>Részszerkezet felirása</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR adatok</td>
<td>Az aglikonon jelenlévő jellegzetes funkciós csoportok meghatározása</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMR adatok</td>
<td>Szerkezet-meghatározás</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23. ábra A szerkezetazonosítás folyamatának séma

4.4. A nominális molekulatömeg meghatározása

A tisztítás során kapott mintát a Debrecenti Egyetem Alkalmazott Kémiai Tanszékén működő MALDI tömegspektrométeren megmértek és m/z 436 Da-nál valamint m/z 452 Da-nál kaptunk csúcsot. Először arra voltunk kíváncsiak, hogy az m/z 436-os csúcs nátrium addukt-e (M+Na⁺). Az addukt típusának eldöntésére irányuló kísérleteket a MTA Kémiai Kutatóközpont Tömegspektrometriai laboratóriumban végeztük ESI-Q3 készüléken. Hasonlóan a MALDI technikához, ennél az ionizációs módszernél is protonált vagy nátrium-addukt formájában jelennek meg a molekulaionok. Az addukt típusának eldöntése céljából a minta egy kis részéhez kálium-, illetve litéumvegyületet adtunk (KCl, illetve LiCl).
Ennek hatására az előző spektrumhoz képest 420 Da-nál (M+Li+) és 452 (M+K+) Da-nál jelentek meg további csúcsok, melyek bizonyítják, hogy a molekulatömeg 413 Da. (24. ábra)

24. ábra Az izolált cianotoxin tömegspektruma a kálium-, ill. litiumvegyület hozzáadása előtt és után

További bizonyíték arra, hogy a 452 Da-os csúcs kálium-addukt az is, hogy az MS-MS kísérletben 30 eV ütközési energiánál megjelenik és 40 eV ütközési energia hatására jelentősen megnő a kálium-ion intenzitása. (25. ábra)
Azt, hogy egyszeresen töltött ionokról van szó az támasztja alá, hogy mindegyik esetben az izotópcsúcsok közötti különbség 1 Da volt (2. táblázat).

2. táblázat A lítium-, nátrium- és kálium-adduktok izotópcsúcsai

<table>
<thead>
<tr>
<th>Izotóp- eloszlás</th>
<th>Csúcs (Da)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M+Li⁺</td>
</tr>
<tr>
<td>mind 12C</td>
<td>420,1</td>
</tr>
<tr>
<td>1db 13C</td>
<td>421,1</td>
</tr>
<tr>
<td>2db 13C</td>
<td>-</td>
</tr>
</tbody>
</table>

4.5. A pontos tömeg és az összegképlet meghatározása

A pontos tömegméréseket egy ESI-Q-TOF készüléken végeztük pozitív módban, kalibrálással. Az izolált toxikus anyagcseretermék esetén mind a nátrium-adduktnak mind a protonált csúcstól függetlenül meghatároztuk a pontos tömegét, amely megadja az addukt elemi összetételét (3. táblázat).

3. táblázat A protonált molekula és a nátrium-addukt tömegei és összegképletek

<table>
<thead>
<tr>
<th>Összegképlet</th>
<th>Mért érték (Da)</th>
<th>Elméleti érték (Da)</th>
<th>ppm eltérés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molekula + H⁺</td>
<td>C₁₆H₂₄O₈N₅</td>
<td>414,1617</td>
<td>414,1625</td>
</tr>
<tr>
<td>Molekula + Na⁺</td>
<td>C₁₆H₂₃O₈N₅Na</td>
<td>436,1448</td>
<td>436,1444</td>
</tr>
</tbody>
</table>

Az izolált toxikus metabolit összegképlete tehát a következő: C₁₆H₂₃O₈N₅Na.
4.6. Az NMR módszerekkel kapott eredmények és értékelésük

A tömegspketrometriai mérésekkel párhuzamosan NMR méréseket is folytattunk, ezen két méréstechnika adta a szerkezetkutatás alapkövét. Az NMR méréseket a Debreceni Egyetem (Bruker DRX-500 spektrométer) NMR laboratóriumában végeztük. Az NMR polarizáció átviteli módszerek segítségével meghatároztuk az atomok szomszédosságát a kémiai kötések mentén. A csatolási hálót COSY, TOCSY ($^\text{J}_{\text{HH}}$, $n=2-5$) és HSQC ($^\text{J}_{\text{CH}}$, $n=1$) és HMBC ($^\text{J}_{\text{CH}}$, $n=2-5$) kétdimenziós NMR technikákkal térképeztük fel. Elvileg ezek az információk elegendőek lehetnek az ismeretlen molekula konstitúciójának megállapítására. Azonban –amint a vizsgálatok elhelyezkedése kiderült – a viszonylag kis számú hidrogén miatt az egymáshoz közeli (0.16–0.5 nm) protonok térközelségének 2D NOESY módszerrel történő megállapítása is elengedhetetlen volt a szerkezeti javaslathoz.

4.6.1. Egydimenziós NMR-spektrumok (^1H, ^{13}C) spektrumok kiértékelése

Először a ^1H-NMR és a ^{13}C-HMR spektrumokat vettük fel. Ezen spektrumok alapján elmondható, hogy a molekulában 15 db nem cserélhető hidrogénatom van (azaz olyan hidrogénatom, amely szénatomhoz kapcsolódik).

A ^{13}C-izotóp kis gyakorisága miatt a ^{13}C-spektrumok felvétele hosszabb időt, illetve nagyobb mintamennyiségért igényel. Mivel a mintamennyiség kicsi volt, a spektrumokban az eleve kis intenzitással jelentkező kvaterner szénatomok intenzitása nagyon kicsi. A J-modulált ^{13}C-spektrum információt szolgáltat a szénatomok rendségéről (azaz a hozzájuk kapcsolódó hidrogének számáról). Az ilyen típusú spektrumban – megegyezés szerint – a páratlan számú hidrogént viselő szénatomok (primer és tercier) jele, a páros számú hidrogént viselő szénatomok (szekunder) és a kvaternereké az alatt jelentkezik. A molekulában lévő szénatomok közül 10 páratlan és 6 páros rendségű.

A gondos tisztítási folyamatok ellenére is maradhatnak kis mennyiségben jelenlévő szennyezők a mintában. Így például – egyebek mellett – állandó szennyezőként jelentkezik az etanol és a trifluor-ecetsav (TFA). Ezeket a tisztítás utolsó lépésében használjuk és többszöri liofilizálás után sem távolíthatók el nyomtalanul, ezért jelek – általában kisebb intenzitással – az NMR-spektrumokban megjelennek.
4.6.2. A kétdimenziós NMR-spektrumok kiértékelése

4.6.2.1. A HSQC-spektrumok kiértékelése

Az egydimenziós spektrumok után a mintáról HSQC felvételeket készítettünk azért, hogy megállapítsuk mely szénatomhoz mely hidrogének tartoznak.

A spektrumok alapján 11 szénatomhoz kapcsolódik hidrogénatom. A nehézvizes, illetve dimetil-szulfoxidos spektrumok alapján a következő kémiai eltolódásokat észleltük (4. táblázat):

<table>
<thead>
<tr>
<th>Eltolódás D₂O-ban (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹³C</td>
</tr>
<tr>
<td>³¹H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eltolódás d₆-DMSO-ban (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹³C</td>
</tr>
<tr>
<td>³¹H</td>
</tr>
</tbody>
</table>

Mint látható, a d₆-DMSO-ban felvett spektrum ppm értékei kismértékben eltérnek a nehézvízben felvett értékektől. Az NMR spektrumok alapján az alábbi, 26. ábrán látható részszerkezetet tudtuk felirni.

![26. ábra](image)

Az NMR spektrumok alapján megállapított részszerkezet

A 5. táblázat összefoglalólag tartalmazza a részszerkezetre vonatkozó NMR-adatokat.
A felírt részszerkezet NMR adatai

<table>
<thead>
<tr>
<th>Atom</th>
<th>Rendőrség</th>
<th>Csoport</th>
<th>D2O 1H kémiai eltolódás [ppm]</th>
<th>D2O 13C kémiai eltolódás [ppm]</th>
<th>Csatolási állandó [Hz]</th>
<th>de-DMSO 1H kémiai eltolódás [ppm]</th>
<th>de-DMSO 13C kémiai eltolódás [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>CH</td>
<td>4,94</td>
<td>94,59</td>
<td>J1,2 = 4,0</td>
<td>4,75</td>
<td>95,75</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>CH</td>
<td>3,69</td>
<td>67,54</td>
<td>J2,3 = 10,3</td>
<td>3,75</td>
<td>67,96</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>CH</td>
<td>3,08</td>
<td>79,24</td>
<td>J3,4 = 3,0</td>
<td>2,95</td>
<td>80,43</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>CH</td>
<td>3,82</td>
<td>64,59</td>
<td>J4,5 ~ 0</td>
<td>3,68</td>
<td>64,98</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>CH</td>
<td>2,11</td>
<td>70,80</td>
<td>J5,6a = 5,7</td>
<td>2,62</td>
<td>71,41</td>
</tr>
<tr>
<td>6a, 6b</td>
<td>S</td>
<td>CH2</td>
<td>3,26 3,19</td>
<td>60,42</td>
<td>J5,6b = 7,0</td>
<td>J6a,6b = 11,1</td>
<td>3,10-3,29 61,88</td>
</tr>
<tr>
<td>7</td>
<td>P</td>
<td>CH3</td>
<td>3,34</td>
<td>56,52</td>
<td>–</td>
<td>3,38</td>
<td>56,71</td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>CH</td>
<td>4,17</td>
<td>73,82</td>
<td>J8,9 = 6,2</td>
<td>J8,10 = 2,1</td>
<td>4,02</td>
</tr>
<tr>
<td>9</td>
<td>P</td>
<td>CH3</td>
<td>1,34</td>
<td>14,36</td>
<td>J8,9 = 6,2</td>
<td>1,2</td>
<td>15,31</td>
</tr>
<tr>
<td>10</td>
<td>T</td>
<td>CH</td>
<td>4,96</td>
<td>75,70</td>
<td>J8,10 = 2,1</td>
<td>4,67</td>
<td>76,12</td>
</tr>
</tbody>
</table>

P = primer, S = szekunder, T = tercier, Q = kvaterner
kizárólag csak a 8-as szénatomon lévővel csatol, ezért a szerkeztfelderítésnél azt feltételeztük, hogy a 10-es szénatomhoz egy heteroatom, vagy egy kvaterner szénatom kapcsolódik.

Az 1H-NMR spektrumban található jelek kémiai eltolódásai, integrálértékei és felhasadásai alapján egy monoszacharid-vázat sejtetnek. A vázprotonok csatolási állandói α-D-galaktopiranozid egységre engednek következtetni, ami ezért torzítatlan 4C$_1$ szék konformációnban található. Az α-anomer konfigurációt megerősíti a mért nagy, 1J$_{C1,H1}$ = 170 Hz csatolási állandó is.

A 13C-NMR spektrumok alapján a következők mondhatók el: az összegképlet meghatározásánál azt találtuk, hogy a szénatomszám 16, amelyből 10 található a feltüntetett részszerkezeten. A 13C-NMR spektrumban ezen szenek a

5. táblázatban feltüntetett kémiai eltolódásoknál adnak jelet. A spektrumban a 6-os szénatom jele „lefelé”, míg az 1-es, 2-es, 3-as, 4-es, 5-ös, 7-es, 8-as, 9-es és 10-es szénatomoké „felfelé” mutatnak.

4.6.2.2. A TOCSY spektrumok kiértékelése

Mint azt már az „Anyagok és módszerek” részben említettük, kovalens kötésen keresztül homonukleáris korreláció jöhet létre (COSY, TOCSY). A COSY csak a spin-párok közti ténylegesen működő spin–spin csatolás esetén ad jelet, azaz elsősorban 2–3 kötés távolságban. A TOCSY további mágneszettség átvitelel a teljes spinrendszeret egy kísérletben igazolhatja. Tekintettel arra, hogy a COSY spektrumokban manifesztálódó skaláris csatolások általában jól észlelhetők a TOCSY spektrumokban is, ezért a COSY spektrumban lévő csatolásokat nem ismertetem külön.

A TOCSY spektrumokat is mindkét oldószerben felvettük annak a reményében, hogy a cserélhető protonok által generált csatolásokat is nyomon tudjuk követni. Mivel nagyon kevés anyag állt rendelkezésünkre és a minta nagyon higroszkópos volt, ilyen jellegű csatolásokat a vízzel való csere miatt nem vagy csak egy-egy spektrumban találtunk, így meglétük megkérdőjelezhető.
6. táblázat Proton-proton csatolási háló a TOCSY mérések alapján

<table>
<thead>
<tr>
<th></th>
<th>H1</th>
<th>H2</th>
<th>H3</th>
<th>H4</th>
<th>H5</th>
<th>H6a,b</th>
<th>H7</th>
<th>H8</th>
<th>H9</th>
<th>H10</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>H1</td>
<td>3</td>
<td>H2</td>
<td>3</td>
<td>H3</td>
<td>3</td>
<td>H6a</td>
<td>3</td>
<td>H6a,b</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>H3</td>
<td>3</td>
<td>H4</td>
<td>4</td>
<td>H2</td>
<td>4</td>
<td>H6b</td>
<td>3</td>
<td>H5</td>
</tr>
<tr>
<td>5</td>
<td>H4</td>
<td>4</td>
<td>H1</td>
<td>4</td>
<td>H1</td>
<td>5</td>
<td>H4</td>
<td>3</td>
<td>H4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>H6a,b</td>
<td>4</td>
<td>H1</td>
<td>4</td>
<td>H1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a: csatoló proton sorszáma; b: a csatoló protonok közötti kötéstávolság

Mivel a táblázatban minden csatolás kétszer szerepel, proton-proton csatolásról lévén szó a jobb áttekinthatőség kedvéért a következőben kötéstávolság szerinti sorrendben tárgyalom az egymással csatoló hidrogéneket.

Kétkötéses konnektivitások:

Kétkötéses geminális csatolás van a 6a és a 6b hidrogének között. (Ez a csatolás megtalálható a COSY spektrumban is).

Háromkötéses konnektivitások:

Mint az ábrán is látható, háromkötéses (vicinális) csatolás van a H1-H2, H2-H3, H3-H4, H4-H5, H5-H6, H8-H9 és H8-H10 protonok között. (Ezen csatolások megtalálhatóak a COSY spektrumban is). A jelek megléte nem függ az alkalmazott oldószer minőségétől.
Négykötéses konnektivitások:

Négy kötésen keresztül ható konnektivitás van a H1-H3, H1-H5, H2-H4, H4-H6a,b valamint a H9-H10 protonok között.

Ötkötéses konnektivitások:

Ötkötéses konnektivitás van a H1 és a H4 hidrogének között.

Ezen adatok alapján elmondható, hogy a cukorrész egy spinrendszt alkot, a másik spinrendszer a cukoroz kapcsolódó oldallánc. Fontos megjegyezni, hogy a 3-as szénatomhoz kapcsolódó metoxi-csoport az éterkötésű oxigén miatt megszakítja a spinrendszert, így a C7-es szénatomhoz kapcsolódó hidrogének nem tagjai a cukor spinrendszerének. Ugyanilyen éterkötésű oxigén választja el egymástól az oldallánc spinrendszerét a cukor spinrendszerétől.

4.6.2.3. A HMBC-spektrumok kiértékelése

A cukorrész szerkezetének alátámasztása céljából olyan NMR-kísérleteket végeztünk, amelyek a többkötéses proton-szén csatolásokról adnak felvilágosítást.

A HMBC kísérlet itt alkalmazott változata (lecsatolt, gradienses változat, egyszeres aluláteresztő szűrővel) általában jól elnyomja az egykötéses konnektivitást, melyeket egyébként a HSQC spektrumból kapunk meg. A spektrumok felvételét mind nehézvízben (D2O), mind d6-DMSO-ban elvégeztük. A molekulában lévő cserélhető hidrogének (–NH–, –NH2, –OH) jelei ugyanis csak a d6-DMSO-ban készült felvételekben jelennek meg, mivel D2O-ban ezen hidrogének deuteriumra cserélődnek. Így a nehézvízben felvett proton-NMR
spektrumból megismerhetjük a nem cserélhető protonok számát és környezetét. Az összegképletben szereplő hidrogénatomok számának és a nehézvizes kísérletben kapott hidrogénatomok számának különbsége tehát a cserélhető hidrogének számát adja meg.

7. táblázat Proton-szén csatolási háló a HMBC mérések alapján

<table>
<thead>
<tr>
<th>H-1</th>
<th>H-2</th>
<th>H-3</th>
<th>H-4</th>
<th>H-5</th>
<th>H-6</th>
<th>H-7</th>
<th>H-8</th>
<th>H-9</th>
<th>H-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>C3</td>
<td>3</td>
<td>C1</td>
<td>2</td>
<td>C2</td>
<td>2</td>
<td>C3</td>
<td>2</td>
<td>C4</td>
<td>2</td>
</tr>
<tr>
<td>C5</td>
<td>3</td>
<td>C3</td>
<td>2</td>
<td>C4</td>
<td>2</td>
<td>C2</td>
<td>3</td>
<td>C6</td>
<td>2</td>
</tr>
<tr>
<td>C8</td>
<td>3</td>
<td>C16</td>
<td>3</td>
<td>C7</td>
<td>3</td>
<td>C6</td>
<td>3</td>
<td>C1</td>
<td>3</td>
</tr>
<tr>
<td>C2</td>
<td>2</td>
<td>C4</td>
<td>3</td>
<td>C3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b</td>
</tr>
</tbody>
</table>

a: csatoló szénatom sorszáma; b: a csatoló atomok közötti kötéstávolság

Az egyes protonok csatolásainak ismertetése előtt szeretném megjegyezni, hogy különböző paraméterekkel és oldószerekben több mérést is végeztünk, az ábrákon és a 7. táblázatban csak azokat a csatolásokat tüntettem fel, melyeket legalább két mérés igazolt.

Megjegyzendő, hogy 4-5 kötéses proton-proton csatolások előfordulnak csak telített kötéseket tartalmazó szénhidrátokban is. Hasonló, heteronukleáris távolható csatolások szintén előfordulhatnak (bár erre kevesebb irodalmi példa van), azonban jelenlétük mindig egy merev, rögzített konformációra utal (pl. W alakú elrendeződés).

Az 1-es számú szénatomon lévő hidrogén csatol a tőle két kötéstávolságra lévő 2-es, valamint a tőle három kötéstávolságra lévő 3-as, 5-ös és 8-as szénatommal. Utóbbi csatolás perdöntő.
A 2-es szénatomon lévő hidrogén csatol a tőle két kötéstávolságra lévő 1-es és 3-as, valamint a három kötéstávolságra lévő 4-es szénatommal.

A 3-as szénatomhoz kapcsolódó hidrogén csatol saját szénatomjával, a tőle két kötéstávolságra lévő 2-es és 4-es szénatomhoz, továbbá a három kötésre lévő 7-es metoxi-szénatommal. Ez utóbbi kölcsönhatás bizonyíték arra, hogy a cukor 3-as helyzetében hidroxil-csoport helyett O-metil csoportot találunk. Találhatunk még egy gyenge négykötéses csatolást is az 5-ös szénatommal.

A 4-es szénatomhoz kapcsolódó hidrogén csatol a tőle két kötésre lévő 3-as szénatommal. További, három kötésen keresztüli csatolások jelentkeznek a 2-es és 6-os szénatommal.

Az 5-ös proton csatol a tőle 2 kötéstávolságra lévő 4-es és 6-os szénatommal, továbbá találunk még háromkötéses csatolást C1-hez, valamint egy ötkötéses csatolást C7-hez.
A 6-os számú szénatomon két hidrogén van, mindkettő csatol a velük két kötéstávolságra lévő 5-ös, a három kötéstávolságra lévő 4-es és a négy kötéstávolságra lévő 1-es szénatommal.

A 7-es szénatomon lévő metoxi-hidrogének csatolnak a tőlük három kötéstávolságra lévő 3-as szénatommal és a négy kötéstávolságra lévő C4-gyel, ezenkívül két spektrumban megtaláltuk az öt kötéstávolságra lévő C5-tel történő csatolást is. Megtalálhatjuk még a saját szénatommal történő egykötéses csatolást is. A 3-as, illetve 4-es szenekkel történő csatolás igazolja a metoxi-csoport jelenlétét.

A 8-as szénatomon lévő hidrogén a három kötéstávolságra lévő 1-es szénatommal ad jelet.

A 9-es metil-szénatomon lévő hidrogének kétkötéses csatolásban vannak a 8-as, háromkötéses csatolásban a 10-es szénatommal.
A 10-es szénatomon lévő hidrogén teremt kapcsolatot a cukorrész és az aglikon között: jelet ad a két kötésnyi távolságra lévő 8-as és a négy kötéstávolságra lévő 1-es szénatommal.

Az eddigi eredmények alátámasztják a cukoregység glikozidos hidroxil-csoportja és az aglikon heterogyűrűje közötti oldallánc meglétét.

4.6.2.4. A NOESY-spektrumok kiértékelése

Amint arról már szó volt („Anyagok és módszerek” fejezet), a hidrogének egymással nem csak kötéseken keresztül (COSY, TOCSY), hanem téren keresztül is képesek kölcsönhatni (NOE, Nuclear Overhauser Effect). Ezért ez a vizsgálati módszer alkalmas lehet a molekula térszerkezetének megjósolására. A molekula térszerkezetére a röntgendiffrakciós vizsgálatok szolgáltatnának pontos adatokat, de az ehhez szükséges egykristály növesztése esetünkben nem volt lehetséges, egyrészt az anyag kis mennyisége, másrészt higroszkópos tulajdonsága miatt.

A NOESY spektrumokat nehézvízben vettük fel. A kapott eredményeket a 8. táblázat tartalmazza.

8. táblázat Térbeli csatolási háló a NOESY mérések alapján

<table>
<thead>
<tr>
<th>H1</th>
<th>H2</th>
<th>H3</th>
<th>H4</th>
<th>H5</th>
<th>H6a,b</th>
<th>H7</th>
<th>H8</th>
<th>H9</th>
<th>H10</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>H1</td>
<td>H2</td>
<td>H7</td>
<td>H6a,b</td>
<td>H3</td>
<td>H9</td>
<td>H1</td>
<td>H9</td>
<td></td>
</tr>
<tr>
<td>H9</td>
<td>H3</td>
<td>H4</td>
<td>H3</td>
<td>H4</td>
<td>H4</td>
<td>H10</td>
<td>H9</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>H8</td>
<td>H5</td>
<td>H5</td>
<td>H3</td>
<td>H5</td>
<td>H5</td>
<td>H10</td>
<td>H1</td>
<td>H1</td>
<td></td>
</tr>
<tr>
<td>H5</td>
<td>H7</td>
<td>H6a,b</td>
<td>H1</td>
<td>H1</td>
<td></td>
<td>H1</td>
<td>H15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H9</td>
<td></td>
</tr>
</tbody>
</table>
A baloldali ábrán az 1-es szénatomhoz kapcsolódó anomerproton téren át ható csatolásait jelöltem be. Látható, hogy csatolást találunk a 2-es hidrogénnel; ez további bizonyítéka annak, hogy a cukorrész alfa helyzetű oldalláncon keresztül kapcsolódik az aglikonhoz. A 8-as és 9-es hidrogénekkel való csatolás az ezen oldalláncon keresztül történő kapcsolatot támasztja alá.

A 2-es hidrogén csatol az 1-es és 3-as szénatomon lévőkkel.

A 3-as szénatomhoz kapcsolódó proton csatol a már említett 2-es hidrogénnel. Az axiális helyzet miatt kézenfekvő az 5-ös és 4-es szénatomokon lévő hidrogénekkel való csatolás.

A 4-es szénatomhoz kapcsolódó hidrogén – mint azt már említettük – csatol a 3-as hidrogénnel. A 4-es hidrogén ezenkívül csatol még az 5-ös és 6-os szénatomon lévő hidrogénekkel is, ez várható volt a galaktóz térszerkezetéből.
Az 5-ös hidrogén helyzetéből számos hidrogénnel van csatolásban. Csatol a már említett 1-es, 3-as és 4-es hidrogénekkel. Természetesen csatol a már említett 1-es, 3-as és 4-es hidrogénekkel. Gyenge csatolást találtunk továbbá az oldallánc metilén-hidrogénjeivel. Ezen csatolás erőssége azonban elhanyagolható a többihez képest, így azt feltételeztük, hogy a távolság 5Å-nél nagyobb is lehet.

A 6-os szénatomon lévő hidrogének a már említett 4-es és 5-ös hidrogénekkel történő csatoláson kívül természetesen egymással is csatolnak.

A 7-es szénatomon lévő hidrogének csatolnak a már említett 3-as és 4-es hidrogénekkel.

A 9-es metil-csoport hidrogénjei a már említetteken kívül (1-es és 8-as szénatom hidrogénje) csatolnak a 10-es szénatomon lévő hidrogénnel.

Az oldallánc utolsó szénatomja a 10-es szénatom, melynek protonja csatol a már említett 1-es és 9-es szénatomokkal.

A NOE-mérések eredményeit összefoglalva megállapítható, hogy a metil-csoport NOE kölcsönhatásaiból annak az anomer protonhoz képest elfoglalt térhelyzetére lehet következtetni. Az itt bemutatott elemzéssel bizonyítottuk, hogy az izolált toxikus metabolit egy galaktóz-származék.

4.6.3. A cserélhető hidrogének számának meghatározása (hidrogén-deutérium csere)

A deuterálási kísérletek célja az volt, hogy igazoljuk azon elképzelésünket, miszerint az általunk izolált cianotoxinban 6 cserélhető hidrogén van, és meghatározzuk ezen protonok
számát a cukorrészben, illetve az aglikonban. Ehhez a nehézvízben felvett mintákat mértük meg az ESI-Q\textsubscript{3} készülékkel. A kísérletet elvégezve egy nyolc tagból álló csúcssorozatot (414→421) kaptunk a 414 Da-os és egy hét tagból álló csúcssorozatot (436→442) az m/z 436 Da-os ion esetén (27. ábra)

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{image1.png}
\caption{27. ábra A nehézvízben oldott cianotoxin tömegspektruma}
\end{figure}

Az NMR adatokkal összevetve ez azt jelenti, hogy a molekulában összesen 6 db cserélhető hidrogén van \(-\text{OH}, -\text{NH}, -\text{NH}_2\) formában. Ha megnézzük a molekula eddigi részszerekezetét láthatjuk, hogy a cukorrész két hidroxil-csoportja már szubsztituált, azaz maximum három cserélhető hidrogén lehet a cukorrészen. Ha ez így van, akkor a maradék három cserélhető hidrogénnek az eddig még nem ismert aglikon részen kell lennie. Ha az aglikonrész viszont nem csak az anomeres hidroxil-csoporton keresztül kapcsolódik a cukoregységhez, hanem van egy visszakapcsolódás is, akkor a cukor részen már csak kettő cserélhető hidrogén lesz. Ez azt jelenti, hogy az aglikonon a cserélhető hidrogének száma négy. A visszakapcsolódás kérdésének eldöntése céljából MS-MS felvételeket készítettünk. Előkísérelteinkb megfigyeltük, hogy a nem deuterált anyag esetén az m/z 414-es ion MS-MS spektrumában megjelent az m/z 238-as és az m/z 220-as ion (28. ábra).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{image2.png}
\caption{28. ábra A m/z 414-es ion MS/MS spektruma}
\end{figure}
Feltételezzük, hogy a molekulaion cukorvesztésével jön létre a 238-as ion, továbbá hogy az ebből történő vízvesztéssel az m/z 220-as ion. Az m/z 220-as ion, amely ilyen formán az aglikon rész protonált formája, megfelelőnek bizonyult a deuterálási kísérletekben. A deuterált minta spektrumból az m/z 419-es ion választottuk ki az aglikon vizsgálatára. Az m/z 419-es ion esetén 5 deutérium található a molekulaionban a cserélhető hidrogének helyén. Így ha ebből az 5 deutériumból 4 az aglikonon található, akkor m/z 225-ös ion megjelenése várható.

Az m/z 419-es ion MS-MS felvétele azt a feltevést támasztotta alá, hogy az aglikon két helyen kapcsolódik vissza a cukorrészhez, ugyanis egy 6 tagból álló csúcssorozatot kaptunk: 220, 221, 222, 223, 224 és 225 Da-nál (29. ábra). Ez csak úgy képzelhető el, ha magán az aglikonon van 4 cserélhető proton. Ez viszont azt jelenti, hogy a cukorrészen csak két cserélhető hidrogén van. Ebből az következik, hogy az aglikon két helyen kapcsolódik a cukoregységhez, amit a már meglévő NMR eredmények alapján is valószínűsítettünk.

4.6.4. Az NMR és MS mérésekből következő részeredmények

Eddigi eredményeink összefoglalásaként elmondható, hogy a toxikus anyagcseretermék egy 3-O-metil-galaktóz származék, melynek anomer csoportja egy izopropil-csoportja és a molekula aglikonrészéhez kétszelenség alapján kapcsolódik. Ezen izopropil-csoport a 10-es sorszámú szénatomján (metil-csoport, \(sp^3\) hibridizációú szénatom) keresztül kapcsolódik a molekula aglikonrészéhez. A kapcsolódás heteroatomon, vagy kvaterner szénatomon keresztül történik, a 10-es szénatom másik vegyértékével is egy heteroatomhoz, vagy egy kvaterner szénatomhoz kapcsolódik. A molekula további részleteinek tisztázásához felhasználtuk az MS-MS fragmentáció adatait, illetve az infravörös spektrumból levont következtetéseket.
4.6.5. A molekula aglikonrészének szerkezetfelderítése

A molekula további részének kiderítése céljából az összegképlet alapján meghatároztuk a molekulában található kettőskötések és gyűrűk együttes számát az \(a - \frac{1}{2} b + \frac{1}{2} c + l \) képlet segítségével, mely egy adott \(C_aH_bN_cO_d \) összegképletű molekulára alkalmazható. A gyűrűk és kettőskötések számára 8-at kaptunk. A cukorváz és az aglikon visszakapcsolódása miatt 6 darab kettőskötés és gyűrű található az aglikon részben. A nitrogénatomok nagy száma és gyűrűkre és kettőskötésekre kapott relative (a szénatomok számához viszonyítva) nagy érték miatt valószínűnek tűnik, hogy az aglikon egy heteroaromás vegyület.

A molekula összegképletéből következik, hogy az aglikon \(C_6H_5N_5O_2 \) összegképletű, ebből 4 hidrogén cserélhető (OH, NH, NH) formában van jelen. Egy hidrogénatom szénatomhoz kapcsolódik. Ehhez a szén-hidrogén kapcsolathoz egy ~8,8 ppm-es \(^1\)H-eltolódás és egy ~148 ppm-es \(^{13}\)C-eltolódás rendelhető. A proton eltolódás értékéből nyilvánvaló, hogy ez a CH-csoport egy hiperkonjugált, vagy egy aromás rendszer része. A szénatomon lévő hidrogén kémiai eltolódása feltételezi egy heteroaromás rendszerben való részvételét, jelének szingulett volta pedig azt, hogy közelében nem található olyan szénatom, melyhez hidrogénatom kapcsolódik. Tehát feltételezhető, hogy a szóban forgó szénatom (148 ppm) heteroatomhoz vagy kvaterner szénatomhoz kapcsolódik. Az aglikonban lévő többi szénatom nem hordoz protont (a HSQC spektrumban nem adnak jelet). Egydimenziós \(^{13}\)C-spektrumban nagy, 100 ppm feletti eltolódással rendelkeznek, ez sp\(^2\) hibridizációjú szénatomokra utal. Ez a hibridizációs állapot aromás, illetve konjugált rendszerekre jellemző.

A toxikus anyagcseretermékről felvett HMBC spektrum alapján a következő, **30. ábrán** jelzett észrevételeket tehetjük az aglikonnal kapcsolatban:

![30. ábra](image-url) A cukor rész kapcsolata (csatolásai) az aglikonnal, a HMBC mérés alapján
A galaktózegységhez kapcsolódó izopropil-csoport 8-as hidrogéne jelet ad a 128-as szénatommal (zöld nyíl), így ez a két atom maximum 4 kötés távolságra lehet. Az izopropil-csoport 10-es szénatomja jelet ad a 145-ös, 148-as és 152-es szénatomokkal (kék nyílak), így ezek a szénatomok is maximum 4 kötés távolságra lehetnek a 10-es hidrogéntől; ez az jelenti, hogy a 10-es szénatomtól három kötés távolságra négy másik szénatomnak kell lennie. A 148-as szénatom hidrogéne jelet ad a 128-as, 144-es és 152-es szénatommal (rózsaszín nyílak), ezért feltételezhető, hogy ezen szénatomok maximum 4 kötés távolságra vannak a hidrogénatomtól. A cukorrész 2-es szénatomjának hidrogéne csatol a 168-as szénatommal (piros nyíl). Ez további bizonyíték arra, hogy az aglikonnak két kapcsolódási pontja van a cukorrésszel. A csatolás ténye valamint az, hogy a szén eltolódásértéke ilyen nagy arra enged következtetni, hogy ez a szénatom (2-es) közvetlenül kapcsolódik a 2-es helyzetű hidroxil-csoporthoz, illetve kettőskötéssel (sp²-hibridizáció miatt) nagy valószínűséggel nitrogén- vagy oxigénatomhoz kapcsolódik.

A TOCSY spektrumban csatolást találunk a 10-es proton és a 148 ppm eltolódású szénatomhoz kapcsolódó hidrogén (8,85 ppm) között (31. ábra).

31. ábra A 10-es proton csatolása az aglikon ismeretlen részével a TOCSY spektrum alapján
A NOESY spektrumok elemzése során a következő megállapításokat tettünk: a 148 ppm eltolódású szénatomon lévő hidrogén csatol a 3-as, 5-ös, 8-as, 9-es és 10-es szénatomon lévő hidrogénekkel. (32. ábra)

32. ábra Térbeli csatolások a NOESY spektrumok alapján

A jelintenzitásokból megállapítható, hogy a 3-as, 8-as és 10-es hidrogénatomok közötti csatolás erősebb, azaz ezek a hidrogének közelebb helyezkednek el a 148 ppm eltolódású szénatomon lévő hidrogénékhöz, mint a 5-ös hidrogén. A 9-es hidrogénekkel történő csatolás ugyan kimutatható, de szinte elhanyagolhatóan kicsi. Ezek a csatolások arra engednek következtetni, hogy ez a 148 ppm eltolódású CH-csoport a cukorvázhoz közel található.

4.7. Az infravörös spektrum értelmezése

Az IR spektrum felvételénél problémát okozott az anyag higroszkópos tulajdonsága (emiatt a KBr-tabletta bemattult), amit már korábban is tapasztaltunk, hiszen liofilizálás után szobahőmérsékleten képlékényé vált. A kapott spektrum (33. ábra) alapján a következő észrevételeket tettük. A 3500 cm⁻¹ értéknél jelentkező széles sáv a molekulában lévő hidroxil-, illetve amino-csoportokra utal, az 1800-1600 cm⁻¹ érték között lévő széles dupla sáv alátámasztja a heteroaromás rendszer feltételezését, mivel nagy valószínűséggel a ν(C=O), ν(C=O), ν(C=N), továbbá az amidok jellegzetes sávja is itt található. Az 1500 cm⁻¹-nél található jelek az aromás váz jellemző vegyértékreszegéseit, az 1412 cm⁻¹ értéknél lévő sáv alátámasztja a hidroxil-, illetve amino-csoportok meglétét (β(OH), βas(NH₂)). Az 1204 cm⁻¹-nél jelentkező sáv éterkötésben lévő oxigénre utal, (μas(C-O-C)), míg az 1150 cm⁻¹-es sáv a metoxi-csoport meglétét támasztja alá (ν(O-C-OCH₃)). Az 1000 cm⁻¹ értéknél lévő erős sáv
ismételt bizonyítéka a hidroxil-csoport jelenlétének (μ(C-OH)), a 840 cm⁻¹ értéknél jelentkező sáv a CH-csoportra jellemző.

Összefoglalásként elmondható, hogy a molekula aglikonrészében egy többszörösen szubsztituált heteroaromás gyűrű található, amelyhez egy amid funkciós csoport, illetve egy guanidinocsoport kapcsolódik. A molekulában nagy valószínűséggel amino-csoport található.

4.8. Az MS-MS spektrumokból levont következtetések

Az ESI-Q-TOF készülék lehetővé tette, hogy nem csak a molekulaion, hanem a fragmens ionok tömegét is nagy pontossággal megmérjük.

A fragmensek pontos tömegének meghatározására két lehetőségünk nyílt. Amennyiben az adott fragmension látható volt az eredeti, azaz nem MS-MS spektrumban, a fragmension közelében kalibrálva megkaptuk annak pontos tömegét. Ezt a módszer választottuk a nagy intenzitással megjelenő 238-as, illetve 220-as ion esetében. A másik lehetőség az volt, hogy a kiválasztott iont (414, 238, 220) fragmentálásakor olyan ütközési energiát választunk, ahol még látható az anyaion a spektrumban. Ezeknél a spektrumoknál az anyaionra, mint ismert pontos tömegű ionra kalibráltunk. A pontos tömegek és így a pontos tömegvesztések ismeretére azért van szükség, mert így különbséget tudunk tenni például egy hidroxil-csoport,
illetve egy ammóniamolekula vesztése között, amit nem tehetném meg alacsony felbontású készüléknél, mivel mindkettő nominális tömege 17 Da. A 28. ábra (4.6.3. fejezet) a toxikus metabolit MS-MS spektrumát mutatja, a 9. táblázat pedig a jellegzetes fragmenseket tartalmazza.

9. táblázat Az m/z 414-es ion fragmensei

<table>
<thead>
<tr>
<th>Mért tömeg [Da]</th>
<th>Számított tömeg [Da]</th>
<th>Összegképlet</th>
<th>ppm eltérés</th>
</tr>
</thead>
<tbody>
<tr>
<td>414,1625</td>
<td>414,1617</td>
<td>C_{16}H_{24}O_{8}N_{5}</td>
<td>1,9</td>
</tr>
<tr>
<td>238,0927</td>
<td>238,0940</td>
<td>C_{9}H_{12}N_{5}O_{3}</td>
<td>-1,3</td>
</tr>
<tr>
<td>220,0835</td>
<td>220,0834</td>
<td>C_{9}H_{10}N_{5}O_{2}</td>
<td>0,5</td>
</tr>
<tr>
<td>203,0578</td>
<td>203,0570</td>
<td>C_{9}H_{7}N_{4}O_{2}</td>
<td>3,9</td>
</tr>
<tr>
<td>202,0730</td>
<td>202,0729</td>
<td>C_{9}H_{8}N_{5}O</td>
<td>0,5</td>
</tr>
<tr>
<td>194,0681</td>
<td>194,0679</td>
<td>C_{7}H_{8}N_{5}O_{2}</td>
<td>1,0</td>
</tr>
<tr>
<td>193,0789</td>
<td>193,0726</td>
<td>C_{9}H_{9}N_{4}O_{2}</td>
<td>3,3</td>
</tr>
<tr>
<td>192,0883</td>
<td>192,0887</td>
<td>C_{8}H_{10}N_{5}O</td>
<td>-2,1</td>
</tr>
<tr>
<td>178,0728</td>
<td>178,0729</td>
<td>C_{7}H_{8}N_{5}O</td>
<td>-0,6</td>
</tr>
</tbody>
</table>

Ha a molekulaion összegképletéből kivonjuk az m/z 238-as ionnak megfelelő összegképletet láthatjuk, hogy helyes volt azon elképzelésük, hogy a molekulaionból ez az ion a cukorrész semleges molekulaként történő távozásával jön létre. Az m/z 238-as ion MS-MS spektrumában megtalálható az m/z 220-as ion, amely az m/z 238-as ionból vízvesztéssel jön létre. Az m/z 220-as ion MS-MS spektrumában (34. ábra) a 9. táblázatban szereplő ionok jelentek meg.
Ezen ionok a 35. ábrán látható neutrális vesztések során jönnek létre:

Mint azt már említettem, a 238-as ionban még megtalálható a cukormolekula egyik hidroxil-csoportja, így a 220-as ion mondható az aglikon protonált formájának. Ez a protonált forma ammóniát képes veszíteni, ami feltételezi az amino-csoport jelenlétét. A 220-as ionból történő vízvesztés csak úgy képzelhető el, ha az aglikonban található egy hidroxil-csoport. Az acetilénvesztés az izopropil-oldalláncból vagy a heteroaromás gyűrűből történhet. A hidrogén-cianid vesztés történhet a heteroaromás gyűrűből, illetve olyan oldalláncból, ami a cukorrész távozásával válik szabad, valószínűleg a 2-es hidroxil-csoportot kapcsolódva. Annak a valószínűsége, hogy a molekula maga ciano-csoportot tartalmaz kicsi, mivel az IR spektumban 2200 cm\(^{-1}\) értéknel nem találtunk jelet. Az m/z 220-as ion szén-monoxid vesztése karbonil-csoport jelenlétiét feltételezi.

Összefoglalva elmondható, hogy az aglikonrész carbonil-, hidroxil- és amino-csoportot tartalmaz, és egy nitrogéntartalmú oldalláncon keresztül kapcsolódik vissza a cukorrészhez.
4.9. Az UV-spektrum értelmezése

Az abszorbancia-maximumok 214, 238, 275 és 347 nm-nél találhatók, ezek aromás amidra jellemzők (36. ábra).

<table>
<thead>
<tr>
<th>Hullámhossz [nm]</th>
<th>Abszorbancia (c = 0,1 mg/ml)</th>
<th>Abszorpciós koefficiens</th>
</tr>
</thead>
<tbody>
<tr>
<td>214</td>
<td>0,998</td>
<td>4,12 x 10³</td>
</tr>
<tr>
<td>238</td>
<td>0,988</td>
<td>4,12 x 10³</td>
</tr>
<tr>
<td>275</td>
<td>1,274</td>
<td>5,03 x 10³</td>
</tr>
<tr>
<td>347</td>
<td>0,552</td>
<td>2,57 x 10³</td>
</tr>
</tbody>
</table>

36. ábra A cianotoxin UV-spektruma, valamint abszorbancia-maximumai

4.10. A cianotoxin szerkezetének felirása

A fentebb ismertetett adatok birtokában a toxikus anyagcseretermék szerkezetére javaslatot tettünk. A feltételezett szerkezetet molekuladinamikai módszerekkel vizsgálva a cianotoxin térbeli szerkezetére is tettünk javaslatot (37. ábra). A kvantumkémiai számítások részletes ismertetése nem képezi a dolgozat tárgyát.

37. ábra Az izolált cianotoxin szerkezete

A vegyület kémiai neve:
4-amino-5,10-dihidroxi-9-(hidroximetil)-13-imino-11-metoxi-6-metil-5,6,7a,9,10,11,11a,13-oktahidropirano[2,3-j]pirimido[4,5-e][1,9,3]dioxazacloundecin-2(3H)-on.

A vegyületnek a cilindropermopszicziklin (CYC) triviális nevet adtuk.
4.11. Az aglikonra vonatkozó NMR adatok értelmezése

Az aglikon eddig még nem ismertetett atomjainak 1H- és 13C-NMR eltolódás értékeit a 10. táblázat tartalmazza.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Rendőrség</th>
<th>D$_2$O 1H kémiai eltolódás [ppm]</th>
<th>D$_2$O 13C kémiai eltolódás [ppm]</th>
<th>de-DMSO 1H kémiai eltolódás [ppm]</th>
<th>de-DMSO 13C kémiai eltolódás [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 (OH)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3,5</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Q</td>
<td>-</td>
<td>128,04</td>
<td>-</td>
<td>128,18</td>
</tr>
<tr>
<td>12</td>
<td>Q</td>
<td>-</td>
<td>154,63</td>
<td>-</td>
<td>154,20</td>
</tr>
<tr>
<td>12 (NH$_2$)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6,4</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>Q</td>
<td>-</td>
<td>154,93</td>
<td>-</td>
<td>154,73</td>
</tr>
<tr>
<td>14</td>
<td>Q</td>
<td>-</td>
<td>152,81</td>
<td>-</td>
<td>152,24</td>
</tr>
<tr>
<td>15</td>
<td>T</td>
<td>8,91</td>
<td>148,56</td>
<td>8,78</td>
<td>149,09</td>
</tr>
<tr>
<td>16</td>
<td>Q</td>
<td>-</td>
<td>164,88</td>
<td>-</td>
<td>169,81</td>
</tr>
<tr>
<td>16 (NH)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3,7</td>
<td>-</td>
</tr>
</tbody>
</table>

4.11.1. A HMBC spektrum értelmezése

A 8-as szénatomon lévő hidrogén az eddig ismertetetteken kívül a 11-es szénatommal ad jelet.
A 10-es szénatomon lévő hidrogén teremt kapcsolatot a cukorrész és az aglikon között: jelet ad az aglikonrészben található 12-es és 14-es (három kötéstávolság), valamint a 15-ös (négy kötéstávolság) szénatomokkal. Ezzel is bizonyított a cukor-aglikon kovalens kapcsolat.

Az előbbiekben igazolt aglikonrészben az egyetlen nem cserélhető hidrogén a 15-ös szénatomon található, ez a hidrogén csak az aglikon szénatomjaival van csatolásban: kétkötéses csatolást mutat a 14-es, háromkötésest a 11-es és négykötésest a 13-as szénatommal.

A DMSO-ban feloldott minta HMBC és TOCSY spektrumának részletes tanulmányozásakor két cserélhető proton hetero- és homonukleáris csatolásaira is figyelmesek lettünk (38. ábra), ezzel a 10-es szénatom hidroxil-csoportjának és a 16-os szénatomhoz kapcsolódó nitrogénatom hidrogénjeinek cserélhető mivoltát tudtuk igazolni. A heterogyűrűben lévő –NH–, valamint az –NH2 hidrogének igazolását az nehezíti, hogy ezen protonok jelei gyakran diffúzak (így pl. nehezen integrálhatók), s ehhez a jelenséghez esetünkben még a tautoméria is hozzájárulhat.

38. ábra Két cserélhető proton csatolásai a HMBC és TOCSY mérések alapján (d6-DMSO)
4.11.2. A NOESY spektrum értelmezése

Tekintettel arra, hogy a NOESY spektrumban is „megfordítható” kapcsolatokról beszélünk, a jellemző csatolásokat összefoglalva, a 15-ös szénatomon lévő hidrogén esetén ismertetjük (39. ábra).

![39. ábra Térbeli csatolások a NOESY spektrum alapján](image)

A 15-ös szénatomon lévő hidrogénatom kapcsolatot mutat a cukorváz és a molekula többi részének protonjaival. A NOE kölcsönhatások igazolják azt, hogy a 15-ös hidrogén a cukorrészhez térben is közel helyezkedik el. Ha megnézzük a jelek intenzitását azt állapíthatjuk meg, hogy minden egyes jel intenzitása nagyobb, mint a 15-ös proton 9-es protonnal való kölcsönhatásának intenzitása. Ezen csatolás gyengesége 5 Å-nél nagyobb átlagos távolságot feltételez, így feltételezhető, hogy az oldallánc és a heterogén által kialakított gyűrűben a 10-es hidrogén befelé (erős csatolás a 15-ös szénatomon lévő hidrogénnel), míg a metil-csoport abóból kifelé néz. A 15-ös és 3-as szénatomokon található hidrogének egymással való intenzív csatolása bizonyítja azon elképzelésünket, hogy az aglikon a cukorváz alatt helyezkedik el, viszont nem fordul teljesen alá, mivel a 5-ös hidrogénnel való csatolása gyengébb mint a 3-as hidrogénnel létrejövő csatolás.

Összefoglalva: az NMR-adatai alátámasztották az általuk felírt szerkezeti képletet, és segítségükkel megjósoltuk a molekula térbeli szerkezetét is. A kapott eredmények a térszerkezetre vonatkozó kvantumkémiai számításokkal összhangban voltak.

4.12. A fragmentációs útvonalak

A dolgozat ezen részében az általunk felírt lehetséges szerkezet fragmentációját kivánjuk bemutatni. A 40. és 41. ábrák látható az m/z 414-es molekulaion MS/MS spektruma.
Az m/z 238-as ion képződése

A molekulaion kötései a tömegspectrumer ionforrásában vagy ütközési cellájában elhasadnak oly módon, hogy a molekula cukorrésze semleges molekulaként távozik és egy pozitív töltésű aglikonrész marad vissza. A töltés egy többlet proton miatt jön létre, ami bármely heteroatomhoz kapcsolódhat, ezért a molekula mellett tüntettük fel. Ezt az ábrázolást kivánjuk alkalmazni minden olyan esetben, amikor az ion egy semleges molekula
protonálódásával jön létre. Az így keletkező m/z 238-as ionra három féle szerkezet írható fel, ezeket 238a, 238b és 238c-vel jelöltük (42. ábra).

Az m/z 238-as ion képződése

Az m/z 238-as ionból vízvesztéssel jön létre az m/z 220-as ion. Az m/z 220-as ionok lehetséges szerkezétét a 43. ábra mutatja be. Az m/z 238 ionban két hidroxil-csoport is van, ezek bármelyike távozhat vízként.

Az m/z 203-as ion fragmentációjája

Az első fragmentációs útvonal az m/z 203-as ionnal kezdődik. Ez az ion az m/z 220-as ionból történő ammóniavesztéssel jön létre (44. ábra).

Az m/z 203-as ion keletkezése és fragmentációjá

Az m/z 220-as ion ammóniavesztésével a heterogyűrűn egy pozitív töltés jön létre, amely egy kettőskötés kialakulásával és többlettöltés protonkét történő megjelenésével stabilizálódik. Az m/z 203-as ion vízvesztés után eredményezi a m/z 185-ös iont. Az m/z 185-ös ion hidrogén-cianid vesztés után (m/z 158) szén-monoxidot (m/z 130), majd acetilént veszít (m/z 104).

Az m/z 203-as ion nem csak vizet, hanem szén-monoxidot is veszthet, így jön létre az m/z 175-ös ion. Ebből az ionból képződik az m/z 149-es és az m/z 147-es ion. Az m/z 149-es ion acetilénvesztéssel jön létre, míg az m/z 147-es ion egy átrendeződést követő szén-monoxid vesztéssel. Az m/z 149 ion szerkezetéből követik, hogy megvalósulhat belőle egy szén-monoxid, illetve egy hidrogén-cianid vesztés, míg az m/z 147-es ion hidrogén-cianid és acetilénvesztéssel fragmentálódik tovább. A dolgozat további részében szereplő fragmentációs utak során más szerkezetű, de ugyanilyen összegképletű m/z 149-es és m/z 147-es ionok is bemutatásra kerülnek. Ezen ionok fragmentációját tekintettel arra, hogy a fentebb feltüntetett csoportokat veszíthetik el, részletesen nem mutatjuk be.
Az m/z 202-es ion fragmentációja

Az m/z 202-as ionból ammóniavesztésen kívül vízvesztés is történhet, ami az m/z 202-as ion eredményez. Ez az ion ammóniakilépés után adja a már ismert m/z 185-ös iont, melynek további fragmentációját már ismertettem.

Az m/z 202-es ion keletkezése és fragmentációja

A 202-es ion hidrogén-cianid elimináció után adja az m/z 175-ös iont, amely ammóniát, szén-monoxidot, acetilént, valamint propint tud veszíteni, így kapjuk rendre az m/z 158, 149, 147 és 135-ös ionokat. Az m/z 158-as ion szén-monoxidot veszítve adja az m/z 130-as iont, amelyből hidrogén-cianid távozásával jön létre az m/z 103-as ion.

Az m/z 147-es ion az oldallánc teljes veszítésével adja az m/z 107-es iont. Ugyanezt a iont kapjuk meg akkor is, ha az m/z 202-es formából képződő m/z 175-ös ion először veszíti

45. ábra Az m/z 203-as ion fragmentációja

46. ábra Az m/z 202-es ion keletkezése és fragmentációja
el az oldalláncot (m/z 135), majd szén-monoxidot. Az m/z 175-ös ionban olyan az oldallánc szerkezete, hogy történhet az acetilénvesztés is.

Az m/z 202-es ion szén-monoxid vesztésével jön létre az m/z 174-es ion, mely lehetséges vesztései a következők: az oldallánc vesztése, ammóniavesztés, valamint hidrogén-cianid vesztés (47. ábra).

Az m/z 194-es ion fragmentációja

Az m/z 220-as ion következő lehetséges vesztése az acetilénvesztés, ami viszont csak az „a” formából valósulhat meg. Így jön létre az m/z 194-es ion amely további fragmentációját mutatja be a 48. ábra.

Mint látható, az m/z 194-es ionból történhet vízvesztés, (így jön létre az m/z 176-os ion), illetve szén-monoxid vesztés, (így jön létre az m/z 166-os ion). Amennyiben az m/z 176-os ion hidrogén-cianidot, vagy az m/z 166-os ion ammóniát veszít, ugyanazon összegképletű, de eltérő szerkezetű m/z 149-es ion jön létre.
Az m/z 193-as ion fragmentációja

Az m/z 220-as ion lehetséges vesztése a hidrogén-cianid vesztés, ami minden olyan 220-as ion formából megvalósulhat ahol a molekula 2-es hidroxil csoportjának oxigénje és a 16-os szén atom közötti kötés heterolitikus hasadásával jön létre a 238-as ion. Az m/z 193-as ionra jellemző hidrogén-cianid vesztést követő szén-monoxid elimináció (m/z 193). Az így létrejövő ion metán molekula kilépéssel eredményezi az m/z 149-es ion (49. ábra)

Mint az 49. ábra mutatja, az m/z 220e ion két helyről is eliminálhat szén-monoxidot: vagy a heterogyűrűből vagy az oldalláncról. Az így létrejövő m/z 165-es ion metánt veszítve adja az m/z 149-es iont. Ugyanehhez az ionhoz jutunk, ha heterogyűrűből történő szén-monoxid vesztést követően az oldallánccet acetonmolekulaként távozik.

Az m/z 192-es ion fragmentációja

Az m/z 192-es ion a m/z 220-as ionból képződik szén-monoxid vesztés során. Mint az az m/z 220-as ion szerkezetekből kitűnik, az említett szén-monoxid vesztés a heterogyűrűből valósulhat meg. Amennyiben az ion (220-as) keto formában felirható, akkor az oldalláncból is történhet szén-monoxid vesztés. Az m/z 192-es ion lehetséges vesztei a következők: ammónia, acetilén, hidrogén-cianid és formaldehid. Ammóniavesztés során jön létre az m/z 175-ös ion, amely szén-monoxid vesztés után adja a már ismert m/z 147-es iont (50. ábra).
Amennyiben az m/z 220-as anyaion az oldalláncon tartalmazott acetilénvéget, akkor lehetőség van az ammóniavesztést követő szén-monoxid vesztés mellett acetilénvesztésre is. Ezt mutatja be a 51. ábra.

Mint a fenti ábrán látható, az m/z 192-es ionból acetilénvesztés során jön létre az m/z 166-os ion. Ez az ion ammóniát eliminálhat, így jön létre az m/z 149-es ion.

Az m/z 192-es ionok minden olyan esetben képesek hidrogén-cianid eliminációra amikor az anyaionként szereplő m/z 220-as ion ciano-csoportot tartalmaz.
Mint azt a 53. ábra mutatja, az m/z 192-es ion hidrogén-cianid vesztése az m/z 165-ös iont eredményezi. Ez az ion tovább fragmentálódhat úgy, hogy metán lép ki belőle, így az m/z 149-es fragment kapjuk. Érdekes megjegyezni, hogy amennyiben a m/z 192-es ion úgy jön létre, hogy a 220-as ion heterogýüjéből lép ki a szén-monoxid akkor az így keletkezett m/z 192-es ion hidrogén-cianid vesztést követő propionaldehid eliminációjával adja az m/z 109-es iont.

Az m/z 192-es ionból történhet formamidvesztés is abban az esetben, ha az m/z 192-es ion anyaionja úgy jön létre, hogy a molekulaion fragmentációja során a cukorváz 2-es hidroxilcsoport oxigénje és a 2-es szénatom közötti kötés hasad heterolitikusan.

Az m/z 177-es és m/z 178-as ionok fragmentációja

Az m/z 177-es ion az m/z 220i-ből képződik gyökvesztéssel. Az m/z 178-as ion is a m/z220i ionból képződik, amikor az oldallánc egy része lehasad, az így létrejövő m/z 178-as ion ammóniát, hidrogén-cianidot és szén-monoxidot tud veszíteni. Ammóniavesztés során jön létre az m/z 161-es ion ami szén-monoxidot veszít (m/z 133). Ez az ion hidrogén-cianid molekula vesztést követően adjá a m/z 106-os iont. Az m/z 178-as ion másik lehetséges vesztése a hidrogén-cianid vesztés. Ekkor keletkezik az m/z 151-es ion ami szén-monoxid elimináció után adja az m/z 123-as iont (55. ábra).
Az m/z 220-as ion acetaldehidvesztése

Az m/z 220-as ionból történhet acetaldehidvesztés abban az esetben, ha a 220-as ion oldallánca tartalmaz acetaldehid egységet. Ilyen oldallánccal találkozhatunk az m/z 220e forma esetén (ennek a formának a tautomerjei az m/z 220c és 220i formák).

Az m/z 220-as ion formamidvesztése

Formamidvesztés során jön létre az m/z 175-ös ion ami szén-monoxid vesztés után adja az m/z 147-es iont (57. ábra).

Összegzésként elmondható, hogy ezen fragmentációs utak egyértelműen alátámasztották az általunk felírt szerkezetet.
4.13. Az izolált metabolit (cilindrospermosziciklin) biológiai hatásainak előzetes analízise

A *C. raciborskii* cianobaktérium nyers kivonatának hatása a mustár csiranövényre

Az izolált toxikus cianobakteriális anyagcseretermék hatásának vizsgálatához mustár csiranövényeket használtunk. Minden tisztított cianotoxinnal végzett kísérlet előtt az „Anyagok és módszerek” fejezetben már leírt módon előkísérleteket végeztünk a *C. raciborskii* szervezet nyerskivonatával, mivel a tisza cianotoxin előállítása nemcsak drága, de nagyon időigényes folyamat is. Mivel axenikus mustárrendszerben dolgoztunk, a gátlóhatást csak a tápanyagba (agarba) adott nyerskivonat, vagy tisza toxin okozhatja. A kísérletekhez etiolált növényeket használtunk, mivel sötétben a hypokotyl hirtelen megnyúlása miatt a növekedésgátlás szembetűnőbb és ezzel egyidejűleg az IC₅₀ érték pontosabban meghatározására nyílik lehetőség. A növénytesztkísérletekhez 1-3 mm gyököcskével rendelkező, előcsíráztatott mustármagokat használtunk, így feltételezhető volt, hogy a főgyökér által felvett és a hypokotyl által továbbított cianotoxin hatását tanulmányoztuk, de nem volt kizárható a maghéjon keresztül történő cianotoxin felvétel sem. A nyerskivonat, illetve a tisztított cianotoxin csírázásra gyakorolt hatását azonban nem vizsgáltuk, azaz nem végeztünk olyan kísérletet amikor a nyerskivonatot vagy a tisztított cianotoxint tartalmazó táptalajra még csírázásnak nem indult mustármagot helyezünk. Az előcsíráztatott mustármagokat a különböző koncentrációban nyerskivonatot tartalmazó agarrá helyeztük (10 db mustárnövény/koncentráció/nap), ezután 2, 3 és 4 nap elteltével mintát vettünk. Lemértük a mustárnövény tengelyszerveinek hosszát és nedvestömegét. Nulla időpontnak az ültetés időpontját tekintettük, viszont az agarral helyezett magok tömegének és hosszértékeinek hiányában nem rendeltünk hozzájuk adatokat. Az első mintavételei időpontban (2. nap) a kontrollnövények átlagos hypoktylhossza 24 mm, míg gyökérhossza 18 mm volt, az IC₅₀ érték 800 μg/ml-nek adódott. A két legnagyobb koncentráció esetén számos magba zárt növényt találtunk. A következő ábrákon (58., 59., 60. és 61.) a koncentrációadat a liofilizált biomassza (*C. raciborskii*) végső koncentrációját jelenti a tápagarban.
A nyers kivonat hatása a 2 napos mustárnövényre

58. ábra A nyers cianobakteriális kivonattal kezelt 2 napos mustárnövény tengelyszerveinek hosszadatai

A három napos kontrollnövények elérték az átlagos 38 mm hypokotyl és 25 mm gyökérhosszat, az IC$_{50}$ érték 800-1600 μg/ml köze esett (59. ábra).

A nyers kivonat hatása a 3 napos mustárnövényre

59. ábra A nyers cianobakteriális kivonattal kezelt 3 napos mustárnövény tengelyszerveinek hosszadatai

A 4 napos kontrollnövények esetén a hypokotylhossz 56 mm-nek, míg az átlagos gyökérhossz 28 mm-nek adódott. A hosszadatokban nagymértékű ugrás figyelhető meg a 1600-3000 μg/ml-es tartományban, ahol az IC$_{50}$-érték is található (60. ábra).

A nyers kivonat hatása a 4 napos mustárnövényre

60. ábra A nyers cianobakteriális kivonattal kezelt 4 napos mustárnövény tengelyszerveinek hosszadatai
Ezek az eredmények összhangban vannak az M-Hamvas által kapott adatokkal, a 4 napos növények esetén az IC\textsubscript{50} értéket 2 mg/ml-nek mért. Érdekes megjegyezni, hogy a mikrocisztinnel ellentétben alacsony koncentrációknál nem tapasztaltunk növekedésszerkentést, továbbá megfigyeltük, hogy az idő teltével a toxicitás mértéke csökkenni. Ez a csökkenés nem egyedülálló jelenség, az irodalomban már leírták a CYN degradációját cianobakteriális pigmentek jelenlétében. A sziklevelek vizsgálatához a fény hiányában való nevelés nem kedvez, mert mint azt korábban a tanszék munkatársai kimutatták, a mikrocisztin-LR és a cilindrospermopszin esetén sötétben a csíranövények sziklevele nem változik szignifikánsan a cianotoxinok hatására. Fény hiányában a kontrollnövény sziklevelei is csak alig növekednek, méretük átlagosan 6,5 x 3,2 mm volt. A cianotoxinnal kezelt mustárnövények átlagos nedvestömegét tartalmazza az 61. ábra.

![61. ábra](image)

61. ábra A mustárnövények nedvestömegének változása az alkalmazott cianobakteriális nyerskivonat függvényében

A nedvestömegeknél hasonló tendenciát tapasztaltunk, mint a hosszadatoknál. A nedvestömeg adatok alapján az 50 %-os növekedésgátlást előidéző koncentráció (IC\textsubscript{50}) sötétben a 2, 3 és 4 napos növényeknél rendre 1600, 1600 és 3000 μg/ml körüli érték. Felvetődik, hogy a mustár csíranövények képesek lebontani a növényi növekedés inhibitor vegyületet vagy a szóban forgó komponens stabilitása változhat.

Összeségében elmondható, hogy a nyerskivonat egyaránt gátolta a mustárnövény gyökerének és hypokotyljának növekedését. A gátlás mértéke időben csökkenő tendenciát mutat, az IC\textsubscript{50} érték 800 és 1600 μg/ml közé esett. A toxicitás mértéke a hosszadatokban jobban megnyilvánul mint a tömegadatokban. A három vizsgált időpont közül a három napos adatok a leginformatívabbak, így célszerűnek látszik a tiszta toxinos kezelés hatását az ültetéštől számított harmadik napon vizsgálni. A nyerskivonattal történt kezelések
bebizonyították, hogy a 2 napos növények még túl kicsik a toxinhatás vízsgálatához, míg a 4 napos növények esetén többször is tapasztaltuk, hogy a kontrollt és kis koncentrációjú toxintartalmazó mikrotiter lemezen a növény teljesen „megeszi az agart”.

4.14. A tisztított cilindrospermopsziciklinnél kezelt mustárnövények növekedése

A tisztított CYC-cel végzett kísérleteket 3 napos növényeken végeztük. A 62. ábrán tüntettem fel a 3 napos növények adatait (hypokotyl- és gyökérhossz, valamint nedvestömeg).

62. ábra A tisztított cilindrospermopsziciklinnél kezelt mustárnövények képei és adatai

Hasonlóan a nyers kivonatnál tapasztaltakhoz, a mikrocisztinnel ellentében itt sem tapasztaltunk az alacsonyabb koncentráció esetén növekedésszerkentést. A C. raciborkii (BGSD 266) cianobaktériumból izolált toxiskus anyagcseret termék (nyerskivonat) erőteljesen gátolja a gyökérzet kialakulását és fejlődését. Számos kutató a mikrocisztinhez hasonló hatású proteinfoszfátáz-gátló toxin, növények gyökerére kifejtett hatását vizsgálta és a gyökérrendszer, illetve a gyökér és gyökérször kialakulásának gátlását tapasztalta. Azonban a mikrocisztin-LR esetén csak az oldalgyökerek számának csökkenését figyelték meg munkatársaink. Az elõzetes vizsgálatok alapján valószínûsíthetõ, hogy a hossznövekedés mellett az oldalgyökerek képződését is gátolja az általunk izolált cianotoxin (ezen adatokat a dolgozatban nem mutatjuk be). Az oldalgyökerek száma számos környezeti tényezõ függvénye lehet, ilyen például a tápközeg agartartalma és a nevelõedény alakja, ezért valamennyi növekedési kísérletet hasonló kiképzésü edényben, és hasonló szilárdsgágot (1%-os) agaron végeztük. A külsõ morfológiai változások alapján az általunk újonnal izolált cianotoxin (CYC) hatását összehasonlítva a már ismert és tanulmányozott mikrocisztin-LR és
cilindrospermopszin hatásával a következők mondhatók el: a mikrocisztinnel kezelt növények nem csak méretükben kisebbek mint a kontrollnövények, hanem külső morfológiájukban is eltéréseket mutatnak; nekrotikus foltok jelennek meg a szikleveleken és a gyökérnyakon. A cilindrospermopszinnal kezelt növényeknél ezzel szemben csak a növekedés erőteljes gátlása érvényesül. Hasonló, csak a növekedésre kifejtett hatás figyelhető meg az általunk izolált cianotoxin esetén is. Így elmondható, hogy a tisztított cianobakteriális anyagcseretermék hatásmechanizmusa eltér a mikrocisztinétől, mivel nem idézi elő a fentebb említett morfológiai változásokat. A cilindrospermopszinnal való összehasonlításhoz azonban további vizsgálatok szükségesek. Mind a hosszadatok csökkenése, mind a nedvestömeg adatok változása alátámasztja az izolált növényi növekedésgátló anyagcseretermék mustárcsíranövényre gyakorolt toxikus hatását. A hosszadatok alapján az 50 %-os növekedésgátlás hypokotyl és a gyökér esetén is 400-600 μg/ml, míg a nedvestömeg esetén 600 μg/ml koncentrációértéknek adódott.

Összegezve elmondható, hogy az általunk cilindrospermopsziciklin IC₅₀ értéke 600 μg/ml, amely egy közepesen erős cianotoxin IC₅₀ értékének felel meg. Hatását tekintve a C. raciborskii (BGSD-266) szervezetből izolált CYC eltér a mikrocisztin hatásától, mivel nem tapasztaltunk az alacsonyabb koncentrációknál növekedésszerkentést, illetve magasabb koncentrációknál nekrotikus folt megjelenését. A legnagyobb alkalmazott cianotoxin koncentráció esetén is elkezdődik a mustárnövény fejlődése, nagyon kevés csíranövény maradt magbazárt állapotban. Nagy cianotoxinkoncentrációknál a gyökérnyak megvastagodása figyelhető meg a cilindrospermopszinek alapján. A C. raciborskii cianobaktériumból izolált új cianotoxin hatásmechanizmusának részletesebb tanulmányozására és megértésére növényi anyagcsereért érintő vizsgálatok szükségesek. A cianotoxin növényi szövetekre gyakorolt hatásának vizsgálata nem tárgya a dolgozatnak, bár mind a nyerskivonattal, mind a tiszta CYC-cel kezelt növények esetén is készültek szövettani metszetek (ezen adatokat a dolgozatban nem mutatjuk be).

4.15. A fehérjemintázat változása a C. raciborskii val kezelt növényekben

Irodalmi adatok alapján a csíranövények fejlődéséhez 3-4 napig elegendőek a sziklevélben raktározott fehérjék, szénhidrátok és lipidek. A csíranövények fejlődése során élénk anyagcsere figyelhető meg, de novo szintetizált fehérjék és enzimek működése jellemző.
A cianotoxin kezelés hatására tapasztalt növekedésgátlás, stresszfolyamatokat feltételez, ezért kiváncsiak voltunk arra, hogy az általunk izolált toxikus anyagcseretermékként történő kezelés a mustárnövényekben indukálja-e a fehérjék szintjének változását, illetve miként hat a konstitutív fehérjék mennyiségére. Kísérleteink során vizsgáltuk a tisztított cianotoxinnal (CYC) történő kezelés koncentrációfüggését.

A cianobakteriális nyers kivonat és a CYC hatására bekövetkező változások alapján a kimutatott fehérjék a következő osztályokba sorolhatók:
1. Azon fehérjék csoportja, melyek mind a kontroll, mind a toxinkezelés mintában közel azonos mennyiségben jelennek meg (az ábrákon fekete színnel jelölve);
2. Azon fehérjék, melyek mennyisége a toxinkezelés hatására növekedett (az ábrákon zöld színnel jelölve);
3. Azon fehérjék, melyek mennyisége a toxinkezelés hatására csökkent (az ábrákon piros színnel jelölve);
4. Az újonnan megjelenő fehérjék csoportja (az ábrákon kék színnel jelölve).

A 63. ábrán láthatók a cianobakteriális nyers extraktummal kezelt 2, 3, és 4 napos mustárnövények kivonatának fehérjemintázat adatai. A fehérje géltre a kontroll, a 200 μg/ml, 800 μg/ml és a 1600 μg/ml cianobakteriális nyers kivonattal kezelt mustárnövények kivonatait vittük fel. A táblázatban az „1”, „2”, „3” és „4” számok a fentebb említett négy fehérjecsoportot jelentik.

<table>
<thead>
<tr>
<th>molekuláris tömeg [kDa]</th>
<th>2. nap</th>
<th>3. nap</th>
<th>4. nap</th>
</tr>
</thead>
<tbody>
<tr>
<td>73,7</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>67,7</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>53,36</td>
<td>–</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>48,9</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>37,9</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>34,5</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>31,5</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>30,2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>29,5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>28,9</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>27,9</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>26,3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>23,9</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>19,5</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>16,9</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>18,1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17,8</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16,4</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14,2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11,4</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9,4</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

63. ábra A nyers cianobakteriális kivonat hatása a mustárnövény fehérjeháztartására
A gélek kiértékelése táblázatos formában történt. A táblázat első sora az egyes fehérjék molekulatömegét tartalmazza, az azt követő sorokban az adott molekulatömegnek megfelelő sáv és a sávra jellemző, fentebb említett sorszám található.

A mustárnövény fehérjemintázatának változásait a tisztított CYC esetében is megvizsgáltuk. A kapott eredményeket a 64. ábra tartalmazza. A táblázatban az „1”, „2”, „3” és „4” számok a fentebb említett négy fehérjecsoportot jelentik.

<table>
<thead>
<tr>
<th>molekulatömeg [kDa]</th>
<th>molekulatömeg [kDa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>76,7</td>
<td>1</td>
</tr>
<tr>
<td>74,2</td>
<td>2</td>
</tr>
<tr>
<td>58,4</td>
<td>2,3</td>
</tr>
<tr>
<td>53,6</td>
<td>1</td>
</tr>
<tr>
<td>47,3</td>
<td>1</td>
</tr>
<tr>
<td>41,7</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td>38</td>
<td>3</td>
</tr>
<tr>
<td>36,9</td>
<td>2,3</td>
</tr>
<tr>
<td>35,8</td>
<td>2,3</td>
</tr>
<tr>
<td>34,8</td>
<td>1</td>
</tr>
<tr>
<td>33,6</td>
<td>1</td>
</tr>
<tr>
<td>31,8</td>
<td>2,3</td>
</tr>
<tr>
<td>29,5</td>
<td>3</td>
</tr>
</tbody>
</table>

64. ábra A tiszta cianotoxin hatása a mustárnövény fehérjeházartartására

Összefoglalva elmondható, miszerint a tisztított cilindrospermopsziciklin hatására a kontrollhoz képest négy újonnan megjelenő, 19,0, 19,6, 20,1 és 21,7 kDa molekulatömegű fehérjét találtunk, melyek közül a két első a nyers kivonatos kezelés hatásra is megjelenik (az ábrán kék színnel jelölt adatok). Számos fehérje sávjának az intenzitása növekedett a toxinkezelés hatására (az ábrán zöld színnel jelölt adatok). Azokban az esetekben ahol a táblázatban két érték is szerepel, a fehérjesávok intenzitása növekedett, majd egy maximális érték után csökkeni kezdett (az ábrán rózsaszín színnel jelölt adatok).

4.16. Enzimvizsgálatok a C. raciborskii nyers kivonatával és a szervezetből izolált cilindrospermopsziciklinnel kezelt mustárnövényekkel

4.16.1. A proteázok gélelektroforézise

Az előkísérleteket nyers cianobaktérium kivonattal kezelt 3 napos, etiolált mustárnövényekkel folytattuk. Tapasztalataink alapján 10 μg fehérjetartalomra volt szükség a megfelelő proteázaktivitás kimutatására. A nyerskivonatos minták futtatásánál több inkubálási
időt is kipróbáltunk (4, 8 és 20 óra). Ezt úgy valósítottuk meg, hogy a kipróbálni kívánt inkubációs idő függvényében a mintákat két sorozatban vittük fel a gére. Ezután a mintákat megfuttatva és a sorozatokat megjelölve a géleket az „Anyagok és módszerek” részben leírt mősási protokollnak vetettük alá. Az inkubálást két különböző pH-értéken a teljes géllel kezdtek, majd az előre meghatározott idő elteltével egy sorozatnyi mintát levágtunk a gérlő és Comassie Brilliant Blue R-250 festékkel megfestettük.

A cianobakteriális nyers kivonattal kezelt mustárnövény protázmintázata
(Tris pufferben inkubálva; pH=8,0)

A cianobakteriális nyers kivonattal kezelt mustárnövény protázmintázata
(Foszfát pufferben inkubálva; pH=5,0)

A tiszta CYC-cel kezelt
mustárnövény protázmintázata
(Tris pufferben inkubálva; pH=8,0)

A tiszta CYC-cel kezelt
mustárnövény protázmintázata
(Foszfát pufferben inkubálva; pH=5,0)

65. ábra A proteázenzimek aktivitásának változása

A gélek inkubálására a két pH-érték közül (5,0 és 8,0) a pH=5,0 volt a legalkalmasabb. Az inkubációs idő változása nem befolyásolja az izoenzimek megjelenését, így a 8 órás
inkubálás megfelelőnek bizonyult. Mint az adatokból is látható, a proteázaktivitás csökkenése figyelhető meg a koncentráció növekedésével, ez a hatás a tiszta cianotoxinos kezelés esetén markánsabb (65. ábra). Mivel a vizsgálatok tájékozódó jellegűek, a cisztein-proteázok további karakterizálásától eltekintettünk.

4.16.2. Az izolált cilindrospérnopszicziklin hatása a mustárnövény-nukleázok aktivitására

Az általunk izolált toxikus anyagesertermék (CYC) gátolja a mustárnövény fejlődését, valamint új fehérjék megjelenését okozza, ezt a mustár fehérjék gélelektroforézises vizsgálatai bizonyították. Az előbbiek alapján felmerül a kérdés, hogy a stresszfolyamatok jellemző enzimváltozások közül a növényi hidrolitikus enzimek egy jellegzetes csoportjának, az egyszálú DNS-eket specifikusan bontó enzimcsoport aktivitásnövekedése megfigyelhető-e? A géleket a megfelelő mosási eljárás után (amivel az SDS-t eltávolítjuk a rendszerből és renaturáljuk a fehérjéket) a géleket pufferben inkubálva, majd etidium-bromiddal megfestve az aktív helyeken sötét foltok jelennek meg (negatív festés). Ez jelzi azokat a fehérjéket, melyek az egyszálú DNS-t szubsztrátként tudják hasznosítani. Mivel az általunk izolált és vizsgált toxikus metabolittal még nem folytattunk kísérleteket, ezért szükségesnek tartottuk a nyers kivonattal történő előkísérleteket. Az előkísérletek célja a megfelelő inkubációs pH-érték megválasztása volt. A megfelelő inkubációs pH kiválasztásakor a 3 napos kontrollnövények kivonatát együtt futattuk meg egy 50 %-osan és egy 90 %-osan gátolt nyers kivonattal kezelt növény kivonatával. Az 5-től 10-ig terjedő pH-tartományt tanulmányozva azt találtuk, hogy az M-Hamvas által javasolt125 pH=6,8 és 8,5 értékek a legalkalmasabbak a mustár ssDN-áz izoenzimek vizsgálatára. Új izoenzim megjelenését a kezelés hatására nem tapasztáltunk. A növekvő koncentrációval az izoenzimek aktivitása csökkent. A nukleáz-gélek inkubálása 6,8-as és 8,5-as pH-n történt. 6,8-as pH-n megjelenik a 90 kDa-os, a 80 kDa-os a 40 kDa-os, a 33kDa-os valamint halványnak a 25 kDa-os izoenzim. A 8,5-ös pH-n történő inkubálásra hatására az 90 kDa-os valamint halványnak a 60 kDa-os izoenzim jelenik meg. A cianobakteriális nyerskivonattal történő kezelés hatására az izoenzimek aktivitása csökkent. A tiszta toxinnal végzett kísérletekhez is 3 napos mustárnövényeket használtunk. Ugyanazt a tendenciát tapasztaltuk, mint a nyers kivonat esetén, azaz az enzimaktivitás csökken a koncentráció növekedtével (66. ábra).
A cianobakteriális nyers kivonattal kezelt mustárkövénynulkeázmintázata
(pH = 6,8)

A cianobakteriális nyers kivonattal kezelt mustárkövénynulkeázmintázata
(pH = 8,5)

A tiszta cianotoxinnal kezelt mustárkövénynulkeázmintázata
(pH = 6,8)

A tiszta cianotoxinnal kezelt mustárkövénynulkeázmintázata
(pH = 8,5)

66. ábra Az ssDN-áz enzimek aktivitásának változása a nyers kivonattal és CYC-cel kezelt növényekben

4.17. A tápelemhezletés hatása a *C. raciborskii* cianobaktérium növekedésére és toxintermelésére

A kutatócsoportunk már vizsgálta az *Aphanizomenon ovalisporum* cianobaktérium esetén az obligált fotoautotrof élőlények szempontjából létfontosságú foszfor és kén hatását a cilindrospermopszin termelésére. A *C. raciborskii* sejtek cianotoxintartalmának vizsgálatát vécényretekromatográfiával követtük nyomon a kontroll és az éhezetett tenyészettekben. A nem éhezetett tenyészettek esetén a toxiintartalom a sejtek növekedését együtt növekedett, majd a stationer fázisban a sejtek növekedésével párhuzamosan leállt. A tápelemhiány vizsgálatára az Allen tápoldatban a foszfát-, illetve szulfátkomponenseket ugyanolyan kationú nitrát-, illetve kloridtartalmú komponensekre cseréltük. Az előzetes tapasztalatok alapján a tápelem hiányos, illetve teljes médiumokban az $A_{800}=0,2$-es optikai denzitás felé oltottuk a tenyészetteket, és minden kísérletből két párhuzamos mérést végeztünk. Ezen mérések adatait
tartalmazzák a 67., 68. és 69. ábrák, melyek jól mutatják, hogy mind a kén-, mind a foszformegvonás növekedésgátló hatással volt a tenyészetekre. A kontroll tenyészetekben a sejtek növekedése 3 napig tartólag fázis után megindult és a 12 napra elérték a kezdeti érték hatszorosát (67. ábra).

![Az optikai denzitás változása kén-, illetve foszforéhezetés hatására](image1)

67. ábra A kén-, illetve a foszforéhezetett C. raciborskii tenyészetek optikai denzitásának változása az idő függvényében

![A klorofill-a tartalom változása kén-, illetve foszforéhezés hatására](image2)

68. ábra A kén-, illetve foszforéhezetett C. raciborskii tenyészetek klorofill-a tartalmának változása az idő függvényében

Az éheztetett tenyészetek sejttartalma a lag fázis után minimálisan emelkedik, de így sem éri el a kiindulási érték kétszorosát. Hasonló tendenciát találunk a klorofill-a tartalom esetén is, az éheztetett tenyészetek alig érik el a kiindulási érték kétszorosét (68. ábra).
A fehérjetartalomról is ugyanez mondható el (69. ábra). Az egyedüli növekvő tendenciát mutató adatsor a szárazanyagtartalomnál található, de itt sem éri el a nem éheztetett tenyészetek értékét (70. ábra).

A mért növekedési görbéken kívül vizuálisan is figyeltük a tenyészeteket és azt tapasztaltuk, hogy az éhezetett tenyészetek elkezdenek sárgulni, majd a kísérlet végére teljesen elveszítik zöld színüket. Felvetődött a kérdés, hogyan változik a toxikus anyagcserétermék koncentrációja az éhezetett tenyészetben. Ennek vizsgálatára az általunk kidolgozott vékonyrétegkromatográfiai eljárás megfelelőnek bizonyult. Pontos toxinkonzentrációt ugyan nem szolgáltatott, de a minták párhuzamos futtatásával lehetőség nyílt a foltok intenzitásának összehasonlítására. Ebben az esetben nem szükséges a mintaelőkészítés, mivel kidolgoztunk egy olyan előfuttató rendszert, amelyben a vizsgálati kivánt komponens a startponton marad, míg a szinanyagok túlfutnak a 0,5-ös Rf-értéken (71. ábra).
Ezek után egy polárisabb oldóserelegyben a réteghossz feléig futtatva a réteget, a toxikus anyagok is elmozdulnak a startpontról. A feltízgetésből jól látható, hogy lényegesen kevesebb toxin található az éheztetett tenyészetekben mint a teljes médiumban neveltekben.

Ezen megfigyelések után felmerül a kérdés, hogy a kén-, illetve foszfólimitáció, mint stressztényező okoz-e – és ha igen milyen – változást a fehérjeházattartásban. Ennek a kérdésnek a megválaszolására a tenyészetből vett mintákat SDS-poliakrilamid gélen futattuk. A tapasztalt változásokat a 73. és 74. ábrán tüntettük fel. A minták könnyebb összehasonlítása céljából az éheztettet és nem éheztetett mintákat egymással párhuzamosan futattuk meg, így a bekövetkező változások jobban nyomonkövethetőek voltak. A tapasztalatok alapján elmondható, hogy ezek a változások a kén-, illetve foszfómegvonás hatására következtek be, mivel a tenyészeteket ugyanabból az inokulumból oltottuk, illetve
ugyanolyan körülmények között neveltük egymás mellett. A foszfor-, illetve kénlimitáció hatására a tenyészzetek növekedése leáll, a tapasztalt minimális növekedés a raktározott tápanyagoknak köszönhető. A vékonyrétegkromatográfias képek ből, illetve a mért toxicitási adatok ből kiderül, hogy jelentősen csökken a termelt CYC mennyisége is. A 73. és 74. ábrán a kén- és foszforéheztetett tenyészzetek fehérjemintázata látható, a géleken a éheztett tenyészzetekkel párhuzamosan a kontroll tenyészzetek mintáit is megfuttattuk.

73. ábra A normál és a kénéheztetett tenyészzet fehérjemintázata

Mint látható, kénéheztetés hatására négy új fehérje sávja jelenik meg és számos sáv intenzitása csökken.

74. ábra A normál és a foszforéheztetett tenyészzet fehérjemintázata
Mint látható, négy újonnan megjelenő fehérjét, két növekvő intenzitású és két csökkenő intenzitású fehérjét tudtunk detektálni.

Eredményeinket összefoglalva elmondható, hogy a kén-, illetve foszforéheztetett tenyésztek növekedése csökken, majd leáll, hasonlóan a már vizsgált *A. ovalisporumhoz.*

4.18. **A Kis-Balatonból izolált cianobakériumok mikrocisztintartalmának meghatározása**

A 2001-es évben a Kis-Balatonban vízvirágzás volt megfigyelhető, amelyből származó plankton mintát szűrésell és/vagy centrifugálással koncentráltuk. Az így nyert üledékből számos mikrocisztin típusú vagyületet izoláltunk. Az izolálás három lépésből állt, az első lépés a DEAE cellulóz oszlopon való elúció volt. Az elválasztás során kapott kromatográfiai frakciók 240 nm-val való fényelnyelését a frakciósza alapján ábrázoltuk (75. ábra).

A **M. aeruginosa kivonat** DEAE cellulózos tisztítása

![75. ábra A M. aeruginosa nyerskivonatának DEAE cellulózos tisztítása](image)

A toxikusnak azok a frakciók mutatkoztak, ahol a legnagyobb volt 240 nm-n a fényelnyelés. A mikrocisztin tartalmú frakciók elkülönítését az is segítette, hogy a vizsgált koncentrációk esetén is megjelennek a növényeken a mikocisztinek hatására jellemző nekrotikus foltok. Az izoláció második lépése a C-18 Sep-Pack Plus tölteteken történő tisztítás volt, amelyet amennyiben szükséges volt egy további Toyopearl tisztítást követett.

A tisztítás utolsó lépésében DAD-HPLC-t alkalmaztunk, amely segítségével könnyen felismerhetőek voltak a mikrocisztint tartalmazó frakciók jellegzetes spektrumuk alapján, A vegyületek azonosítása tömegspektrumuk alapján történt. Az izolátumban alapvetően négy

![Szerkezetek]

76. ábra A M. aeruginosa 3T izolátumból kimutatott mikrocisztinek szerkezeti képlete

Eredményeinket összefoglalva megállapíthatjuk, hogy a kis-balatoni planktonmintából négy, már ismert mikrocisztint tudtunk izolálni és azonosítani.

4.19. A pterokarpán váz jellegzetes fragmentációs útvonalai

Az „Anyagok és módszerek” fejezetben leírt módon előállított pterokarpánszármazékok jellegzetes fragmentációs útvonalait, bomlási szabályszerűségekeit a deutériumot nem tartalmazó pterokarpán esetében mutatom be, táblázatban mellékelem az egyes deuterált származékoknak megfelelő m/z és intenzitás értékeit. A könnyebb áttekinthetőség kedvéért a vizsgált pterokarpánokat ismételten feltüntettem, a 77. ábrán.

![Útvonalak]

77. ábra A tömegspektrometriával vizsgált pterokarpánok
A jellegzetes fragnionokat, valamint az egyes ionokra kapott nagyfelbontású eredményeket a pterokarpán példáján szemléltetve a 78. ábra mutatja.

![Diagram](image)

78. ábra A pterokarpán jellegzetes fragnensei
(m/z: számolt; *m/z: mért)

A jellegzetes fragn ion tömegét és a csúcsok intenzitását a pterokarpánra és az egyes deuterált származékokra vonatkozóan a 11. táblázat tartalmazza.

11. táblázat A pterokarpán és a deuterált származékok fragnenseinek tömegei és intenzitási

<table>
<thead>
<tr>
<th>Vegyület</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>M+**</td>
<td>224 (100)</td>
<td>225 (100)</td>
<td>225 (100)</td>
<td>225 (100)</td>
<td>226 (100)</td>
<td>226 (100)</td>
<td>226 (100)</td>
<td>227 (100)</td>
</tr>
<tr>
<td>[M-X]+</td>
<td>223 (75)</td>
<td>224 (75)</td>
<td>223 (12)</td>
<td>224 (80)</td>
<td>224 (50)</td>
<td>223 (12)</td>
<td>225 (75)</td>
<td>224 (30)</td>
</tr>
<tr>
<td>[M-OX]+</td>
<td>207 (12)</td>
<td>208 (11)</td>
<td>207 (7)</td>
<td>208 (8)</td>
<td>208 (11)</td>
<td>209 (9)</td>
<td>208 (8)</td>
<td>209 (12)</td>
</tr>
<tr>
<td>O+</td>
<td>195 (5)</td>
<td>195 (2)</td>
<td>196 (4)</td>
<td>196 (4)</td>
<td>196 (3)</td>
<td>196 (2)</td>
<td>197 (8)</td>
<td>197 (3)</td>
</tr>
<tr>
<td>OH+</td>
<td>181 (7)</td>
<td>182 (3)</td>
<td>182 (1)</td>
<td>181 (5)</td>
<td>182 (5)</td>
<td>181 (5)</td>
<td>182 (1)</td>
<td>182 (7)</td>
</tr>
<tr>
<td>6</td>
<td>165 (15)</td>
<td>166 (12)</td>
<td>165 (5)</td>
<td>165 (7)</td>
<td>166 (12)</td>
<td>165 (10)</td>
<td>166 (7)</td>
<td>166 (10)</td>
</tr>
<tr>
<td>7</td>
<td>152 (9)</td>
<td>152 (6)</td>
<td>152 (4)</td>
<td>152 (2)</td>
<td>152 (3)</td>
<td>152 (3)</td>
<td>152 (2)</td>
<td>152 (4)</td>
</tr>
<tr>
<td>8</td>
<td>131 (42)</td>
<td>132 (35)</td>
<td>132 (28)</td>
<td>131 (30)</td>
<td>132 (32)</td>
<td>131 (7)</td>
<td>133 (18)</td>
<td>132 (16)</td>
</tr>
<tr>
<td>9</td>
<td>121 (2)</td>
<td>121 (2)</td>
<td>122 (1)</td>
<td>121 (1)</td>
<td>122 (2)</td>
<td>121 (3)</td>
<td>122 (2)</td>
<td>122 (2)</td>
</tr>
<tr>
<td>10</td>
<td>118 (45)</td>
<td>119 (20)</td>
<td>118 (25)</td>
<td>118 (18)</td>
<td>119 (10)</td>
<td>118 (8)</td>
<td>120 (14)</td>
<td>119 (33)</td>
</tr>
</tbody>
</table>

12. táblázat A deuterált pterokarpánok molekulaionjainak pontos tömegei

<table>
<thead>
<tr>
<th>Vegyület</th>
<th>Összegképlet</th>
<th>Számított érték</th>
<th>Mért érték</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C_{15}H_{12}O_{2}</td>
<td>224,0797</td>
<td>224,0802</td>
</tr>
<tr>
<td>2</td>
<td>C_{15}H_{11}DO_{2}</td>
<td>225,0900</td>
<td>225,0905</td>
</tr>
<tr>
<td>3</td>
<td>C_{15}H_{11}DO_{2}</td>
<td>225,0900</td>
<td>225,0908</td>
</tr>
<tr>
<td>4</td>
<td>C_{15}H_{11}DO_{2}</td>
<td>225,0900</td>
<td>225,0904</td>
</tr>
<tr>
<td>5</td>
<td>C_{15}H_{10}D_{2}O_{2}</td>
<td>226,0963</td>
<td>226,0967</td>
</tr>
<tr>
<td>6</td>
<td>C_{15}H_{10}D_{2}O_{2}</td>
<td>226,0963</td>
<td>226,0970</td>
</tr>
<tr>
<td>7</td>
<td>C_{15}H_{10}D_{2}O_{2}</td>
<td>226,0963</td>
<td>226,0966</td>
</tr>
<tr>
<td>8</td>
<td>C_{15}H_{9}D_{3}O_{2}</td>
<td>227,1026</td>
<td>227,1035</td>
</tr>
</tbody>
</table>

A második legnagyobb intenzitású fragmens a [M-H^{+}] ion, ami többféleképpen is keletkezhet. Egyrészt létrejöhet a 6-os hidrogén (illetve deutérium) vesztésével a pterokarpán molekulaionból, illetve az ebből átrendeződővel képződött izoflavanonból, vagy (a hidrogénvándorlással létrejött) enolfomából. További érdekesség még, hogy 11a és a 6a szénatom közötti kötés-alfa hasadásaival egy olyan molekulaion jön létre, ami szintén képes hidrogént veszíteni. Ennek a formának a fontosságára később majd külön kitérek. Lehetséges még a 11a helyzetű hidrogén vesztése ami az alapvázából, vagy az enolfomából valósulhat meg (79. ábra). Ha összehasonlítjuk a 11. táblázat 1. és 2., valamint 3. és 5. oszlopát, az intenzitásértékekben kitűnik, hogy a 6-os helyzetű hidrogén vesztése a kedvezményezett. Amennyiben deutérium van a hidrogén mellett (6-os szénatom), akkor inkább a hidrogén távozik, ami világosan következik a táblázat 4., 6., 7., és 8. sorainak adatából.

99
Azz $[\text{M-OX}^-]^+$ fragmens (2) az izoflavanon molekulaion enolfonnal ből ($\text{M}^-(\text{b})$) jön létre hidroxilgyök vesztéssel (80. ábra). Az intenzitás adatok alapján elmondható, hogy a deutériummal jelzett származékok intenzitásai nagyobbak.

80. ábra Az $[\text{M-OX}^-]^+$ (2) fragmens képződése

A táblázatban szereplő 3. sorszámú fragmens az enolfonnal származtatható víz és az azt követő hidrogéngyök vesztésével (81. ábra). Az intenzitásadatokból itt is látszik, hogy a hidrogén-, és nem a deutériumvesztés a kedvezményezett abban az esetben, ha mind a kettő megtörténhet.

81. ábra Az enolfonnal történő vízkilépés és hidrogéngyök-vesztés

A fentebb említett az α-kötés hasadási mechanizmus során jön létre a $\text{M}^+(\text{d})$ molekulaion. Ennek a molekulaionnak a további fragmentációját láthatjuk a 82. ábrán.

82. ábra Az α-kötés-hasadással létrejött molekulaion további fragmentációja
Ebből a molekulaionból további töltésátrendeződés (M⁺(e)), majd formaldehid gyök (COH⁺) vesztés után jön létre az m/z 195-ös ion (f). Ez megvalósulhat úgy is, hogy először egy hidrogéngyök-vesztés, majd szén-monoxid vesztés történik. A kapott kation jelének intenzitása valamennyi, különböző helyen és mértékben deuterált molekula esetén kicsi.

Az M⁺(d) molekulaionból kiindulva a hidrogén-vándorlás történhet úgy is, hogy nem nyílik fel a gyűrű, hanem az eredetileg 11-es oxigénen lévő pozitív töltés áttevődik a másik 5-ös oxigénre, miközben az egyik 6-os helyzetű hidrogén a 11a szénatomra vándorol M⁺(f), majd a kettős kötés a 6-6a szénatomok közé rendeződik át M⁺(g). A kis stabilitású m/z 182 ion egy etilénoxid vesztése után jön létre. Ez a fragmens hidrogéngyököt veszít, majd átrendeződik, így adja az m/z 181-as iont (5). (83. ábra)

83. ábra Különböző szerkezetű m/z 181 ionok megjelenése

Valamennyi vizsgált vegyület esetén elmondható, hogy a deutériumot tartalmazó forma a kedvezményezett. A kis intenzitású m/z 182 ion formaldehidvesztéssel adja az m/z 152 fragmenst (7), ami kettéhasad és egy változó intenzitású csúcsot adó benzingyök-kationt (m/z 72) eredményez. A már említett m/z 181 fragmens közvetlenül a molekulaionból M⁺(d) is létrejöhet átrendeződés után, acetaldehid-gyök vesztéssel. Az m/z 181-es ion formaldehid-gyök vesztéssel eredményezi az m/z 152-es iont (84. ábra):

84. ábra Az m/z 152-es fragmens keletkezése
Az átrendeződött molekulaionból aldehidgyök vesztést (m/z 195) követő átrendeződés után, ismételt aldehidmolekula veszéssel jön létre az m/z 165-ös ion (6a,6b), mely nagy intenzitású (85. ábra).

85. ábra Az α-kötéshasadás után átrendeződött molekulaion további fragmentációja

Itt is megmutatkozik az a tendencia, hogy a deutériumot tartalmazó szerkezeti részek intenzitása nagyobb, mint a hidrogént tartalmazóké.

Ha a molekulaion átrendeződése során a 11a szénatom és a benzolgyűrű megfelelő szénatomja közötti kötés homolitikusan hasad, akkor a molekulaion M⁺(i) további hidrogén vándorlás során eredményezi az M⁺(j) szerkezeteket. A M⁺(k)-ből az 5-ös számú oxigén és a 6-os szénatom homolitikus hasadása során létrejövő m/z 131 ion ciklizálódik, így egy stabil pirillium (8a) szerkezet alakul ki (86. ábra) amelynek nagy stabilitását a csúcintszenitások jól tükrözik.

86. ábra A 10a pirilliumszerkezet kialakulása

Az M⁺(j) molekulaionból képződhet benzofurán-gyökkation (10a,10b) is (87. ábra):

87. ábra A 10a és 10b benzofurán-gyökkationok

A benzofurán-gyökkationok (10a,10b) esetén érdemes megnézni a 11. táblázat adatait, ugyanis a 2. és az 5. vegyület értékeit összehasonlítva látható, hogy a 10b forma fordul elő
nagyobb gyakorisággal. Ezenkívül a 3. és a 7. vegyületre vonatkozó adatokból megállapítható az is, hogy a deutériumot tartalmazó vegyület az, ami nagyobb intenzitású (kék színnel jelölt atom, mely ezekben az esetekben lehet hidrogén, illetve deutérium).

Végül, de nem utolsó sorban meg kell említeni azt a molekulaion szerkezetet \((M'^{+}(l))\), amely a 6a szénatom és a benzolgyűrű megfelelő szénatomja közötti kötés homolitikus hasadását \((M'^{+}(m))\) követő hidrogénvándorlás során jön létre. Az így keletkezett forma \((M'^{+}(n))\) benzolgyökvesztés után adja a m/z 147 kroménszármazékot. A hidrogének elhelyezkedése alapján itt is két szerkezet írható fel. Ezen fragmensek intenzitásai kicsik, az intenzitások közötti különbség az egyes származékok esetében nem túl nagymértékű. Az említett m/z 147 ion acetilénvesztéssel adja az m/z 121 kationt \((9)\), amelyből egy szén-monoxid vesztés történik (m/z 93) (88. ábra).

\[
\begin{align*}
M'^{+}(l) & \rightarrow M'^{+}(m) \rightarrow M'^{+}(n) \rightarrow \text{m/z 147} \\
& \text{m/z 121} \rightarrow \text{m/z 93}
\end{align*}
\]

88. ábra A 6a szénatom és a benzolgyűrű szénatomja közötti kötés homolitikus hasadásával létrejött \(M'^{+}\) fragmentációja

A pterokarpán molekulaionból hidrogénvándorlás során létrejövő izoflavanon molekulaion fragmentációját láthatjuk a 89. ábrán. A hidrogénvándorlást követő gyűrűhasadással létrejött forma kettéhasad az m/z 121 kationra \((9)\) és egy sztirilyőkre.

\[
\begin{align*}
M'^{+}(9) & \rightarrow \text{m/z 195} \rightarrow \text{m/z 165} \\
& \text{m/z 194} \rightarrow \text{m/z 196} \\
& \text{m/z 121} \rightarrow \text{m/z 118}
\end{align*}
\]

89. ábra Az izoflavanon molekulaion fragmentációja
A ketoformából történő aldehidvesztés során jön létre az m/z 194 gyök kation, mely hidrogénvesztést követő gyűrűzáródás után egy stabilabb szerkezetre tesz szert (m/z 193). Ebből egy szén-monoxid vesztéssel kapjuk az m/z 165 fragmensioni (6b). Ebben az esetben csak egyféle hidrogénelrendezés valósulhat meg (6b). Ha az izoflavanon forma szén- monoxidot veszít (m/z 196), akkor további kötéshasadást követő benzolvesztéssel kaphatjuk meg a pterokarpánok egyik jellegzetes fragmensét, a benzofurán-gyök kationt (10b), azonban ennek a hidrogénelrendeződésé nem azonos annak a benzofuránnak a hidrogénelrendeződésével, amelyet a gyűrű hasadásával kapunk.

Az keto-formából képződhet még gyűrűhasadással az m/z 120 (RDA ion), illetve az m/z 104 fragmens (90. ábra).

![Diagram](https://example.com/diagram.png)

90. ábra A ketoforma gyűrűhasadása

Végezetül nézzük meg, milyen lehetőség van a pterokarpán molekulaionból, annak kötéseinek szimultán hasadásával fragmensek létrejö désre. Ha a benzofurán gyűrű kötése hasadnak, akkor egy benzoxiránt és egy m/z 132 (3,4-benzokromén) fragment kapunk. Ez utóbbi hidrogént vándorlásban tovább alakulhat fáhéjadehid, illetve hidrogéngyökvesztéssel aromatizálódhat benzopirillium ionná (8b). Az így létrejövő szerkezet (8b) hidrogénelrendeződése eltér a 8a pirillium kationtól. Ha az m/z 162-es fragments formaldehidet veszít, az m/z 102 szerkezet jön létre (91. ábra).

![Diagram](https://example.com/diagram.png)

91. ábra Szimultán kötéshasadással létrejött fragmensek

Visszatérve a pirilliumszerkezetre, az 1-es, 2-es, 4-es és 6-os számmal jelzett pterokarpánok esetén nincs m/z érték növekedés amiatt, hogy a zölddel jelzett atom hidrogén.
Ha azokat a vegyületeket nézzük meg, amelyekben a kék jelű atomok mindkét tagja hidrogén, látható, hogy nagyobb intenzitással fordul elő az a szerkezeti forma, amely az \(M^+ \) (g) molekulaionból az oxigén és a \(6\)-os szén közötti kötés hasadásával keletkezik (8a). Ezt az is indokolja, hogy a fentebb említett molekula esetén csak egy kötés hasadásának kell megtörténnie, míg a másik esetben (8b) két kötés szimultán hasad, mely folyamat energetikailag kedvezőtlen. Különböző ionizációs energiát alkalmazva a gyűrűhasadás során keletkező 8b pirilliumszerkezet jelének intenzitása az ionizációs energia csökkenésével rohamosan csökken.

A 8b szerkezet úgy is kialakulhat, hogy a kation szimultán kötéshasadást szenved (92. ábra):

![92. ábra](image)

A kromanongyűrű hasadásával benzofurán-gyökkation (10a) jön létre, illetve egy olyan szerkezeti forma, mely két gyökcentrumot tartalmaz, ezért azonnal ciklizálódik, majd ionizálódik (m/z 116), s észlelhető a spektrumban. A benzofurán-kationból szén-monoxid vesztéssel kapható az m/z 90 fragmens, amely hidrogénvesztés után kétféle szerkezettel írható fel (m/z 89) (93. ábra).

![93. ábra](image)

Összegzésként elmondható, hogy a pterokarpán az EI tömegspektrumban nagy intenzitású molekulaiont ad, ami a spektrum báziscsúcsa. Ez a nagy intenzitású molekulaion lehetővé teszi a vegyület azonosítását összegképlete alapján, nagy tömegfelbontás mérést végezve. A molekulaion jellegzetes fragmensei a \([M-H]^+\), a pirillium és a benzofurán gyökkation. A részleges deuterált származékok esetén megállapítottuk, hogy amennyiben lehetőség van rá akkor mindig a hidrogén és nem a deutérium távozik gyökként.
Eredményeink összefoglalásaként elmondható, hogy sikerült megvalósítani a Balatonból származó *Cylindropermopsis raciborskii* (BGSD 266) cianobaktérium nevelését laboratóriumi között, amely lehetővé tette tömegtenyészetek előállítását.

A tenyészetből kromatográfiai eljárásokkal sikerült egy új növényi inhibítor izolálni, az általunk bevezetett szilikagéles tisztítás és vékonyrétegkromatográfiai nyomonkövetés lényegesen megnövelte az izolálás hatásfokát.

Szerkezetvizsgálati módszerekkel (NMR- és IR-spektroszkópia, MS) sikerült javaslatot tenni az izolált növényi inhibitor szerkezetére, melynek kémiai neve: 4-amino-5,10-dihidroxi-9-(hidroximetil)-13-imino-6-metil-5,6,7a,9,10,11,11a,13-oktahidropirano [2,3-j]pirimido[4,5-e][1,9,3]dioxaazaciycloundecin-2(3H)-on, a vegyületnek a *cilindrosper-mopsziciklin* (CYC) triviális nevet adtuk.

Mustárnövénnyel végzett kísérleteink rámutattak arra, hogy az izolált anyagcseretermék gátolja a mustár növekedését, IC₅₀ értéke 600 μg/ml. A fehérjegélelektroforézissel végzett kísérleteink alapján elmondható, hogy a tisztított cianotoxin hatására új fehérjék jelennek meg. A cianotoxin hatására csökken az általunk izolált cianotoxin mennyisége, melyet vékonyréteg-kromatográfiai módszerrel határoztunk meg.

A *Cylindropermopsis raciborskii* törzs tápanyagéhez tételezi (foszfór-, illetve kénmegvonás) a tenyészet növekedésének csökkenését idézi elő. A tápanyagmegvonás hatására csökken az általunk izolált cianotoxin mennyisége, melyet vékonyréteg-kromatográfiai módszerrel határoztunk meg.

Sikerült előállítani a pterokarpán váz hét különböző deuterált analógját, melyek az irodalomban eddig míg le nem írt vegyületek. A deuterált szármaezékok tömegspectrometriai vizsgálatával a természetes anyag fragmentációs útvonalát sikerült feltérképezni, megállapítottuk hogy a molekula jellegzetes fragmensei a következők: molekulaion, [M-H⁺] ion, [M-OH⁺] ion, pirillium-kation és benzofurán-gyökkation.
6. SUMMARY

Summarizing our results we conclude that culturing of the cyanobacterium *Cylindrospermopsis raciborskii* (BGSD 266) isolated from Lake Balaton can be successfully performed under laboratory circumstances.

From *C. raciborskii* we have isolated a new plant growth inhibitor, named to cylindrospermopsicyclin using chromatographic techniques. The purification method involves silica gel and the thin-layer chromatography introduced by us has significantly increased the efficiency of the isolation.

The chemical structure of cylindrospermopsicyclin has been identified using structure determination methods (NMR and IR spectroscopy and MS). The newly isolated molecule has molecular mass of 413 Da. The chemical name of cylindrospermopsicyclin is: 4-amino-5,10-dihydroxy-9-(hydroxymethyl)-13-imino-11-methoxy-6-methyl-5,6,7a,9,10,11,11a,13-octahydropyrano[2,3-j]pyrimido[4,5-e][1,9,3]dioxazacyclo-undecin-2(3H)-one. For trivial name cylindrospermopsicyclin (CYC) was chosen.

Experiments showed that the isolated metabolite inhibits the growth of the mustard plant with the IC$_{50}$ value of 600 μg/ml. By the protein gel-electrophoretic studies it can be concluded that the purified cyanotoxin induces new proteins. The cyanotoxin decreases the activity of the ssDNase and acidic protease of the mustard.

Nutrient starvation (deprivation of phosphorous or sulfur) of the strain *C. raciborskii* induces fall-off in the growth of the culture. The amount of cyanotoxin produced by the culture (determined by thin-layer chromatography) also decreased under nutrient starvation conditions.

In a separate study we have isolated four microcystins ([Dha7]MCYST-FR, MCYST-HilR, MCYST-LY and [D-Ser7]MCYST-EE(OMe)) from the organism *Microcystis aeruginosa* isolated in 2001 from Kis-Balaton Reservoir. The structures of these microcystins have been identified by mass spectrometry.

We have successfully synthesized seven deuterated analogues of pterocarpan. By mass spectrometric studies the fragmentation pathway of the natural compound has been mapped.
7. KÖSZÖNETNYILVÁNÍTÁS

Ezúton is szeretném köszönetet mondani témavezetőmnek Dr. Borbély Györgynak baráti jó tanácsaiért, szakmai iránymutatásaiért.

Szeretném köszönetet mondani Dr. Antus Sándor tanszékvezető egyetemi tanárnak, hogy hasznos gondolataival munkámat segítette, szintetikus munkámat irányította.

Köszönöm Dr. Dinya Zoltánnak szakmai irányítását, mellyel tömegspektrometriai méréseimet és az eredmények értékelését segítette.

Köszönöm a Növénytani Tanszék minden dolgozójának, hogy munkámat jó légkörben barátok között végezhettem. Külön köszönettel tartozom a cianobaktérium munkacsoport tagjainak: Dr. Surányi Gyulának, Dr. Mikóné Dr. Hamvas Mártának, Dr. Máthé Csabának, Bácsi Istvánának, Tóth Szilviának, Havelant Katalinnak és Dr. Vasas Gábornak.

Dr. Batta Gyulának és Dr. Szilágyi Lászlónak az NMR mérésekért és a spektrumok kiértékelésében nyújtott segítségért tartozom köszönettel.

Köszönettel tartozom az izolált cianotoxin tömegspektrometriai méréseiért, és baráti segítségért Dr. Drahos Lászlónak.

Köszönöm Dr. Komáromi Istvánnak a molekulamodellezésben nyújtott segítségét.

Megköszönöm a Szerves Kémiai Tanszék munkatársainak preparatív munkához nyújtott tanácsaikat és segítségüket.

Végül halával tartozom családomnak türelmükért, megértésükért, a tőlük kapott szeretetért.
8. A JELÖLT TUDOMányos TEvÉKENYSéGE

Az értekezés témájához kapcsolódó közlemények:

Az értekezés témájához szorosan nem kapcsolódó közlemények:

Előadások és poszterek:

Tóth E., Dinya Z., Antus S., A pterokarpán váz tömegspektrometriai vizsgálata. 44. Magyar Spektrokémiai Vándorgyűlés, Baja, 2001.06.25-27.

9. IRODALOMJEGYZÉK

7. Codd G.A Beattie K.A. Cyanobacteria (blue-green algae) and their toxins: awareness and action in the United Kingdom. PHLS Microbiology Digest 82-86

