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The results described in the dissertation and in this thesis have
been published in the following four papers [13], [14], [15] and [16].
In the dissertation we use the following notations:

G Lie group
g Lie algebra
LF elementary filiform loop
Fn the n-dimensional elementary filiform Lie

group
fn the n-dimensional elementary filiform Lie

algebra
Mult(L) the multiplication group of loop L
mult(L) the Lie algebra of group Mult(L)
L2 the 2-dimensional non-abelian Lie group
l2 the 2-dimensional non-abelian Lie algebra

Z(L) the centre of loop L
Z the centre of group Mult(L)
z the centre of Lie algebra g
g′ the commutator subalgebra of Lie algebra

g
Inn(L) the inner mapping group of loop L
inn(L) the Lie algebra of group Inn(L)

˜PSL2(R) the universal covering group of PSL2(R)
Rn n-dimensional abelian Lie algebra

nrad the nilradical of Lie algebra g
e the identity element of loop L

Λ(L) the set of all left translations of loop L
P (L) the set of all right translations of loop L
G` the group generated by all left translations

of loop L
Gr the group generated by all right transla-

tions of loop L
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Introduction

The dissertation is devoted to investigate the relations between
non-associative binary systems loops L and the transformation groups
Mult(L) generated by all left and right translations of L. This group
is called the multiplication group of L. The action of the group
Mult(L) on L is transitive and effective. The stabilizer of the iden-
tity element of L in the group Mult(L) is the inner mapping group
Inn(L) of L. The initial steps to treat loops came from the study
of coordinate systems of non-desarguesian planes and from the in-
vestigation of topological questions in differential geometry (cf. [3]).
Firstly R. Baer considered loops in connection with the group G` or
Gr generated by their left or right translations (cf. [2]). The studies
of A. A. Albert ([1]) and R. H. Bruck ([5]) strengthened the alge-
braic features of loops. They proved that every normal subloop of
L corresponds to a normal subgroup of the group Mult(L) and the
orbit of a normal subgroup of Mult(L) with respect to the identity
element e ∈ L results a normal subloop of L (cf. Theorems 3, 4 and
5 in [1] and Lemma 1.3, IV.1, in [5]). Hence the group Mult(L) and
the subgroup Inn(L) play an essential role for the investigation of
the structure of the L (cf. [1], [5], [6], [22], [23], [32], [33], [37], [38]).
In [4] it is proved that the nilpotency of the group Mult(L) forces
that the loop L is centrally nilpotent. In this case the group Inn(L)
is commutative. For finite loops A. Vesanen ([42]) proved that from
the solvability of the group Mult(L) follows the classical solvability
of the loop L. Analogously as in the group case a loop L is classically
solvable if there is a subnormal series of L such that every factor loop
is commutative. Using congruences defining the decomposition of a
loop L into its left cosets xN , x ∈ L, with respect to the normal
subloop N of L, D. Stanovský and P. Vojtěchovský developed com-
mutator theory for loops (cf. [37]). If there exists a normal series
{e} = L0 ≤ L1 ≤ · · · ≤ Ln = L of L with the property that for all
i = 1, · · · , n, the factor loop Li/Li−1 is abelian in L/Li−1, then the
loop L is congruence solvable. In contrast to the group case the class
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of congruence solvable loops is a proper subclass of the class of clas-
sical solvable loops (cf. Exercise 10 in [18] and Construction 9.1 and
Example 9.3 in [37]). Moreover, the iterated abelian, respectively
central extensions, yield congruence solvable, respectively centrally
nilpotent loops (cf. Corollaries 5.1 and 5.2 in [38]).

In this dissertation we deal with connected topological loops L.
We follow the approach of P. T. Nagy and K. Strambach who consis-
tently studied topological and differentiable loops using the tools of
Lie theory. In [29] topological and differentiable loops L are realized
as sharply transitive sections in Lie groups G` generated by the left
translations of L. The subject of our investigation is connected topo-
logical loops L having a solvable Lie group G as the group Mult(L)
generated by all left and right translations of L. The action of the
group Mult(L) on the topological space L is transitive and effective.
Each 1-dimensional connected topological loop having a locally com-
pact group as its multiplication group is associative (cf. Theorem
18.18 in [29]). In the class of Lie groups the elementary filiform
groups Fn with dimension n ≥ 4 are the multiplication groups of
2-dimensional connected topological proper loops. Moreover, these
loops are central extensions of a 1-dimensional Lie group by the
group R (cf. [9]). Chapter 2 deals with the investigation of the clas-
sical and congruence solvable properties for topological loops. Using
the results of Lie on transitive actions of Lie groups on the plane
R2 (cf. [21]) and those on the groups Mult(L) of L, if dim(L) ≤ 2,
we obtain that all 3-dimensional connected topological loops L hav-
ing solvable Lie groups as their multiplication groups are classically
solvable (cf. Theorem 11). Applying the relation between iterated
abelian extensions and congruence solvability we formulated neces-
sary and sufficient conditions for 3-dimensional topological loops L
to be congruence solvable (cf. Theorem 12). A particular interest-
ing example (Example 1) illustrates that also for the topological case
the class of congruence solvable loops forms a proper subclass of the
class of classical solvable loops.

In Chapters 3, 4, 5, 6 we discuss the question what solvable Lie
groups can be represented as the multiplication groups of connected
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topological loops having dimension 3. Many authors investigated the
general problem, what group can be realized as the group Mult(L)
of a loop L, in particular if L is a finite loop ([7], [8], [22], [27],
[34]). Firstly, T. Kepka and M. Niemenmaa considered the latter
question and answered it using group theoretical tools (cf. [33]). The
conditions for a group G to be the multiplication group Mult(L) of
a loop L request the existence of two special left transversals S, T
with respect to a subgroup K of G. The group K results in being
the inner mapping group of L. The transversals S and T can be
taken as the set Λ(L) of the left translations and the set P (L) of the
right translations of L, respectively. The transversals S, T are K-
connected and the set S ∪ T generates the group G (see Lemma 7).
These criterions can be fruitfully applied for the topological case too
(cf. [9]-[17]). In [11] it is found the at most 5-dimensional solvable
connected simply connected Lie groups which are not nilpotent and
can be realized as the group Mult(L) for a 3-dimensional topological
loop L.

The isomorphism classes of solvable Lie algebras g are classi-
fied in [24], [26], [25], [36], [41], if dim(g) ≤ 6. Hence we restrict
our consideration for these classes of Lie algebras. The main re-
sult of Chapter 3 says that each at most 3-dimensional connected
topological loop L, such that the group Mult(L) of L is a solvable
Lie group of dimension ≤ 6, has nilpotency class 2 (cf. Theorem
14). To prove this result in Chapter 3 we describe the structure
of the 3-dimensional connected simply connected topological loops
L and their multiplication groups Mult(L) if Mult(L) are solvable
Lie groups. Theorem 15 deals with the case that Mult(L) has dis-
crete centre. Theorems 16 and 17 treat the case that Mult(L) has
1-dimensional and 2-dimensional centre, respectively. In Chapter 3
we give the steps of the procedure for the classification of the 6-
dimensional solvable Lie groups which are multiplication groups of
3-dimensional connected simply connected topological loops L hav-
ing a solvable Lie group G of dimension 6 as their multiplication
group. Based on the results of Theorems 15, 16, 17 we formulated
Proposition 18, which is applied in Chapter 4 to exclude some classes
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of 6-dimensional Lie algebras which are not the Lie algebras of the
groups Mult(L) of L. These Lie algebras are characterized by one
of the following properties:

� they have discrete centre (cf. Propositions 20, 21, 22),

� they are indecomposable and have 2-dimensional centre (cf.
Theorem 19),

� they are indecomposable and have 4-dimensional non-abelian
nilradicals (cf. Proposition 20),

� they are indecomposable and their nilradical is either R5 or a
5-dimensional indecomposable nilpotent Lie algebra with ex-
ception of the Lie algebra [e3, e5] = e1, [e4, e5] = e2 (cf. Propo-
sition 21).

In Chapters 5, 6 we find the 6-dimensional solvable Lie algebras
and their 3-dimensional abelian subalgebras which are the Lie al-
gebras of the multiplication groups and those of the inner mapping
groups of 3-dimensional connected topological loops L. Chapters 5
and 6 consist of Lie algebras having 1-dimensional and 2-dimensional
centre, respectively.

In Chapter 5 we find that there are seven classes of 6-dimensional
solvable indecomposable Lie algebras g with 5-dimensional nilradi-
cal which are the Lie algebras of Mult(L) (cf. Theorem 23). The
nilradical of the Lie algebras g is isomorphic either to f3 ⊕R2 or to
f4 ⊕ R or to the 5-dimensional indecomposable nilpotent Lie alge-
bra such that its 2-dimensional centre coincides with its commutator
ideal. Among the 6-dimensional solvable indecomposable Lie alge-
bras having 4-dimensional nilradical there are three classes which are
Lie algebras of the multiplication groups of L. The nilradical of these
Lie algebras is R4. The corresponding simply connected Lie groups
G and their subgroups K, which are the inner mapping groups of
3-dimensional connected simply connected topological loops L, are
listed in Theorem 24. In Theorem 25 we give the 18 families of de-
composable solvable Lie algebras with 1-dimensional centre which
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are the Lie algebras of the group Mult(L). In Theorems 23, 25 we
determine also the abelian subalgebras k of the Lie algebras g which
are the Lie algebras of the inner mapping group Inn(L). In Chapter
5 the centre Z(L) of all 3-dimensional connected simply connected
topological loops L is the group R. Moreover, the factor loop L/Z(L)
is the group R2. Hence these loops have nilpotency class 2.

In Chapter 6 all Lie algebras are decomposable solvable Lie alge-
bras (see Theorem 19). Among the 6-dimensional Lie algebras there
are 9 families which can be realized as the Lie algebra of the group
Mult(L) of a 3-dimensional connected topological proper loop L (cf.
Theorems 26, 27). In this case the centre Z(L) of the loop L is the
group R2 and the factor loop L/Z(L) is the group R. Therefore L
is centrally nilpotent of class 2.

Hence our main results in the dissertation are the following:

Theorem 1. Let L be a proper connected simply connected topolog-
ical loop of dimension 3 having a solvable Lie group as its multipli-
cation group Mult(L).
(a) Then L is classically solvable. There is a normal subgroup N ∼= R
of L. Every normal subgroup N ∼= R of L lies in a 2-dimensional
normal subloop M of L. The factor loop L/M is isomorphic to
R, whereas the loops M and L/N are isomorphic either to a 2-
dimensional simply connected Lie group or to an elementary filiform
loop.
(b) The loop L is congruence solvable if and only if either L has a
non-discrete centre or L has discrete centre and is an abelian exten-
sion of a 1-dimensional normal subgroup N ∼= R by the factor loop
L/N isomorphic either to the group L2 or to a loop LF .

If the multiplication group Mult(L) of an at most 3-dimensional
connected topological proper loop L is a solvable Lie group of di-
mension ≤ 6, then in Chapter 3 we show the following:

Theorem 2. If L is a connected topological proper loop L of dimen-
sion ≤ 3 such that its multiplication group Mult(L) is an at most
6-dimensional solvable Lie group, then L has nilpotency class 2.
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Chapters 4, 5 and 6 are devoted to classify the solvable Lie groups
of dimension ≤ 6 which can be represented as the groups Mult(L)
of 3-dimensional connected simply connected topological loops L.
Our main results are summarized in the following Theorems. To
formulate these results we use the notation of [24], [26], [36], [41].

Theorem 3. Let L be a connected simply connected topological
proper loop of dimension 3 such that the Lie algebra of its multi-
plication group Mult(L) is a 6-dimensional solvable Lie algebra g
having 1-dimensional centre. Then L is centrally nilpotent of class
2 and for the Lie algebra g we obtain:

� If g is an indecomposable Lie algebra having 5-dimensional
nilradical, then the Lie algebra g is one of the following: g1 =
ga=0=b

6,14 , g2 = ga=0
6,22, g3 = gδ=1,a=0=ε

6,17 , g4 = gε=±1
6,51 , g5 =

ga=0=b
6,54 , g6 = ga=0

6,63, g7 = ga=0=b
6,25 .

� If g is an indecomposable Lie algebra with 4-dimensional nil-
radical, then for the Lie algebra g we get one of the following:
g1 = Na

6,23, a ∈ R, g2 = Na
6,22, a ∈ R\{0}, g3 = N6,27.

� If g is a decomposable Lie algebra, then for the Lie algebra g we
have one of the following: g1 = R⊕gα=0,β 6=0

5,19 , g2 = R⊕gα=0
5,20 ,

g3 = R⊕g5,27, g4 = R⊕gα=0
5,28 , g5 = R⊕g5,32, g6 = R⊕g5,33,

g7 = R⊕g5,34, g8 = R⊕g5,35, g9 = l2⊕g4,1, g10 = l2⊕g4,3,

g11 = f3⊕g3,2, g12 = f3⊕g3,3, g13 = f3⊕g3,4, g14 = f3⊕gp>0
3,5 ,

g15 = l2 ⊕ R⊕ g3,2, g16 = l2 ⊕ R⊕ g3,3, g17 = l2 ⊕ R⊕ g3,4,

g18 = l2 ⊕ R⊕ gp>0
3,5 .

Theorem 4. Let L be a 3-dimensional connected simply connected
topological proper loop having an at most 6-dimensional solvable Lie
algebra g with 2-dimensional centre as the Lie algebra of the multi-
plication group Mult(L) of L. Then L is centrally nilpotent of class
2 and the Lie algebra g is one of the following possibilities:

1 The nilpotent Lie algebras: R⊕ f4, R⊕ f5.
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2 The solvable, non-nilpotent Lie algebras: g1 = R2 ⊕ gα 6=0
4,2 , g2 =

R2 ⊕ g4,4, g3 = R2 ⊕ g−1≤γ≤β≤1,γβ 6=0
4,5 , g4 = R2 ⊕ gp≥0,α6=0

4,6 ,

g5 = R ⊕ g
0<|γ|≤1
5,8 , g6 = R ⊕ g5,10, g7 = R ⊕ gp 6=0

5,14, g8 =

R⊕ gγ=0
5,15 .

1 Preliminaries

In this Chapter we collect notions, tools and results, which we use
in the later investigation.

A set L equipped with a binary operation (x, y) 7→ x·y is called a
loop if for all x ∈ L the left translation map λx : L→ L, λx(y) = x·y
as well as the right translation map ρx : L → L, ρx(y) = y · x are
bijections and there is an element e ∈ L with the property x = e·x =
x · e. A loop L is proper if it is not associative.

The relation between loops and sharply transitive sections in
groups is described in Section 1.2. of [29] in the following way: De-
note by G` the group generated by the left translations of a loop L
and by H the stabilizer of e ∈ L in G`. The set Λ(L) of the left
translations of L is a subset of G` and operates sharply transitively
on the left cosets xH;x ∈ G`. The latter property says that for
any given left cosets aH, bH there is precisely one left translation λz
with λzaH = bH.
The core CoG`

(H) of the subgroup H in the group G` is the largest
normal subgroup of G` contained in H. If G` is a group, H is one of
its subgroups with CoG`

(H) = {1} and σ : G`/H → G` is a section
such that
1. the image σ(G`/H) is a subset of G` with σ(H) = 1 ∈ G`,
2. the action of σ(G`/H) on the factor space G`/H is sharply tran-
sitive,
3. σ(G`/H) generates G`,
then the multiplication on G`/H given by xH ∗ yH = σ(xH)yH
defines a loop L(σ) having G` as the group generated by its left
translations.
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The left, respectively the right division map is defined by L× L→
L : (x, y) 7→ x\y = λ−1

x (y), respectively (x, y) 7→ y/x = ρ−1
x (y).

Moreover, denote by µx : L → L the map µx(y) = y\x. One
has µ−1

x (y) = x/y. The groups Mult(L) = 〈λx, ρx; x ∈ L〉 and
TMult(L) = 〈λx, ρx, µx; x ∈ L〉 are called the multiplication group
and the total multiplication group of L. We denote by Inn(L) and
TInn(L) the stabilizer of the identity element e ∈ L in Mult(L)
and in TMult(L), respectively. These subgroups of Mult(L) and
TMult(L) are called the inner mapping group and the total inner
mapping group of L.

A normal subloop N of L is the kernel of a loop homomorphism
α : (L, ·) → (L′, ∗). A word W is a formal product of letters λt(x̄),
ρt(x̄) and their inverses, where t(x̄) = t(x1, · · · , xn) is a loop term. If
we substitute elements ui of a particular loop L for xi into a word W
and interpret λt(x̄), ρt(x̄) as translations of L, then we get an element
Wū of Mult(L). The word W is inner if Wū(e) = e for each loop
L with identity element e and each assignment of elements ui ∈ L.
The notion of tot-inner word is defined analogously allowing µt(x̄) as
generating letters. Let W be a set of tot-inner words such that each
loop L satisfies the property TInn(L) = 〈Wū : W ∈ W, ui ∈ L〉. Let
L be a loop and N1, N2 be normal subloops of L. The commutator
[N1, N2]L is the smallest normal subloop of L containing the set
{Wū(a)/Wv̄(a) : W ∈ W, a ∈ N1, ui, vi ∈ L, ui/vi ∈ N2}. For the
set W one can choose the set {Tx, Ux, Lx,y, Rx,y,Mx,y} of the tot-
inner words Tx = ρ−1

x λx, Ux = ρ−1
x µx, Lx,y = λ−1

xy λxλy, Rx,y =

ρ−1
yx ρxρy, Mx,y = µ−1

y\xµxµy (cf. Theorem 2.1. in [38]).

A normal subloop N of L is said to be central in L, respectively
abelian in L, if [N,L]L = {e}, respectively [N,N ]L = {e}. The
centre Z(L) of a loop L is the normal subloop of L consisting of
all elements z ∈ L that satisfy the identities zx = xz, zx · y =
z · xy, x · yz = xy · z, xz · y = x · zy for all x, y ∈ L. A normal
subloop N is central in L precisely if one has N ≤ Z(L). The centre
Z(L) of L is a commutative normal subgroup of L. A loop L is
classically solvable if there is a series {e} = L0 ≤ L1 ≤ · · · ≤ Ln = L
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of subloops of L such that Li−1 is normal in Li and the factor loop
Li/Li−1 is an abelian group for all i = 1, 2, · · · , n. A loop L is
called congruence solvable, respectively nilpotent, if there exists a
chain {e} = L0 ≤ L1 ≤ · · · ≤ Ln = L of normal subloops of L such
that every factor loop Li/Li−1 is abelian in L/Li−1, respectively
central in L/Li−1. Based on the above remark this definition of
nilpotence is equivalent to the classical concept of central nilpotence
in loop theory. If we put Z0 = {e}, Z1 = Z(L) and Zi/Zi−1 =
Z(L/Zi−1), then we obtain a series of normal subloops of L. If
Zn−1 is a proper subloop of L but Zn = L, then we say that L
is centrally nilpotent of class n. The centrally nilpotent loops are
congruence solvable. If (A,+, 0) is a commutative group, (F, ·, e) is
a loop and ϕ, φ : F × F → Aut(A), θ : F × F → A are functions
with ϕ(y, e) = Id = φ(e, y), θ(e, y) = 0 = θ(y, e) for every y ∈ F ,
then on F ×A a loop is defined by

(x, a)⊕ (y, b) = (x · y, ϕ(x, y)(a) + φ(x, y)(b) + θ(x, y)).

This loop has identity element (e, 0) and it is called the abelian
extension of A by F determined by the factor system Γ = (ϕ, φ, θ).
We denote it by L = F ⊕Γ A. An abelian extension is central if
ϕ(x, y) = φ(x, y) = Id for all x, y ∈ F . A loop L is said to be an
iterated abelian, respectively central extension, if it has the form

((((A0 ⊕Γ1
A1)⊕Γ2

A2)⊕Γ3
· · · ⊕Γk−2

Ak−2)⊕Γk−1
Ak−1)⊕Γk

Ak,

where Ai, i = 0, · · · , k, are abelian groups and all extensions are
abelian, respectively central (cf. Section 5 in [38] and Definition in
[23], p. 380).

Corollaries 5.1 and 5.2 in [38], p. 380, prove:

Lemma 5. A loop L is congruence solvable, respectively centrally
nilpotent, precisely if it is an iterated abelian, respectively an iterated
central extension.

We often use the following relations between normal subloop
N , factor loop L/N of a loop L and their multiplication groups
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Mult(N), Mult(L/N) in connection with the multiplication group
Mult(L) of L (see in [1], Theorems 3, 4 and 5, in [5], IV.1, Lemma
1.3 and in [17], Lemma 2.3).

Lemma 6. Let L be a loop having Mult(L) as its multiplication
group and e as its identity element.
(i) A homomorphism α of L onto the loop α(L) with kernel N in-
duces a homomorphism of the multiplication group Mult(L) onto
the group Mult(α(L)). The set M(N) = {m ∈ Mult(L);xN =
m(x)N, for all x ∈ L} forms a normal subgroup of Mult(L) con-
taining the group Mult(N) for the normal subloop N . The factor
group Mult(L)/M(N) is isomorphic to the group Mult(L/N) of the
factor loop L/N .
(ii) For each normal subgroup N of Mult(L) the orbit N (e) is a
normal subloop of L. We have N ≤M(N (e)).

If G is a group, and K is a subgroup of G, then a system S of
representatives for the left cosets xK, x ∈ G, is called a left transver-
sal to K in G. If S, T are two left transversals to K in G, then we
say that these are K-connected, if for all s ∈ S and t ∈ T the prod-
uct s−1t−1st lies in K. For a loop L the sets Λ(L) = {λa; a ∈ L},
P (L) = {ρa; a ∈ L} are Inn(L)-connected left transversals in the
group Mult(L). In Theorem 4.1 of [33] the following necessary and
sufficient conditions are given for a group G to be the group Mult(L)
of a loop L.

Lemma 7. A group G is isomorphic to the multiplication group of a
loop precisely if there is a subgroup K with CoG(K) = {1} and there
exist K-connected left transversals S and T such that G = 〈S, T 〉.

In the later investigation we will often use the following assertion
(cf. Proposition 2.7. in [33]).

Lemma 8. Let L be a loop having Mult(L) as its multiplication
group and Inn(L) as its inner mapping group. One has

CoMult(L)(Inn(L)) = {1}
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and the normalizer NMult(L)(Inn(L)) equals to the direct product
Inn(L)× Z, where Z denotes the centre of Mult(L).

A topological loop is a topological space L such that the three bi-
nary operations (x, y) 7→ x·y, (x, y) 7→ x\y, (x, y) 7→ y/x : L×L→ L
are continuous. In this case the multiplication group of L is a topo-
logical transformation group such that in general it has no natu-
ral (finite dimensional) differentiable structure. The condition that
the group Mult(L) is a Lie group restricts strongly the isomorphic
classes of Mult(L) as well as those of L. In the dissertation we sup-
pose that the group Mult(L) is a solvable Lie group. In the further
considerations the following lemma is often applied.

Lemma 9. Each connected topological loop has a universal covering
loop, which is simply connected. If L is a 3-dimensional connected
simply connected topological loop such that the group Mult(L) is a
solvable Lie group, then L is homeomorphic to R3.

The first assertion is proved in [20], IX.1, whereas the second one
is shown in Lemma 3.3 of [10], p. 390.

An elementary filiform Lie group Fn is a connected simply con-
nected Lie group of dimension n ≥ 3 such that its Lie algebra fn
has a basis {e1, · · · , en} with [e1, ei] = ei+1 for 2 ≤ i ≤ n − 1. A
2-dimensional connected simply connected loop LF is said to be ele-
mentary filiform, if its multiplication group is an elementary filiform
group Fn with n ≥ 4. A Lie algebra is called indecomposable, if it is
not the direct sum of two proper ideals. Otherwise, the Lie algebra
is decomposable.

Lemma 10. Each elementary filiform loop LF has nilpotency class
2.

The proof of this Lemma can be found in [9], p. 420.
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2 Classical solvable, congruence solvable
topological loops

In this Chapter we prove the following theorems:

Theorem 11. If L is a 3-dimensional connected simply connected
topological loop such that its multiplication group is a solvable Lie
group, then L is classically solvable. The loop L has a 1-dimensional
normal subgroup N isomorphic to R. For each 1-dimensional normal
subgroup N there exists a normal series {e} = L0 ≤ N = L1 ≤M =
L2 ≤ L = L3 of L such that every factor loop Li/Li−1, i = 1, 2, 3, is
the group R. Moreover, the loops M and L/N are isomorphic either
to a 2-dimensional simply connected Lie group or to a loop LF .

Theorem 12. Let L be a 3-dimensional connected simply connected
topological proper loop with a solvable Lie multiplication group. The
loop L is congruence solvable if and only if L has one of the following
properties:

� the centre of L has dimension 1 or 2,

� L has discrete centre and is an abelian extension of a normal
subgroup N ∼= R by the factor loop L/N isomorphic either to
the group L2 or to a loop LF .

The following construction shows that the class of congruence
solvable loops is a proper subclass of the class of classical solvable
loops also for the topological case.

Example 1. Let (Q, ·, 1) be a topological loop of dimension n having
a normal subloop Q1 such that the factor loop Q/Q1 is isomorphic
to the group R. Let φ : (Q, ·) → (R,+) be a homomorphism. We
consider a one-parameter family of loops Γt : R × R → R, (a, b) 7→
Γt(a, b) = a ∗t b, t ∈ R, such that Γ0(a, b) = a + b and Γt is not
commutative for some t ∈ R. Suppose that for all t ∈ R the loops Γt
have the same identity element 0. We denote by ∆t(a, b) : R×R→ R
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the right division map (a, b) 7→ ∆t(a, b) = a/tb, t ∈ R, of the loop
Γt. For the loops Γt, t 6= 0, we can take loops defined by the sharply

transitive section σt : ˜PSL2(R)/L2 → ˜PSL2(R) determined by the
functions f(u) = exp[ 1

6 sin2 t cosu(cosu− 1)] and g(u) = (f(u)−1 −
f(u)) cotu (see Proposition 18.15 and its proof in [29], pp. 244-245).
All loops Γt, t 6= 0, are proper and hence they are not commutative
(cf. Corollary 18.19. in [29], p. 248). The multiplication

(x, a) ◦ (y, b) = (x · y,Γφ(x·y)(a, b))

on Q × R defines a loop Lφ which is an extension of the group R
by the loop Q. The loop Lφ has the identity element (1, 0) since one
has (1, 0) ◦ (y, b) = (y,Γφ(y)(0, b)) = (y, b) = (y, b) ◦ (1, 0). Hence
the loop Lφ is an Albert extension of the group R by the loop (Q, ·)
given by the one-parameter family Γt of the loop multiplications on
R (see [28], p. 4). Let x be an element of Q with φ(x) 6= 0. We
obtain T (x, a)(1, c) = ((x, a)◦(1, c))/(x, a) = (x,Γφ(x)(a, c))/(x, a) =
(1,∆φ(x)(Γφ(x)(a, c), a)), which is not independent of a ∈ R because
the loop Γφ(x) is not commutative. Hence the normal subgroup R
is not abelian in the loop Lφ (see Proof of Theorem 4.1 in [38], p.
377). In particular if the loop (Q, ·) is the group L2 or a loop LF ,
then this construction yields a 3-dimensional connected topological
loop, which is a non-abelian extension of the group R by the loop
(Q, ·).

Note 13. We are very thankful to Péter T. Nagy for the construc-
tion in Example 1.

3 Topological loops with solvable Lie mul-
tiplication groups of dimension at most
6 are centrally nilpotent

From now on we restrict us for those solvable Lie groups which have
dimension at most 6. The reason for this restriction is that the
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classification of the corresponding Lie algebras is complete (cf. [25],
[36], [41]). Using this restriction we show:

Theorem 14. If L is a connected topological proper loop of dimen-
sion ≤ 3 such that its multiplication group Mult(L) is an at most
6-dimensional solvable Lie group, then L has nilpotency class 2.

To show Theorem 14 we give the description of the structure
of the 3-dimensional connected simply connected topological loops
and their multiplication groups Mult(L), if Mult(L) is a solvable
Lie group.

In Theorem 15 we deal with the case that Mult(L) has discrete
centre.

Theorem 15. Let L be a proper connected simply connected topo-
logical loop of dimension 3 having a solvable Lie group with discrete
centre as its multiplication group Mult(L). The loop L is classically
solvable. It has a connected normal subgroup N isomorphic to R and
the factor loop L/N is isomorphic either to the group L2 or to a loop
LF . The dimension of the group Mult(L) is at least 6 and the group
Mult(L) has a normal subgroup S containing Mult(N) ∼= R such
that the factor group Mult(L)/S is isomorphic to the direct product
L2 × L2, if L/N ∼= L2, or to a group Fn, n ≥ 4, if L/N ∼= LF . For
each normal subgroup N of L the loop L has a normal subloop M
isomorphic either to R2 or to L2 or to a loop LF such that N < M
and L/M is isomorphic to R. The group Mult(L) contains a nor-
mal subgroup V such that Mult(L)/V ∼= R and the orbit V (e) is the
loop M . The inner mapping group Inn(L) of L, the multiplication
group Mult(M) of M and the commutator subgroup of Mult(L) are
subgroups of V . The normalizer NMult(L)(Inn(L)) is Inn(L).

In Theorem 16 the group Mult(L) has 1-dimensional centre.

Theorem 16. Let L be a 3-dimensional proper connected simply
connected topological loop such that its multiplication group Mult(L)
is a solvable Lie group with 1-dimensional centre Z. Then the loop L
is congruence solvable. The orbit K(e), where K is a 1-dimensional

15



connected normal subgroup of Mult(L), is a normal subgroup of L
isomorphic to R. Moreover, one of the following possibilities holds:
(a) If the factor loop L/K(e) is isomorphic to R2, then L has nilpo-
tency class 2 and the orbit K(e) coincides with the centre Z(L) of
L. The connected simply connected group Mult(L) is a semidirect
product of the abelian normal subgroup P = Z × Inn(L) by a group
Q ∼= R2 and the orbit P (e) is Z(L).
(b) If the factor loop L/K(e) is isomorphic either to the group L2

or to a loop LF , then Mult(L) has a normal subgroup S contain-
ing K such that the orbits S(e) and K(e) coincide. The factor
group Mult(L)/S is isomorphic to the direct product L2 × L2, if
L/K(e) ∼= L2, or to a Lie group Fn, n ≥ 4, if L/K(e) ∼= LF . In
particular, if K(e) = Z(L) and L/Z(L) is isomorphic either to the
group R2 or to a loop LF , then L is centrally nilpotent of class 3.
The loop L contains a 2-dimensional normal subloop M with K(e) <
M and the group Mult(L) has a normal subgroup V as in Theorem
15.

In Theorem 17 we consider the case that the centre of Mult(L)
has dimension 2.

Theorem 17. If L is a proper connected simply connected topologi-
cal loop of dimension 3 such that its multiplication group Mult(L) is
a solvable Lie group with 2-dimensional centre Z, then L has nilpo-
tency class 2. The group Mult(L) is a semidirect product of the
normal subgroup V = Z× Inn(L) ∼= Rm−1 by a group Q ∼= R, where
R2 = Z ∼= Z(L) and m = dim(Mult(L)). For every 1-dimensional
connected subgroup N of Z the orbit N(e) is a connected central sub-
group of L and the factor loop L/N(e) is isomorphic either to R2 or
to a loop LF . In particular, if the group Mult(L) is indecomposable,
then one has L/N(e) ∼= LF . If L/N(e) ∼= R2, then Theorem 16 (a)
holds. If L/N(e) ∼= LF , then the group Mult(L) contains a normal
subgroup S with N < S. The factor group Mult(L)/S is isomorphic
to a Lie group Fn with n ≥ 4.

Our next aim is to determine the 6-dimensional solvable Lie
groups which are multiplication groups of 3-dimensional connected
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simply connected topological loops.
Procedure of the classification:
1. step: For each 6-dimensional solvable Lie algebra g we have to
find a suitable linear representation of the corresponding connected
simply connected Lie group G.
2. step: As dim(L) = 3 we determine those 3-dimensional Lie sub-
groups K of G which have no non-trivial normal subgroup of G and
satisfy the condition that the normalizer NG(K) is the direct prod-
uct K × Z, where Z is the centre of G (cf. Lemma 8).
3. step: We have to find left transversals S and T to K in G such
that for all s ∈ S and t ∈ T one has s−1t−1st ∈ K and G is gener-
ated by S ∪ T (cf. Lemma 7).
3.1. Since the transversals S and T are continuous, they are deter-
mined by 3 continuous real functions of 3 variables. The condition
that the products s−1t−1st, s ∈ S and t ∈ T , are in K is formulated
by functional equations. Solving these functional equations we ob-
tain the possible forms of the left transversals S and T . The left
transversals S and T are the set Λ(L) of all left translations and the
set P (L) of all right translations of L, respectively. These sets play
an important role for the construction of the loop multiplication us-
ing the group G`, respectively Gr (cf. [29], p. 17-18).
3.2. We check whether the set S ∪ T generates the group G. If this
is the case, then G is the multiplication group Mult(L) of a loop L
and K is the inner mapping group of L.

Proposition 18 is useful to exclude those 6-dimensional solvable
Lie algebras which are not the Lie algebras of the groups Mult(L)
of 3-dimensional connected topological loops L.

Proposition 18. Suppose L is a proper connected simply connected
topological loop of dimension 3 such that the Lie algebra of its mul-
tiplication group is a 6-dimensional solvable Lie algebra g.
a) For all 1-dimensional ideals i of g the orbits I(e), where I is the
simply connected Lie group of i, are normal subgroups of L isomor-
phic to R. We have one of the following possibilities:
(i) The factor loop L/I(e) is isomorphic to R2. Then g contains the
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ideal p = c ⊕ inn(L) ∼= R4 such that the commutator ideal g′ of g
lies in p and c is a 1-dimensional subalgebra of the centre z of g.
(ii) The factor loop L/I(e) is isomorphic either to the group L2 or
to a loop LF . Then g has an ideal s such that i ≤ s and the factor
Lie algebra g/s is isomorphic either to l2⊕ l2 or to a Lie algebra fn,
n = 4, 5.
b) If a is an ideal of g such that dim(a) = 2, a ≤ g′ and the factor
Lie algebra g/a is isomorphic neither to l2 ⊕ l2 nor to f4, then the
orbit A(e), where A is the simply connected Lie group of a, is either
a 2-dimensional connected normal subloop M of L or the factor loop
L/A(e) is isomorphic to R2.
(iii) Assume A(e) = M . Then there exists a 5-dimensional ideal
v of g such that the Lie algebra inn(L), the Lie algebra mult(M)
and the ideal g′ are subalgebras of v. Moreover, for all ideals b of
g with dim(b) ≥ 3 and a < b ≤ g′ the orbit B(e), where B is
the simply connected Lie group of b, coincides with M . One has
a ∩ inn(L) = {0} and the intersection b ∩ inn(L) has dimension
dim(b)− 2.
(iv) If the factor loop L/A(e) is isomorphic to R2, then we have case
(i).
c) If the Lie algebra g is indecomposable, then its centre z has di-
mension ≤ 1, the subalgebra c in case a) (i) coincides with z and
the ideal p lies in the nilradical nrad.
d) If dim(nrad) = 4, then the ideal p equals to nrad. Moreover,
if nrad is not commutative or the centre z of g is trivial, then for
each 2-dimensional abelian ideal a of g such that the factor Lie al-
gebra g/a is isomorphic neither to l2 ⊕ l2 nor to f4 and for each
nilpotent ideal s of g having dimension > 2 the orbits A(e), S(e),
where A, S are the simply connected Lie groups of a, s, respectively,
are the same 2-dimensional normal subloop M of L. There is a 5-
dimensional ideal v of g with the same properties as in case b) (iii).
If g differs from the Lie algebra N6,28 in Table III in [41], p. 1349,
then the loop M is isomorphic to R2.
e) If dim(nrad) = 5, then the factor loop L/I(e) in case a) is not
isomorphic to the group L2.
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4 Solvable Lie groups which are not the
multiplication groups of 3-dimensional
topological loops

In this Chapter, we focus our attention to the classes of the following
6-dimensional solvable Lie groups:

� Indecomposable solvable Lie groups with 2-dimensional centre.

� Indecomposable solvable Lie groups such that their Lie alge-
bras have one of the following nilradicals: a 4-dimensional
non-abelian nilpotent Lie algebra, R5, a 5-dimensional inde-
composable nilpotent Lie algebra with exception of the Lie
algebra [e3, e5] = e1, [e4, e5] = e2.

� Solvable Lie groups with discrete centre.

We prove that the Lie algebras of the above listed Lie groups are
not the Lie algebras of the multiplication groups of 3-dimensional
topological loops. Firstly, in Theorem 19 we state that the at
most 6-dimensional indecomposable solvable Lie algebras with 2-
dimensional centre are not the Lie algebras of the groups Mult(L)
of 3-dimensional connected topological loops L.

Theorem 19. There does not exist any 3-dimensional proper con-
nected topological loop L having an at most 6-dimensional indecom-
posable solvable Lie group with 2-dimensional centre as the group
Mult(L) of L.

Proposition 20 says that the 6-dimensional solvable indecompos-
able Lie algebras with 4-dimensional nilradical having trivial cen-
tre or non-abelian nilradical are not the Lie algebras of the groups
Mult(L) of 3-dimensional topological loops L.

Proposition 20. Let g be a 6-dimensional solvable indecomposable
Lie algebra with 4-dimensional nilradical nrad such that either nrad
is not commutative or the centre of g is trivial. There does not exist
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any 3-dimensional connected topological loop L having g as the Lie
algebra of the multiplication group of L.

In Proposition 21 we exclude the 6-dimensional solvable indecom-
posable Lie algebras having either a 5-dimensional indecomposable
nilpotent Lie algebra with exception of the Lie algebra [e3, e5] = e1,
[e4, e5] = e2, or R5, as their nilradical.

Proposition 21. There does not exist any 3-dimensional connected
topological loop L such that the Lie algebra of the group Mult(L) is
a 6-dimensional indecomposable solvable Lie algebra having one of
the following nilradicals: (a) [e2, e4] = e3, [e2, e5] = e1, [e4, e5] = e2;
(b) [e2, e4] = e1, [e3, e5] = e1; (c) [e3, e4] = e1, [e2, e5] = e1,
[e3, e5] = e2; (d) [e3, e4] = e1, [e2, e5] = e1, [e3, e5] = e2, [e4, e5] =
e3; (e) the Lie algebra f5; (f) the Lie algebra R5.

Proposition 22 shows that the 6-dimensional solvable decompos-
able Lie algebras with trivial centre are not the Lie algebras of the
groups Mult(L) of 3-dimensional topological loops L.

Proposition 22. The 6-dimensional decomposable solvable Lie al-
gebras with trivial centre are not the Lie algebras of the multiplication
groups of 3-dimensional topological loops.

5 6-dimensional solvable Lie groups hav-
ing 1-dimensional centre

In this Chapter we determine the 6-dimensional solvable Lie groups
with 1-dimensional centre which are the multiplication groups of 3-
dimensional topological loops L. In the class of the 6-dimensional
indecomposable solvable Lie groups with 5-dimensional nilradical
there are 7 families which are the groups Mult(L) of L (cf. Theorem
23). We find that among the 6-dimensional indecomposable solvable
Lie groups with 4-dimensional nilradical only three families can be
represented as the group Mult(L) of L (cf. Theorem 24). Finally,
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there are 18 families of 6-dimensional decomposable solvable Lie
groups which are the group Mult(L) of L (cf. Theorem 25). In all
these cases we determine the inner mapping subgroups Inn(L) of L.
The corresponding loops L have 1-dimensional centre and nilpotency
class 2. Hence Theorem 14 is valid.

In Theorem 23 we consider the case that the Lie algebra mult(L)
of the multiplication group of L is a 6-dimensional solvable indecom-
posable Lie algebra with 5-dimensional nilradical.

Theorem 23. Let L be a connected simply connected topological
proper loop of dimension 3 such that the Lie algebra of its multi-
plication group Mult(L) is a 6-dimensional solvable indecomposable
Lie algebra having 5-dimensional nilradical. Then L has nilpotency
class 2 and the following pairs (g,k) of Lie algebras are the Lie al-
gebra g of the group Mult(L) and the subalgebra k of the subgroup
Inn(L):
g1 := ga=b=0

6,14 : [e2, e3] = e1 = [e5, e6], [e4, e6] = e4, k1,1 = 〈e2, e4 +
e1, e5〉, k1,2 = 〈e3, e4 + e1, e5〉;
g2 := ga=0

6,22: [e2, e3] = e1 = [e5, e6], [e2, e6] = e3, [e4, e6] = e4,
k2 = 〈e3, e4 + e1, e5〉,
g3 := gδ=1,a=ε=0

6,17 : [e2, e3] = e1 = [e4, e6], [e3, e6] = e4, [e5, e6] = e5,
k3,1 = 〈e3, e4, e5 + e1〉, k3,2 = 〈e2, e4, e5 + e1〉;
g4 := gε=±1

6,51 : [e1, e5] = e2, [e4, e5] = e1, [e3, e6] = e3, [e4, e6] = εe2,
k4 = 〈e1 + a1e2, e3 + e2, e4〉, a1 ∈ R;
g5 := ga=b=0

6,54 : [e3, e5] = e1 = [e1, e6], [e4, e5] = e2, [e3, e6] = e3,
k5 = 〈e1 + e2, e3 + a2e2, e4〉, a2 ∈ R;
g6 := ga=0

6,63: [e3, e5] = e1 = [e1, e6], [e3, e6] = e3, [e4, e5] = e2 =
[e4, e6], k6 = 〈e1 + e2, e3 + a2e2, e4〉, a2 ∈ R;
g7 := ga=b=0

6,25 : [e2, e3] = e1 = [e1, e6], [e2, e6] = e2, [e4, e6] = e5,
k7 = 〈e1 + e5, e2 + εe5, e4〉, ε = 0, 1.
The multiplication group Mult(L) and the inner mapping group
Inn(L) of L are isomorphic to the linear groups of matrices whose
multiplications are given by:

Mult(L)1 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =
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g(x1 + y1 + x2y3 − x3y2 − x6y5, x2 + y2,

x3 + y3, x4 + y4e
−x6 , x5 + y5, x6 + y6),

Inn(L)1,1 = {g(u1, u3, 0, u1, u2, 0);ui ∈ R, i = 1, 2, 3},

Inn(L)1,2 = {g(u1, 0, u3, u1, u2, 0);ui ∈ R, i = 1, 2, 3},

Mult(L)2 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + y1 + x2y3 − x3y2 − x6(y5 + x2y2), x2 + y2,

x3 + y3 − x6y2, x4 + y4e
−x6 , x5 + y5, x6 + y6),

Inn(L)2 = {g(u1, 0, u3, u1, u2, 0);ui ∈ R, i = 1, 2, 3},

Mult(L)3 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + y1 − x6y4 + (
1

2
x2

6 + x3)y2, x2 + y2,

x3 + y3, x4 + y4 − x6y2, x5 + y5e
−x6 , x6 + y6),

Inn(L)3,1 = {g(u2, u3, 0, u1, u2, 0);ui ∈ R, i = 1, 2, 3},

Inn(L)3,2 = {g(u2, 0, u3, u1, u2, 0);ui ∈ R, i = 1, 2, 3},

Mult(L)4 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + y1 + x5y4, x2 + y2 + x5y1 + εx4y6 +
1

2
x2

5y4,

x3 + y3e
−x6 , x4 + y4, x5 + y5, x6 + y6),

Inn(L)4 = {g(u1, a1u1 + u2, u2, u3, 0, 0);ui ∈ R, i = 1, 2, 3},

a1 ∈ R, ε = ±1,

Mult(L)5 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + (y1 + x5y3)e−x6 , x2 + y2 + x5y4,

x3 + y3e
−x6 , x4 + y4, x5 + y5, x6 + y6),

Inn(L)5 = {g(u1, u1 + a2u2, u2, u3, 0, 0);ui ∈ R, i = 1, 2, 3}, a2 ∈ R,

Mult(L)6 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =
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g(x1 + (y1 + y3x5)e−x6 , x2 + y2 − (x5 + x6)y4,

x3 + y3e
−x6 , x4 + y4, x5 + y5, x6 + y6),

Inn(L)6 = {g(u1, u1 + a2u2, u2, u3, 0, 0);ui ∈ R, i = 1, 2, 3}, a2 ∈ R,

Mult(L)7 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + (y1 + y2x3)e−x6 , x2 + y2e
−x6 ,

x3 + y3, x4 + y4, x5 + y5 − x4y6, x6 + y6),

Inn(L)7 = {g(u1, u2, 0, u3, u1 + εu2, 0);ui ∈ R, i = 1, 2, 3}, ε = 0, 1,

In Theorem 24 we treat the case that the group Mult(L) of a
3-dimensional connected simply connected topological proper loop
L has 4-dimensional nilradical.

Theorem 24. Let L be a connected simply connected topological
proper loop of dimension 3 such that the Lie algebra of its multi-
plication group Mult(L) is a 6-dimensional solvable indecomposable
Lie algebra having 4-dimensional nilradical. Then L has nilpotency
class 2 and the following pairs (g,k) of Lie algebras are the Lie al-
gebra g of the group Mult(L) and the subalgebra k of the subgroup
Inn(L):

� g1 := Na
6,23: [e1, e3] = [e4, e2] = e3, [e1, e4] = [e2, e3] = e4,

[e1, e5] = e6, [e2, e5] = ae6, a ∈ R, k1 = 〈e3 + ε1e6, e4 +
ε2e6, e5 + ε3e6〉, εi ∈ {0, 1}, i = 1, 2, 3, such that ε2

1 + ε2
2 6= 0.

� g2 := Na
6,22: [e1, e3] = e3, [e1, e5] = e6, [e2, e6] = ae3, [e2, e4] =

e4, a ∈ R \ {0}, k2 = 〈e3 + e6, e4 + e6, e5 + ε1e6〉, ε = 0, 1.

� g3 := N6,27: [e1, e3] = e4, [e1, e5] = [e2, e6] = e6, [e1, e6] =
[e5, e2] = −e5, k3 = 〈e3 +ε1e4, e5 +ε2e4, e4 +ε3e4〉, εi ∈ {0, 1},
i = 1, 2, 3, such that ε2

2 + ε2
3 6= 0.
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The multiplication group Mult(L) and the inner mapping group
Inn(L) of L are isomorphic to the linear groups of matrices whose
multiplications are defined by:

Mult(L)1 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1+y1e
x5 cos(x6)−y2e

x5 sin(x6), x2+y2e
x5 cos(x6)+y1e

x5 sin(x6),

x3 + y3, x4 + y4 + (ax6 + x5)y3, x5 + y5, x6 + y6), a ∈ R,
Inn(L)1 = {g(u1, u2, u3, ε1u1 + ε2u2 + ε3u3, 0, 0);u1, u2, u3 ∈ R},
εk ∈ {0, 1}, k = 1, 2, 3, such that ε2

1 + ε2
2 6= 0.

Mult(L)2 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + y1e
x5+ax6 , x2 + y2e

x6 , x3 + y3,

x4 + y4 + x5y3, x5 + y5, x6 + y6), a ∈ R \ {0},
Inn(L)2 = {g(u1, u2, u3, u1+u2+εu3, 0, 0); u1, u2, u3 ∈ R}, ε = 0, 1.

Mult(L)3 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + y1, x2 + y2 + x5y1, x3 + y3e
x6 cos(x5)− y4e

x6 sin(x5),

x4 + y4e
x6 cos(x5) + y3e

x6 sin(x5), x5 + y5, x6 + y6),

Inn(L)3 = {g(u1, ε1u1 + ε2u2 + ε3u3, u2, u3, 0, 0);u1, u2, u3 ∈ R},
εk ∈ {0, 1}, k = 1, 2, 3, such that ε2

2 + ε2
3 6= 0.

In Theorem 25 we list the 6-dimensional decomposable solvable
Lie groups with 1-dimensional centre which are the groups Mult(L)
of 3-dimensional connected simply connected topological loops L.

Theorem 25. Let L be a connected simply connected topological
loop of dimension 3 such that its multiplication group Mult(L) is a
6-dimensional decomposable solvable Lie group having 1-dimensional
centre. Then L has nilpotency class 2. Moreover, the following Lie
algebra pairs (g,k) are the Lie algebra g of the group Mult(L) and
the subalgebra k of the subgroup Inn(L):
If g has the form g = R ⊕ h = 〈f1〉 ⊕ 〈e1, e2, e3, e4, e5〉, where h
is a 5-dimensional solvable indecomposable Lie algebra with trivial
centre, then one has:
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� g1 = R ⊕ gα=0,β 6=0
5,19 : [e2, e3] = e1, [e1, e5] = e1, [e2, e5] = e2,

[e4, e5] = βe4, k1,ε = 〈e1 + f1, e2 + εf1, e4 + f1〉, ε = 0, 1,

� g2 = R ⊕ gα=0
5,20 : [e2, e3] = e1, [e1, e5] = e1, [e2, e5] = e2,

[e4, e5] = e1 + e4, k2,ε = 〈e1 + f1, e2 + εf1, e4 + a3f1〉, a3 ∈ R,
ε = 0, 1,

� g3 = R ⊕ g5,27: [e2, e3] = e1, [e1, e5] = e1, [e3, e5] = e3 + e4,
[e4, e5] = e1 + e4, k3 = 〈e1 + f1, e3, e4 + a3f1〉, a3 ∈ R,

� g4 = R ⊕ gα=0
5,28 : [e2, e3] = e1, [e1, e5] = e1, [e3, e5] = e3 + e4,

[e4, e5] = e4, k4 = 〈e1 + a1f1, e3, e4 + f1〉, a1 ∈ R\{0},

� g5 = R ⊕ g5,32: [e2, e4] = e1, [e3, e4] = e2, [e1, e5] = e1,
[e2, e5] = e2, [e3, e5] = he1 + e3, k5 = 〈e1 + f1, e2 + a2f1, e3〉,
h, a2 ∈ R,

� g6 = R ⊕ g5,33: [e1, e4] = e1, [e3, e4] = βe3, [e2, e5] = e2,
[e3, e5] = γe3, β2 + γ2 6= 0, k6 = 〈e1 + f1, e2 + f1, e3 + f1〉,

� g7 = R ⊕ g5,34: [e1, e4] = αe1, [e2, e4] = e2, [e3, e4] = e3,
[e1, e5] = e1, [e3, e5] = e2, k7 = 〈e1 + f1, e2 + f1, e3 + a3f1〉,
α, a3 ∈ R,

� g8 = R ⊕ g5,35: [e1, e4] = he1, [e2, e4] = e2, [e3, e4] = e3,
[e1, e5] = αe1, [e2, e5] = −e3, [e3, e5] = e2, h2 +α2 6= 0, k8,1 =
〈e1 +f1, e2 +f1, e3 +a3f1〉, a3 ∈ R, k8,2 = 〈e1 +f1, e2, e3 +f1〉.

If g is the Lie algebra l2 ⊕ n = 〈f1, f2〉 ⊕ 〈e1, e2, e3, e4〉, where n is
a 4-dimensional solvable Lie algebra with 1-dimensional centre 〈e1〉,
then we have:

� g9 = l2 ⊕ g4,1: [f1, f2] = f1, [e2, e4] = e1, [e3, e4] = e2, k9 =
〈f1 + e1, e2 + a2e1, e3〉, a2 ∈ R,

� g10 = l2 ⊕ g4,3: [f1, f2] = f1, [e1, e4] = e1, [e3, e4] = e2,
k10 = 〈f1 + e2, e1 + e2, e3〉.
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If g is one of the following Lie algebras f3 ⊕ g3,i and l2 ⊕ R ⊕ g3,i,
i = 2, 3, 4, 5, where the centre of f3 = 〈e1, e2, e3〉 is 〈e1〉 and g3,i =
〈e4, e5, e6〉 is a 3-dimensional solvable Lie algebra with trivial centre,
then one has:

� g11 = f3 ⊕ g3,2: [e2, e3] = e1, [e4, e6] = e4, [e5, e6] = e4 + e5,
k11,1 = 〈e2, e4 + e1, e5〉, k11,2 = 〈e3, e4 + e1, e5〉,

� g12 = f3 ⊕ g3,3: [e2, e3] = e1, [e4, e6] = e4, [e5, e6] = e5,
k12,1 = 〈e2, e4 + e1, e5 + e1〉, k12,2 = 〈e3, e4 + e1, e5 + e1〉,

� g13 = f3 ⊕ g3,4: [e2, e3] = e1, [e4, e6] = e4, [e5, e6] = he5,
−1 ≤ h < 1, h 6= 0, k13,1 = 〈e2, e4 + e1, e5 + e1〉, k13,2 =
〈e3, e4 + e1, e5 + e1〉,

� g14 = f3 ⊕ g3,5: [e2, e3] = e1, [e4, e6] = pe4 − e5, [e5, e6] =
e4 +pe5, p > 0, k14,1 = 〈e2, e4 +e1, e5 +a3e1〉, k14,2 = 〈e3, e4 +
e1, e5 + a3e1〉, a3 ∈ R\{0}, k14,3 = 〈e2, e4, e5 + e1〉, k14,4 =
〈e3, e4, e5 + e1〉,

� g15 = l2⊕R⊕g3,2: [f1, f2] = f1, [e4, e6] = e4, [e5, e6] = e4+e5,
k15 = 〈f1 + e3, e4 + e3, e5〉,

� g16 = l2 ⊕ R ⊕ g3,3: [f1, f2] = f1, [e4, e6] = e4, [e5, e6] = e5,
k16 = 〈f1 + e3, e4 + e3, e5 + e3〉,

� g17 = l2 ⊕ R ⊕ g3,4: [f1, f2] = f1, [e4, e6] = e4, [e5, e6] = he5,
−1 ≤ h < 1, h 6= 0, k17 = 〈f1 + e3, e4 + e3, e5 + e3〉,

� g18 = l2 ⊕R⊕ g3,5: [f1, f2] = f1, [e4, e6] = pe4 − e5, [e5, e6] =
e4 + pe5, p > 0, k18,1 = 〈f1 + e3, e4 + e3, e5 + a3e3〉, a3 ∈ R,
k18,2 = 〈f1 + e3, e4, e5 + e3〉.

The multiplication group Mult(L) and the inner mapping group
Inn(L) of L are isomorphic to the linear groups of matrices whose
multiplications are given by:

Mult(L)1 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =
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g(x1 + (y1 − x3y2)ex5 , x2 + y2e
x5 ,

(x3 + y3)ex5+y5 , x4 + y4e
bx5 , x5 + y5, x6 + y6),

Inn(L)1,ε = {g(u1, u2, 0, u3, 0, u1 + εu2 + u3);ui ∈ R, i = 1, 2, 3},

b ∈ R\{0}, ε = 0, 1,

Mult(L)2 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + (y1 − x3y2 + x5y4)ex5 , x2 + y2e
x5 ,

(x3 + y3)ex5+y5 , x4 + y4e
x5 , x5 + y5, x6 + y6),

Inn(L)2,ε = {g(u1, u2, 0, u3, 0, u1 + εu2 + a3u3);ui ∈ R, i = 1, 2, 3},

ε = 0, 1, a3 ∈ R,

Mult(L)3 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + (y1 + x5y4 +
1

2
(2x2 + x2

5)y3)ex5 ,

(x2 + y2 + x5y5 +
1

2
y2

5 +
1

2
x2

5)ex5+y5 , x3 + y3e
x5 ,

x4 + (y4 + x5y3)ex5 , x5 + y5, x6 + y6),

Inn(L)3 = {g(u1, 0, u2, u3, 0, u1 + a3u3);ui ∈ R, i = 1, 2, 3}, a3 ∈ R,

Mult(L)4 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + (y1 + x2y3)ex5 , (x2 + y2)ex5+y5 ,

x3 + y3e
x5 , x4 + (y4 + x5y3)ex5 , x5 + y5, x6 + y6),

Inn(L)4 = {g(u1, 0, u2, u3, 0, a1u1 + u3);ui ∈ R, i = 1, 2, 3}, a1 6= 0,

Mult(L)5 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + (y1 + x4y2 + ax5y3 +
1

2
x2

4y3)ex5 , x2 + (y2 + x4y3)ex5 ,

x3 + y3e
x5 , (x4 + y4)ex5+y5 , x5 + y5, x6 + y6), a ∈ R,

Inn(L)5 = {g(u1, u2, u3, 0, 0, u1 + a2u2);ui ∈ R, i = 1, 2, 3}, a2 ∈ R,

27



Mult(L)6 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + y1e
x4 , x2 + y2e

x5 , x3 + y3e
ax5+bx4 , x4 + y4, x5 + y5, x6 + y6),

Inn(L)6 = {g(u1, u2, u3, 0, 0, u1+u2+u3);ui ∈ R, i = 1, 2, 3}, a2+b2 6= 0,

Mult(L)7 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + y1e
ax4+x5 , x2 + (y2 + x5y3)ex4 , x3 + y3e

x4 ,

x4 + y4e
ax4+x5 , (x5 + y5)ex4+y4 , x6 + y6),

Inn(L)7 = {g(u1, u2, u3, 0, 0, u1+u2+a3u3);ui ∈ R, i = 1, 2, 3}, a, a3 ∈ R,

Mult(L)8 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + y1e
ax5+bx4 , x2 + (y2cos(x5)− y3sin(x5))ex4 ,

x3 +(y3cos(x5)+y2sin(x5))ex4 , x4 +y4, x5 +y5, x6 +y6), a2 +b2 6= 0,

Inn(L)8,1 = {g(u1, u2, u3, 0, 0, u1+u2+a3u3);ui ∈ R, i = 1, 2, 3}, a3 ∈ R,

Inn(L)8,2 = {g(u1, u2, u3, 0, 0, u1 + u3);ui ∈ R, i = 1, 2, 3},

Mult(L)9 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + y1 + x4y2 +
1

2
x2

4y3, x2 + y2 + x4y3,

x3 + y3, x4 + y4, x5 + y5e
x6 , x6 + y6),

Inn(L)9 = {g(u1 + a2u2, u2, u3, 0, u1, 0);ui ∈ R, i = 1, 2, 3}, a2 ∈ R,

Mult(L)10 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + y1e
x4 , x2 + y2 + x4y3, x3 + y3, x4 + y4, x5 + y5e

x6 , x6 + y6),

Inn(L)10 = {g(u1, u1 + u3, u2, 0, u3, 0);ui ∈ R, i = 1, 2, 3},

Mult(L)11 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1+y1+x2y3, x2+y2, x3+y3, x4+(y4+x6y5)ex6 , x5+y5e
x6 , x6+y6),

Inn(L)11,1 = {g(u2, u1, 0, u2, u3, 0);ui ∈ R, i = 1, 2, 3},

Inn(L)11,2 = {g(u2, 0, u1, u2, u3, 0);ui ∈ R, i = 1, 2, 3},
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Mult(L)12 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + y1 + x2y3, x2 + y2, x3 + y3, x4 + y4e
x6 , x5 + y5e

x6 , x6 + y6),

Inn(L)12,1 = {g(u2 + u3, u1, 0, u2, u3, 0);ui ∈ R, i = 1, 2, 3},

Inn(L)12,2 = {g(u2 + u3, 0, u1, u2, u3, 0);ui ∈ R, i = 1, 2, 3},

Mult(L)13 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + y1 + x2y3, x2 + y2, x3 + y3, x4 + y4e
x6 ,

x5 + y5e
hx6 , x6 + y6),−1 ≤ h < 1, h 6= 0,

Inn(L)13,1 = {g(u2 + u3, u1, 0, u2, u3, 0);ui ∈ R, i = 1, 2, 3},

Inn(L)13,2 = {g(u2 + u3, 0, u1, u2, u3, 0);ui ∈ R, i = 1, 2, 3},

Mult(L)14 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + y1 + x2y3, x2 + y2, x3 + y3, x4 + (y4cos(x6) + y5sin(x6))epx6 ,

x5 + (y5cos(x6)− y4sin(x6))epx6 , x6 + y6), p > 0,

Inn(L)14,1 = {g(u2+a3u3, u1, 0, u2, u3, 0);ui ∈ R, i = 1, 2, 3, }, a3 6= 0,

Inn(L)14,2 = {g(u2+a3u3, 0, u1, u2, u3, 0);ui ∈ R, i = 1, 2, 3, }, a3 6= 0,

Inn(L)14,3 = {g(u3, u1, 0, u2, u3, 0);ui ∈ R, i = 1, 2, 3},

Inn(L)14,4 = {g(u3, 0, u1, u2, u3, 0);ui ∈ R, i = 1, 2, 3},

Mult(L)15 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1+y1e
x2 , x2+y2, x3+y3e

x2 , x4+(y4+x6y5)ex6 , x5+y5e
x6 , x6+y6),

Inn(L)15 = {g(u1, 0, u1 + u2, u2, u3, 0);ui ∈ R, i = 1, 2, 3},

Mult(L)16 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + y1e
x2 , x2 + y2, x3 + y3e

x2 , x4 + y4e
x6 , x5 + y5e

x6 , x6 + y6),

Inn(L)16 = {g(u1, 0, u1 + u2 + u3, u2, u3, 0);ui ∈ R, i = 1, 2, 3},

Mult(L)17 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + y1e
x2 , x2 + y2, x3 + y3e

x2 , x4 + y4e
x6 ,
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x5 + y5e
hx6 , x6 + y6),−1 ≤ h < 1, h 6= 0,

Inn(L)17 = {g(u1, 0, u1 + u2 + u3, u2, u3, 0);ui ∈ R, i = 1, 2, 3},

Mult(L)18 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + y1e
x2 , x2 + y2, x3 + y3e

x2 , x4 + (y4cos(x6) + y5sin(x6))epx6 ,

x5 + (y5cos(x6)− y4sin(x6))epx6 , x6 + y6), p > 0,

Inn(L)18,1 = {g(u1, 0, u1+u2+a3u3, u2, u3, 0);ui ∈ R, i = 1, 2, 3}, a3 ∈ R,

Inn(L)18,2 = {g(u1, 0, u1 + u3, u2, u3, 0);ui ∈ R, i = 1, 2, 3}.

6 6-dimensional solvable Lie group hav-
ing 2-dimensional centre

In this Chapter we determine the at most 6-dimensional solvable
Lie groups with 2-dimensional centre which can be represented as
the multiplication groups Mult(L) of 3-dimensional connected sim-
ply connected topological proper loops L. These Lie groups are
decomposable (cf. Theorem 19). Moreover, the centre Z(L) of the
corresponding loops is isomorphic to R2 such that the factor loop
L/Z(L) is isomorphic to R. These loops are centrally nilpotent of
class 2.

Theorem 26. Let L be a connected simply connected topological
proper loop of dimension 3 such that its multiplication group is an
at most 6-dimensional decomposable nilpotent Lie group. Then the
loops L have nilpotency class 2 and the multiplication groups Mult(L)
of L are the groups R×F4, R×F5.

Theorem 27. Let L be a 3-dimensional connected simply connected
topological loop which has a 6-dimensional solvable non-nilpotent Lie
algebra with 2-dimensional centre as the Lie algebra g of its multi-
plication group Mult(L). Then L have nilpotency class 2 and the
following Lie algebra pairs (g,k) are the Lie algebra g of the group
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Mult(L) and the subalgebra k of the inner mapping group Inn(L):
If gi = R2⊕ni = 〈f1, f2〉⊕〈e1, · · · , e4〉, i = 1, · · · , 4, where n is a 4-
dimensional solvable indecomposable Lie algebra with trivial centre,
then one has

� n1 = gα6=0
4,2 : [e1, e4] = αe1, [e2, e4] = e2, [e3, e4] = e2 + e3,

k1 = 〈e1 + f1, e2 + f1, e3〉,

� n2 = g4,4: [e1, e4] = e1, [e2, e4] = e1 + e2, [e3, e4] = e2 + e3,
k2 = 〈e1 + f1, e2 + a2f1, e3 + a3f1〉, a2, a3 ∈ R,

� n3 = g−1≤γ≤β≤1,γβ 6=0
4,5 : [e1, e4] = e1, [e2, e4] = βe2, [e3, e4] =

γe3, k3 = 〈e1 + f1, e2 + f1, e3 + f1〉,

� n4 = gp≥0,α6=0
4,6 : [e1, e4] = αe1, [e2, e4] = pe2 − e3, [e3, e4] =

e2 + pe3, k4,1 = 〈e1 + f1, e2 + f1, e3 + a3f1〉, a3 ∈ R, k4,2 =
〈e1 + f1, e2, e3 + f1〉.

If gj = R⊕hj = 〈f1〉⊕〈e1, e2, e3, e4, e5〉, where h is a 5-dimensional
solvable indecomposable Lie algebra with 1-dimensional centre, then
we have

� h5 = g
0<|γ|≤1
5,8 : [e2, e5] = e1, [e3, e5] = e3, [e4, e5] = γe4, k5,ε =

〈e2 + εf1, e3 + e1, e4 + e1〉, ε = 0, 1,

� h6 = g5,10: [e2, e5] = e1, [e3, e5] = e2, [e4, e5] = e4, k6,ε =
〈e2, e3 + εf1, e4 + e1〉, ε = 0, 1,

� h7 = gp 6=0
5,14: [e2, e5] = e1, [e3, e5] = pe3 − e4, [e4, e5] = e3 + pe4,

k7,ε = 〈e2 + εf1, e3 + e1, e4 + a3e1〉, ε = 0, 1, a3 ∈ R, k7,δ =
〈e2 + δf1, e3, e4 + e1〉, δ = 0, 1,

� h8 = gγ=0
5,15 : [e1, e5] = e1, [e2, e5] = e1 + e2, [e4, e5] = e3, k8,ε =

〈e1 + e3, e2, e4 + εf1〉, ε = 0, 1.

The linear representations of the multiplication group Mult(L) and
the inner mapping group Inn(L) of L are given by:

Mult(L)1 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =
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g(x1 + y1e
ax4 , x2 + (y2 + x4y3)ex4 , x3 + y3e

x4 ,

x4 + y4, x5 + y5, x6 + y6), a 6= 0,

Inn(L)1 = {g(u1, u2, u3, 0, u1 + u2, 0);ui ∈ R, i = 1, 2, 3},

Mult(L)2 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + (y1 + x4y2 +
1

2
x2

4y3)ex4 , x2 + (y2 + x4y3)ex4 ,

x3 + y3e
x4 , x4 + y4, x5 + y5, x6 + y6),

Inn(L)2 = {g(u1, u2, u3, 0, u1+a2u2+a3u3, 0);ui ∈ R, i = 1, 2, 3}, a2, a3 ∈ R,

Mult(L)3 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + y1e
x4 , x2 + y2e

ax4 , x3 + y3e
bx4 , x4 + y4, x5 + y5, x6 + y6),

Inn(L)3 = {g(u1, u2, u3, 0, u1 + u2 + u3, 0);ui ∈ R, i = 1, 2, 3},

−1 ≤ a ≤ b ≤ 1, ab 6= 0

,
Mult(L)4 : (x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + y1e
ax4 , x2 + (y2cos(x4) + y3sin(x4))ebx4 ,

x3+(y3cos(x4)−y2sin(x4))ebx4 , x4+y4, x5+y5, x6+y6), a 6= 0, b ≥ 0,

Inn(L)4,1 = {g(u1, u2, u3, 0, u1+u2+a3u3, 0);ui ∈ R, i = 1, 2, 3}, a3 ∈ R,

Inn(L)4,2 = {g(u1, u2, u3, 0, u1 + u3, 0);ui ∈ R, i = 1, 2, 3},

Mult(L)5 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + y1 + x5y2, x2 + y2, x3 + y3e
x5 ,

x4 + y4e
cx5 , x5 + y5, x6 + y6), 0 < |c| ≤ 1,

Inn(L)5,ε = {g(u2+u3, u1, u2, u3, 0, εu1);ui ∈ R, i = 1, 2, 3}, ε = 0, 1,

Mult(L)6 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + y1 + x5y2 +
1

2
x2

5y3, x2 + y2 + x5y3,
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x3 + y3, x4 + y4e
x5 , x5 + y5, x6 + y6),

Inn(L)6,ε = {g(u3, u1, u2, u3, 0, εu2);ui ∈ R, i = 1, 2, 3}, ε = 0, 1,

Mult(L)7 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1 + y1 + x2y5, x2 + y2, x3 + (y3cos(x5)− y4sin(x5))epx5 ,

x4 + (y4cos(x5) + y3sin(x5))epx5 , x5 + y5, x6 + y6), p 6= 0,

Inn(L)7,ε = {g(u2 + a3u3, u1, u2, u3, 0, εu1);ui ∈ R, i = 1, 2, 3},

ε = 0, 1, a3 ∈ R,

Inn(L)7,δ = {g(u3, u1, u2, u3, 0, εu1);ui ∈ R, i = 1, 2, 3}, δ = 0, 1,

Mult(L)8 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6) =

g(x1+(y1+y2x5)ex5 , x2+y2e
x5 , x3+y3+x5y4, x4+y4, x5+y5, x6+y6),

Inn(L)8,ε = {g(u1, u2, u1, u3, 0, εu3);ui ∈ R, i = 1, 2, 3}, ε = 0, 1,

Corollary 28. All solvable decomposable Lie groups of dimension
6 which are the groups Mult(L) of 3-dimensional connected topo-
logical loops L have 1- or 2-dimensional centre and 3-dimensional
commutator subgroup.

Corollary 29. Each solvable Lie group of dimension 6 which is re-
alized as the multiplication group Mult(L) of a 3-dimensional con-
nected topological proper loop L has 1- or 2-dimensional centre and
2- or 3-dimensional commutator subgroup.
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loops, J. Algebra, 399 (2014), 290–322.
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