AZ ANTITESTFÜGGŐ SEJTKÖZVETÍTETT CITOTOXICITÁS (ADCC) SZEREPE A TRASTUZUMAB HATÁSMECHANIZMUSÁBAN

BAROK MÁRK

DEBRECENI EGYETEM
ORVOS ÉS EGÉSZSÉGTUDOMÁNYI CENTRUM
ÁLTALÁNOS ORVOSTUDOMányI KAR
BIOFIZIKAI ÉS SEJTBIOLÓGIAI INTÉZET

TARTALOMJEGYZÉK

1. Bevezetés .. 5
2. Irodalmi áttekintés ... 6
 2.1. Az epidermális növekedési faktor receptor család ... 6
 2.2. Az ErbB család tagjainak fiziológiás jelentősége ... 7
 2.3. Mit tudunk az ErbB család jelátviteli folyamatáról? ... 7
 2.3.1. A ligand ... 8
 2.3.2. Az ErbB fehérjék kölcsönhatásai egymással, kommunikáció az ErbB családon belül ... 9
 2.3.2.1. Heterodimerizáció .. 9
 2.3.2.2. Homodimerizáció .. 11
 2.3.3. Az ErbB receptorok intracelluláris részéhez kapcsolódó fehérjék 11
 2.4. Az ErbB2 szerepe mellrákokban .. 12
 2.5. Az ErbB2 ellenes antitestterápia, a trastuzumab ... 13
 2.5.1. Hogyan hat a trastuzumab? ... 14
 2.5.1.1. Az Fab vagy az Fc rész a fontosabb? ... 15
 2.5.2. Trastuzumab-rezisztencia ... 16
 2.5.2.1. A JIMT-1 sejtvonal ... 18
 2.6. Az áttétképződés, röviden ... 19
 2.6.1. A trastuzumab kezelés hatása a vérben keringő daganatos sejtekre (VKDS) és a mikrometasztázisokra ... 20
3. Célkitűzések .. 21
4. Anyagok és módszerek .. 22
 4.1. Sejtek .. 22
 4.2. Al-sejtvonalak alapítása JIMT-1 xenograftokból ... 22
 4.3. SCID és nude egerek .. 23
 4.4. Az egerek oltása daganatos sejtekkel, az egerek kezelése, a xenograftok nagyságának becslése ... 23
 4.5. Az egerek véрезtetése, a xenograft kivétele, csontvelővel ... 24
 4.6. Mononukleáris sejtek szeparálása vérből és csontvelőből .. 24
4.7. Immunhisztokémia, immuncitokémia ... 24
4.8. Antitestek .. 25
4.9. Fab fragmentumok preparálása .. 26
4.10. Trastuzumab-F(ab’)2 fragmentumok preparálása ... 26
4.11. Antitestek és Fab fragmentumok konjugálása fluoreszencs festékekkel 27
4.12. Fluoreszcencia in situ hibridizáció (FISH) ... 27
4.13. Fluoreszencs mikroszkópia .. 29
4.15. Az ADCC in vitro vizsgálata ... 29
4.17. Az in vitro trastuzumb-érzékenység vizsgálata ... 30
4.18. A konfokális mikroszkóppal felvett képek elemzése 31
4.19. Statisztika ... 31
5. Eredmények és megbeszélésük ... 32
5.1. Korai trastuzumab kezelés hatása a JIMT-1 xenograftokra 32
5.2. A trastuzumab kezelés hatása a xenografttá még nem fejlődött JIMT-1 sejtekre ... 33
5.3. A trastuzumab-F(ab’)2 tesztelése ... 36
5.4. A trastuzumab-F(ab’)2 kezelés hatása a xenografttá még nem fejlődött JIMT-1 sejtekre ... 40
5.5. „Al-sejtvonalak”alapítása a JIMT-1 xenograftokból 41
5.6. In vitro ADCC vizsgálata trastuzumab érzékeny és rezisztens sejtvonalokon ... 41
5.7. Érzékenyek-e a JIMT-1 X+ sejtek trastuzumab-kezelésre in vivo? 42
5.8. A trastuzumab és a trastuzumab-F(ab’)2 kezelés is csökkentette az ErbB2 expressziót a JIMT-1 xenograftokon ... 44
5.9. A trastuzumab-kezelés leállítása után 6 héttel trastuzumab a sejteken? 46
5.10. Vérben keringő daganatos sejtek (VKDS) kimutatása JIMT-1 sejtekkel oltott SCID egerekben ... 47
5.11. A trastuzumab hatása a vérben keringő daganatos sejtek (VKDS) és csontvelői, disszeminált daganatsejtek (CSDDS) számára ... 49
 5.11.1. A trastuzumab és a rituximab hatása a xenografttá még nem fejlődött JIMT-1 sejtekre ... 49
 5.11.2. A trastuzumab és a rituximab hatása a vérben keringő daganatos sejtek (VKDS) és a csontvelői, disszeminált daganatsejtek (CSDDS) számára ... 50
6. Ósszefoglalás .. 56
7. Köszönmőm ... 58
8. Irodalomjegyzék .. 59
9. Közlemények .. 68
10. Az értekezés alapjául szolgáló közlemények különlenyomata 71
Mottó

„Úgyse hiszi senki el magának,
Hogy amit lát, az tényleg van,
Hanem várja, hogy a valódi látványt
Jelző kürtsző felharsan.

Szól a kürt, ellibben a függöny,
Amit most látsz, az tényleg van.
Kár, hogy mikor körbenéznél,
A szélben a mécsesed ellobban.”

Kispál és a Borz

Tudom, hogy amikor Lovasi András papírra vetette, majd elénekelte ezeket a sorokat, nem a kutatásra gondolt. Engem mégis a kutatómunkám hektikusságára, az általam tapasztalt és feltételezett dolgokról gondolt higgyem? – ne higgyem?, úgy van! – nem úgy van? folytonos váltakozására, a kételyre emlékezett a vers.
A mellrák az egyik leggyakrabban előforduló daganatos megbetegedés. Annak ellenére, hogy az utóbbi 30 évben jelentős előrelépések történtek a szűrésében és a kezelésében, ez a betegség évente fél millió ember haláláért felelős világszerte [1]. A mellrákkal diagnosztizált betegek körülbelül felénél áttétes betegség fejlődik ki. Az áttétes mellrák kezelése palliatív, a betegség kiújulása esetén az átlagosan várható élettartam 24 és 30 hónap között van [2].

Dennis Slamon és mtsai 1987-es és 1989-es tanulmányaikban megmutatták, hogy a mellrákok mintegy 30%-ában a ráksejtek fokozottan fejeznek ki egy ErbB2 nevű fehérjét. A tanulmányok összefüggést találtak a gén amplifikációjája ill. a fehérje fokozott kifejezódése és a mellrákos betegek túlélése között [3; 4].

Ez a két tanulmány egy új terápiás módszert alapozott meg, amelynek támadáspontja az ErbB2.
2. Irodalmi áttekintés

A növekedési faktorok sejtfelszíni receptoraihoz kapcsolódása nem ritkán meglehetősen összetett folyamatokat indít el, amelyek fontosak a sejtek működésének szabályozásában. A jelátvitelben fontos szerepük van a transzmembrán receptor tirozin kinázoknak. Ennek a csoportnak egyik képviselője az epidermális növekedési faktor receptor család, amelynek nemcsak a fiziológiás jelátvitelben, hanem a rosszindulatú daganatok keletkezésében és növekedésében is jelentős a szerepe. Az I. osztályú tirozin kinázok közé tartozó családaknak négy tagja van: az epidermális növekedési faktor receptor (EGFR vagy ErbB1), az ErbB2, az ErbB3 és az ErbB4. Az ErbB család leírásának történetében több olyan felfedezés született, amelyek nagy jelentőségüek voltak a biológiában.

2.1. Az epidermális növekedési faktor receptor család

A négy receptor szerkezete és funkciója igen hasonló: az extracelluláris rész négy doménból áll, kettő ciszteinben gazdag; a juxtamembrán és a transzmembrán rész a receptor modifikációjában és aktivációjában játszik fontos szerepet; a tirozin kináz domén intracellulárisan helyezkedik el, és sok foszforilálható aminosavat tartalmaz, melyek a

b Dolgozatom „Irodalmi áttekintés” című fejezetében felhasznált részeket a 2001-ben írt „Az ErbB2 és ErbB3 fehérjék szupramolekuláris szervezódése emlőtumor sejteken” című TDK pályamunkából.

c Az ErbB onkogén család neve ma is őrzi az elsődleges felfedezési helyet, erb: avian erythroblastosis virus.
receptorfunkciót és a jelátviteli útvonalat befolyásolják, sejten belüli hírvivő fehérjéket toboroznak [14; 15; 16].

2.2. Az ErbB család tagjainak fiziológiás jelentősége

A család tagjainak szerepét leírták a szívfejlődésben, a központi és a perifériás idegrendszer fejlődésében, az epitelális szövetek fejlődésében, a szöveti megújulásban, a sebgyógyulásban, az angiogenezisben [17; 18; 19; 20; 21; 22; 23]. Leírták, hogy míg az ErbB1 és az ErbB2 mezenhimális szövetekben is kifejeződik, addig az ErbB3 és az ErbB4 expressziója inkább csak az epitéliális sejtekre jellemző, viszont ligandjaik nagy részét mezenhimális sejtek termelik. Ez arra utalhat, hogy az ErbB receptor családának szerepe lehet a mezenhimo-epitéliális kölcsönhatásban [24]. Az ErbB2 expressziója a magzati fejlődés során magas szintű, felnőttekben alacsony szintje mutatható ki epitél sejteken és több normális szövetben.

2.3. Mit tudunk az ErbB család jelátviteli folyamatáról?

Az ErbB fehérjék jelátviteli folyamatát három nagy szakaszra lehet bontani: először az ErbB receptorhoz extracellulárisan ligand kötődik, majd a receptorok egymással „kommunikálnak”, azután az ErbB intracelluláris részéhez intracelluláris hírvivő molekula kapcsolódik. A folyamatot az 1. és a 2. ábra szemlélteti.

d Ezt a fejezetet Yarden, Citri és Alroy összefoglaló közleményei alapján írtam [14; 16; 29], a folyamatokat szemléltető 1. ábrát Alroy közleményéből ollokottam [29]. A 2. ábrát Gamett közleménye alapján készítettem [25].
2.3.1. A ligand

Az ErbB receptor család ligandjai, amelyek a sejtek működését auto-, para- és endokrin úton szabályozzák, lehetnek membránba integrált fehérjék, valamint proteolitikus hasítást követően a plazmában jelenlévő molekulák. Ma három családba sorolják őket:

1. EGF-szerű ligandok (EGF, transzformáló növekedési faktor α, amfiregulin), amelyek főleg az ErbB1-hez kötődnek.
2. Neuregulinok (NRGα, NRGβ), melyek a neuregulin receptorokhoz (ErbB3, ErbB4) kötődnek.
3. Heparin binding EGF (HB-EGF), betacellulin és epiregulin, melyek kötődnek az ErbB1-hez, ErbB3-hoz és az ErbB4-hez is.

Az ErbB2-nek nem ismert fiziológiai ligandja.

2.3.2. Az ErbB fehérjék kölcsönhatásai egymással, kommunikáció az ErbB családon belül

A receptorok közül kettőnek, az ErbB1-nek és az ErbB4-nek, van ligand stimulált tirozin kináz aktivitása. Az ErbB2-nek nem ismert fiziológiai ligandja, az ErbB3-nak pedig nincs
tirozin kinázk aktivitása a kináz doménben lévő aminosav szubsztitúció miatt. Az ErbB2-nek és az ErbB3-nak ahhoz, hogy részt vehessenek a jelátvitelben, egy másik molekulához kell kapcsolódniuk, így egymás potenciális párjai lehetnek egy működőképes dimerben, melyen az extracelluláris szignált az ErbB3 „veszi fel”, és az ErbB2 intracelluláris tirozin kináza továbbítja. A ligand kötődése az ErbB molekulákhoz egy dimerizációs kaszkádot indít el, mely összetett szignállaktivitásokat és különböző biológiai válaszokat kezeményez az ErbB család által. A kölcsönhatás formái:

2.3.2.1. Heterodimerizáció

Az ErbB2-nek központi szerepe van a heterodimerek képződésében, a másik három receptor egymással versengve kapcsolódik az ErbB2-hoz. A dimerek közül azok a
stabilabbak, melyeknek az ErbB2 tagja, ekkor fokozódik a dimer tirozin kináz aktivitása, és nő a ligand iránti affinitása.

2. ábra. Heterodimerek képződése az ErbB családon belül

2.3.2.2. Homodimerizáció

Fent említettem, hogy az ErbB3 és az ErbB4 homodimer NRG affinitása alacsony, ráadásul az ErbB3-nak nincs tirozin kináz aktivitása. ErbB1 homodimer is ismert, EGF kezelés után gyors down-regulációt mutat. Ezen homodimerek biológiai szerepe még nem teljesen tisztázott. ErbB2 homodimer kétféleforma jöhet létre: Pontmutáció által, amely a transzmembrán régióban okoz aminosavcserét; ezt patkány nitrozoureával indukált
neuroblasztómájában igazolták [27]. Emberi daganatokban ehhez hasonló mutációt eddig nem találtak, ezért itt spontán dimerizációról lehet szó, mely a nagy receptorsűrűség miatt jöhet létre [28]. Elmondható, hogy ha a sejtben van ErbB2, akkor az ErbB1-, ErbB3-, ErbB4-homodimerek kis mennyiségben képződnek, mindhárom fehérje elsődleges dimerizációs partnere az ErbB2 [29].

2.3.3. Az ErbB receptorok intracelluláris részéhez kapcsolódó fehérjék

A ligand kötése dimerizációt vált ki, a dimert kötő ErbB fehérjék transzfoszfórlálják egymás intracelluláris doménjeit, így SH2, SH3 és PTB doménnal rendelkező fehérjék (pl. Shc, Grb2, p85, clb) kapcsolódnak hozzájuk. Az, hogy a foszfórlálás hol történik, pontosan melyik tirozin foszfórlálódik, függ a dimerizációs partnertől, és hogy primer, vagy szekunder dimer-e az adott komplex. Mivel a kapcsolódon belülvállaló fehérjék meghatározott foszfóriozin mintázatot ismernek fel, az ErbB molekulák kölcsönhatásai során létrejött foszfóriozin mintázatok meghatározzák a további intracelluláris eseményeket.

A növekedési szignál sokféle információt hordozhat a sejt számára. Az ErbB család rendszere lehetővé teszi a jel erősítését és divergálását, vagyis azt, hogy az extracelluláris tér molekulái által hordozott információ a jelátvitel során különbözőképpen fordítódjon le, eltérő minőségű és erősségű sejtválaszokat eredményezve.

2.4. Az ErbB2 szerepe mellrákokban

Bár az ErbB2 amplifikációját számos daganatban kimutatták [30], úgy tűnik, hogy legfontosabb szerepe a mellrákok növekedésének szabályozásában van. Míg az emlő nem malignus epitelisejtén 20 000 – 50 000 darab ErbB2 receptor van, a mellráksejtéken akár 2 millió is lehet. Ennek az esetek túlnyomó részében az ErbB2 gén amplifikációja az oka [4]. Az ErbB2 fokozott expressziója összefügg a daganat magas szövettani grádussal, a ráksejték magas mitotikus aktivitással, a p53 gén mutációjával, a daganat negatív ösztrogén receptor státusával. Ha a beteg daganata ErbB2 pozitív, betegségének rosszabb a prognózisa, mint az

6 Az ErbB2 receptorok hozzávetőleges száma az általunk vizsgált mellrák-sejtéken: JIMT-1: 300 000; SKBR3: 800 000; BT474: 1 millió.
7 Két, többé-kevésbé egyenrangúnak tartott módszert használnak rutinszerűen a daganatok ErbB2 pozitivitásának vizsgálatára: a fehérje fokozott kifejezódését kimutató immunhisztokémia és a gén amplifikációját kimutató fluoreszcencia in situ hibridizációt [2].
ErbB2 negatív betegek: valószínűbbek az áttétek és rövidebb a relapszusmentes túlélés [3; 4; 31; 32].

A daganatos sejtek növekedését gyakran fokozottan kifejeződő onkogének irányítják, ezért még előrehaladott daganatos betegség esetén is sikeres lehet olyan terápiá alkalmazása, amellyel a fokozottan kifejeződő onkoproteint célozzák meg [33; 34]. Az ErbB2-nek központi szerepe van az ErbB receptor család általi jelátvitelben, így a funkciójának blokkolása jelentősen csökkentheti a daganatsejtek növekedését.

Az ErbB2 gátlása az alábbi módokon lehetséges:
1. Az ErbB2 tirozin kináz aktivitásának gátlása kináz inhibitorkal [35].
2. Az ErbB2 fehérje termelésének gátlása anti-sense oligonukleotidokkal [36], vagy siRNS-sel [37].
3. Az ErbB2 mRNS-ének hasítása ribozimmel [38].
5. Toxinok kapcsolása ErbB2 ellenes antitestekhez (immunotoxin) [39].
6. Immunizálás ErbB2 peptidekkel [40].

2.5. Az ErbB2 ellenes antitestterápia, a trastuzumab

Az a felfedezés, hogy egyes ErbB2 ellenes antitestek képesek gátolni az ErbB2-t fokozottan kifejező ráksejtek növekedését, áttörést jelentett a daganat-terápiában [41]. A 4D5 nevű, ErbB2 ellen egérben termeltett antitestről kiderült, hogy in vitro és állatkísérletekben in vivo is gátolja az ErbB2-t fokozottan kifejező ráksejtek növekedését. A 4D5-tel kezelt betegek egy része válaszolt a kezelésre, azonban immunválasz fejlődött ki bennük az egér immunglobulin ellen, ami az antitestet a terápiában használhatatlanná tette [42]. Hogy ezt a mellékhatást elkerüljék, antitest-humanizációs technikával az egér 4D5 antitestből kifejlesztettek egy csupán ~ 5% egér eredetű humanizált antitestet, a trastuzumabot. Az új antitest specifikusabban és nagyobb affinitással kötődött az ErbB2-höz, és jóval kevésbé volt immunogén [43]. In vitro és in vivo preklinikai vizsgálatokban bizonyították, hogy a trastuzumab megőrizte a 4D5 daganatgátló hatását [44], és képes volt in vitro ADCC-t kiváltani ErbB2-t fokozottan kifejező emlőráksejteken [45]. II-es és III-as klinikai fázisban egyértelműen bebizonyosodott a trastuzumab daganatellenes hatása mind monoterápia formájában, mind kemoterápiával kombinálva [46; 47].
A United States Food and Drug Administration (FDA) által 1998-ban engedélyezett trastuzumabot (kereskedelmi nevén: Herceptin6) ma a következő kritériumokat teljesítő esetekben használják8:

- monoterápia formájában, olyan áttétes, ErbB2 pozitív mellrákos betegek kezelésére, akiket előzőleg már legalább 2 kemoterápiás szerrel kezelték.
- kombinálva paclitaxellel olyan áttétes, ErbB2 pozitív mellrákos betegek kezelésére, akiket előzőleg még nem kezelték kemoterápiás szerrel.
- 2006 novemberében, miután széleskörű klinikai vizsgálat sorozatban a hagyományos kemoterápiá kiegészítése trastuzumabbal a betegség kiújulásának kockázatát felére, a megfigyelési időszakon belüli halálozás kockázatát pedig harmadára csökkentette, az FDA engedélyezte a trastuzumab-kezelést a korai emlőrák adjuváns kezelése is48.

2.5.1. Hogyan hat a trastuzumab?49; 50h

A trastuzumab hatásmechanizmusa nem teljesen tisztázott, bár rengeteg \textit{in vitro} és \textit{in vivo} kísérletet terveztek a megértésére. Az antitest Fab és Fc részének is fontos szerepe van a daganatgátló hatásban. Az Fab részen keresztül kifejtett hatásoknak azt nevezem, amiket a trastuzumab az ErbB2-höz való kapcsolódásával magukon a daganatsejteken előidéz. Az Fc részen keresztüli hatáson azt értem, hogy az ErbB2-höz kötött trastuzumab Fc részét Fc-receptorral rendelkező immunsejtek felismerik, majd antitest-közvetítette sejtöléssel (antibody-dependent cell-mediated cytotoxicity = ADCC) megölik a daganatsejtet; a komplement-közvetítette sejtölés (complement-dependent cytotoxicity = CDC) is az Fc részen keresztül valósul meg. \textit{In vitro} kísérletekben az Fab részen keresztüli hatásokat vizsgálhatjuk, \textit{in vivo} mindkét részen keresztüli hatás megvan.

\textit{In vitro} kísérletekben bizonyították, hogy a trastuzumab:

- bivalens antitestként keresztköt két ErbB2 receptort, olyan jelátviteli utakat indítva ezzel el, amelyek egyik végeredménye az ErbB2 internalizációja és degradációja: a sejtfelszíni ErbB2 mennyiség csökkenése51,

6 Forrás: www.genentech.com
h Ezt a fejezetet Nahta két összefoglaló közlemény alapján írtam.
1 Régebben a trastuzumab ErbB2-t csökkentő hatását tartották a trastuzumab daganatgátló hatásáért leginkább felelősnek; jelen dolgozatban megpróbálkozom azzal, hogy szétválasszam a trastuzumab ErbB2-t csökkentő és a daganatgátló hatását (lásd 43. oldalt).
gátolja a mitogén aktiválta protein kináz és a foszfatidil-inozitol-3 kináz szignalizációs útvonalakat [52; 53],
- csökkenti a ciklin D1 expresszióját, ezáltal csökken a ciklin-dependens kináz inhibítor p27kip1 szint: a sejtciklus leáll a G1 fázisban [54],
- apoptózist vált ki [51],
- növeli az ErbB2 HLA-I-hez kapcsolódó antigénprezentációjának mértékét [55].

In vivo trastuzumab-kezelés enlörák-xenograftokban csökkentette a kis erek számát és átmérőjét, aminek hátterében 4 érképződést segítő növekedési faktor expressziójának csökkenését (VEGF (vascular endothelial growth factor), TGF-α (transforming growth factor-α), angiopoietin-1, PAI-1 (plasminogen activator inhibitor-1)), és az érképződést gátló TSP-1 (thrombospondin-1) szintjének növekedését találták [56].

2.5.1.1. Az Fab vagy az Fc rész a fontosabb?

Természetesen a trastuzumab Fab része elengedhetetlen ahhoz, hogy az antitest az ErbB2-höz kapcsolódjon. De vajon mekkora rész jut a trastuzumab daganatgátló hatásából az Fab és mekkora az Fc részén keresztül kifejtett hatásnak? Egyszerűsítve azt is kérdezhetjük, hogy a hatás hányad részéért felelős a trastuzumab ErbB2-n keresztül, a rákos sejtre közvetlenül kifejtett hatása, és mekkora hányadért felelős az ADCC (és a CDC).

A kérdés eldöntésére Clynes és munkacsoportja két kulcsfontosságú kísérletet végzett. BT474, in vitro trastuzumabra érzékeny mellráksejteket oltottak ép FcγR-ral és FcγR-defektussal rendelkező immuniányos egerekbe (3. ábra; WT: ép FcγR; FcγR-/-: FcγR-defektus; Herceptin = trastuzumab). Az egereket hetente kezelték trastuzumabbal. Az ép FcγR-ral rendelkező egerekben a trastuzumab meggátolta a daganatnövekedést, az FcγR-defektussal rendelkező egerekben viszont a növekedésgátló hatásának mintegy 2/3-át elveszítette. (Fontosnak tartom megjegyezni, hogy a 3. ábrán bemutatott kísérlettel párhuzamosan elvégezték ugyanezt a kísérletet, azzal a módosítással, hogy trastuzumab helyett a humanizáltatlan, egér 4D5-tel kezelték az egereket: a 4D5-nek ugyanolyan volt a hatása, mint a humanizált trastuzumabnak. Mindez bizonyítja, hogy egér-modell rendszerben
Irodalmi áttekintés

3. ábra. Az Fcγ receptorok szerepe a trastuzumab hatásmechanizmusában I.

Úgy tűnik tehát, hogy a trastuzumab daganatgátló hatásának mintegy 2/3-részét az ADCC a felelős, 1/3-részért pedig az antitestnek közvetlenül a daganatsejteken kifejtett hatása.

Fontos megismételnem, hogy ezeket a kísérleteket egy olyan mellrák sejtvonalal (BT474) végezték, amelynek a növekedését a trastuzumab in vitro gátolta.
2.5.2. Trastuzumab-rezisztencia

A meggyőző klinikai eredmények ellenére sajnos jóléhány ErbB2 pozitív mellrák elsődlegesen rezisztens (primer rezisztencia) a trastuzumab-terápiára, az esetek nagy részében pedig körülbelül 1 éves trastuzumab-kezelés után ellenállóvá válnak a daganatok a kezelésre (szerzett rezisztencia) [46; 58].

Az alábbi mechanizmusok egyaránt felelősek lehetnek a primer és a szerzett trastuzumab-rezisztenciáért:

1. Különböző alternatív túlélési útvonalak aktiválódása:
 - EGF-szerű ligandumok autokrin termelése fokozhatja az ErbB család más tagjain keresztüli jelátvitelt [59].
 - Az inzulin-szerű növekedési faktor receptor útvonalának aktiválódása [60].
 - Akt útvonal aktiválódása [61].
 - A MUC4 nevű sejfiszti szialomucin [62; 63], vagy a hialuronsav [64] eltakarhatja az ErbB2 trastuzumab kötő epitópját a trastuzumab elól.

2. A PTEN tumorszuppresszor csökkent expressziója [65].

1Ezt a fejezetet is Nahta két összefoglaló közlemény alapján írtam [49; 50]
Jóllehet Clynes és munkacsoportja fent részletezett kísérlete világossá tette, hogy a trastuzumab hatásának nagyobb részéért az ADCC fele l, mégis csak kevés közlemény foglalkozik azzal, hogy mi lehet a szerepe/jelentősége az ADCC-nek a trastuzumab-rezisztenciában. Mimura és mktai kísérletükben azt a nyelőcsőrák sejtvonalat, amely in vitro TGF-β-t (transforming growth factor-β) termelt, ErbB2 pozitivitása ellenére jóval kisebb mértékben tudták az NK sejtek trastuzumab-közvetítette sejtöléssel megölni, mint az ErbB2-t hasonló mértékben kifejező, de TGF-β-t nem termelő sejteket. Ha az ellenálló sejteket TGF-β-t semlegesítő antitesttel kezelték, érzékenyé váltak a trastuzumab-közvetítette sejtölésre [66]. Kono és mktai előrehaladtott gyomorrákos betegekből izolált NK sejtek (NKbeteg) trastuzumab-közvetítette sejtölő képességét vizsgálták in vitro. A kontroll NK sejtekhez (NKkontroll) képest az NKbeteg sejtek sokkal kisebb mértékű ADCC-t váltottak ki. Ezzel párhuzamosan megfigyelték, hogy az NKbeteg sejteken alacsonyabb az ADCC-ben kulcsfontosságú CD16ζ alegységének expressziós szintje. In vitro interleukin-2 kezeléssel növelni tudták az NKbeteg sejtek CD16ζ expresszióját, a megnövelt CD16ζ expressziójú sejtek pedig az NKkontroll sejtekhez hasonló mértékű trastuzumab-közvetítette sejtölésre voltak képesek [67].

2.5.2.1. A JIMT-1 sejtvonal

Ha egy jelenséget alaposan meg akarunk vizsgálni, a vizsgálatóhoz elengedhetetlenül szükséges modellék, modell-rendszelek létrehozása. Minél több a megfelelő modellünk, annál sokrétűbben tanulmányozhatjuk a jelenséget. Különösen igaz ez akkor, ha olyan jelenséggel van dolgunk, amelynek minden valószínűség szerint sok, egymástól gyakran független kiváltó oka van. Mint a trastuzumab-rezisztenciának.

k Nomen est omen.
ellenére, hogy a JIMT-1 sejtekből az ErbB2 gén amplifikálódott és a sejteken mintegy 300 000 darab ErbB2 receptor van, a JIMT-1 sejtek in vitro és in vivo állatkísérletben egyaránt trastuzumab-rezisztensnek bizonyultak (5. ábra.)

5. ábra. A JIMT-1 sejtek in vivo és in vitro is rezisztensek trastuzumabra

![Diagram](image)

2.6. Az áttétképződésről, röviden

A legtöbb daganatos beteg halálát a primer daganatból leváló daganatsejtekből távoli szervekben képződött áttétek okozzák. Az áttétképződésben központi szerepük van a vérben keringő daganatos sejteknél, a disszeminálódott daganatsejteknél és a többsejtú daganatsejt-aggregátumoknál, mert minden áttét ezekből fejlődik ki; jóllehet egy igen kevéssé hatékony folyamatban.

1 grammnyi primer daganatszövetből naponta körülbelül 10^6 darab daganatsejt válik le és kerül a vér/nyirokkeringésbe [70]. Az intravazáció általában a daganat mozaikos falú erein keresztül történik, amelyeknek a falát endotél- és tumorsejtek együtt alkotják. Chang és mtsai számításai szerint naponta az ér lumenével érintkező daganatsejtek mintegy fele szakad le [71] és válik vérben keringő daganatos sejtte (VKDS). Habár rendkívül nagy mennyiségű daganatsejt jut a keringésbe, csak elenyésző hányadukból lesz áttét: Luzzi és mtsai számításai szerint a VKDS-ek csak mintegy 0.02 %-ából lesz metasztázis [72]. A legtöbb VKDS elpusztul a keringésben az immunrendszer támadása [73; 74], a
hemodinamikai erők [75], vagy a sejt-sejt és a sejt-mátrix kapcsolatok elvesztésének következtében kiváltott apoptózis1 [76] által. Néhány VKDS kilép a keringésből és távoli szövetekben diszseminált daganatsejtként (DDS) akár évekig is meghúzódhat. A VKS-ek és a DDS-ek a sejtciklus G0 fázisában lévő, nem osztódó sejtek, ezért a legtöbb kemoterápiás szer nem hat rájuk [77; 78; 79]. A keringésből kilépett VKDS-ek mintegy 2 %-a kezd osztódni és képez mikrometasztázist. Még kisebb hányadukból (0.02 %) lesz valódi metasztázis [76; 79].

Habár nagyon kevés keringő és a disszemínált daganatsejt fejlődik metasztázissá, mivel a mellrákok átlagos átmérője a diagnózis pillanatában 2-3 cm (lásd mammográfia tanulmányok [80; 81]), a diagnózisig ill. a terápia megkezdéséig óriási számú tumorsejt juthat a keringésbe. Az áttétes emlőrákos betegek 60 %-ában találtak legalább 2 VKDS-et, 49 % vérében 5-nél több és 21 % vérében 50-nél is több volt (7,5 ml vérment vámszámú vizsgálva). Azoknak az I-III stádiumú mellrákbevételnek, akiknek a csontvelőjében mikrometasztázisot találtak (30 %), magasabb gránulus primer daganatuk és több nyirokcsomó-áttét jük volt. A VKDS-ek, a DDS-ek és a mikrometasztázisok jelenléte mind primer, mind áttétes mellrákos betegeknél összefügg a betegség rossz prognózisával [82; 83; 84; 85].

A primer daganatból nem csak egysejtes formában szakadnak le sejtek: keringő, töbsejtes daganatsejt-aggregátumoknak (KTDA) nevezzük a primer daganatból együtt, egymással kapcsolódva leszakadt daganatsejt-kupacot, amelyben a sejtek együtt érik el a keringést és együtt vándorolnak [86]. Az együttes vándorlásnak számos előnye van: a sejtkupac által termelt növekedést/migrációt segítő faktorok magas lokális koncentrációja autokrin/parakrin úton hat a sejtekre; a kupac középpontjában lévő sejtek védhetik az immunrendszer támadásai és az érrendszerben fellépő nyíróerőkkel szemben; a KTDA-ok a kapillárisokban fennakadnak, sejtjeik osztódni kezdenek, a kapilláris elpattan és a daganatsejt-kupac metasztázissá fejlődik. A KTDA-ok jelenléte a vérben azt jelzi, hogy az áttétképződés veszélye nagy [76; 86; 87].

2.6.1. A trastuzumab kezelés hatása a vérben keringő daganatos sejtekre (VKDS) és a mikrometasztázisokra

I-III stádiumú mellrákos betegeknél az ErbB2 pozitív VKDS-ek jelenléte együtt járt a primer daganat nagyobb méretével, negatív ösztrogén receptor státuszával, alacsony

1 Anoikis.
szövettani differenciáltságával, a nyirokérrendszer daganatos inváziójával, a betegség kedvezőtlen klinikai kimenetelével [88].

Bozionellou és mktsai megmutatták, hogy a trastuzumab képes csökkenteni a VKDS-ek és a csontvelői mikrometasztások számát kemoterápiára rezisztens mellrákos betegeknél [89].
3. CÉLKITŰZÉSEK

Munkánk során elsődleges célunk az volt, hogy vizsgáljuk és próbájuk megérteni a trastuzumab-rezisztencia mechanizmusát JIMT-1 – SCID egér modell-rendszerünkben. Ezt az alábbi kérdésekkel kívántuk megközelíteni:

- A Tanner és mktsai által leírt JIMT-1 sejtekből nude egerekben kifejlödött daganatok nem válaszoltak trastuzumab kezelésre, ha a kezelést a JIMT-1 sejtekkel való oltás utáni 45. napon kezdtek. Vajon van-e hatása a trastuzumabnak, ha korábban kezdjük az egerek kezelését?\(^{\text{iii}}\)
- Milyen hatása van a trastuzumab kezelésnek, ha még korábban, a JIMT-1 sejtekkel való oltással azonos napon kezdjük?
- Milyen hatása van a JIMT-1 sejtek ből alapított xenograftok növekedésére a két ErbB2-t keresztkötni képes, de Fc résszel nem rendelkező trastuzumab-F(ab')\(_2\)-nek?
- Hogyan változtatja a JIMT-1 xenograftok ErbB2 expresszióját a trastuzumab és a trastuzumab-F(ab')\(_2\) kezelés?
- Új sejtvonalakat kívántunk alapítani a JIMT-1 xenograftokból.
- Össze kívántuk hasonlítani a trastuzumab-érzékeny SKBR3 sejtek, a rezisztens JIMT-1 sejtek ill. az általunk alapított JIMT-1 X- és JIMT-1 X+ sejtek érzékenyégét trastuzumab-követítette ADCC-re \textit{in vitro}.
- Kíváncsiak voltunk arra, vajon modell-rendszerünkben ki tudunk-e mutatni a JIMT-1 primer daganatból származó, az egerek vérében és csontvelőjében lévő sejteket? Ha igen, van-e valamilyen hatása a trastuzumab kezelésnek ezek számára?

\(^{\text{iii}}\) Mint a későbbiekben megmutatjuk: igen, volt hatása; a következő kérdéseket/célkitűzéseket természetesen ennek ismeretében fogalmaztuk meg.
4. ANYAGOK ÉS MÓDSZEREK

4.1. Sejtek

Az irodalmi áttekintés 2.5.2.1. részében (17. oldal) jellemzett JIMT-1 emlőrák sejteket finn kollaborációs partnerünk től kaptuk (Jorma Isola, Institute of Medical Technology, University and University Hospital of Tampere, Tampere, Finland). A JIMT-1 sejteket Ham’s F-12/DMEM-et (1:1), streptomycin-t (100 unit/100 mg), L-glutamint (2 mmol/l), 10 % Hyclone főtális borjú szérumot és 0,3 unit/ml inzulint tartalmazó tápfolyadékban tenyésztettük [69]. Az egerekbe való oltáshoz az éppen konfluensé vált sejtekből tripszin-EDTA (0,05 % tripszin, 0,02 % EDTA) kezeléssel készítettünk sejtszuszpenziót.

Az ErbB2 pozitív, trastuzumab-kezelésre in vitro érzékeny SKBR3 és BT474 sejtvonalakat az American Type Culture Collection-től vettük (ATCC, Manassas, VA). Az SKBR3 sejteket 10 % Hyclone főtális borjú szérumot, streptomycin-t (100 unit/100 mg) és L-glutamint (2 mmol/l) tartalmazó DMEM-ben, a BT474 sejteket 20 % Hyclone főtális borjú szérumot, streptomycin-t (100 unit/100 mg), L-glutamint (2 mmol/l) és inzulint (0,3 unit/ml) tartalmazó RPMI-ben tenyésztettük.

4.2. Al-sejtvonalak alapítása JIMT-1 xenograftokból

A JIMT-1 X– és JIMT-1 X+ sejtvonalakat egy a kísérlet végéig fiziológiás sóval, ill. egy a kísérlet végéig trastuzumabban kezelt egér daganatából alapítottuk. Izofuránnal (Forane®, Abbott Laboratories Ltd. Queenborough, UK) végrehajtott eutanázia után az állatokból kivett daganatokat steril ollóval és szikével apró darabokra vágtuk, steril PBS-sel (150 mM NaCl, 3,3 mM KCl, 8,6 mM Na₂HPO₄*12H₂O, 1,69 mM KH₂PO₄) kétszer mostuk, ezután Ham’s F-12/DMEM-et (1:1), streptomycin-t (100 unit/100 mg), L-glutamint (2 mmol/l), 20 % Hyclone főtális borjú szérumot és 0,3 unit/ml inzulint tartalmazó médiumban sejttenyésztő edénybe tettük. A JIMT-1 X+ sejtek tápfolyadéka 10 µg/ml trastuzumabot is tartalmazott.

a Deutscher Sammlung von Mikroorganismen und Zellkulturen GmbH-tıl (www.dsmz.de).
[68]. A halott sejteket és a törmeléket 3 nap múlva eltávolítottuk, és kicseréltük a tápfolyadékokat. A konfluens sejtkultúrákat tripszin-EDTA (0,05 % tripszin, 0,02 % EDTA) kezeléssel vettük fel, majd 1:2 arányban új sejtenyésztő edényekbe tettük. A tápfolyadék ettől kezdve csak 10 % szérumot tartalmazott. A JIMT-1 X+ sejtek a sejtvonal alapítása óta 10 µg/ml trastuzumab koncentráció mellett nőnek.

4.3. SCID és nude egerek

A SCID (severe combined immunodeficiency) egerekben egy, a 16-os kromoszómán lévő gén autoszómális recesszív mutációja (scid mutáció) miatt működésképtelen az imunglobulin gének és a T sejt-receptor gének átrendeződéséért felelős rekombináz. A scid mutációra homozigóta egerekben nincs sem T sem B sejtes immunitás [90]. Kísérleteinkben fiatal (7-12 hetes), non-leaky SCID egereket használtunk: 10-14 hónapos korára, a hordoott mutáció ellenére, csaknem minden egérben kialakul valamilyen fokú B és T sejtes immunitás; még a fiatal scid/scid egereknél is előfordul olyan egyed, amelyiknek magasabb az IgM szintje (leaky egér), ezért a kísérletek megkezdése előtt megmérük az egerek IgM titerét (Mouse IgM RID KIT, Serotec). Kísérleteinket csak olyan egerekkel végeztük, amelyek IgM koncentrációja 100 ng/ml alatt volt (non-leaky egerek) [91]. Az állatkísérleteinkhez a DE OEC Börgyógyászati Klinika patogénmentes környezetben tenyészett SCID egereit használtuk (az egér kolónia a Fox Chase Cancer Center laboratóriumból származik, Philadelphia, Pennsylvania, USA).

A nude/nude mutációval rendelkező nude egereknek nincs tímuszuk és nem képesek T sejtes immünválaszra. A SCID egerekkel ellentétben képesek viszont B sejtválaszra tímusz-intependens antigének esetén [92; 93]. A nude egerekkel (nu/nmri egerek, Harlan, Netherlands, Horst, the Netherlands) végzett kísérletet finn kollaborációs partnerünk végezte el (Institute of Medical Technology, University and University Hospital of Tampere, Tampere, Finland).

Az állatkísérleteket a Debreceni Egyetem és Tamperei Egyetem etikai bizottságainak engedélyével végeztük.

4.4. Az egerek oltása daganatos sejtekkel, az egerek kezelése, a xenograffok nagyságának becslése

Kísérleteink során 5 × 10^6 darab JIMT-1 sejtet oltottunk 150 µl Hanks’ puffer (143 mM NaCl, 1 mM Na₂SO₄, 5 mM KCl, 1 mM NaH₂PO₄, 0.5 mM MgCl₂, 1 mM CaCl₂,
5 mM Glükóz, 10 mM Heps, pH = 7,4.) és 150 µl Matrigel° (BD Matrigel™, BD Biosciences) keverékében fiatal, nőstény nude vagy SCID egerek bőre alá. A JIMT-1 sejtekkel oltott egerek hetente egyszer kaptak 5 µg/g trastuzumabot vagy rizuximabot intraperitoneálisan (i.p.). A trastuzumab-F(ab’)2-t ötször nagyobb koncentrációban adtuk (25 µg/g) a teljes IgG és az F(ab’)2 in vivo eltérő féléletideje miatt [94]. A kontroll egerek hetente egyszer kaptak 100 µl fiziológiai sóoldatot i.p.

Hetente mértük tolmérővel az egerekben kifejlődött daganatok három kiterjedését (hossz, szélesség, magasság), a 3 paramétert összeszorozva becsültük meg a daganatok térfogatát (mm³).

4.5. Az egerek véreztetése, a xenograft kivétele, csontvelővel

Az egereket izofuránnal elaltattuk, majd a nyaki verőér elvágásával kivéreztettük. A vért Na-heparinnal átöblített centrifuga csövekben gyűjtöttük. Az egerekből a véreztetés után kivett daganatokat Cryomatrix-szal (Shandon Cryomatrix™, Thermo Electron Corporation) borítottuk és folyékony nitrogénben (-196 °C) lefagyasztottuk (ezeket a gyorsfagyasztottnak nevezett mintákat ezután -80 °C-on tároltuk). A csontvelőt a combcsontok két epifízisének levágása után, a csontok PBS-sel való átmosásával gyűjtöttük.

4.6. Mononukleáris sejtek szeparálása vérből és csontvelőből

Az egerek vérét, csontvelőjét, és az egészséges emberek által adott vért eredeti térfogatuk kétszeresére hígított PBS-sel, majd Ficoll sűrűséggradiens centrifugálást (Histopaque-1077, Sigma-Aldrich) végeztük. A mononukleáris sejtrét eget leszívtuk, a sejteket a további kísérleteknek megfelelően készítettük elő.

4.7. Immunhisztokémia, immuncitokémia

A cryomatrixban lefagyasztott dagantokból SHANDON AS-620E Cryotome-mal (Thermo Electron Corporation) 20 µm vastagságú metszeteket készítettünk (-25 °C-on). A metszeteket szilanizált (3-aminopropyl-triethoxysilane, A-3648, Sigma-Aldrich) tárgyelésre húztuk,

° Az extracelluláris mátrix (e. m.) fehérjékben igen gazdag Engelbreth-Holm-Schwarm egér szarkómából előállított szolubilizált bazális membrán, amely – többek között – tartalmaz strukturális e. m. elemeket (laminin, 4-es típusú kollagén, entaktin), növekedési faktorokat (EGF, PDGF, TGF-β, IGF-1) és mátrix metálloproteinázokat. 4 °C-on folyékony, 37 °C-on pár perc alatt szilárd, 3 dimenziós mátrixot képez.
20 percig 4 %-os formaldehid-PBS-ben fixáltuk, késészer mostuk PBS-ben (15 perc), egyszer 1 mg/ml BSA-t (bovine serum albumin) tartalmazó PBS-ben (20 perc), majd 100 µl térfogató, 80 µg/ml antitest és 1 mg/ml BSA koncentrációjú PBS-t tettünk a mintákra. A jelölést nedveskamrában, 4 °C-on, sötétben, 1 napig végeztük. Másnap a mintákat háromszor mostuk PBS-ben (15 perc), majd 15 µl Mowiol (Merck) (a fluoreszcens festékek kiegését gátló anyag) rácsöppentése után fedőlemezzel lefedtük.

A vérből és a csontvelőből szeparált mononukleiáris réteg sejtjeit késészer mostuk PBS-ben, egyszer 1 mg/ml BSA-PBS-ben, majd 50 µl térfogató, 80 µg/ml antitest és 1 mg/ml BSA koncentrációjú PBS-t adtunk hozzájuk. A jelölést jégen, 30 percig, sötétben végeztük. A mintákat ezután késészer mostuk PBS-sel, 1 %-os para formaldehid-PBS-sel fixáltuk, és kamrába (Lab-Tek® Chambered Coverglass System, Nalge Nunc International Corp) tettük.

4.8. Antitestek

A fikoeritrinnel konjugált, humán IgG Fc ellenes (PE-anti human Fc, Clone: HP6043) antitestet a Leinco Technologies-től, a poliklonális, Cy3-mal vagy Cy5-tel konjugált GAHIG (H+L) Fab-t a Jackson ImmunoResearch Europe Ltd.-től vettük.

\[\text{GAHIG (H+L): kecskében termeltetett humán IgG ellenes antitest, amely felismeri a humán IgG könnyű és nehéz láncát is.}\]
4.9. Fab fragmentum preparálása

Az antitestek Fab fragmentumait egy korábban ismertetett módszer szerint állítottuk elő [95]. Röviden: A teljes antitestet pH = 8.00 PBS-be (100 mM Na₂HPO₄, 50 mM NaCl, 1 mM EDTA, pH 8.0) dializáltuk, majd L-ciszein jelenlétében papainnal emészettük (11 percig 37 °C-on). Az emészést jódacetamiddal állítottuk le, az Fab és Fc fragmentumokat tartalmazó frakciókat Sephadex G-100 oszlopon választottuk el. Végül az Fab fragmentumokat protein A oszlop alkalmazásával választottuk el az Fc résztől.

4.10. Trastuzumab-F(ab’)₂ fragmentum preparálása

A Trastuzumab-F(ab’)₂ fragmentumot az irodalomban leírt módszer alapján preparáltuk [94; 96]: 20 mg trastzumabot 20 mmol/l acetát pufferben (pH = 4.5) oldottunk fel, majd háromszor dializáltuk ugyanebbe a pufferbe Centrikon-10-es csöveket használva (Millipore Corp.). Az IgG-t 0.5 ml immobilizált pepszinellen (Pierce Biotechnology) emészettük 37 °C-on 6 órán át. A reakciót 10 ml 2 mol/l Tris-sósavval (pH = 8.2) állítottuk le. Az emészett trastuzumabot 0.22 µm-es szűrőn (Millipore Corp.) szűrtük át, hogy az agaróz gyöngyökön kötött immobilizált pepszint eltávolítsuk. Ezután az emészett mintákat Centricon-50-es csövekkel (Millipore Corp.) töményítettük. A trastuzumab-F(ab’)₂-t az emészettel trastuzumabótól high-performance liquid kromatográfiával (HPLC) választottuk el Sephacryl S-300 gyántával (Pharmacia LKB) töltött 10 × 800 mm-es oszlopon. Az oszlopot 50 mmol/l koncentrációjú Na-foszfáttal (pH = 7.0) mosva 0.5 ml-nyi frakciókat gyűjöttünk. A frakciókból vett mintákat nem-redukáló SDS-PAGE-dzsel [8 %-os gében (5.7 ml desztiált víz, 1.6 ml ProSieve 50 gel solution (Cambrex Bio Science), 2.5 ml 1.5 M Tris-HCl (pH = 8.8), 0.1 ml 10 % SDS, 0.1 ml 10 % APS (ammonium-persulfát), 4 µl TEMED (N,N,N’,N’-tetrametil-etiléndiamin) 14 µl-nyi mintát 6 µl, β-merkaptoetanol mentes mintapufferben (1.51 g TRIS, 20 g glicerol, 40 ml 10 % SDS, 2 mg brómfenolkék, 80 ml desztiált víz) futtattuk] teszteltük. Azokat a frakciókat öntöttük össze és neveztük trastuzumab-F(ab’)₂-nek, amelyek nem tartalmaztak emészettel trastuzumabot. A trastuzumab-F(ab’)₂-t Centricon-50-es csövekkel töményítettük, 0.22 µm-es szűrővel sterilre szűrtük és -20 °C-on tároltuk.

\(^{9}\) β-merkaptoetanol hiányában (nem-redukáló SDS PAGE) az antitest díszulfid-hídjai épek maradtak, nem váltak szét a könnyű és a nehéz láncok: egy sávban láttuk a teljes IgG-t és egy másikban az F(ab’)₂-t.
4.11. Antitestek és Fab fragmentumok konjugálása fluoreszcens festékekkel

4.12. Fluoreszcencia in situ hibridizáció (FISH)

A humán, daganatos sejteket kettős célpontú FISH-val különítettük el az egér sejtektől: Egy egészséges SCID egér izomszövetéből izolált teljes genomi DNS (DNeasy Blood és Tissue Kit (QIAGEN, Budapest, Hungary)) 1 µg-ját nick transzlációs kit-tel (Vysis Inc., Downers Grove, IL USA) SpectrumRed-dUTP-vel (Vysis Inc.) jelöltük. Kétszáz ng jelölt, egér DNS-t összekevertünk 100 µg Cot-1 DNS-sel (Life Technologies, Inc., Gaithersburg, MD), a DNS-t standard módszerrel kicsaptuk és 10 µl hibridizációs oldatban (55 % formamide, 10 % dextrán-szulfát, 2x SCC (0,3 M NaCl, 0,03 M Na-citrát, pH = 7,0)) oldottuk fel, amely tartalmazott 1 µl, SpectrumGreen-nel jelölt, humán X kromoszóma centromérára specifikus DNS próbát (Vysis Inc.). A hibridizációs elegyet összekevertük, denaturáltuk (5 perc 70 ºC-on) és 30 percig 37 ºC-on inkubáltuk a próba kötődésének megkönnyítése érdekében. Az egerek véréből vagy csontvelőjéből sűrűséggradiens centrifugálással gyűjtött mononukleáris sejteket metanol:ecetsov 3:1 arányú elegyével fixáltuk, tárgylemezre csöppentettük, levegőn megszáritottuk, denaturáltuk (70 % formamide, 2x SCC, 3 perc 73 ºC-on), felszálló alkoholsorral dehidratáltuk (70 %, 85 %, 100 %), 0,25 µg/ml proteináz K-t (Sigma) és 2mM CaCl₂-ot tartalmazó 20 mM-os TRIS pufferrel (pH = 7,5) kezeltük (7,5 perc 37 ºC-on), majd újra dehidratáltuk; végül a sejtekhez adtuk a fent leírt módon előkészített hibridizációs elegyet. A mintákat egy éjszakán keresztül inkubáltuk 37 ºC-on, a nem kötődő DNS próbákat 45ºC-os hibridizáló oldattal távolítottuk el (3 mosás). Végül 15 µl Vectashieldben (Vector USA) (a fluoreszcens festékek kiégését gátló anyag) oldott DAPI (4',6-diamidino-2-phenylindole, Vysis) (0,3 µg/ml) rácsöppentése után fedőlemezzel fedtük a mintákat [99; 100].
4.13. Fluoreszcens mikroszkópia

A FISH-val „festett” sejtkekről egy ZEISS Axioplan (Zeiss, Germany) fluoreszcens mikroszkóp 100-szoros nagytávúsú (numerikus apertúra: 1.4) olajimmerziós objektívével készítettük a felvételeket. A gerjesztő fény (fényforrás: 100 W-os higanygözlámpa) hullámhosszát megfelelő optikai szűrők alkalmazásával változtattuk. Emissziós szűrőnek a Pinkel-féle háromszoros sávszűrős emissziós filterblokot használtuk, mely alkalmas a kéken fluoreszkáló DAPI, a zölden fluoreszkáló spektrum zöld és a pirosan fluoreszkáló spektrum red megjelenítésére is. A fluoreszcens képek rögzítésére a METASystem (Germany) által forgalmazott, FISH analízisre kifejlesztett munkaállomást alkalmaztuk (ISIS, Metasystem GmbH, Germany). A fluoreszcens képek rögzítése az általunk beállított expozíciós idővel történt nagy felbontású CCD (Charge Couple Device) kamera segítségével.

A gyorsfagyasztott metszetekről és a kamra aljára ülepedett keringő daganatos sejtkekről Zeiss LSM 510 konfokális lézer pázsztázó mikroszkóppal (Carl Zeiss AG, Germany) készítettük a felvételeket egy 63-szoros nagytávúsú (numerikus apertúra: 1,4) olajimmerziós objektívvel. Az Alexa488 fluoreszcens festéket az argon-ion lézer 488 nm-es vonalával gerjesztettük, az emisszióját pedig egy 505-530 nm-es sávszűrőn keresztül detektáltuk. Az Alexa546 és a Cy3 festékeket a He-Ne lézer 543 nm-es vonalával gerjesztettük, az emissziójukat pedig egy 560-615 nm-es sávszűrőn keresztül detektáltuk. Az Alexa647 festéket a He-Ne lézer 633 nm-es vonalával gerjesztettük, az emisszióját pedig egy 650 nm-es felüláteresztő szűrőn keresztül detektáltuk. A transzmissziós felvételek készítéséhez a He-Ne lézer 633 nm-es vonalát használtuk.

4.15. Az ADCC in vitro vizsgálata

Az in vitro ADCC próbát korábban ismertetett módszerek módosításával végeztük [101; 102]. Röviden: Az egészséges donorokból Ficoll sűrűséggrádiens centrifugálással szeparált mononukleáris sejteket (effektor sejtek) 10 % FCS-t tartalmazó DMEM-ben vettük fel. A növekedésük exponenciális szakaszában lévő JIMT-1, JIMT-1 X-, JIMT-1 X+ és SKBR3 sejteket (target sejtek) tripszin-EDTA (0,05 % tripszin, 0,02 % EDTA) kezeléssel vettük fel, egyszer mostuk 1 mg/ml BSA-PBS-ben, majd 10 µmol/l koncentrációjú 5-,6-
karboxofluoreszcein diacetát, szukcinimidil észterr el (CFDA-SE; Molecular Probes Inc.) jelöltük (37 ºC, 10 perc). A daganatos sejteket ezután háromszor mostuk 10 % FCS-t és 1 % BSA-t tartalmazó DMEM-mel, hogy eltávolítsuk a nem kötődött CFDA-SE-t. A mosások között 5-5 percig 37 ºC-on inkubáltuk a sejteket. Végül a jelölt target sejteket 10 % FCS-t tartalmató DMEM-ben vettük fel és 2:1, 6:1, 15:1, 30:1 és 60:1 effektor/target (E/T) arányban kevertük össze az effektor sejtekkel. A mintához 100 µg/ml-es koncentrációban trastuzumabot, trastuzumab-F(ab')₂-t vagy rituximabot adtunk. 8 órás 37 ºC-on történő inkubálás után a halott sejteket propidium-jodiddal (PI, 50 µg/ml) festettük. A mintákat egy FACScan áramlási citométerrel (Becton Dickinson, Franklin Lakes, NJ, USA) mértük le. Mintánként 10 000 sejt fluoreszcens jelét detektáltuk: a CFDA-SE-t és a PI-ot is az argon-ion lézer 488 nm-es vonalával gerjesztettük, az előbbi emisszióját egy 530±30 nm-es sávszűrőn keresztül az FL-1 csatornában, az utóbbi ért egy 630±22 nm-es sávszűrőn keresztül az FL-3 csatornában detektáltuk, logaritmikus módban. Minden mintához készítettünk negatív kontrollt, amely ugyanúgy készült, mint a minta, kivéve, hogy effektor sejteket nem tettünk bele. A pozitív kontrollokban a sejteket 4 %-os paraformaldehid-PBS-sel öltük meg. A megölt target sejtek százalékát az alábbi képlettel számítottuk ki: (élt target sejtek százaléka a negatív kontrollban – élt target sejtek százaléka a mintában) / élt target sejtek százaléka a mintában.

4.17. Az *in vitro* trastuzumab-érzékenység vizsgálata

Alamar Blue (resazurin [103]) módszerrel (TREK Diagnostic Systems, Inc.) vizsgáltuk a trastuzumab és a trastuzumab-F(ab')₂ hatását a JIMT-1, SKBR3 és BT474 sejtek életképességére. A növekedésük exponenciális szakaszában lévő sejteket tripszin-EDTA (0,05 % tripszin, 0,02 % EDTA) kezeléssel vettük fel, és 96 lyukú, lapos aljú sejttenyésztő lemez lyukaiba tettük sejtvonaltól függően 4500-8000 darab sejtet. A sejtvonalnak megfelelő sejttényésztő folyadékot egy napos tenyésztés (37 ºC, 95 % levegő, 5% CO₂) után kicsérélünk 0, 1, 10 ill. 100 µg/ml trastuzumab vagy trastuzumab-F(ab')₂ koncentrációjú médiumra. 72 órás tenyésztés (37 ºC, 95 % levegő, 5% CO₂) után a mintákhoz 20 µl AlamarBlue-t cseppentettünk; a fluoreszcencia intenzitást 5 óra múlva dekktáltuk Wallac Victor2 plate olvasóval (Perkin-Elmer) 544 nm-es gerjesztési és 590 nm-es emissziós hullámhosszon.
4.18. A konfokális mikroszkóppal felvett képek elemzése

A konfokális mikroszkópos képeket a Matlab (Mathworks Inc., Natick, MA) alatt futó DipImage programmal (Delft University of Technology, Delft, Hollandia) elemeztük. A kép szegmentálása során a sejtmembránhoz tartozó pixeleket egy általunk írt program segítségével azonosítottuk, amely a szemi-automatikus „watershed” algoritmuson alapult [104]. A fluoreszcencia intenzitásokat csak a sejtmembrán pixelek által alkotott maszkhoz tartozó területen határoztuk meg. Az így kiszámított membránfluoreszcencia-intenzitás értékéből levontuk a háttér intenzitását, amelyet egy látható fluoreszcens jelölődést nem mutató terület fluoreszcencia intenzitás átlagaként határoztunk meg.

4.19. Statisztika

Az adatok átlagát ± SEM ábrázoltuk. A minták közötti statisztikai különbséget Student-féle kétmintás t próbával vizsgáltuk, abban az esetben, ha a két minta szórása megegyezett (F-próba). Az eltéréseket 5 %-os szignifikancia szint mellett vizsgáltuk (P < 0.05).
5. EREDMÉNYEK ÉS MEGBESZÉLÉSÜK

5.1. Korai trastuzumab kezelés hatása a JIMT-1 xenograftokra

5 × 106 darab JIMT-1 sejtet oltottunk 16 fiatal, nőstény SCID egér bőre alá. A daganatos sejtekkel való oltás utáni 9. napon, amikor a daganatok térfogata 100 - 200 mm3 volt, 8 egeret fiziológiás sóoldattal, 8 egeret pedig 5 µg/g trastuzumabbal kezdtünk el kezelni. A kezelést a

6. ábra. A 9. napon kezdett trastuzumab-kezelés hatása

![6. ábra. A 9. napon kezdett trastuzumab-kezelés hatása](image-url)
kísérlet végéig folytattuk (6. ábra, a nyilak a kezeléseket mutatják). Meglepetésünkre a trastuzumabbal kezelt egerekben lassabban növekedtek a daganatok: a trastuzumab a kísérlet 16- és 44. napja között a fiziológiás sóval kezelt egerekhez képest szignifikánsan csökkentette a daganatnövekedést (*, P < 0.05).

5.2. A trastuzumab kezelés hatása a xenografttá még nem fejlődött JIMT-1 sejtekre

Mivel a trastuzumab a már xenografttá alakult, de még kismeretű daganatok növekedését részben gátolta, logikus volt a következő kérdés felette: milyen hatása van a trastuzumab kezelésnek akkor, ha még korábban kezdjük?

5 × 10^6 darab JIMT-1 sejtet oltottunk 14 fiatal, nőstény nude egér bőre alá. Az egerek a daganatsejtekkel való oltással azonos napon (0. nap) kezdtek kezdeni: 7 egeret rituximabbal, 7 egeret trastuzumabbal. A rituximabot (humán CD20 ellenes, humanizált, monoklonális antitest) negatív kontrollként használtuk: a JIMT-1 sejteken nincs CD20, az egér CD20 receptoraihoz pedig az egér és az ember CD20 receptora közti 16 aminosavnyi különbség miatt nem kötödik a rituximab [105].

Kísérletünkben mind a 7 rituximabbal kezelt egérben kifejlődött xenograft, viszont csak 7-ből 2 trastuzumabbal kezelt egérben észleltünk daganatot. A trastuzumab kezelést a kísérlet 42. napján leállítottuk, amikorra egyértelművé vált a daganatgátló hatása: a trastuzumab a kísérlet 21. és 42. napja között szignifikánsan csökkentette a daganatnövekedést a kontroll

7. ábra. A daganatos sejtekkel való oltással azonos napon kezdett trastuzumab-kezelés hatása (nude egerekben)
Eredmények és megbeszélésük

egerekhez képest (*, P < 0.05). Fontos megjegyezni, hogy abban a 2 egérben, amelyekben a trastuzumab-kezelés ellenére kifejlődött daganat, a kezelés leállítása után a daganatok növekedésnek indultak (7. ábra, a nyílak a kezeléseket mutatják).

A kísérletet megismételtük SCID egerekkel:

5 × 10⁶ darab JIMT-1 sejtet oltottunk 16 fiatal, nöstény SCID egér bőre alá. 8 egeret fiziológiás sóval, 8-at trastuzumabbal kezeltünk. A kezelést a 0. napon kezdünk. Bár jóval lassabban, mint a kontroll egerekben, de mind a 8 trastuzumabban kezelt egérben növekedésnek indultak a daganatok. A növekedés azonban a 14. napra megállt, sőt, a daganatok mérete csökkenni kezdett: a 28. napon a méretük minimális volt, 8-ból három egérben nem is tudtunk daganatot tapintani. Ezután a daganatok ismét növekedni kezdtek, a 35. naptól a növekedésük exponenciális volt. A 63. napon a trastuzumabban kezelt egerek felének kezelését leállítottuk (○): nem tapasztaltunk különbséget a trastuzumabot tovább kapó

8. ábra. A daganatos sejtekkel való oltással azonos napon kezdett trastuzumab-kezelés hatása (SCID egerekben)

![Diagram](image_url)

¹ Ezt az állatkísérletet finn kollaborációs partnereink végezték.
² Rendszerünk olyan a sebészeti beavatkozás utáni állapotot modellezett, amikor a visszamaradt daganatos sejtek még nem képeznek makroszkópos daganatot, hanem szétterülnek az egészséges szövetekben.
Eredmények és megbeszélésük

(folyamatos trastuzumab) és a trastuzumabot többé nem kapó (zelfüggesztett trastuzumab) egerek daganatainak növekedésében. Ez azt bizonyította, hogy a 63. naptól a daganatok növekedését egyáltalán nem befolyásolta a trastuzumab. Az, hogy a kísérlet 71. napjáig (a 14. naptól) a trastuzumabban kezelt egerek daganatainak mérete szignifikánsan kisebb volt, mint a kontroll egereké (*, P < 0.05), a trastuzumab első 6 héten át kifejtett gátló hatásának a következménye (8. ábra, a nyilak a kezeléseket mutatják).

Érdekes, hogy az általunk JIMT-1 sejtekkel oltott összes SCID egérben kifejlődött daganat, míg 7 nude egérből csak 2-ben. Mindezt azzal magyarázzuk, hogy a SCID egerek immunrendszerében gyengébb a nude egerekének: a nude egerek a SCID egerekkel ellentétben képesek B sejtválaszra tímusz-independens antigének esetén [92; 93].

Eddig bemutatott kísérleteink két fontos kérdést1 vetnek föl:

– Hogyan tapasztalhattunk ilyen különbséget a JIMT-1 sejtek in vitro és in vivo trastuzumab-érzékenysége között?

– Vajon mi történt a JIMT-1 sejtekkel a 8. ábrán bemutatott kísérlet 2. és 6. hete között, amikor az addig trastuzumabra érzékeny sejtek rezisztenssé váltaik?

1 Legalább kettőt.
5.3. A trastuzumab-F(ab’)_2 tesztlése

A fent megbeszélt eredményeink alapján a következő elméletet állítottuk fel: Általánosságban igaz, hogy a trastuzumab in vitro hatásáért az antitest ErbB2-höz kapcsolódásával elindított folyamatok vezetnek. De mert a JIMT-1 sejtekre a trastuzumab in vitro teljesen hatástalan, úgy gondoljuk, hogy az antitest in vivo daganatnövekedést gátló hatásáért nem az antitest ErbB2-höz kapcsolódó Fab része, hanem az Fc része a felelős. Elméletünk szerint az Fc-receptorral rendelkező immunsejtek (NK sejtek, neutrofil granulociták, monociták, makrofágok), amelyek működőképesek nude és SCID egerekben is [90; 106; 107], ölik meg a daganatsejteket trastuzumab közvetítette ADCC-vel. Ha mindez igaz, akkor a trastuzumabnak in vivo hatástalaná kell válnia, ha Fc részét eltávolítjuk. Az elméletünk bizonyítására megfelelő mennyiségű és minőségű trastuzumab-F(ab’)_2-t kellett előállítanunk⁹.

Az Anyagok és módszerek című fejezetben leírtak szerint előállított trastuzumab-F(ab’)_2 minőségét az alábbi 4 kísérlettel ellenőriztük:

Képes-e a trastuzumab-F(ab’)_2 in vitro a sejtekhez kötődni?

JIMT-1 sejteket inkubáltunk jelöletlen trastuzumab-F(ab’)_2-vel vagy jelöletlen trastuzumabbal. Mosások után olyan poliklonális másodlagos antitestet adtunk a mintákhoz, amely a humán IgG könnyű- és nehézláncát is felismeri (GAHIG = goat anti-human IgG (H+L)). A 9. ábrán látszik, hogy a trastuzumab-F(ab’)_2-vel és a trastuzumabbal előinkubált sejtek is jól festődtek GAHIG-gal. Azt, hogy a GAHIG valamivel jobban kötődött a trastuzumab-hoz, azzal magyarázuk, hogy az emésztetlen antitest meglévő Fc részéhez is kötődhetett a másodlagos antitest.

⁹ Az IgG-ből papainnal emészttet Fab fragmentumok mono- és bivalensek, nem képesek keresztkötésre, a pepszinnel emésztt F(ab’)_2 fragmentumok viszont bivalensek, képesek keresztkötni két antigént. A keresztkötést fontosnak tartják a trastuzumab hatásmechanizmusában, ezért választottuk az F(ab’)_2-t.
Eredmények és megbeszélések

9. ábra. A trastuzumab-F(ab’)2 tesztelése I.

Bizonyítottuk, hogy a trastuzumab-F(ab’)2 kötődik a sejtekhez, de vajon ez specifikus, ErbB2-höz való kötődést jelent?\(^v\)

SKBR3 ErbB2 pozitív sejteket inkubáltunk jelöletlen trastuzumab-F(ab’)2-vel vagy Alexa647-trastuzumabbal. Mosás után az előbbiekhez is adtunk Alexa647-trastuzumabot. A 10. ábra mutatja, hogy a trastuzumab-F(ab’)2 „előkezelés” csaknem teljesen meggátolta a trastuzumab kötődését a sejtek ErbB2 receptoraihoz.

\(^v\) Az emésztés-tisztítás folyamata nem tette-e „tapadóssá” az antitestet, nagymértékben aspecifikussá téve kötődését – bár a 9. ábra hisztogramjának alakja nagyonis specifikus jelölést sejtetett.
Mivel az ADCC vizsgálatára készültünk, az in vivo kísérletek elkezdése előtt fontos volt megvizsgálnunk, hogy tőkéletes volt-e az emésztés, tényleg nem tartalmaznak az F(ab’)$_2$ fragmentumok Fc részt?

Trastuzumabbal vagy trastuzumab-F(ab’)$_2$-vel inkubált JIMT-1 sejtekhez a humán IgG Fc részére specifikus másodlagos antitestet adtunk. A 11. ábra mutatja, hogy az Fc rész ellenes másodlagos antitest nem kötődött a trastuzumab F(ab’)$_2$ fragmentumaival inkubált sejtekhez.
Eredmények és megbeszélések

11. ábra. A trastuzumab-F(ab’)2 tesztelése III.

Végül trastuzumab-F(ab’)2-t tesztelő utolsó kísérletünkkel (amelyben a sejtek médiuma trastuzumabot (T) vagy trastuzumab-F(ab’)2-t (TF) tartalmazott) megmutattuk, hogy a trastuzumab-F(ab’)2 megőrizte biológiai hatását: az emésztetlen antitesthez hasonló mértékben képes gátolni a trastuzumab-érzékeny sejték (SKBR3, BT474) növekedését in vitro. A JIMT-1 sejtek növekedését sem az emésztett, sem az emésztetlen antitest nem gátolta. (12. ábra; az oszlopok mintájának különbözősége különböző antitest koncentrációt jelent:

12. ábra. A trastuzumab-F(ab’)2 tesztelése IV.

T = trastuzumab
TF = trastuzumab-F(ab’)2

* JIMT-1
* SKBR-3
* BT-474
Eredmények és megbeszélésük

fekete: 1 µg/ml; szürke alapon keresztbesávozott: 10 µg/ml; fehér alapon sávozott: 100 µg/ml

5.4. A trastuzumab-F(ab’)2-kezelés hatása a xenografttá még nem fejlődött JIMT-1 sejtekre

Mivel a trastuzumab-F(ab’)2-t megfelelő minőségűnek találtuk, hozzákezdtünk a 5.3. fejezet elején kifejtett elméletünk bizonyításához. 5 × 10^6 darab JIMT-1 sejttel oltottunk 24 fiatal, nőstény SCID egeret. 8 egeret fiziológiás sóval, 8-at trastuzumabbal, 8-at trastuzumab-F(ab’)2-vel kezeltünk. A kezelést a 0. napon kezdtük. A kísérlet pozitív kontrolljaként trastuzumabban kezelt egerekben a daganatok hasonlóan viselkedtek, mint azt a korábbiakban megfigyeltük: méretük a 4-5. hétig alig változott, azután exponenciális növekedésnek indultak. A trastuzumab kezelés a kísérlet 2. és 6. hete között szignifikánsan csökkentette a daganatok méretét a fiziológiás sóval kezelt egerekhez képest (*, P < 0.05). Viszont a trastuzumab-F(ab’)2-nek semmilyen hatása nem volt a daganatnövekedésre: az F(ab’)2 fragmentumokkal kezelt egerekben ugyanolyan ütemben növekedtek a daganatok, mint a sóoldattal kezeltekben (13. ábra, a nyilak a kezeléseket mutatják).

13. ábra. A trastuzumab-F(ab’)2 hatása in vivo

w Ezt a kísérletet finn kollaborációs partnereink végezték.
5.5. „Al-sejtvonalak” alapítása a JIMT-1 xenograftokból

Egy kontroll, sőoldattal kezelt egér és egy a kísérlet végéig trastuzumabbal kezelt egér JIMT-1 xenograftjából sejtvonalat alapítottunk: a két sejtvonalnak a JIMT-1 X– és a JIMT-1 X+ nevet adtuk. Az „X” a xenograftra utal, a „–” és a „+” pedig arra, hogy az egér nem kapott vagy kapott trastuzumab kezelés. A JIMT-1 X+ sejtek sejtenyésztő folyadéka a sejtvonal alapítás óta 10 µg/ml koncentrációjú trastuzumabot tartalmaz.

5.6. In vitro ADCC vizsgálata trastuzumab érzékeny és rezisztens sejtvonalokon

Fenti kísérletünkben a daganatok in vivo növekedését a trastuzumab gátolta, de a trastuzumab-F(ab’)2 nem. Feltételezésünk szerint ennek az az oka, hogy a SCID egerek immunsejtjei képesek ADCC-vel elpusztítni a JIMT-1 daganatsejteket, azok intrinzik trastuzumab rezisztenciája ellenére. Ha az elgondolásunk helyes, akkor a daganatsejteknél in vitro is érzékenyenek kell lenniük ADCC-vel szemben.

Kísérletünkben egészséges humán donorok véréből izolált mononukleáris sejteket használtunk effektor sejtvént (E), a targetek (T) pedig a JIMT-1, JIMT-1 X–, JIMT-1 X+ és az SKBR3 daganatsejtek voltak. Minden sejtvonal esetén vizsgáltuk a sejtölés mértékét trastuzumab, trastuzumab-F(ab’)2 és rituximab jelenlétében.

A kontroll rituximabot és a trastuzumab-F(ab’)2–t tartalmazó mintákban kevés daganatsejt pusztult el, nem volt szignifikáns különbség a két szer jelenlétében mért sejtölés között. Viszont a trastuzumabot tartalmazó mintákban (azokban az esetekben, amikor az effektor : target arány 15 vagy annál több volt) minden sejtvonalnál szignifikánsan nagyobb volt a sejtölés, mint trastuzumab-F(ab’)2 jelenlétében (*, P < 0.05). Trastuzumab jelenlétében a sejtölés annál nagyobb volt, minél nagyobb volt az effektor : target (E:T) arány, maximumát (~ 50-60 %-os sejtölést) a legnagyobb, 60:1-es E:T arányánál érte el (14. ábra).

Kísérletünk tanúsága szerint a trastuzumab által kiváltott/közvetített ADCC-re egyformán érzékeny volt a trastuzumabra érzékeny SKBR3, a trastuzumab rezisztens JIMT-1 és a két JIMT-1 xenograftjából alapított sejtvonal.
5.7. Érzékenyek-e a JIMT-1 X+ sejtek trastuzumab-kezelésre in vivo?

Mivel a trastuzumab mellett növő, trastuzumabra rezisztenssé vált xenografióból alapított JIMT-1 X+ sejtek in vitro érzékenyenek bizonyultak trastuzumab-közvetítette ADCC-re, felmerült a kérdés: vajon hogyan reagálnak a JIMT-1 X+ sejtek a trastuzumab kezelésre in vivo?

5×10^6 darab JIMT-1 X+ sejtet oltottunk 16 fiatal, nőstény SCID egérbe. 8 egeret fiziológiás sóval, 8-at trastuzumabbal kezeltünk. A kezelést a 0. napon kezdtük. Az X+
Eredmények és megbeszélések

daganatok növekedését a trastuzumab kezelés szignifikánsan gátolta a kísérlet 7. és 35. napja között (*, *P < 0.05). Érdekes, hogy az X+ daganatok trastuzumab-rezisztenciája hamarabb kifejlődött, mint a JIMT-1 daganatoké; az is megfigyelhető azonban, hogy az X+ daganatok a sóoldattal kezelt egerekben is gyorsabban nőttek, mint a JIMT-1 daganatok (15. ábra, a könnyebb összehasonlíthatóság kedvéért az ábra jobb oldalára a JIMT-1 sejtekkel végzett, korábbi kísérletünk eredményét másoltam; a nyilak a kezeléseket mutatják). Úgy gondoljuk, hogy az általunk alapított JIMT-1 X+ sejtek in vivo jobban adaptálódtak az egér szöveti környezethez, ezért növekedtek gyorsabban mind a sóoldattal, mind a trastuzumabbal kezelt egerekben, mint a JIMT-1 daganatok.

15. ábra. A JIMT-1 X+ sejtek érzékenyek trastuzumab-kezelésre in vivo

Clynes és mtsai az Irodalmi áttekintésben említett és a 3. ábrán bemutatott, trastuzumabra in vitro érzékeny BT474 sejtekkel végzett kísérleteikben megállapították, hogy a trastuzumabnak a BT474 sejtekre kifejett gátló hatásának mintegy 2/3 részéért az ADCC a felelős. Úgy gondoljuk, hogy az 5.3. pontban felállított elméletünk helyességét sikerült bizonyítanunk: a trastuzumabra in vitro rezisztens JIMT-1 sejtek in vivo trastuzumab-érzékenységét* teljes mértékben az antitest által közvetített ADCC okozza.

* Meglehet átmeneti.
5.8. A trastuzumab és a trastuzumab-F(ab’)_2-kezelés is csökkentette az ErbB2 expressziót a JIMT-1 xenograftokon

3 Nagy Péter végezte.
16. ábra. A trastuzumab- és a trastuzumab-F(ab’)2-kezelés hatása a daganatok ErbB2 szintjére I.

fiziológiás só trastuzumab-F(ab’)2
folyamatos trastuzumab felfüggesztett trastuzumab
5.9. A trastuzumab-kezelés leállítása után 6 héttel trastuzumab a sejteken?

Az alábbiakban egy mellékleletként kapott, érdekes eredményünkrol számolok be. A fiziológias sóval, folyamatosan trastuzumabbal ill. 9 hétig trastuzumabbal, majd 6 hétig semmivel nem kezelt egerek xenograftjaiból készített gyorsfagyasztott metszeteket Cy3 fluoreszcens festékhez kapcsolt humán IgG ellenes antitesttel festettük. A mintákról konfokális mikroszkóppal, azonos erősítésekkel felvett képeken látszik, hogy 6 héttel a kezelés leállítása után egyes sejtcsoportok nagy mennyiségben található trastuzumab, más sejteken viszont egyáltalán nincs, vagy alig van (18. ábra, Herceptin = trastuzumab).

A trastuzumab féléletideje emberben 18-27 nap [108], így az talán nem meglepő, hogy a kezelés leállítása után 42 nappal kimutattuk a trastuzumab jelenlétét egérben növekvő humán daganatokban. Az viszont annál furcsább és érdekesebb, hogy a trastuzumab milyen egyenlőtlenül oszlik el a sejteken: a legtöbb sejten alig mutatható ki, egyes sejtcsoportokon viszont nagyon sok van. Mindenek a miértjét és a jelentőségét egyelőre csak találgatni tudjuk.
Eredmények és megbeszélésük

5.10. Vérben keringő daganatos sejtek (VKDS) kimutatása JIMT-1 sejtekkel oltott SCID egerekben

Kíváncsiak voltunk arra, hogy JIMT-1 – SCID egér modell-rendszerünkben ki tudunk-e mutatni az egér vérében keringő, a xenograftból leszakadt, humán daganatsejket.

Immunfluoreszcenciával:

5×10⁶ JIMT-1 sejet oltottunk 3 fiatal, nőstény SCID egér bőre alá. Amikor a daganatok mérete elérte az 1000 mm³-t, izofuránnal elaltattuk az egereket, majd a nyaki ütőerű átvágásával kivéreztettük őket. A vérből sűrűséggrádiens centrifugálással szeparált mononukleáris sejtek egy részét inkubáltuk Alexa488 fluoreszcens festékhez kapcsolt, humán MHC-I ellenes monoklonális antitest Fab fragmentumaival (W6/32-Fab) és Alexa546 festékhez kapcsolt, egér pan-CD45 ellenes monoklonális antitesttel. Azért használtuk a humán MHC-I ellenes antitest Fab fragmentumait, hogy elkerüljük az egér immunsejtjeinek Fc receptoraihoz való kötődést. Az egér CD45 ellenes antitestel az egér fehérvéresjteit festettük meg, mivel a CD45-öt mind a limfoid, mind a hematopoetikus eredetű sejtek kifejezik [109; 110]. A CD45 ellenes antitest teljes IgG volt, így az Fc receptorral rendelkező immunsejtek is megköthetők. A 19. ábra (A–C) mutatja, hogy az MHC-I-gyet expresszáló humán VKDS-eket (19/A, zöld) egyértelműen meg tudtuk különböztetni az CD45 pozitív egérsejtektől (19/B, fiziológiás só (14 hét) folyamatos trastuzumab (14 hét) felfüggesztett trastuzumab (9 + 6 hét)

Fluoreszcencia in situ hibridizációval (FISH):

19. ábra. Vérben keringő daganatos sejtek kimutatása

5 A FISH-t Balázs Margit és munkacsoportja végezte.
5.11. A trastuzumab hatása a vérben keringő daganatos sejtek (VKDS) és a csontvelői, diszseminált daganatsejtek (CSDDS) számára

Rendszerünk alkalmasnak látszott az egerek vérében keringő daganatos sejtek kimutatására, így meg kívántuk vizsgálni, hogy vajon van-e hatása a trastuzumab-kezelésnek az egerek vérében keringő (és csontvelőjébe diszseminált) JIMT-1 sejtekre, akkor, amikor a primer daganat már rezisztens trastuzumabra.

5.11.1. A trastuzumab és a rituximab hatása a xenografttá még nem fejlődött JIMT-1 sejtekre

5×10⁶ JIMT-1 sejet oltottunk fiatal, nőstény SCID egerek bőre alá. Az egereket a daganatos sejtekkel való oltás napján kezdtek kezelni fiziológiás sóoldattal, trastuzumabbal vagy rituximabbal.

A trastuzumabnak a korábban megfigyeltekhez hasonló daganatnövekedést gátló hatása volt: a kísérlet 21. napjáig minden trastuzumabbal kezelt egérben (8 db) csökkent a daganat mérete, majd a 28. naptól exponenciálisan kezdtek növekedni a daganatok. A trastuzumab

20. ábra. A trastuzumab és a rituximab hatása a daganatnövekedésre in vivo
szignifikánsan gáztolta a daganatnövekedést a 14. naptól a 42. napig (*, P < 0.05). Méglepetésünkönkre a rituximabba kezelt egerekben jobban növekedtek a daganatok, mint a sóoldattal kezeltekben, jóllehet az eltérés nem volt szignifikáns (20. ábra, a nyilak a kezeléseket mutatják).

5.11.2. A trastuzumab és a rituximab hatása a vérben keringő daganatos sejtek (VKDS) és a csontvelői, disszeminált daganatsejtek (CSDDS) számára

Amikor fenti kísérletünkben a daganatok térfogata elérte a ~ 800 mm3-t (a sóoldattal és a rituximabba ab kezelt egerek esetén a kísérlet 42. napján, trastuzumab kezelésnél az 56. napon), kivéreztettük az egereket és csontvelőt vettünk a combcsontjaikból. A vérből és a csontvelőből sűrűséggrádiens centrifugálással szeparált mononukleáris sejteket fluoreszcens festékhez kapcsolt humán ErbB1, ErbB2 és MHC-I ellenes monoklonális antitestek Fab fragmentumaival jelöltük (528-Fab, 2C4-Fabbb, W6/32-Fab). Gyakran előfordul, hogy a daganatsejtekről hiányzik egy, a vizsgáló általi azonosításért felelős antigén. Ez téves negatív eredményhez vezethet. Sokkal kisebb annak a valószínűsége, hogy egyszerre 3 marker is hiányzik a sejtekről: ezért használtunk 3 különböző receptor ellen antitestetcc.

a A rituximabba kezelt egérecken ennél nagyobb volt a daganatok térfogatának átlaga, lásd 53. oldalon.
b Az ErbB2 jelöléséhez használt 2C4 antitest nem kompetál a trastuzumabbal.
c Itt jegyzem meg, hogy minden általunk kimutatott daganatsejten volt MHC-I, ErbB1 és ErbB2 receptor is.
21. ábra. Vérben keringő és csontvelői, disszeminált daganatsejtek

22. ábra. A trastuzumab-kezelés hatása a vérben keringő és csontvelői, disszeminált daganatsejtek számára

22/A. ábra

22/B. ábra

1. Táblázat. A vérben keringő daganatos sejtek száma (VKDS) 1ml vérben

<table>
<thead>
<tr>
<th>Kezelés</th>
<th>Sóoldat</th>
<th>Rituximab</th>
<th>Trastuzumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>20</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>11</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>9</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>32</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>49</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>35</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Átlag</td>
<td>30 (± 5.3)</td>
<td>22.9 (± 6.2)</td>
<td>0.75 (± 0.5)*</td>
</tr>
</tbody>
</table>

*Egerek, amelyek vérében volt daganatsejt (ED) ! összes egés az adott kezelésű alosportban (ÖI).
*A a trastuzumab kezelés kifejezve különböző nyomtalan csökkentette a VKDS-sek számát (p<0.05).
Eredmények és megbeszélésük

2. Táblázat. Csontvelői, disszeminált daganatsejtek (CSDDS) száma

<table>
<thead>
<tr>
<th>kezelés</th>
<th>abszolút</th>
<th>rituximab</th>
<th>trastuzumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>17</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>49</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>56</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>48</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

átlag 22.3 (± 7.4) 28.7 (± 8.1) 0.5 (±0.2)

* Egerek, melyek csontvelőként volt daganatsejt (RD) és összes egér az adott kezelés közül aloszporban (Ök).

* A trastuzumából kezelés szignifikánsan csökkentette a CSDDS-ekek számát (p<0.05).

23. ábra. Mikrometasztázis (A-D) és többséjtes daganatsejt-aggregátum (E-F) egy rituximabval kezelt egérből

A: MTIC-1, B: ErbB1, C: ErbB2, D: , E: MHC-1, F:
A kísérletünk negatív kontrolljának szánt rituximabbal kezelt egerekkel kapcsolatban 3 váratlan dolgot figyeltünk meg: a rituximabbal kezelt egerekben valamivel gyorsabban növekedtek a daganatok, mint a sóoldattal kezeltekben; csak a rituximabbal kezelt egerek csontvelőjében találtunk mikrometasztázisokat; csak egy rituximabbal kezelt egér vérében találtunk többséjtes tumoraggregátumot. Milyen szerepet játszott ebben a humán CD20 ellenes antitest, amelynek antigénje nincs jelen a JIMT-1 sejteken, az egér CD20 receptoraihoz pedig az egér és az ember CD20 receptora közti 16 aminosavnyi különbség miatt nem kötődik [105]? Jóllehet nem találtunk összefüggést a daganatméret és a VKDS-ek, CSDDS-ek vagy mikrometasztázisok száma között, a legegyszerűbb (bár semmiféleképpen sem kielégítő) magyarázat arra, hogy a rituximab miért és hogyan növelhette a mikrometasztázisok és a KTDA-ok számát, mégis az, hogy a rituximabbal kezelt egerekben nagyobb volt a daganatméret (1260 ± 252 mm³), mint a sóoldattal (870 ± 107 mm³) vagy a trastuzumabbal (810 ± 142 mm³) kezeltekben.

Persze a kérdés, hogy miért és hogyan növelte a primer daganatok méretét a rituximab, akkor is megválaszolható. Illetve egy őszinte válaszunk van: nem tudjuk.

A dolgozatomban leírt és megbeszélt megfigyeléseinket a következő elmélettel próbáljuk magyarázni:

Úgy gondoljuk, hogy az egyedülálló vagy a nem megfelelően érett daganatszöveté fejlődött JIMT-1 sejtek (in vitro sejtszuszpenzió, kis daganatméretnél vagy a 0. napon kezdett trastuzumab-terápia, keringő/disszeminált daganatsejtek) érzékenyek a trastuzumab-közvetítette ADCC-re. Érett daganatszövett fejlődve (későn kezdett trastuzumab terápia, 0. napon kezdett terápia 5-7. hetére kifejlődött rezisztencia) a sejtek elvesztik az érzékenységüket, de azok a sejtek, amelyek kikerülnek a szöveti szerkezetből, újra érzékenyek lesznek (JIMT-1 X+ sejtek in vitro és in vivo, keringő és disszeminált daganatsejtek). Munkacsoportunk és mások is felvetették korábban, hogy egyes molekulák (MUC4 [62; 63], hialuronsav [64]) képesek lehetnek eltakarni az ErbB2 receptort, így a trastuzumab kevésbé fér hozzá. Mivel a JIMT-1 xenograftok sejteihez jól és egyenletesen kötődött a trastuzumab (gyorsfagyasztott metszetek jelölésével igazoltuk, lásd 18. ábra, folyamatos trastuzumab kezelés), úgy
Eredmények és megbeszélésük

gondoljuk, hogy a „maszkoló” molekulák az ErbB2-trastuzumab komplexet takarhatják el
dd az Fc receptorral rendelkező immunsejtek elől. Az epitéliális - mezenhímális átalakulás során a
daganatsejtek elveszítik kötőszöveti és sejtes kapcsolataikat, sejtfelszíni receptormintázatuk
dd jelentősen megváltozik. Ezáltal képessé válnak arra, hogy vádoroljanak és a keringésbe
lépjénak, viszont, elgondulásunk szerint, az átalakulással megszűnik a trastuzumab Fc részének
elrejtése az immunsejtek elől, így a sejtek a trastuzumab-kötött ErbB2-n keresztül újra
érzékenyé válnak az ADCC-re.

Amennyiben a „maszkírozós” elméletünk helyes, azonnal felvetődik két kérdés: Hogyan
jön létre a maszkírozás? Mi/mik lehetnek a maszkírozó molekula/ák? Az első kérdést rögtön
két részre bontanám: vajon a trastuzumab-ErbB2 komplexet a daganatsejtek valamilyen aktív
védekezési mechanizmus részeként takarják el, vagy amikor a daganatsejtek 3 dimenziós
szöveti struktúrába nőnek, a sejt-sejt és sejt-mátrix kapcsolatok kialakulásának mintegy
melléktermékeként, „spontán” fedi be valami. Eredményeinket átgondolva az utóbbi
feltételezést valószínűbbnek tartom.

Hogy mi lehet a maszkírozó molekula? A fentebb gyanúba kevert MUC4 és hialuronsav
mellett gyakorlatilag bármelyik sejt-sejt ill. a sejt-mátrix kapcsolatban résztvevő molekula,
amely közel kerül az ErbB2-höz.

A fenti elmélet alternatívája lehet az alábbi két, meglehet eddig hiányosan tárgyalt
mechanizmus, amelyek megemlítése nélkül nem fejezhetem be a dolgozatot.

Ismert, hogy a daganatok képesek immunszuppresszív mediátorokat termelni. Mimura és
mktsai leírták, hogy a TGF-β-t termelő sejtek ErbB2 pozitivitásuk ellenére jóval kisebb
mértékben érzékenyek a trastuzumab-közvetítette sejtölésre, mint az ErbB2-t hasonló
mértékben kifejező, de TGF-β-t nem termelő sejtek. TGF-β-t semlegesítő antitesttel való
kezelés után az ellenálló sejtek érzékenyé váltak a trastuzumab-közvetítette sejtölésre [66].
Vajon a mi rendszerünkben nem hasonló mechanizmus, az immunrendszer gyengítésével
váltak ellenálló a daganatsejtek? Mindenek kielégítő bizonyítása kétféleképpen lehetséges:
1). ha JIMT-1 sejtekkel oltott egerekben ki tudnánk mutatni valamilyen, a daganatsejtek által
termelt immunszuppresszív mediátortee, és ezen mediátor megjelenése egybeesne (ill.
valamivel megelőzne) a trastuzumab-rezisztencia kialakulását; 2). ha a rezisztenssé vált

dd Akár úgy, hogy csak az ErbB2-trastuzumab komplexet, akár úgy, hogy a sejt jóval nagyobb részét.
ee Előzetes eredményeink alapján úgy tűnik, hogy az egerekbe oltott JIMT-1 sejtek képesek TGF-β-t termelni,
azonban ez függetlennek látszik a trastuzumab-kezeléstől. Természetesen számos egyéb immunszuppresszív
mediátor is gátolhatja az ADCC effektor sejtjeit.

54
egerekből izolált immunsejtek in vitro kevésbé hatékonyan váltanának ki ADCC-t, mint a kontroll egerek immunsejtjei.

Megjegyzem, hogy az egerek immunrendszerének gyengülése/kimerülése ellen szól az a tény, hogy a trastuzumab képes volt a keringő és disszeminált daganatsejtek számát csökkenteni akkor, amikor a primer daganat már rezisztenssé vált.

A trastuzumab hatásmechanizmusában fontosnak tartják a komplement-közvetítette sejtölést (CDC) is. Clynes és mktsai kísérletében az ép FcγR-ral rendelkező egerekben a trastuzumab meggátolta a trastuzumabra in vitro érzékeny BT474 sejtek növekedését, az FcγR-defektussal rendelkező egerekben viszont a növekedésgátló hatásának mintegy 2/3-át elvesztette [57]. Ebben a modell-rendszerben tehát a trastuzumab hatásának mintegy 2/3-áért az ADCC a felelős, a maradék 1/3-ért eddig a trastuzumab által az ErbB2-n keresztül kiváltott folyamatokat okoltuk: természetesen ebbe az 1/3-nyi részbe aCDC is beleszólhat. A CDC minden bizonnyal fontos volt a mi kísérleteinkben is, azonban az in vitro ADCC-t vizsgáló kísérleteink alapján úgy gondolom, hogy döntő szerepe az ADCC-nek volt†.

Végül szeretném még egyszer felhívni a figyelmet arra, hogy a trastuzumab olyan esetben csökkentette a keringő és disszeminálódott daganatsejtek számát, amikor a primer daganat növekedését már nem gátolta. Mindez felveti annak a lehetőségét, hogy a trastuzumab-kezelésnek kedvező hatása lehet olyan betegeknél is, akiknek a primer daganata rezisztens (legyen a rezisztencia akár intrinzik, akár szerzett) trastuzumab-kezelésre; különösen azt figyelembe véve, hogy a sejtciklus nyugvó fázisában lévő keringő/disszeminált daganatsejtékre a legtöbb kemoterápiás szer nem hat, [77; 78; 79], míg, ha ErbB2 pozitívák, a trastuzumab képes lehet ADCC-n keresztül az immunsejtekkel megöletni őket.

† Mindenesetre nem jelenhetjük ki, hogy rendszerünkben a trastuzumab in vivo hatásaért teljes mértékben az ADCC a felelős, mégha ezt jelen dolgozatban néhányszor, pongyolán, meg is tettem.
6. ÖSSZEFoglalás

Irodalmi adatok szerint a trastuzumab-érzékeny sejtvonalak esetén a trastuzumab **in vivo** hatásának mintegy 2/3-ért az immun-mediált mechanizmusok a felelősek. Az általunk használt JIMT-1 sejtvonal jelenleg egyedülálló modell, amellyel egyszerre, elkülönítve lehet vizsgálni a trastuzumab-rezisztencia direkt **(in vitro)** és immun-mediált formáját **(in vivo)**. Jelen dolgozatban főleg az utóbbi kérdéssel foglalkoztunk.

Megmutattuk, hogy az **in vitro** trastuzumab-rezisztens JIMT-1 sejtek **in vivo** érzékenyenek a korán kezdett trastuzumab kezelésre.

Trastuzumab-F(ab′)_2-vel végzett **in vivo** kísérleteinkkel bizonyítottuk, hogy a JIMT-1 xenograftok növekedését a trastuzumab-közvetítette ADCC gátolja **in vivo**. A trastuzumab hatásáért kizárólag az ADCC a felelős. A rezisztencia kialakulása ez esetén a trastuzumab-közvetítette ADCC-vel szembeni rezisztencia kialakulását jelenti.

Az ADCC **in vitro** vizsgálatával megmutattuk, hogy az **in vitro** trastuzumab-érzékeny és az **in vitro** rezisztens sejtvonalak ugyanolyan mértékben érzékenyenek a trastuzumab-közvetítette ADCC-re **in vitro**. **In vitro** ADCC-re érzékenyenek találtuk az ADCC-re **in vivo** rezisztenssé vált xenograftből alapított JIMT-1 X+ sejtvonalat is. A JIMT-1 X+ sejték egerekbe oltva **in vivo** is érzékenyenek bizonyultak, bár a rezisztencia gyorsabban kialakult, mint a JIMT-1 sejteknél.

A trastuzumab-F(ab′)_2 és a trastuzumab azonos mértékben csökkentette a xenograftok ErbB2 szintjét. Így, mivel az F(ab′)_2 a daganatnövekedésre nem hatott, szétválasztottuk a trastuzumab ErbB2-t csökkentő és daganatnövekedést gátló hatását.

68 Az egyedülállóság amellett, hogy munkánk értékét növeli, egyben gyengű/megkérdőjelezi az eredményeinkből levonható következtetések általánosságát, hiszen kérdéses, vajon mennyire érvényesek a JIMT-1 sejtekkel tapasztaltak más sejtvonalak vagy betegek esetében. Mindezek miatt kezdünk foglalkozni egy másik, a JIMT-1-nél is újabban alapított, ErbB2 pozitív, trastuzumab rezisztens mellrák sejtvonalallal. Az első eredményeinkből készült kéziratot, melyben ezen sejtvonal immunhisztokémiai és citogenetikai karakterizálását végeztük el, hamarosan benyújtjuk közlésekre.

69 Természetesen az is nagyon fontos kérdés, hogy mi az oka a JIMT-1 sejtek direkt rezisztenciájának, munkacsoportunk vizsgálja ezt a kérdést; azonban jelen dolgozatnak nem ez a témája.
Összefoglalás

Kísérletünkben a trastuzumab szignifikánsan csökkentette a vérben keringő és a csontvelői diszeminált daganatos sejtek számát akkor, amikor a primer daganat már nem volt érzékeny a trastuzumab-kezelésre.
7. KÖSZÖNÖM

8. IRODALOMJEGYZÉK

13. M.H. Kraus, W. Issing, T. Miki, N.C. Popescu, and S.A. Aaronson, Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor

27. D.B. Weiner, J. Liu, J.A. Cohen, W.V. Williams, and M.I. Greene, A point mutation in the
230-1.

28. D. Harari, and Y. Yarden, Molecular mechanisms underlying ErbB2/HER2 action in

29. I. Alroy, and Y. Yarden, The ErbB signaling network in embryogenesis and oncogenesis:
signal diversification through combinatorial ligand-receptor interactions. FEBS Lett

30. D.S. Salomon, R. Brandt, F. Ciardiello, and N. Normanno, Epidermal growth factor-
related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol

31. S. Paik, and E.T. Liu, HER2 as a predictor of therapeutic response in breast cancer. Breast

32. S. Menard, P. Casalini, G. Tomasic, S. Pilotti, N. Casinelli, R. Bufalino, F. Perrone, C.
Longhi, F. Rilke, and M.I. Colnaghi, Pathobiologic identification of two distinct breast
carcinoma subsets with diverging clinical behaviors. Breast Cancer Res Treat 55

33. M.E. Gorre, M. Mohammed, K. Ellwood, N. Hsu, R. Paquette, P.N. Rao, and C.L.
Sawyers, Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene

34. I.B. Weinstein, Cancer. Addiction to oncogenes--the Achilles heal of cancer. Science 297

35. D.W. Fry, A.J. Bridges, W.A. Denny, A. Doherty, K.D. Greis, J.L. Hicks, K.E. Hook,
P.R. Keller, W.R. Leopold, J.A. Loo, D.J. McNamara, J.M. Nelson, V. Sherwood, J.B.
Smaill, S. Trumpp-Kallmeyer, and E.M. Dobrusin, Specific, irreversible inactivation
of the epidermal growth factor receptor and erbB2, by a new class of tyrosine kinase

36. J. Bertram, M. Killian, W. Brysch, K.H. Schlingensiepen, and M. Kneba, Reduction of
erbB2 gene product in mamma carcinoma cell lines by erbB2 mRNA-specific and
tyrosine kinase consensus phosphorothioate antisense oligonucleotides. Biochem

37. E. Song, P. Zhu, S.K. Lee, D. Chowdhury, S. Kussman, D.M. Dykxhoorn, Y. Feng, D.
mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat

38. C.K. Tang, X.Z. Concepcion, M. Milan, X. Gong, E. Montgomery, and M.E. Lippman,
Ribozyme-mediated down-regulation of ErbB-4 in estrogen receptor-positive breast
cancer cells inhibits proliferation both in vitro and in vivo. Cancer Res 59 (1999)
5315-22.

89. V. Bozionellou, D. Mavroudis, M. Perraki, S. Papadopoulos, S. Apostolaki, E. Stathopoulos, A. Stathopoulou, E. Lianidou, and V. Georgoulia, Trastuzumab

105. M.J. Polyak, and J.P. Deans, Alanine-170 and proline-172 are critical determinants for extracellular CD20 epitopes; heterogeneity in the fine specificity of CD20 monoclonal antibodies is defined by additional requirements imposed by both amino acid sequence and quaternary structure. Blood 99 (2002) 3256-62.

9. KÖZLEMÉNYEK

Az értekezéshez felhasznált közlemények

 IF: 5,131

 IF: 3.277

Egyéb közlemények

 IF: 4,167

 IF: 4,693

3. **Pályi-Krekk Zs, Barok M., Kovács T., Saya H., Nagano O., Szöllősi J., Nagy P.:** EGFR and ErbB2 are functionally coupled to CD44 and regulate CD44 shedding. *elbírálás alatt*

4. **Barok M., Balázs M., Lázár V., Rákosy Zs., Tóth E., Treszl A., Park J.W., Vereb Gy., Szöllősi J.:** Characterization of a trastuzumab resistant novel breast cancer cell line by CGH and FISH. *kézirat*
Absztraktok

Előadások és poszterek

4. Herceptin® resistant breast cancer xenografts can be influenced by early trastuzumab treatment. 30th FEBS Congress and 9th IUBMB Conference, 2-7 July 2005; Budapest, Hungary, (poszter)

5. Detection of circulating micrometastasis in Herceptin® resistant breast cancer xenografts. EACR 18, 3-6 July 2004, Innsbruck, Austria, (poszter)

10. AZ ÉRTEKEZÉS ALAPJÁUL SZOLGÁLÓ KÖZLEMÉNYEK KÜLÖNLENYOMATAI