Antioxidáns hatású természetes eredetű vegyületek szintézise

Doktori (PhD) értekezés tézisei

Kónya Krisztina
Témavezető: Prof. Dr. Antus Sándor

Synthesis of natural compounds with antioxidant properties

PhD theses

Krisztina Kónya
Supervisor: Prof. Dr. Sándor Antus

Debreceni Egyetem,
Természettudományi Kar
Debrecen, 2005
„Soha ne úgy gondolj tanulmányaidra, mint kötelességre, hanem mint irigylésre méltó lehetőségre, megismerni a szépség felszabadító erejét a szellem birodalmában saját kedvedre és a közösség hasznára, amelyhez későbbi munkád tartozik.”

Albert Einstein
1. Antecedents and aims

Naturally occurring plant products have been used for treatment of diseases since centuries. Usage of these compounds have renaissance, however, in many cases exact structure of molecule possessing the pharmacological activity is not known, therefore the structure determination and exploration of structure-biological activity relationship of such a compound are very important research fields of organic and pharmaceutical chemistry.

Neolignans is one of the most important groups of naturally occurring natural products of biological activity. On the basis of their structures these can be divided into more than fifteen classes and in which further subclasses can also be distinguished. Their classification -similar to lignans- is defined by bond linking of two C6-C3 units. The most important classes are the followings (Scheme 1):

- (3,3')-neolignans
- (9,9')-neolignans
- (8,3')-neolignans
- (8,1')-neolignans
- benzofurans
- dihydrobenzofurans
- (8,0.4')-neolignans
- (3,0.4')-neolignans
- 1,4-benzodioxanes
- (8,1'.7,3')-neolignans
- (8,5'.7,3')-neolignans
- (8,1'.7,9')-neolignans
- (2,2'.5,1')-neolignans

These compounds of significant different structures possess a wide range of biological activity. In course of my work 2,3-dihydrobenzo[b]furan-, and 8.0.4'-neolignan- and 1,4-benzodioxan-type neolignans (14,15,17 resp.) have been synthesized and in the case of 8.0.4'-neolignans their antioxidant property was also examined.

2. Applied methods

The macro, semi macro and micro methods of modern preparative organic chemistry were applied in the synthetic work. Reactions were monitored by thin layer chromatography; the isolation and
purification of the crude products were carried out by column chromatography. Melting point, optical rotation, 1H and 13C NMR and CD spectroscopy measurements were applied for the identification and characterization of the prepared compounds. Assay of superoxide anion generation was assessed spectrophotometrically by measuring the reduction of cytochrome C in a microassay and an ELISA reader. In these experiments 8.O.4’-neolignans or Vitamin E at a final concentration of 25 µM were added. The samples were incubated for 10 min in a micro-plate incubator, and the cell suspension was added into each well. The cells were stimulated by phorbol myristate acetate (PMA) and the plate was incubated for 15 min at 37°C and then cytochrome C reduction was measured by spectrophotometer at 550 nm.

3. New results

3.1. Synthesis and study of antioxidant properties of 8.O.4’-neolignans

Radical scavenging activities of flavonolignans belong to polyphenols family has been reported in literature but interestingly this property of 8.O.4’-neolignans has not been examined yet. On the basis of their structure one can be expected that they have antioxidant property similar to 2,3-dihydrobenzo[b]furan and 1,4-benzodioxane type flavonolignans isolated from *Silybum marianum*. In order to continue our work on the field of the synthesis and biological study of O-heterocyclic compounds of natural origin erythro-91a-d,g and threo-92g,h 8.O.4’-naturally occurring neolignans as well as their derivatives (91e,f,h,i; 92a-f,i) have been synthesized and their effect on the superoxide anion (O$_2^-$) release by human polymorphonuclear leukocytes (PMNLs) has also been studied.

According to the literature racemic α-bromo propiophenon derivatives [(±)-87a-c] were synthesized from the appropriate nitrile derivatives 85a-c by Grignard reaction followed by bromination. These compounds were treated with 88,89,24 phenols in present of potassium carbonate in acetone at 56°C to give the appropriate ketones (±)-90a-i, whose stereocontrolled reduction could be achieved by lithium aluminium hydride yielded erythro-(±)-91a-i alcohols as a major products (Scheme 2).
Separation of these compounds from the threo-derivatives [(±)-92a-i] was performed by preparative TLC. The stereoselectivity of the reduction could be changed by using so called „naked” hydride reagent prepared in situ from NaBH₄ and 15-crown-[5]-ether. According to Cram’s rule and threo-alcohols were formed as a major product in every case (Scheme 3).

The inhibitory activity of these compounds on the superoxide anion (O₂⁻) release by PMNLs have been tested and the structure-activity relationship was also studied. It is well known that in human
circulation system the PMNLs generate O_2^- in the presence of PMA due to its influence on protein kinase C (PKC) and NADPH oxidase (reduced nicotinamide adenine dinucleotide phosphate oxidase) enzymes.

The incorporation of 3-(4,5-dimethyltiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) into cells has clearly shown that the racemic $91,92a-i$ 8.O.4'-neolignans are not toxic in 25µM concentration. It is also noteworthy that the incorporation of MTT was reduced only by 20-25% in 100µM concentration therefore the inhibition of O_2^- release exclusively belong to antioxidant activity of our compounds (Scheme 4).

![Scheme 4](image)

The O_2^- release of PMNLs were reduced significantly by all compounds ($91,92a-i$) in 25µM a 25-70% inhibition has been observed (10 min after the stimulation) and the antioxidant capacity of these compounds has been found to be measurable after 30 minutes after stimulation and its change in time has also suggested that there is a relationship between the structure of the molecule and its antioxidant activity. Furthermore, a significant difference between scavenging activity of the erythro- and threo-alcohols could be observed (Scheme 5).

![Scheme 5](image)
The values of O_2^- release clearly indicated that exception of 92c all further compounds belonging to the threo series of 8.O.4'-neolignans possess significantly higher activity on the inhibition of oxidative burst of PMNLs, than their erythro stereoisomers. Remarkable that in the case of 92a,b,e,f,g the inhibition were higher than 60% and the highest inhibitory activity was found in the case of 92b. This result is in full harmony with our earlier results suggesting that the inhibitory activity of molecules in O_2^- release of human PMNLs can be influenced by its lipid solubility. Thus, the higher lipid solubility, i.e. presence of more methoxy groups in the molecule, might enhance the binding of the molecule into the cell membrane where O_2^- is formed by membrane-bound NADPH oxidase. The significant difference between the inhibition value of 92e and 92h referred the binding of the molecule into the cell membrane in the case of molecule with allyl side chain is favourable. It is also known, the biological effect of a racemate can be significantly different to its enantiomers. Since the antioxidant activity of racemic 92a-i threo neolignans has been found to be comparable with that of Vitamin E so it was obvious to study the activity of their enantionomers as well. Therefore we have investigated the resolution and enantioselective synthesis of these compounds in detail.

3.2. Resolution and enantioselective synthesis of 8.O.4' neolignans

The resolution of racemic erythro- and threo-alcohols was performed by HPLC on chiral stationer phase (Chiralcel OD). The optimized chromatographic conditions (n-hexane : 2-propanol = 90:10 v= 0.9, 0.5 ml/min) provided baseline separation most of the racemates (Table 1).

<table>
<thead>
<tr>
<th>Compound</th>
<th>t_R^1</th>
<th>k'^1</th>
<th>t_R^2</th>
<th>k'^2</th>
<th>α</th>
<th>R_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>91a</td>
<td>20.81</td>
<td>3.94</td>
<td>21.77</td>
<td>4.17</td>
<td>1.06</td>
<td>0.91</td>
</tr>
<tr>
<td>92a</td>
<td>29.84</td>
<td>6.08</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>91b</td>
<td>17.38</td>
<td>3.13</td>
<td>18.43</td>
<td>3.37</td>
<td>1.08</td>
<td>0.95</td>
</tr>
<tr>
<td>92b</td>
<td>22.49</td>
<td>4.34</td>
<td>32.93</td>
<td>6.82</td>
<td>1.57</td>
<td>5.32</td>
</tr>
<tr>
<td>91c</td>
<td>10.08</td>
<td>1.39</td>
<td>13.29</td>
<td>2.16</td>
<td>1.55</td>
<td>5.33</td>
</tr>
<tr>
<td>92c</td>
<td>14.40</td>
<td>2.42</td>
<td>17.39</td>
<td>3.13</td>
<td>1.29</td>
<td>3.49</td>
</tr>
<tr>
<td>91d</td>
<td>20.81</td>
<td>3.94</td>
<td>26.84</td>
<td>5.37</td>
<td>1.36</td>
<td>4.18</td>
</tr>
<tr>
<td>92d</td>
<td>24.84</td>
<td>4.90</td>
<td>37.92</td>
<td>8.00</td>
<td>1.63</td>
<td>6.28</td>
</tr>
<tr>
<td>91e</td>
<td>17.97</td>
<td>3.27</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>92e</td>
<td>19.75</td>
<td>3.69</td>
<td>25.76</td>
<td>5.11</td>
<td>1.39</td>
<td>3.43</td>
</tr>
<tr>
<td>91f</td>
<td>10.97</td>
<td>1.60</td>
<td>12.89</td>
<td>2.06</td>
<td>1.28</td>
<td>3.24</td>
</tr>
<tr>
<td>92f</td>
<td>14.68</td>
<td>2.48</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>91g</td>
<td>23.60</td>
<td>4.60</td>
<td>31.76</td>
<td>6.54</td>
<td>1.42</td>
<td>4.71</td>
</tr>
<tr>
<td>92g</td>
<td>27.31</td>
<td>5.48</td>
<td>36.25</td>
<td>7.6</td>
<td>1.39</td>
<td>3.67</td>
</tr>
<tr>
<td>91h</td>
<td>21.65</td>
<td>4.14</td>
<td>28.48</td>
<td>5.76</td>
<td>1.39</td>
<td>3.98</td>
</tr>
<tr>
<td>92h</td>
<td>23.11</td>
<td>4.48</td>
<td>30.25</td>
<td>6.18</td>
<td>1.38</td>
<td>4.00</td>
</tr>
<tr>
<td>91i</td>
<td>12.68</td>
<td>2.01</td>
<td>17.60</td>
<td>3.18</td>
<td>1.58</td>
<td>6.17</td>
</tr>
<tr>
<td>92i</td>
<td>15.35</td>
<td>2.64</td>
<td>16.15</td>
<td>2.83</td>
<td>1.07</td>
<td>1.07</td>
</tr>
<tr>
<td>91j(\alpha)</td>
<td>19.75</td>
<td>3.11</td>
<td>20.93</td>
<td>3.36</td>
<td>1.03</td>
<td>1.42</td>
</tr>
<tr>
<td>92j(\alpha)</td>
<td>19.79</td>
<td>3.12</td>
<td>21.52</td>
<td>3.48</td>
<td>1.12</td>
<td>1.84</td>
</tr>
<tr>
<td>91jOAc(\alpha)</td>
<td>11.47</td>
<td>1.39</td>
<td>12.77</td>
<td>1.66</td>
<td>1.20</td>
<td>2.24</td>
</tr>
<tr>
<td>92jOAc(\alpha)</td>
<td>12.13</td>
<td>1.53</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>91fOAc</td>
<td>8.46</td>
<td>0.76</td>
<td>8.84</td>
<td>0.84</td>
<td>1.10</td>
<td>0.99</td>
</tr>
<tr>
<td>92fOAc</td>
<td>8.93</td>
<td>0.86</td>
<td>9.53</td>
<td>0.99</td>
<td>1.15</td>
<td>1.27</td>
</tr>
</tbody>
</table>

Table 1
The application of online HPLC-CD detection the LC/CD spectra of our compounds (except 91e, 92a, 92f) were recorded on 230 and 245nm. The flow was stopped on the maxima of the CD signal and CD spectra of compounds were recorded in range 200-350 nm, so an unambiguous determination of absolute configuration was become possible (Scheme 6).

Either Horeau’s or Mosher’s method using 1H-NMR spectroscopy has been already published in the literature for the determination of the absolute configuration of 8.O.4’ neolignans. We have supposed that the preparative application of Mosher’s method makes possible not only the synthesis of 91a-i and 92a-i neolignans in enantiomeric pure form but the 1H and 13C-NMR examination of their diastereomers obtained with R(-)-α-methoxyphenyl acetic acid can provide further data to the determination of their absolute configuration.

Diastereomers of erythro- and threo-neolignans 91c, 92c, e, i were prepared with R(-)-α-methoxyphenyl acetic acid (125) whose separation could be achieved without difficulties by column chromatography (Scheme 7).
The CD data of these compounds revealed that there is a simple relationship between the absolute configuration of \(\text{erythro-} \) and \(\text{threo-} \) 8.O.4'-type neolignans and their chiroptical properties. A positive (negative) Cotton-effects within the \(^1L_a \) and \(^1L_b \) bands of benzene chromophore containing substituted ring A derives from \(7R,8S \) (\(7S,8R \)) in the \(\text{erythro-} \)series. In the \(\text{threo-} \)series the same relationship is valid in the case of absolute configuration of \(7R,8R \) (\(7S,8S \)). On the basis of this rule the absolute configuration of some naturally occurring neolignans have been revised (Scheme 8).

Thus, the absolute configuration of \((-)-129\) and \((-)-130\) 8.O.4'-neolignan derivatives isolated from the leaves of \(\text{Lonireca graciliper var. glandulosa Maxim} \) by Matsuda and Kikuchi must be changed (\(7S,8R \rightarrow 7R,8S \)), as well as the configuration of \((-)-131\) \(\text{erythro-} \)8.O.4'-neolignan and \((-)-132\) 8.O.3'-neolignan containing \emph{trans} propenyl side chain on ring B derivatives isolated from \(\text{Arum italicum} \) by Greca and his co-workers could be corrected (\(7R,8S \rightarrow 7S,8R \)) (Scheme 8).

3.3. Enzyme catalysed resolution of 2-hydroxymethyl-1,4-benzodioxanes

Recently we have shown that \((+)-77b \) 1,4-benzodioxane derivative is a suitable starting material for the synthesis of hepatoprotective silybin-A, -B in racemic form (\(77b \rightarrow 60a \)) (Scheme 9). Since the configuration of chirality centres in the 1,4-benzodioxane ring remained unchanged in these transformation, so it was obvious intensively to deal with the resolution of \((+)-77b \) whose enantiomers could be served as a starting material for the synthesis of \((+)\)-silybin-A, and -B.
On the basis of our recent results we supposed that the availability of enantiomers [(-)-77b and (+)-77b] could be ensured by *Pseudomonas fluorescens* lipase enzyme catalyzed kinetic resolution. Surprisingly (±)-77b 1,4-benzodioxane derivative was not substrate of this enzyme, although in the case of 2-hydroxymethyl-1,4-benzodioxane (133) the remained alcohol (-)-133 could be obtained in optically pure form (ee=99%). In order to get more information about the active site of this enzyme, the enantioselective acylation of a series of 1,4-benzodioxane derivatives (136,137,140,141,142,143,158) were studied.

The TLC monitoring of these transformations has shown that the acylations of 136 and 137 esters in dry dioxane by vinyl acetate took place \[136 \rightarrow (+)-138, 137 \rightarrow (+)-139\] significantly slower than in the case of 2-hydroxymethyl-1,4-benzodioxane (133) \[(±)-133 \rightarrow (+)-133Ac: \text{conversion: } 62\%, \text{time: } 13.5 \text{ hours}\] (Scheme 10).

```
\begin{tabular}{|c|c|c|c|c|}
\hline
Compound & Time (hour) & Conversion (%) & Alcohol (136,137) ee (%) & Acetate (138,139) ee (%) & E \\
\hline
136,138 & 214 & 45 & 71 & 79 & 14 \\
137,139 & 214 & 52 & 52 & 75 & 11 \\
\hline
\end{tabular}
```

Namely, 45% conversion was reached only after 214 hours. The remained alcohols [(−)-136,-137] could be easily separated from the appropriate acetyl derivatives by column chromatography. Their absolute configurations were determined by chemical correlation and their optical purities were determined on Chiralcel OJ column by HPLC. In order to study the steric effect of the side chain of aromatic ring the resolution of 140 and 141 aldehydes were also studied (Scheme 11).
The data given in Scheme 11 clearly show that the steric effect of \(R_1 \) substituent does not have influence to the enzyme chiral recognition. Even in the case of \(R_2 \) substituent only a slightly influence could be recognized. Further interesting information could be obtained about the topology of the enzyme active site by the kinetic resolution of bis-hydroxymethyl-1,4-benzodioxanes [(\(\pm \))-142, (\(\pm \))-143] as well (Scheme 12 and 13).

![Chemical structures]

Scheme 11

<table>
<thead>
<tr>
<th>Compound</th>
<th>Time (hour)</th>
<th>Conversion (%)</th>
<th>Alcohol (142,143) ee (%)</th>
<th>Acetate (146,147) ee (%)</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>97</td>
<td>45</td>
<td>65</td>
<td>75</td>
<td>14</td>
</tr>
<tr>
<td>143</td>
<td>97</td>
<td>48</td>
<td>73</td>
<td>57</td>
<td>7,7</td>
</tr>
</tbody>
</table>

Scheme 12

<table>
<thead>
<tr>
<th>Compound</th>
<th>Time (hour)</th>
<th>Conversion (%)</th>
<th>Alcohol (142) ee (%)</th>
<th>Monoacetate (146) ee (%)</th>
<th>Diacetate (148) ee (%)</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>167</td>
<td>67</td>
<td>11</td>
<td>75</td>
<td>67</td>
<td>-</td>
</tr>
<tr>
<td>((\pm))-146</td>
<td>167</td>
<td>50</td>
<td>-</td>
<td>76</td>
<td>61</td>
<td>9,2</td>
</tr>
</tbody>
</table>
On the one hand these experiments also confirmed our earlier results obtained in cases of aldehydes (±)-140,141 and on the other hand they have pointed out the increasing of the distance between the active site of the enzyme and the chiral centre of the molecule the recognition of the enzyme significantly has fallen.

The absolute configurations (S) of our compounds were determined by the chiroptical rule published by us earlier [(1L-CD (-) → heteroring helicity M → absolute configuration S)]. The optical purities of compounds were determined by HPLC on chiral stationer phase (Chiralcel OJ).

From the above mentioned results conclusion could be draw that the bulky 4-hydroxy-3-metoxyphenyl group at C-3 of 1,4-benzodioxane ring has prevent the formation of enzyme-substrate complex [(±)-77a → (+)-134 or (±)-77b → (+)-135]. Therefore it was also obvious to examine the steric effect of the substituent in this position. For this purpose trans-2-hydroxymethyl-3-methyl-1,4-benzodioxane (158) was prepared according to the literature shown on Scheme 14.
In the case of *trans* compound (158) its 25% conversion was reached after 168 hours. Although this fact has confirmed the formation of enzyme-substrate complex but it has also clearly shown that the steric effect of the substituent at this position is characteristically determining (Scheme 15).

![Scheme 15](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Time (hour)</th>
<th>Conversion (%)</th>
<th>Alcohol (158) ee (%)</th>
<th>Acetate (166) ee (%)</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>158</td>
<td>168</td>
<td>25</td>
<td>23</td>
<td>12</td>
<td>1.5</td>
</tr>
</tbody>
</table>

On the basis of the comparison of our results with those of the literature a conclusion could be drawn that (i) different polarity and steric effect of substituents at aromatic ring could not be prevent the formation of enzyme-substrate complex and in all case (ii) the enantiomer of *R* configuration was acylated faster and (iii) the degree of selectivity highly depended on the substituent. The much largest substituent effect was observed in the case of at position C-3. In this case the replacement of hydrogen atom to methyl group shifted the equilibrium E+S \rightarrow ES to the direction of substrate; moreover, in the presence of a bulky aryl group the enzyme-substrate complex was formed not at all.

3.4. Enzyme catalysed resolution of 3-hydroxymethyl-benzo[b]furans and determination of absolute configuration of (+)-silychristin

The 3-hydroxymethyl-2,3-dihydrobenzo[b]furan skeleton is a building block of numerous flavano- and neolignan derivatives, and this moiety can be recognized in one of the active component of Legalon®, in (+)-silychristin (62) and in its 3-dezxyderivatives, in (+)-silyhermin (66) as well. Starting from aldehyde derivative 80 the synthesis of the last mentioned compound in racemic form was performed by our research group. It seemed to be very obvious to use this sequence for the total synthesis and the determination of absolute configuration of these compounds.
On the basis of our recent results it was also obvious that the preparation of 171 2,3-dihydrobenzo[b]furan aldehyde derivative can be achieved by the kinetic enzymatic resolution. This compound [(±)-171] and its methyl ether [(±)-172] were prepared by our method starting from methyl ferulate (173) (Scheme 17).
These experiments showed that the enzyme surprisingly lost its activity at 30-40% conversion (30-40 hours). The remained laevorotatory alcohol was separated from the dextrorotatory acetyl derivative by column chromatography and the optical purities and the absolute configuration of these compounds were determined by the chemical correlation with \((\pm)-2R,3S-180\) ester derivative isolated from *Ziziphus jujuba* (Scheme 19).

These data have clearly shown the introduction of formyl group at 2,3-dihydrobenzo[b]furan skeleton significantly has influenced the substrate binding at the active site of the enzyme. Thus, the preparation of 171 aldehyde derivative in optically pure form was not successful. Due to this fact the realization of the total synthesis of \((+)-silychristin (62)\) and \((+)-silyhermin (66)\) had to be given up but the determination of absolute configuration of \((+)-silychristin (62)\) by chiroptical spectroscopy could be achieved by using aldehyde derivative 172 of 30-40% optical purity. Thus, suitable model compounds \([(+)\text{- and } (-)-188\)] could be prepared by the route shown in Scheme 20 staring from the corresponding aldehydes \([(+)\text{- and } (-)-172\)].
The comparison of the CD data of (+)\textbf{188} flavone derivative with those of dehydrosilychristin (\textbf{167}) has unambiguously indicated that its absolute configuration is not $2R,3R,2'S,3'S$ as reported by Zanarotti but it is $2R,3R,2'S,3'R$.

Scheme 20

CD (AcCN) nm ($\Delta\varepsilon$): 348 (0.55), 28 (-0.05), 253 (0.42), 238 (-0.46)
4. Publications

Az értekezés alapjául szolgáló közlemények / Papers underlying the Theses

Egyéb közlemények / Other papers

Tudományos rendezvényeken bemutatott munkák / Presentations at scientific meetings

Előadások / Oral lectures

Poszterek / Posters

2. Kónya, K.; Varga, Zs.; Antus, S. 8,4'-Oxyneolignán származékok hatása a neutrofilek PMA stimulálta szuperoxidanion (O2⁻) termelésére. (MÉT, Szeged, 2001. június 6-8.)

Chemistry (Sopron, 2004. szeptember 12-15.)