
Modeling the Pauli potential in the pair density functional theory
C. Amovilli1 and Á. Nagy2,a�

1Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa, Italy
2Department of Theoretical Physics, University of Debrecen, H-4010 Debrecen, Hungary

�Received 29 May 2008; accepted 22 October 2008; published online 25 November 2008�

In the ground state the pair density can be determined by solving a single auxiliary equation of a
two-particle problem. A novel method for determining the Pauli potential entering this equation is
presented and, starting from a reliable description of the pair density, an analytical expression is
derived for atomic systems. Test calculations are presented for Be and isoelectronic C2+ and O4+

ions. © 2008 American Institute of Physics. �DOI: 10.1063/1.3026664�

I. INTRODUCTION

Generalized density functional theories have received a
growing importance in recent years. For electron systems,
the interest has been posed on the pair density as the funda-
mental variable instead of the one particle density. It turned
out that there exist a variational principle for the pair density
�analogous to the Hohenberg–Kohn theorems of the density
functional theory�. It has been shown that—instead of Kohn–
Sham equations—in the pair density functional theory1–4 the
ground state problem of an arbitrary system is reduced to a
two-particle problem. The two-particle equation is written1–4

as

�−
1

2
�1

2 −
1

2
�2

2 + v�r1� + v�r2� +
N − 1

r

+ vP�r1,r2����r1,r2� = ���r1,r2� , �1�

where v is the external potential, N is the number of elec-
trons, and the notation r= �r1−r2� is used. The ground state
eigenfunction for this equation, �̃0 say, corresponds to the
pair density amplitude and is related to the pair density n of
the real system as

n =
N�N − 1�

2
��̃0�2. �2�

Equation �1� contains an unknown term vP of completely
kinetic origin. After a density functional analogy vP is called
Pauli potential. Equation �1� is analogous to the density func-
tional equation for the square root of the density �which
dates back to Thomas and Fermi5 and is analyzed by Levy
et al.6�.

The pair density can be numerically calculated either on
the Hartree–Fock �HF� level or on highly correlated level.
The pair density can also be determined from Eq. �1� in a
rather straightforward way if the Pauli potential is known.
However, there are no data for the Pauli potential in the
literature, yet. Although recently, the electron-electron cusp
condition and asymptotic behavior for the Pauli potential
have been derived,7 much work is called for to completely

understand how such a potential could be modelized in anal-
ogy with the Kohn–Sham potential in ordinary density func-
tional theory. Considering the present knowledge, this kind
of work appears extremely difficult. We believe that an im-
portant first step, in order to gain more insight in this direc-
tion, is the reconstruction of the Pauli potential from a reli-
able pair density form for some realistic tractable electron
system. For these cases, a six variable functional form for vP

should be, in principle, obtained. This function, at this point,
should be viewed as a source of information expecially with
the aim of finding those properties that can be transferred to
other systems for which the pair density is unknowm.

Motivated by the above consideration, in this paper we
present model Pauli potential for the Be atom and isoelec-
tronic atomic ions C2+ and O4+. The method, which is in-
tended to capture the main features of vP, is based on an
ansatz of the form of the pair density amplitude. We gener-
alize the method of Amovilli et al.8 The original method was
used to obtain the exact Hamiltonian for an analytic ground
state wave function for He-like ions. Here, a generalization is
presented for producing the Pauli potential from a model pair
density amplitude.

The paper is organized as follows. In Sec. II the pair
density functional theory is reviewed. In Sec. III a model
pair density amplitude and the corresponding potential are
presented. Section IV describes numerical examples: the Be
and some isoelectronic atomic ions. The last section is de-
voted to discussion.

II. THE PAIR DENSITY FUNCTIONAL THEORY

First, the pair density functional theory1–3 is summa-
rized. Consider the many electron Hamiltonian H,

Ĥ = T̂ + V̂ee + �
i=1

N

v�ri� , �3�

where

T̂ = �
i=1

N 	−
1

2
�i

2
 �4�

is the kinetic energy operator,a�Electronic mail: anagy@madget.atomki.hu.
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V̂ee = �
i�j

N
1

�ri − r j�
�5�

is the electron-electron repulsion energy operator, and v�r� is
a local external potential. For convenience we consider an
even number of particles. The second-ordered reduced den-
sity matrix is defined as

n2�x1,x2;x1�,x2�� =
N�N − 1�

2
� ��x1,x2,x3, . . . ,xN�

��*�x1�,x2�,x3, . . . ,xN�dx3, . . . ,dxN,

�6�

where xi stands for the spatial and the spin coordinates: ri, �i

and the integral symbol when referred to spin denotes sum-
mation. The diagonal of the spin-independent second-
ordered density matrix,

n�r1,r2� = �
�1,�2

n2�r1,�1,r2,�2� , �7�

also called pair density is the key quantity.
It is convenient to introduce new position variables

q j = �r j,r j�� = �qJ1,qJ2,qJ3,qJ4,qJ5,qJ6� , �8�

i.e., the pairs will be denoted by capital indices while the
particles in each pair will be identified by the corresponding
unprimed and primed letters. With the above notation the
number of variables is the same as that of the initial system.
Each particle is associated with a single pair, i.e., the number
of indices J is N /2. The “internal” potential for the particles
in pair J is given by

ṽ�q j� = ṽ�r j,r j�� =
1

�r j − r j��
, �9�

while the interaction between pairs I and J is

WIJ = W�qI,qJ� = W�ri,ri�;r j,r j��

=
1

�ri − r j�
+

1

�ri − r j��
+

1

�ri� − r j�
+

1

�ri� − r j��
. �10�

The energy of the pairs due to the external potential is

Û = �
I=1

M

u�qJ� = �
I=1

N

�v�r j� + v�r j��� . �11�

Defining the operator L̂ representing the internal energy of
pairs

L̂ = �
I=1

M 	−
1

2
�I

2 + ṽ�qI�
 , �12�

the initial Hamiltonian can be expressed as

Ĥ = L̂ + Ŵ + Û , �13�

where

Ŵ =
1

2 �
I�J

M

WIJ �14�

is the interaction energy between different pairs �M =N /2�.
Ĥ is the same as the initial Hamiltonian, but now it is

written in terms of pairs of particles, with L̂+ Û representing
the Hamiltonian of independent �noninteracting with each

other� pairs and Ŵ representing the interpair interaction.
The Laplacian in the kinetic energy operator can also be

written as

�I
2 = �qI�

2 = �i
2 + �i�

2 = �
�=1

6
�2

�qI�
2 . �15�

The energy of the independent pairs has the form

Q�n� = min
�→n

���L̂ + Ŵ�� . �16�

The search of the minimum is over all antisymmetric wave
functions � which yield the given n. Then the ground state
energy can be written as

E = min
n
� 1

N − 1
� u�r1,r2�n�r1,r2�dr1dr2 + Q�n�� . �17�

The factor 1 / �N−1� comes from the normalization of n. The
density of pair I

n�qI� = n�ri,ri�� = �
�i,�i�

n2�ri,�i,ri�,�i�� �18�

is the pair density in the original space.
The Hohenberg–Kohn theorems9 have been generalized

for the pair density10,11 of the original space. The ground
state inequality is

1

N − 1
� n�q�u�q� + Q�n� � E0, �19�

where E0 and n0 are the ground state energy and the diagonal
of the spin-independent second-order density matrix, respec-
tively.

In the pair density functional theory the adiabatic con-
nection is defined by the parametrized Hamiltonian

Ĥ� = L̂ + �Ŵ + Û�, �20�

where Û�=�lul
��q� is given by the condition that the pair

density n�q� of the original space keeps being independent of
�. For �=0 the “noninteracting Hamiltonian”

Ĥ�=0 = L̂ + Û�=0 = �
I=1

hI
�=0 �21�

is obtained. In this auxiliary system the interaction between
the pairs is zero and the auxiliary equations have the form

Ĥ0�0 = E0�0. �22�

The wave function in this auxiliary system can be written as
a symmetrized expression of antisymmetric two-particle
functions �1:

	0�x1, . . . ,xN� = Ŝ��1�x1,x2�, . . . ,�M�xN−1,xN�� , �23�
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Ŝ =
1

N!�P

P̂ �24�

is the symmetrizer operator. P is the permutation operator
and the sum is over all permutation of the electron pairs. This
wave function is antisymmetric with respect to the exchange
of the variables of a single pair and symmetric with respect
to the exchange of the pairs. The disadvantage of the present
notation is that it does not allow transposition of variables
belonging to two different pairs. In the ground state

n�q� = N
N − 1

2 �
�

��0�x1,x2��2 = N
N − 1

2
��̃0�q��2, �25�

where the two-particle function �̃0 satisfies the eigenvalue
equation

h0�q��̃0�q� = �− 1
2�q

2 + veff�q���̃0�q� = 
0�̃0�q� . �26�

We mention in passing that it is possible to write the pair
density in terms of geminals. The present version of the pair
density theory has the advantage that the calculation of n is
always reduced to the solution of a two-particle equation,
that is, the N-body problem can be reduced to a two-body
problem. It has been proven1 that the auxiliary potential is
uniquely determined by the diagonal form of the spin-
independent second-order density matrix, and the effective
potential is of the form

veff�q� = v�r1� + v�r2� +
N − 1

r12
+ vp, �27�

where

vp = �N − 1�
�TP

�n
�28�

and

TP = T − T0 �29�

is the difference of the kinetic energies of the real system

�T= ���T̂��� and the auxiliary system

T0 = �
I=1

M � �
I
*�x1,x2��−

1

2
�q

2��I�x1,x2� . �30�

By a density functional analogy the functional TP�n� is called
Pauli energy. The total energy has the form

E�n� = T0�n� + TP�n� +� n�q�
r12

dq

+
1

N − 1
� n�q�u�q�dq . �31�

The disadvantage of the present treatment is that it is
hard to capture the fermionic structure of an electronic sys-
tem with a single effective potential. However, we have al-
ways a two-particle problem to solve independently of the
number of electrons. It is worth making efforts to find ad-
equate approximation for the Pauli potential in order to uti-
lize this benefit. The present study is a step in this direction.

The auxiliary equations can also be derived by con-
strained search.1,12 The two-particle Eq. �26� was later
derived13 in a different way which is not restricted to even
number of electrons.

III. A MODEL PAIR DENSITY AMPLITUDE
AND THE CORRESPONDING POTENTIAL

As it was shown in the first paper,1 the Pauli potential is
uniquely determined by the pair density. That is, from the
knowledge of n, vP can be given by inverting Eq. �1�,

vP�r1,r2� = − Kloc�r1,r2� − w�r1,r2� , �32�

where

Kloc�r1,r2� = −
1

2�̃0�r1,r2�
��1

2 + �2
2��̃0�r1,r2� �33�

and

w�r1,r2� = v�r1� + v�r2� +
N − 1

r
− � . �34�

We have recently proven7 that the Pauli potential asymp-
totically behaves as

vP → �N − 2�	 1

r1
+

1

r2
−

1

r

 �35�

when r1→�, r2→�, and r→�. The electron-electron cusp
condition has the form

vP =
2 − N

r
�36�

as r→0.
With the aim to reconstruct vP in some functional form,

we start out from a model unnormalized pair density ampli-
tude in the form

� = �HF�r1,r2��1 + g�r�� , �37�

where �HF is the HF pair density amplitude and g�r� a reli-
able correlation function. The variables inside the HF func-
tion are properly scaled in accord with a study,14 performed
on two-electron model atoms, in which it has been shown
that the exact ground state wave function for the systems
treated can be related to the HF one by a length scaling
transformation followed by the insertion of a pair correlation
factor. The importance of scaling has been also pointed out
in our previous paper on pair density amplitude equation.3

Equation �37� above can be used, in principle, for any mo-
lecular system. However, in this work, we limit the attention
to four-electron atomic ions as a starting point.

In order to be used in some analytical tractable form, the
HF pair density amplitude is here expanded in terms of
Slater functions, namely,

�HF = �
kl

�klr1
pkr2

pl exp�− �kr1 − �lr2� , �38�

where the coefficients �kl and the exponents �k are deter-
mined by means of some fitting procedure and the sum is
truncated to few terms.
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Now, we follow a recent method8 to obtain the potential
exactly from the given wave function. From Eqs. �37� and
�38� we are led to

1

2

��1
2 + �2

2��
�

= V1�r1,r2� + V2�r1,r2� + V3�r1,r2� , �39�

where

V1�r1,r2� = ��r1,r2� + ��r1,r2� + ��r1,r2� , �40�

��r1,r2� =

1

2�
kl

��̄k
2 + �̄l

2��̄klr1
pkr2

pl exp�− �̄kr1 − �̄lr2�

�kl�̄klr1
pkr2

pl exp�− �̄kr1 − �̄lr2�
,

�41�

��r1,r2� = −

�
kl
� �̄k�pk + 1�

r1
+

�̄l�pl + 1�
r2

��̄klr1
pkr2

pl exp�− �̄kr1 − �̄lr2�

�kl�̄klr1
pkr2

pl exp�− �̄kr1 − �̄lr2�
, �42�

��r1,r2� =

�
kl
� pk�pk + 1�

2r1
2 +

pl�pl + 1�
2r2

2 ��̄klr1
pkr2

pl exp�− �̄kr1 − �̄lr2�

�kl�̄klr1
pkr2

pl exp�− �̄kr1 − �̄lr2�
, �43�

V2�r1,r2� =

d2g

dr2 +
2

r

dg

dr

1 + g
, �44�

and

V3�r1,r2� =
2

r

dg

dr
�

�
kl
�	 pk

r1
− �̄k
�r1 − �̃r2� + 	 pl

r2
− �̄l
�r2 − �̃r1���̄klr1

pkr2
pl exp�− �̄kr1 − �̄lr2�

�1 + g��kl�̄klr1
pkr2

pl exp�− �̄kr1 − �̄lr2�
. �45�

�̃ denotes the cosine of the angle between r1 and r2,

�̃ =
r1 · r2

r1r2
, �46�

while, accordingly to the length scaling requirements, in Eqs.
�41�–�45�, we have

�̄ij = �ij
pi+pj �47�

and

�̄i = �i . �48�

The Schrödinger equation that the model pair density
amplitude satisfies is

H��r1,r2� = �− 1
2�1

2 − 1
2�2

2 + V�r1,r2����r1,r2�

= ���r1,r2� . �49�

Thus, the potential energy V�r1 ,r2� in the exact Hamiltonian
H has the form

V�r1,r2� = const +
1

2

��1
2 + �2

2�
�

. �50�

We can readily see that if we consider the HF, g=0 and the
potential V reduces to V1 �V2=V3=0�. To analyze the terms
in the potential V we consider the asymptotic behavior of

these terms. We can immediatelly notice that the constant
term in Eq. �50� comes from �, that is, � in Eq. �1� is equal
to −�̄s

2, where �̄s is the smallest parameter in the exponent in
Eq. �38� and ps=0. Terms proportional to r1

−1, when r1→�,
are coming from � �Eq. �42��. That is, −�̄s�ps+1� /r1 should
give the corresponding asymptotic limit: �−Z+N−2� /r1.
Consequently, the relation �̄s�ps−1�=Z−N+2 should hold to
insure the correct asymptotic behavior �35�. We are led, of
course, to the same relation cosidering the limit r2→�. We
have to select a correlation function g that the relations �35�
and �36� are satisfied as r→� and r→0. With the choice

g�r� =
1

2

r

�1 + ar�
�a � 0� , �51�

the asymptotic relations are fulfilled.
In the next section, we will show a procedure to find

reliable values for the parameters a and  for Be isoelec-
tronic atomic ions.

IV. NUMERICAL EXAMPLES: THE BE ATOM
AND SOME ISOELECTRONIC ATOMIC IONS

By way of example, we have performed some calcula-
tion of the total energy for Be atom and isoelectronic atomic
ions C2+ and O4+ by using the model pair density amplitude
defined in Eq. �37� and the derived Pauli potential.
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In an earlier paper3 we showed that the total energy can
be given as

E = E0 + Tp −� n�r1,r2�
�Tp

�n
dr1dr2, �52�

where

E0 =
N

2
� , �53�

the Pauli energy Tp being defined as Tp=T−Tw, where

Tw = T0 =
1

N − 1
� n1/2�r1,r2�

�	−
1

2
�1

2 −
1

2
�2

2
n1/2�r1,r2�dr1dr2 �54�

is a Weizsäcker-type kinetic energy expression. Ayers15 has
shown that such kind of generalized Weizsäcker-type kinetic
energies satisfies a set of bounds in the form

Tw
�1� � Tw

�2� � ¯ Tw
�N� � Tex, �55�

where Tex is the exact electronic total kinetic energy and the
superscript �j� refers to the order of the particle density used
to compute Tw. From the definition of vP in terms of Tp,
namely,

vP = �N − 1�
�Tp

�n
, �56�

and from the virial theorem,3 the total energy becomes

E =
1

N − 1
� n�r1,r2��� − vP −

1

2
�r1 · �1

+ r2 · �2�vP�dr1dr2. �57�

This integral can be evaluated by means of the Monte Carlo
method by sampling the two-electron configurations accord-
ing to the distribution n. In this case we can rewrite the
energy as the following mean value:

E =
N

2
�� − vP −

1

2
�r1 · �1 + r2 · �2�vP� . �58�

Subsuming the constant � in the costant of the effective
potential defined in Eq. �50�, the following expression can
easily be derived:

E =
N

2
�− VL −

1

2
�r1 · �1 + r2 · �2�VL

+
1

2
	−

Z

r1
−

Z

r2
+

N − 1

r

� , �59�

which is valid for atoms and where VL�r1 ,r2� is simply the
second term of Eq. �50�, namely, that containing the Laplac-
ian of the pair density amplitude. Equation �59� above is the
most direct route to get the total energy for an atom within
the present pair density functional theory, provided some
form of the pair density amplitude is given. We have applied
such equation to the isoelectronic systems Be, C2+, and O4+.
We have calculated the HF pair density starting from an even
tempered basis set of 30 Gaussian-type orbitals with expo-
nents ��k−1 �1�k�30�, where �=0.000 15 and �=2. This
basis set is good enough to approach, for these systems, the
HF energy limit within an error of about 10−5 Hartree. For
comparison purposes, together with the energy, we have also
evaluated the mean values of some powers of the interelec-
tronic distance r. For these moments, and for the systems
considered in this work, various data can be found in the
literature16–18 both for HF and correlated wave functions.
Some agreement with these data is requested in order to vali-
date any model pair density amplitude for applications like
that presented in this work. The calculation of the aforemen-
tioned properties needs the evaluation of the spherically av-
eraged intracule density. The spherically and system aver-
aged pair density is defined as

TABLE I. Powers and exponents of the Slater-type orbitals used to fit the
model pair density amplitude used in this work for Be, C2+, and O4+.

pk �k�Be� �k�C2+� �k�O4+�

0 3.976 51 5.968 57 8.061 90
0 3.007 34 4.982 39 7.208 78
0 1.009 12 1.491 11 2.276 12
0 0.438 83 0.688 90 1.471 29
1 1.020 59 1.263 48 2.271 98
1 0.691 71 1.015 22 1.960 12
1 ¯ ¯ 1.286 99
2 1.079 22 1.454 13 3.144 49
3 1.117 55 1.706 73 ¯

TABLE II. Total energy �E�, Pauli kinetic energy �Tp�, and some moments �rk for Be atom for different choices
of the correlation function parameter a and the scaling constant  calculated in this work and comparison with
HF and correlated literature data. Data are in a.u.

a  E Tp �r−2 �r−1 �r �r2 �r3

4 0.9835 −14.660�4� 0.878�3� 9.319 4.279 15.537 54.485 232.96
5 0.9847 −14.669�4� 0.864�3� 9.541 4.320 15.469 54.107 230.88
6 0.9860 −14.669�4� 0.855�3� 9.701 4.349 15.418 53.815 229.23

HFa −14.573 1.005 10.536 4.489 15.120 51.956 218.11
Corrb −14.667 ¯ 9.536 4.337 15.272 52.854 222.48

aIn the Tp column is reported the difference Tex−Tw
�1� and moments are from Refs. 16 and 18.

bMoments from Ref. 18.
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f�r� =� n�r,R�
d�r

4�
dR , �60�

where

R = 1
2 �r1 + r2� . �61�

This is the spherically averaged intracule density. With our
model pair density amplitude this function takes the simple
form

f�r� = N�1 + g�r��2fHF�r� , �62�

where fHF�r� is the spherically averaged intracule density
from the HF wave function and N is a normalization con-
stant.

The present approximation is similar to the lowest-order
approximation for the short range correlation given by
Dal Ri et al.19 and rediscussed very recently by Higuchi and
Higuchi20 in the framework of pair density functional theory.
It differs in the precise form of g�r�, here taken as defined in
Eq. �51�. Long range correlation is here in part considered by
the renormalization of � after the insertion of the factor
�1+g� and in part by the length scaling transformation. A
more refined treatment with the inclusion of long range cor-
relation will be an objective of future work.

Turning to the three atomic systems studied in this paper,
we show in Table I the parameters defining the Slater-type
orbitals used to construct the HF pair density amplitude as
they result from a fitting of the same accurate function. The
complete definition of �̃0 depends at this point on the param-
eter a entering the correlation function g�r� and the scaling

factor . We made different choices of such parameters
for all the three cases and the final results are collected in
Tables II–IV.

The main problem encountered in the calculation of the
total energy by Monte Carlo method has been related to the
high variance of the function to be averaged which is defined
in Eq. �59�. This requires a long simulation to achieve an
energy mean value with an accuracy of the order of some
millihartree. The same occurs for Tp.

Looking at the results of Tables II–IV, it is evident that
the optimal values of the parameters a and  must be found
by searching for a compromise between the need of getting
reliable values of the moments �rk and the best energy. The
results show also that a considerable fraction of correlation
energy has been taken into account. It is also important to
notice that the variance becomes larger when the nuclear
charge increases but also that our approximation, mainly
based on short range correlation, should works better in such
cases.

It is also interesting to look at the values of Tp. From the
bounds on the generalized Weizsäcker-type kinetic energy
introduced by Ayers15 it follows that

0 � Tp � Tex − Tw
�1�. �63�

Looking at our results, this inequality is satisfied in the range
of a values considered here. Deviations from this behavior
must lead to considerations related to N-representability.

Finally, it is worthwhile to look at the plots of the effec-
tive potential derived by the approximate pair density ampli-
tude. This has been done for the contributions V1�r1 ,r2� and
V2�r� while V3�r1 ,r2 ,r� cannot be easily shown being depen-

TABLE III. Total energy �E�, Pauli kinetic energy �Tp�, and some moments �rk for C2+ atomic ion for different
choices of the correlation function parameter a and the scaling constant  calculated in this work and compari-
son with HF and correlated literature data. Data are in a.u.

a  E Tp �r−2 �r−1 �r �r2 �r3

5 1.000 90 −36.538�9� 3.253�8� 25.37 7.540 8.013 14.031 29.466
6 1.000 63 −36.538�9� 3.226�8� 25.35 7.577 7.997 13.991 29.369
7 1.000 55 −36.539�9� 3.204�8� 25.94 7.604 7.985 13.961 29.296

HFa −36.408 3.475 27.06 7.716 7.945 13.863 29.06
Corrb −36.534 ¯ 25.50 7.548 8.118 14.502 31.14

aIn the Tp column is reported the difference Tex−Tw
�1� and moments are from Refs. 16 and 18.

bMoments from Ref. 16.

TABLE IV. Total energy �E�, Pauli kinetic energy �Tp�, and some moments �rk for O4+ atomic ion for different
choices of the correlation function parameter a and the scaling constant  calculated in this work and compari-
son with HF and correlated literature data. Data are in a.u.

a  E Tp �r−2 �r−1 �r �r2 �r3

7 1.000 05 −68.40�1� 6.91�1� 49.11 10.712 5.492 6.534 9.280
8 1.000 03 −68.40�1� 6.91�1� 49.45 10.741 5.486 6.522 9.260
9 1.000 03 −68.41�1� 6.90�1� 49.73 10.763 5.481 6.513 9.244

HFa −68.257 7.374 51.8 10.887 5.455 6.469 9.167
Corrb −68.411 ¯ 49.17 10.694 5.570 6.769 9.843

aIn the Tp column is reported the difference Tex−Tw
�1� and moments are from Refs. 16 and 18.

bMoments from Ref. 16.
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dent on three independent variables. For this purpose, and
only for Be, we plot V1�r1 ,r2� in Fig. 1 and V2�r� in Fig. 2.
From Fig. 1, it is clear that V1 is dominated by the external
nuclear potential when r1 or r2 tends to 0 while is about
constant for both large r1 and r2, being −� the limit in this
case. The ripples of the two dimensional surface of Fig. 1 are
instead a consequence of the exchange interaction and deter-
mine the shell structure of the one particle density of Be
atom. Finally, V2, shown in Fig. 2, is always repulsive. For
small r, it behaves as the electron-electron interaction poten-
tial while it goes to zero more rapidly for large r. The ripples
of V1, the long range behavior of V2 and the contribution V3,
are special features of vP.

V. CONCLUSIONS

In this work, we have illustrated a method to reconstruct
the Pauli potential of pair density functional theory for four-
electron atomic ions. The potential is derived by inverting
the effective two-electron equation involving the pair density
amplitude assuming that the pair density itself can be written
in an analytical tractable form. Cusp and asymptotic condi-
tions have been satisfied, and appropriate adjustable param-
eters have been used in order to reproduce, within a reason-
able accuracy, the total energy and some lower moment of
the intracule density. Some interesting features of the Pauli
potential have been found for the systems treated here. These
features are contained in the expressions �40�, �44�, and �45�
for V1, V2, and V3. V1 and V2 include also the nuclear and the
electron-electron electrostatic potential energies. Some illus-
trations are given also in Figs. 1 and 2.

We would like to emphasize that the present method is
not restricted to four-electron sytems. In the pair density
theory one has to solve an effective two-electron equation
independently on the number of electrons. That is, the novel
method introduced here to invert the effective two-electron
equation can always be applied if the pair density �or the pair
density amplitude� is available.

For the future, it will be interesting to analyze in details
each individual term in order to find a generalization of the
above expressions for all polyelectronic systems in a form
which does not require the inversion of the effective two-
electron equation worked here.

About V2, we would like to refer briefly to the “average
pair density theory” of Gori-Giorgi and Savin. In this
theory the spherically and system averaged pair density f�r�
is determined by simple radial equations conjectured by
Gori-Giorgi and Savin,21

�− �r
2 + weff�r���i�r� = �i�i�r� , �64�

the solutions of which give f�r� as

�
i

�i��i�r��2 = f�r� , �65�

that is, f�r� is given by a weighted sum of the square of some
orthogonal “effective” geminals �i with weighting factors of
“occupancy” �i. The potential weff�r� in Eq. �64� was ap-
proximated as

weff�r� = weff
�0��r� + weff

c �r� , �66�

where

FIG. 2. Plot of the potential energy contribution V2�r� for Be. Energies and
distancies in a.u.

FIG. 1. Plot of the potential energy contribution V1�r1 ,r2� for Be. Energies
and distances in a.u.
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weff
�0��r� =

�2fKS
1/2

fKS
1/2 �67�

and

weff
c �r� = 	1

r
+

r2

2r̄s
3 −

3

2r̄s

��r̄s − r� . �68�

��r̄s−r� is the Heaviside step function and

r̄s = 	4�

3
�̄
−1/3

, �69�

where �̄ is the average electron density. The correlation po-
tential weff

c �r�, originally proposed by Overhauser,22 has been
used to solve Eq. �64� for the uniform electron gas.21,23 It
leads to an accurate description of the short range part of f .
Our potential V2�r1 ,r2� �44�, using the expression �51� for g,
has the form

V2�r1,r2� =
1

r�1 + ar�2�1 + �a + 1/2�r�
. �70�

We immediatelly notice that the dominant term in Eq. �70�
for small r is 1 /r. It is the same as the first term in the
Overhauser potential, which is also the dominant part of the
Overhauser potential for small r. Thus the potential
V2�r1 ,r2� has some resemblance to the Overhauser potential.
The 1 /r term in the Overhauser potential comes from the
cusp condition on f�r�.21 The dominant term in Eq. �70� for
small r has the same origin.

We also mention in passing that it was derived via a
double adiabatic connection by one of the present authors4

that the square root of the spherically and system averaged
pair density is the solution of a simple radial equation, that
is, contrary to the theory of Gori-Giorgi and Savin, it is pos-
sible to obtain f�r� through a solution of a single equation. If
a single geminal is used the fermionic character should be
reflected in the potential which is consequently more com-
plicated. If more than one geminals are used the spherically
and system averaged pair density has a more complicated
form but the potential can be more easily approximated. The
number of geminals N�N−1� /2 depends on the number of
electrons. Therefore a single geminal approach might gain an
important role as the number of electrons increases.

In the density functional theory there has been a growing
interest in determining the exact exchange, exchange-
correlation, and Kohn–Sham potentials in the knowledge of
the density. Several methods have been worked out.24–29 The
exact potentials are very useful, for example, to check the
accuracy of approximate methods. An analogous problem in
the pair density functional theory is to obtain the Pauli po-
tential in the knowledge of the pair density as here the
electron-electron iteraction is exactly treated, but the kinetic
energy functional is unknown. The problem here is more
complicated in the sense that a two-particle potential vP

should be calculated, instead of a one-body exchange-
correlation potential of the density functional theory. On the
other hand, it is also simpler as only a single equation has to
be inverted instead of several Kohn–Sham equations in the
density functional theory. The accurate form of the Pauli

potential obtained by the present method can be used later to
find approximate expressions for it. One has to be, however,
extremely careful in the construction because of the
N-representability problem.10,15,30–43

Dal Ri et al.19 derived density matrices from Jastrow-
type trial wave functions. The pair density used in this work
can be considered as the lowest-order approximation to the
general N-representable pair density presented by Dal Ri
et al. Consequently, our pair density is, at least approxi-
mately, N-representable.
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