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Abstract

Following some studies of
∫

n(r)∇V (r)dr by earlier workers for the DFT

one-body potential V (r) generating the exact ground-state density, we con-

sider here the special case of spherical atoms. The starting point is the dif-

ferential virial theorem, which is used, as well as the Hiller-Sucher-Feinberg

identity to show, that the scalar quantity paralleling the above vector inte-

gral, namely
∫

n(r)∂V (r)/∂rdr is determined solely by the electron density

n(0) at the nucleus for the s-like atoms He and Be. The force −∂V/∂r is

then related to the derivative of the exchange-correlation potential Vxc(r), by

terms involving only the external potential in addition to n(r). The result-

ing integral constraint should allow some test of the quality of currently used

forms of Vxc(r). The article concludes with results from the differential virial

theorem and the Hiller-Sucher-Feinberg identity for exact many-electron the-

ory of spherical atoms, as well as for DFT for atoms such as Ne with a closed

p shell.

1



I. INTRODUCTION

The basic aim of this study is to derive new constraints on the exchange-correlation

potential in density functional theory [1]. This field has a fairly long history, but it is still

active. As a referee has pointed out to us, it is arguably more important now than in the

past. This is due to the renewed interest in optimized-effective potential methods, as well

as in other orbital-based functionals, where not only the energy, but also the potential are

presently missing quantities.

To derive one of our central results given in Eq. (9) below, however, we have first had to

limit the scope of our investigation to He and Be atoms. To generalize the present results to

He- and Be-like ions is an elementary matter requiring change only in the external potential.

This generalization to the entire (non-relatvistic) 2- and 4-electron isoelectronic atomic series

has the merit that it permits one to capture the different type of behavior for the correlation

energy (and presumably also the correlation potential) in the limit as the atomic number Z

tends to infinity.

II. FORCE-BALANCE AND DIFFERENTIAL VIRIAL EQUATIONS

One of us [2] has fairly recently written the force −∂V/∂r associated with the one-body

potential V (r) of DFT [1] for spherical atoms having ground-state density n(r) in the form

−
∂V (r)

∂r
= −

∂Vext(r)

∂r
+
Q(r)

r2
−
∂Vxc(r)

∂r
, (1)

where Gauss‘ theorem has been employed to introduce the number of electrons Q(r) inside

a sphere of radius r centered on the nucleus. Thus Q(r) is explicitly

Q(r) =
∫ r

0
4πs2n(s)ds. (2)

Some workers have already made a study of the force −∇V (r), which averages to zero. Below

we consider the scalar analogue −
∫

n(r)∂V/∂rdr for especially He and Be atoms [3,4]. Our

main focus here however is on the exchange-correlation force average 〈Fxc〉, defined by
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〈Fxc〉 = −
∫

n(r)
∂Vxc(r)

∂r
dr, (3)

which is clearly related to 〈F 〉 defined above by utilizing Eq. (1). Thus, if we multiply Eq.

(1) throughout by n(r), we find immediately, in an obvious notation:

〈Fxc〉 = 〈F 〉 − 〈Fext〉 −
∫

n(r)Q(r)

r2
dr. (4)

This Eq. (4) shows that given the external potential Vext(r) = −Z/r, where Z is the

atomic number of the spherical atom under consideration, and the ground-state density

n(r), the last two terms are readily evaluated. Thus the main task below is to evaluate

〈F 〉 from knowledge of −∂V/∂r and n(r). To proceed, we appeal to the differential virial

theorem (DVT), going back to March and Young [5] in one dimension and generalized first

to spherically symmetric systems by Nagy and March [6]: then to three dimensions by Holas

and March [7]. In the form appropriate to DFT, the DVT reads

−
∂V

∂r
= −

1

4

∂
∂r
∇2n(r)

n(r)
+

r̂ · z(s)(r)

n(r)
. (5)

Here r̂ denotes the radial unit vector, while the vector field z(s)(r) is defined via the kinetic

energy density tensor t
(s)
αβ(r) as [7]

tαβ(r) =
1

4

[

∂2

∂r′α∂r
′′

β

γ(r′, r′′) +
∂2

∂r′β∂r
′′

α

γ(r′, r′′)

]

r
′′=r

′=r

, (6)

and the α component of the vector z(r) is given by

zα(r) = 2
∑

β

∂tαβ(r)

∂rβ

. (7)

In Eqs. (6) and (7), γ(r′, r′′) is, as written the correlated one-particle density matrix. For

DFT as a single-particle theory, γ goes to the Dirac density matrix [9] γ(s)(r′, r′′) generated

by the one-body potential V (r).

The next step is to use Eq. (5) to calculate the force 〈F 〉 involving −∂V/∂r as

〈F 〉 = −
∫

n(r)
∂V (r)

∂r
dr = −

1

4

∫

∂

∂r
∇2n(r)dr +

∫

r̂ · z(s)(r)dr. (8)

3



From Eq. (7) the single-particle counterpart is zs,α(r) and inserting this in the final integral

appearing in Eq. (8) yields the value zero for He and for Be. For He this is because

Akbari, March and Rubio [10] have shown that r̂ · z(s)(r) = 4 tw(r)
r

+ 2∂tw(r)
∂r

, where tw(r) is

the von Weizsäcker kinetic energy density [18] and taking the volume integral of this latter

quantity, and using the fact that tw(r) = 1
8

(n′)2

n
vanishes at infinity, integration shows that

∫

r̂ · z(s)(r)dr = 0 for the He atom. For Be also, in our own earlier work [11], we have shown

that r̂ · z(s)(r) is obtained by replacing tw(r) by the positive definite gradient (G) kinetic

energy tG(r). Again the volume integral
∫

r̂ · z(s)(r)dr = 0, without full knowledge of tG(r),

but only that it tends to zero at infinity.

The remaining quantity entering Eq. (8) involving the Laplacian ∇2n = n′′+(2/r)n′ can

be integrated by parts, the result being a known constant times the ground-state density at

the nucleus, n(r = 0) ≡ n(0). Thus inserting the above integral on the left-hand-side of Eq.

(8) into Eq. (1) we find

〈Fxc〉 = −
∫

n(r)
∂Vxc(r)

∂r
dr = −2πn(0) + 4πZ

∫

∞

0
n(r)dr + 4π

∫

∞

0
n(r)Q(r)dr. (9)

This Eq. (9) applying to the spherical atoms He and Be is one of the central results of this

article. It affords an integral constraint that should, whenever possible, be imposed on a

chosen Vxc(r), using the density n(r) thereby generated in DFT. As is clear from Eq. (9),

this density n(r) is the only input needed to evaluate the right-hand-side of Eq. (9).

III. SOME MANY-ELECTRON GENERALIZATIONS

It seemed of interest to note here, prompted by the appearance of 〈Fext〉 in Eq. (4),

another form of DVT, but now in many-electron form [7]. Thus, we can write

−
∂Vext

∂r
= −

1

4

∂
∂r
∇2n(r)

n(r)
+

r̂ · z(r)

n(r)
+ r̂ · Fee(r), (10)

where the many-electron vector field z(r) has already been defined in Eqs. (6) and (7).

Forming 〈Fext〉 from Eq. (10) we find
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〈Fext〉 = −
∫

n(r)
∂Vext(r)

∂r
dr = −2πn(0) +

∫

r̂ · z(r)dr +
∫

n(r)r̂ · Fee(r)dr. (11)

In the Abstract, we referred to the Hiller-Sucher-Feinberg identity [12,13]. Briefly, this

can be regarded as derivable, in the single-particle case of DFT from the appropriate one-

electron Schrödinger equations [14]

∇2ψi + 2 [εi − V (r)]ψi = 0. (12)

For, say, the Ne atom, with configuration (1s)2(2s)2(2p)6 we need to write the separable

form

ψi(r) = Ri(r)Ylm(θ, φ) (13)

and with Pi(r) = rRi(r) we find

d2Pi

dr2
+ 2

[

εi − V (r) −
li(li + 1)

2r2

]

Pi = 0. (14)

Dividing both sides by Pi and then differentiating with respect to r, we find the combination

−∂V/∂r+ l(l+1)/r3 which enters the HSF identity as in the generalized single-particle form

given by Katriel [15]. The one-particle result is then found as

2πni(0) = 〈ψi|
∂V (r)

∂r
−
l̂2i
r3
|ψi〉, (15)

where l̂2i is the appropriate angular momentum operator yielding the last term on the RHS

of Eq. (15) and ni is the one-particle density. After summing for the occupied orbitals Eq.

(15) leads to the non-interacting result

2πn(0) =
∫

n(r)
∂V (r)

∂r
dr −

∑

i

λi

∫

li(li + 1)

r3
ni(r)dr, (16)

where λi are the occupation numbers.

Returning to Eq. (5), direct comparison with Eq. (16) allows us to write

∫

r̂ · z(s)(r)dr = −
∑

i

λi

∫

ni(r)
(li(li + 1)

r3
dr (17)
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We see immediately why, when we move from He and Be to Ne, the last atom having a

closed (2p)6 shell, the above integral on the left-hand-side of Eq. (17) is no longer zero. Eq.

(17) is a further important result of the present investigation.

In fact, in an earlier study [10], we have shown quite generally for spherical atoms that

r̂ · z(s)(r) = 4
tw
r

+ 2t′w + n(r)V ′

P (r), (18)

where VP (r) is the Pauli potential. For Be we know that
∫

r̂ · z(s)(r)dr = 0, as well as the

first term on the right-hand-side of Eq. (18) having zero volume integral, it then follows for

Be that
∫

n(r)V ′

P (r)dr = 0. This cannot continue to hold when Ne with its (2p)6 shell is

considered, since the l̂2 term in Eq. (17) is obviously no longer zero.

Paralleling the many-electron form of the DVT in Eq. (10), it is next to be noted that

the analogue of the single-particle HSF identity (16) is given in [12,13] as follows.

Specifically for the many-electron ground-state wave function Ψ(r1, σ1, ..., rN , σN ) of the

N -electron spin-free Hamiltonian

Ĥ = −
1

2

N
∑

i=1

∇2
i +W, (19)

where

W =
N
∑

i=1

Vext(ri) +
∑

i<j

1

rij

, (20)

the HSF identity takes the form

2πn(0) = 〈Ψ|
∂W

∂r1
−
L̂2

1

r3
1

|Ψ〉. (21)

In Eq. (21) r1 = |r1|, L̂1 = −ir1 ×∇1 are written in terms of the spatial coordinate r1.

To make contact with the corresponding DVT Eq. (11), let us take again the case of the

He atom. Eq. (21) has been evaluated recently by Amovilli and March [16] for Ψc replaced

by the variational wave function Ψ(r1, r2, r12) of Chandrasekhar [17], where r12 = |r1 − r2|.

However, Eq. (4) of [16] remains true when Ψ is replaced by the (as yet unknown) exact

Ψ(r1, r2, r12) for the ground state of He. No contribution, of course, in this simple example,

comes from the angular momentum term in Eq. (21), the result being
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2πn(0) =
∫

dr1dr2Ψ
2(r1, r2, r12)

[

Z

(

1

r2
1

+
1

r2
2

)

−
1

r3
12

(

r2
1 − r1 · r2

r1
+
r2
2 − r1 · r2

r2

)]

. (22)

Noting that the pair density n2(r1, r2) = 2Ψ2(r1, r2), one can finally bring Eq. (20) into

contact with the many-electron DVT result (11) since Fee(r) appearing there has the form

Fee(r) =
2

n(r)

∫

dr′n2(r, r
′)∇

r

1

|r − r′|
. (23)

In Eq. (23), the atomic number Z has been retained in the external potential terms, Z

being of course equal to 2 for the neutral atom. Manipulation of Eq. (23), when inserted

into (11) gives back n(0) as in Eq. (22).

IV. SUMMARY AND PROPOSED FUTURE DIRECTIONS

A central result of the present investigation is embodied in Eq. (9). This gives an

exact integral constraint on the exchange-correlation force −∂Vxc/∂r in terms solely of the

ground-state density. For the He atom, this is in principle available by X-ray scattering

from the vapor, though high experimental accuracy will be required to extract, via the

X-ray scattering factor

F (k) =
∫

n(r)exp(ik · r)dr, (24)

the ground-state density n(r). Such a procedure has been studied recently by Van Alsenoy

and March [19,20] in the context of the neon atom and an ’almost spherical’ molecule

like methane. But to our knowledge, only very old measurements available, in principle, to

extract F (k) for He atom, and going back to the early days of quantum mechanics exist for He

vapor. As for Be, some 50 Bragg reflection intensities have been measured by Brown [21](see

also [22]), but now one has itinerant electrons in the metallic crystal under investigation.

However, for the Be atom quantum Monte Carlo data is now available for the ground-state

density [23]. But even there, the accuracy available by current QMC techniques for the

density n(0) at the nucleus, which enters the constraint (9) derived here, leaves something

to be desired.
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A referee has asked us, in addition to Eq. (9) to emphasize that the ’fully many-electron’

result (11) may also be a further significant equation in the future.

We have, of course, in considering He and Be, restricted ourselves to closed shells. Avail-

able spin-density functional theory allows one to treat general systems, which are not spin-

compensated, such as the Li atom. Then the one-particle equations (14) take the form

d2Piσ

dr2
+ 2

[

εiσ − Vsigma(r) −
li(li + 1)

2r2

]

Piσ = 0, (25)

where the subscript σ refers to the spin up or the spin down case. Then instead of Eq (16)

we have two equations

2πnσ(0) =
∫

nσ(r)
∂Vsigma(r)

∂r
dr −

∑

i

λi

∫ li(li + 1)

r3
ni(r)dr, (26)

where in the last term the sum is only for the occupied electrons with spin σ. That is, we

have separate constraints for the spin up and the spin down potentials.

Also, in the future, variations in the external potential from bare Coulomb confinement,

to say, ultracold Fermion atomic gases, which are essentially harmonically confined due to

magnetic trapping techniques [24] are also of interest. For spin-compensated two-electron

systems with spherical symmetry, and harmonic confinement with general effective inter-

action u(r12) replacing 1/r12 in He, this problem has been completely solved by Holas,

Howard and March [25]. But to date, the interesting generalization to Be-like 4-electron

spin-compensated cases has not proved amenable to analytic solution. And, of course, gen-

eralizations to molecules like Li-H are of interest for the future, in again this four-electron

case.
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