
Differential virial theorem in DFT in terms of the Pauli potential

for spherically symmetric electron densities: illustrative example

for the family of Be-like atomic ions

N. H. Marchab and Á. Nagyc
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Abstract

The differential virial theorem relates the force −∂V/∂r associated with

the one-body potential V (r) of DFT to the Laplacian ∇2n of the ground-

state density n(r) and to a quantity zs(r) involving the kinetic energy density

tensor tαβ(r). Having the concept of the Pauli potential VP (r), zs is de-

rived for spherically symmetric ground-state densities n(r) in terms of the

von Weizsäcker kinetic energy density and the first derivative of VP (r). zs is

related solaly to the gradient kinetic energy density tG(r) for Be-like atomic

ions.

I. BACKGROUND

In earlier work with Gál [1], we obtained an explicit differential equation for the non-

relativistic ground-state electron density n(r, Z) for He-like atomic ions in the limit of large

nuclear charge Ze, utilizing the work of Schwartz [2]. After a discussion in fairly several terms

of some implications of DFT [3] for spherically symmetric ground-state electron densities, our

1



prime example will treat the Be-like ions cited in the title. We adopt here the approach via

the differential virial theorem (DVT), going back to March and Young [4] for arbitrary level

filling in one dimension and generalized first to spherically symmetric systems by Nagy and

March [6] then to three dimensions by Holas and March [5]. Their result for the magnitude

of ∂V/∂r of the force associated with the one-body potential V (r) of DFT [3] reads, in

spherical symmetry

−
∂V

∂r
= −

h̄2

4m

∂
∂r
∇2n(r)

n(r)
+
zs(r)

n(r)
. (1)

The quantity zs(r) appearing in Eq. (1) is the single-particle(s) limit of the many-electron

vector field z(r) defined in [5] from the kinetic energy density tensor tαβ(r). In turn this

latter quantity is defined from the first-order (many-electron) density matrix γ(r′, r′′) by

tαβ(r) =
h̄2

4m

[

∂2

∂r′α∂r
′′

β

γ(r′, r′′) +
∂2

∂r′β∂r
′′

α

γ(r′, r′′)

]

r
′′=r

′=r

. (2)

From tαβ(r) the explicit definition of the α component zα(r) of the vector field z(r) introduced

above is [5]

zα(r) = 2
∑

β

∂tαβ(r)

∂rβ
(3)

We note here that from the definitions (2) and (3) the quantity zα(r) is, dimensionally,

like a kinetic energy density devided by a length.

That this statement has a concrete consequence can be readily shown in the single-

particle DFT limit of one occupied level. Then the single-particle Dirac density matrix

γs(r, r
′), appropriate to the He-like sequences of atomic ions, has the form in terms of the

exact ground-state density n:

γs(r, r
′) = n(r)1/2n(r′)1/2. (4)

Akbari et al. [7] have recently pointed out that if Eq. (4) is used in the definitions (2) and

(3) above and applying the Euler equation ((1) below) with using the fact that the kinetic

energy density is equal to the von Weizsäcker kinetic energy ((6) below), then zs(r) in Eq.

(1) has the explicit form
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zs(r) = 4
tW (r)

r
+ 2

∂tW (r)

∂r
, (5)

where tW (r) is the von Weizsäcker kinetic energy density [8] defined by

tW =
h̄2

8m

(n′)2

n
. (6)

Our major aim below is to generalize the result (5), which is exact for one-level occupancy

only, to arbitrary level filling, provided always the resulting ground-state densities n have

spherical symmetry.

II. GENERALIZATION OF EQ. (5) TO TAKE INTO ACCOUNT OF

ARBITRARY LEVEL FILLING

Before turning to the very specific example of Be-like atomic ions with configuration

(1s)2(2s)2, we give below results concerning zs(r) in Eq. (1) for arbitrary level filling when

the ground-state density n is spherical.

The one-body potential V (r) of DFT [3] leads to one-electron wave functions ψi(r) sat-

isfying the Schrödinger equation

∇2ψi +
2m

h̄2 [εi − V (r)]ψi = 0. (7)

Using the Laplacial form tL(r) of kinetic energy density for the appropriate general level

occupancy, we multiply Eq. (7) by ψ∗

i and sum over occupied levels to find

tL(r) + nV (r) =
∑

occupied i

εi|ψi|
2 ≡ g(r). (8)

Forming the gradient of Eq. (8) we find

∇tL(r) + n∇V (r) + V (r)∇n = ∇g. (9)

Returning to Eq. (1) we can write

zs(r) =
h̄2

4m

∂

∂r
∇2n(r) +

∂tL
∂r

+ V (r)
∂n(r)

∂r
−
∂g(r)

∂r
. (10)
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Using Eq. (6) to replace tL(r) by the positive definite gradient form tG(r) of kinetic energy

density, we readily obtain

zs(r) =
∂tG(r)

∂r
+ V (r)

∂n(r)

∂r
−
∂g(r)

∂r
. (11)

III. INTRODUCTION OF PAULI POTENTIAL VP (R)

Several workers independenty introduced the concept of the Pauli potential [9,10] termed

VP (r) below. Using the Euler equation of DFT [3], namely

µ =
δTs

δn(r)
+ V (r), (12)

where Ts[n] is the single-particle kinetic energy functional, we can write

δTs

δn(r)
=

δTW

δn(r)
+ VP (r). (13)

Now the functional derivative of the von Weizsäcker kinetic energy TW is well known to have

the form

δTW

δn(r)
=

h̄2

8m

(

∇n

n

)2

−
h̄2

4m

∇2n

n
. (14)

Next let us replace V (r) in Eq. (10) using Eq. (12) to find

zs(r) =
∂tG
∂r

−
δTs

δn(r)

∂n(r)

∂r
+ µ

∂n(r)

∂r
−
∂g(r)

∂r
. (15)

Using Eqs. (13) and (14), Eq. (15) can be rewritten as

zs(r) =
∂tG
∂r

−
h̄2

8m

(

n′

n

)2

n′ +
h̄2

4m

∇2n

n
n′ − VP (r)n′ + µ

∂n(r)

∂r
−
∂g(r)

∂r
. (16)

If we write ts(r) as the sum of tW (r) and the Pauli contribution tP (r) then Eq. (16) becomes

zs(r) = 2
∂tW
∂r

+ 4
tW
r

+
∂tP
∂r

+ µn′ −
∂g(r)

∂r
− VP (r)n′. (17)

In relation to Eq. (17) it may be useful to note a connection with the studies of

Politzer and coworkers [11,12]. Using an ‘average‘ one-electron eigenvalue defined by
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ε̄(r) =
∑

i εini(r)/n(r) and called local ionization potential, the quantity g entering Eq.

(17) can be replaced, when desired, by g = ε̄n.

Now, we focus on replacing the quantity µn′ − g′ entering the central Eq. (17) by Pauli

quantities, and in particular by the derivative of the Pauli potential VP (r). From the one-

electron Schrödinger equation(7), one finds

tL(r) + nV (r) = g(r). (18)

But from Eq. (12)

n
δTs

δn(r)
+ nV (r) = nµ. (19)

Furthermore, if we insert Eq. (13) into Eq. (19), we find

n
δTW

δn(r)
+ nVP (r) − tL(r) = nµ− g(r). (20)

Using the explicit form of δTW/δn(r) given in Eq. (14) in Eq. (20) readily yields, after using

Eq. (6):

VP (r) =
tP (r)

n(r)
+ µ−

g(r)

n(r)
. (21)

Returning to Eq. (17), we can utilize Eq. (21) to remove µn′ − g′ to obtain the desired

result for zs(r) as

zs(r) = 4
tW
r

+ 2t′W (r) + n(r)V ′

P (r). (22)

This reduces, as it must, to the one-level result (3) of Akbari et al. [7] when we set VP (r) = 0

for this case. (Note that Eq. (22) is an exact result, the approximation (4) was not applied

in the derivation) Eq. (22) is a major focal point of this Brief Report.

IV. EXPLICIT EXAMPLE FOR TWO-LEVEL OCCUPANCY: THE CASE OF

BE-LIKE ATOMIC IONS WITH NUCLEAR CHARGE ZE

Here, since we are using throughout this Report the single-particle limit of DFT [3]

characterized by the one-body potential V (r) in Eq. (1), z(r) → zs(r) for the Be-like series.
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In this limit, Dawson and March [13] wrote the Dirac first-order density matrix γs(r, r
′) in a

form generalizing the one-level result (4) to the Be-like series under discussion. Their form

of γs is constructed from a density amplitude n(r)1/2 and a phase θ(r) as

γs(r, r
′) = n(r)1/2n(r′)1/2 cos [θ(r′) − θ(r)]. (23)

Here the wave functions ψ1s(r) and ψ2s(r) are respectively n(r)1/2 cos θ(r) and

n(r)1/2 sin θ(r). It is straightforward, if somewhat tedious, matter to insert Eq. (23) into

the definition (2) to obtain now the single-particle kinetic energy density tensor t
(s)
αβ(r) in

terms of density n(r) and phase θ(r). Then the α component of zs(r) introduced via Eq.

(1) is also readily found by insertion of the above t
(s)
αβ(r) in Eq. (3).

Rather than attempt to summarize the results of the above route, we outline below a

simpler procedure based on Eq. (1). Thus we write

zs(r) =
h̄2

4m

∂

∂r
∇2n(r) − n(r)

∂V (r)

∂r
. (24)

Defining the Laplacian form tL(r) of the kinetic energy density from the wave functions

ψ1s(r) and ψ2s(r) written above in terms of n(r) and θ(r), it is a straightforward matter to

use the Schrödinger equation (7) to find ∂V/∂r entering Eq. (24) as

∂V

∂r
= −

t′L(r)

n(r)
+
tL(r)n′(r)

n2(r)
− (ε1s − ε2s)θ

′ sin 2θ(r). (25)

But it is well-known [14] that n(r) and θ(r) are related by a non-linear pendulum-like

equation, namely

∇2θ(r) +
∇n(r)

n(r)
∇θ(r) − 2ξ sin 2θ(r) = 0, (26)

where ξ = (ε1s − ε2s)/2. Hence, using Eq. (26), the term involving sin 2θ(r) can be removed

from Eq. (25) to obtain

∂V

∂r
= −

t′L(r)

n(r)
+
tL(r)n′(r)

n2(r)
− θ′(r)

[

θ′′(r) +
2

r
θ′(r) +

n′(r)

n(r)
θ′(r)

]

. (27)

We note that that tG − tL = h̄2/4m∇2n(r) for use below. Next the phase terms in Eq. (27)

can be removed by using the gradient form tG of the kinetic energy density. Inserting Eq.

(27) in Eq. (24), using [13]
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tG(r) = tW (r) +
1

2
n(θ′)2 (28)

we can write the phase terms entering in Eq. (27) in terms of [tG − tW ]/n(r) and its first

derivative. The result is a very straightforward generalization of the one-level form (5)

zs(r) = 4
tG(r)

r
+ 2

∂tG(r)

∂r
, (29)

which reduces immediately to Eq. (5) when we note that putting θ = 0 in the form of γs in

Eq. (23) leads back to the one-level form (4). It must not, of course, be assumed that Eq.

(29) for the Be series of atomic ions will apply to higher level occupancy such as in the Ne

atom with single-particle configuration (1s)2(2s)2(2p)6.

Briefly, one can, of course, regard Eq. (29) as a special case of the central Eq. (22). The

Pauli potential VP (r) can be found from the work of Nagy [15] and is given by

VP (r) =
1

2
(θ′)2 − 2ξ cos2 θ (30)

where ξ is defined immediately below Eq. (26). Some manipulation after forming V ′

P (r) for

insertion in Eq. (22) leads back to the intuitively appealing result (29), as the appropriate

generalization of the one-level formula (5) for zs(r) entering the force-balance Eq. (1).

V. SUMMARY AND FUTURE DIRECTIONS

The main results of the present study, with starting point the differential virial theorem

[5] in DFT, are embodied, for spherically aymmetric electron densities, are

(i) Eq. (22) relating the magnitude of zs(r) defined in Eq. (3) in terms of the single-

particle first-order Dirac density matrix γs(r, r
′), having by definition the exact ground-

state density n(r) as its diagonal, (i.e.r’=r) to a sum of the three terms, involving the von

Weizsäcker kinetic energy density tW (r) and the first derivative of the Pauli potential VP (r)

and

(ii) The fully worked out example of the family of Be-like atomic ions with nuclear charge

Ze. If tG(r) is the gradient form of the single-particle kinetic energy density, zs(r) is shown
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to have the form 4 tG(r)
r

+2∂tG(r)
∂r

, which is an immediate generalization of the one-level result

of Akbari et al. [7], where tG(r) becomes the von Weizsäcker form tW = h̄2

8m
(n′)2

n
.

As to future directions which should prove fruitful, the most immediate further applica-

tion would be to utilize the shape of γs(r, r
′) for the ground-state electron density n(r, Z)

for Ne-like atomic ions having nuclear charge Ze. In the course of such an investigation,

attention should clearly be given to the explicit construction of the Pauli potential VP (r).

Finally, and in longer terms, Holas and March [5] compared and constucted the DVT for

DFT with (as yet unknown!) potential V (r) with the exact correlated result involving the

density matrix γ(r, r′) satisfying γ2 < γ, in contrast to the idempotent Dirac matrix γs used

in the present article. Returning briefly to [1], the fifferential equation for n(r, Z) derived

here, should be used in the exact force-balance equation replacing the DFT form (1)

−
∂Vext

∂r
= −

h̄2

4m

∂
∂r
∇2n(r)

n(r)
+

z(r)

n(r)
+ Fee(r). (31)

Hall, Jones and Rees [16] have given a form of γ(r, r′) generalizing off the diagonal Schwartz

electron density [2] utilized in [1]. This should throw light on the sum of the final two terms

of Eq. (31), determined respectively from γ(r, r′), now use in the many-body definition of

tαβ(r) in Eq. (2) by merely replacing γs(r, r
′) by γ(r, r′) in [16]. A byproduct of such an

investigation may throw further light on the correlation kinetic energy density tcorr[n], to be

added to the form tG(r) studied in this Brief Report.
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