Generalized universality in the massive sine-Gordon model

S. Nagy, I. Nándori, J. Polonyi, and K. Sailer

1Department of Theoretical Physics, University of Debrecen, Debrecen, Hungary
2Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, P.O.Box 51, Hungary
3Institute for Theoretical Physics, Louis Pasteur University, Strasbourg, France

(Dated: April 16, 2009)

A non-trivial interplay of the UV and IR scaling laws, a generalization of the universality is demonstrated in the framework of the massive sine-Gordon model, as a result of a detailed study of the global behaviour of the renormalization group flow and the phase structure.

PACS numbers: 11.10.Gh, 11.10.Hi, 11.10Kk

I. INTRODUCTION

Our hope to cover the overpowering richness of Physics by microscopic theories constructed on simple elementary principles is based on the concept of universality, the possibility of ignoring most of the short distance, microscopic parameters of the field theoretical models in describing the dynamics at finite scales [1]. Such an enormous simplification, obtained by inspecting the asymptotical UV scaling laws, is possible if the renormalized trajectory ‘spends’ several orders of magnitude in the UV scaling regime and suppresses the sensitivity of the physics on the non-renormalizable, i.e. irrelevant parameters.

But one tacitly assumes in this scenario that there are no other scaling laws in the theory or at least they do not influence the results obtained in the UV scaling regime. This is certainly a valid assumption for models with explicit mass gap in the Lagrangian which renders all non-Gaussian operator irrelevant at the IR fixed point. But what happens in theories with massless bare particles? Spontaneous symmetry breaking, or dynamical mass generations in general, may change the situation [2, 3] and open the possibility of tunable parameters of the theories which make their impact on the dynamics due to a competition between the UV and the IR scaling regimes. Such a competition can be highly non-trivial because both of these regimes can cover unlimited orders of magnitude of evolution for the RG flow and may offer a new way of looking at complex systems.

The traditional way of ‘understanding’ a large system starts with the identification of its components and their elementary behaviour and then continues with the combination of these rules to come up with the whole picture. The competition between an UV and IR fixed points may introduce microscopical parameters which influence the dynamics in the macroscopic range only. Such a renormalization microscope mechanism allows us to determine certain microscopical parameters by means of the long range dynamics and represents a microscopic, elementary feature of a model which remains undetected unless the whole system is considered.

We turn to a simple two-dimensional model in this work whose dynamics displays such a phenomenon. It has an explicit mass gap but this does not render the IR dynamics uninteresting suppressed. This is because the natural strength of a coupling constant is its value when expressed in units of the scale inherent of the phenomenon to be described, e.g. the gliding cut-off in the framework of the renormalization group (RG) in momentum space. Since the non-Gaussian coupling constants of the local potential have positive mass dimension in two space-time dimensions, the usual slowing down of the evolution of dimensional coupling constants below the mass gap generates diverging dimensionless coupling constants, i.e. relevant parameters at the IR fixed point. But this is one part of the story only. The other part is that in order to have non-trivial competition between the UV and IR scaling regimes we need coupling constants which are non-renormalizable, i.e. irrelevant at the UV fixed point and turn into relevant at the IR end point. In order to render the coupling constants of the local potential non-renormalizable we need non-polynomial coupling. The simplest, treatable case is the sine-Gordon (SG) model [4] whose Lagrangian contains a periodic local potential and which possesses two phases. All coupling constants of the local periodic potential are non-renormalizable in one of the phases when the model is considered in the continuous space-time with non-periodic space-time derivatives [5]. We are thus lead to the massive sine-Gordon (MSG) model [6–10] which has already been thoroughly investigated in the seventies as the bosonized version of the massive Schwinger model, 1+1 dimensional QED, the simplest model possessing confining vacuum [6]. The different UV and IR scaling laws have already been addressed in this model [7, 8] but the careful identification of the full scaling regime, not only the asymptotical ends is needed to understand the global features of the RG flow diagram. This is the goal of the present work. One can only answer this question by solving the RG equations for the couplings and to find the effective potential. In this work we use the Wegner-Houghton (WH) functional RG method [11], where the renormalization procedure is defined by the blocked action with gliding sharp cut-off to determine the flow of the Fourier amplitudes of the model. The handicap of the WH-RG method is that one cannot go beyond (if it even necessary) the local potential approximation (LPA), since the gradient expansion of the Lagrangian gives in-

determinate evolution equation due to the sharp cut-off used. There are several other methods in the literature which are based on the evolution of the effective action [12]. We show in this paper that the internal space RG method [13], where the RG evolution is controlled by the mass and allows us in principle to go beyond the LPA gives the same results in LPA as the WH-RG method.

Since the SG model has a condensed phase which arises at a finite cut-off \(k_{\text{SG}} \) one expects that if \(M < k_{\text{SG}} \) the condensation also should appear in the MSG model. In our previous works [8, 14] we showed in the WH-RG framework that the non-trivial scalings appear in the deep IR limit for the SG and the MSG models, indeed. Since the SG model has a trivial, constant effective potential in either phase [14, 15], the RG methods based on the effective action [12, 13] may fail in treating both the SG and the MSG models. Nevertheless, when the control parameter approaches the to physical value of the mass, the internal-space RG enables one to find an evolution of the parameters which is analogous to their WH-RG flow. Also the sign of spinodal instability seems to appear as a singularity in the internal-space evolution. In the latter case the analogy mentioned above allows one to change from the internal-space RG analysis to the WH-RG framework and to determine the phase structure of the MSG model. The situation seems to be similar as that for the WH-RG framework where the IR limit \(k \to 0 \) of the blocked action is trivial but physics can be read off from its approaching this limit.

A side-product of our RG analysis is that one recovers the well-known phase structure of the bosonized version of QED\(_2\), and finally, in Sect. VII the conclusion is drawn up.

II. BLOCKING IN MOMENTUM SPACE

The MSG model is defined in 2-dimensional, infinite, Euclidean space-time by the Lagrangian

\[
S_k = \int_x \left[\frac{1}{2} (\partial_{\mu} \phi_x)^2 + U_k(\phi_x) \right],
\]

given in the leading order, local potential approximation (LPA) of the gradient expansion, \(k \) denotes the sharp momentum space cutoff and the potential is the sum

\[
U_k(\phi) = \frac{1}{2} M^2_k \phi^2 + V_k(\phi),
\]

the second term being periodic,

\[
V_k(\phi) = \sum_{n=1}^{\infty} u_n(k) \cos(n \beta_k \phi).
\]

The blocking in momentum space [14], the lowering of the cutoff, \(k \to k - \Delta k \), consists of the splitting the field variable, \(\phi = \phi + \phi' \) in such a manner that \(\phi \) and \(\phi' \) contains Fourier modes with \(|p| < k - \Delta k \) and \(k - \Delta k < |p| < k \), respectively and the integration over \(\phi' \) leads to the WH equation [11]

\[
(2 + k \partial_k) \bar{U}_k(\phi) = -\frac{1}{4\pi} \ln \left(1 + \bar{U}_k^0(\phi) \right)
\]

for the dimensionless local potential \(\bar{U}_k = k^{-2} U_k \). This equation is obtained by assuming the absence of instabilities for the modes around the cutoff. Only the WH-RG scheme which uses a sharp gliding cutoff can account for the spinodal instability, which appears when the restoring force acting on the field fluctuations to be eliminated is vanishing and the resulting condensate generates tree-level contributions to the evolution equation [16]. The saddle point for the blocking step, \(\phi_0 \), is obtained by minimizing the action, \(S_k - \Delta k[\phi] = \min_{\phi'} (S_k(\phi + \phi')) \) [3, 15]. The restriction of the minimisation for plane waves gives

\[
\bar{U}_{k-\Delta k}(\phi) = \min_{\rho} \left[\rho^2 + \frac{1}{2} \int_{-1}^{1} du \bar{U}_k(\phi + 2\rho \cos(\pi u)) \right]
\]

in LPA where the minimum is sought for the amplitude \(\rho \) only.

One can show that both evolution equations, Eqs. (3) and (4), preserve the period length of the potential \(V_k(\phi) \) and the non-periodic part of the potential, therefore \(M^2_k = M^2 \) and \(\beta_k = \beta \). Thus the mass is relevant parameter of the LPA ansatz for all scales,

\[
\bar{M}^2_k = \bar{M}^2 A \left(\frac{k}{\Lambda} \right)^{-2}.
\]
A. Asymptotic scaling

It is easy to find the asymptotic UV and IR scaling laws. One finds the evolution equation

$$k \partial_k \tilde{u}_n(k) = \left(\frac{\beta^2 n^2}{4\pi(1 + \frac{k^2}{\Lambda^2})} - 2 \right) \tilde{u}_n(k)$$

(6)

in the UV regime after ignoring $O(M^2/k^2)$ and $O(|U|^2/k^2)$ contributions with the solution

$$\tilde{u}_n(k) = \tilde{u}_n(\Lambda) \left(\frac{k}{\Lambda} \right)^{-2} \left(\frac{k^2 + M^2}{\Lambda^2 + M^2} \right)^{\beta n^2/8\pi}.$$

(7)

The asymptotic IR scaling, well below the mass scale, is trivial because the mass gap freezes all scale dependence. The numerical solution of the complete evolution equation Eq. (3) is shown in Fig. 1.

B. Impact of the mass gap

It is instructive to compare the RG flow of the (massless) SG and the MSG models. The asymptotic UV evolution equations differ in $O(M^2/k^2)$ terms only and the mass term gives small corrections to the scaling laws in this regime. But the mass gap freezes out the evolution for any values of β thus more significant differences should show up between the SG and the MSG models. The dimensional potential approaches a constant in the SG model as a result of the loop-generated or instability driven evolution in the ionized or the molecular phase, respectively [14, 15]. The evolution of the potential freezes out below the mass gap of the MSG model and a non-trivial potential is left over in the IR end point, reflecting the state of affairs at $k \approx M$. The IR scaling is trivial for $k < M$, $\tilde{u}_n(k) \sim k^{-2}$. In order to go beyond the asymptotic scaling analysis and to find out more precisely the changes brought by the non-periodical mass term to the RG flow we have to rely on the numerical solutions of the evolution equations.

Let us consider first the regime $\beta^2 > 8\pi$ which is free of spinodal instabilities in the massless case. The evolution of the first four coupling constants, $\tilde{u}_1, \ldots, \tilde{u}_4$ is shown in Fig. 1 for $\beta^2 > 8\pi$. The UV scaling regime is confined in this plot to the very beginning, around $k/\Lambda \approx 1$ [14], and what we see here is that the flows of the SG and the MSG models agree for $\beta^2 > 8\pi$ even in the IR scaling regime down to the mass gap. The freeze-out below the mass gap takes place naturally without generating spinodal instabilities.

The comparison of the massive and the massless cases is more involved for $\beta^2 < 8\pi$ due to the appearance of instabilities. If the scale k_{SI} where instabilities appear is higher than the mass gap, $k_{SI} > M$, then the RG flows of the MSG and SG models are similar down to M and they, i.e. both display instabilities and differ for $k < M$ only, as shown in Fig. 2. When the freeze-out scale is reached first during the evolution, i.e. the scale k_{SI} of the SG model with the same potential as $V(\phi)$ of the MSG model is smaller than M then the instability does not occur in the MSG model.

It is instructive to determine the boundary of the region in the coupling constant space with spinodal instability with the truncation where a single Fourier mode is kept only, $\tilde{u}_n = \tilde{u}_1$. The condensate appears during the evolution at scale k_{SI}, satisfying $k_{SI}^2 + M^2 + U_{k_{SI}}(\phi) = 0$ for some ϕ. The approximate analytic expression,
Eq. (7), gives
\[k_{SI}^2 = (\Lambda^2 + M^2) \left(\frac{\Lambda^2 + M^2}{\beta^2 u(\Lambda)} \right)^{s_0 \beta} - M^2 \] \hspace{1cm} (8)
for \(\beta^2 < 8 \pi \), suggesting that the coupling constant can be weak enough to allow the mass term to remove the condensate. The RG flow obtained numerically for \(\tilde{u}_1(k) \) shown in the inset of Fig. 2 confirms, as well, that the mass can be strong enough to prevent the formation of instabilities. One can get an estimate of the critical value of the coupling constant by equating \(k_{SI} \) and \(M \) in Eq. (8),
\[u_{1c}(\Lambda) = \frac{\Lambda^2 + M^2}{\beta^2} \left(\frac{2M^2}{\Lambda^2 + M^2} \right)^{1-\frac{\beta}{\pi}}. \] \hspace{1cm} (9)

The boundary of the region with instability is shown in Fig. 3. In contrast to the SG model where the instability extends over the whole phase with \(\beta^2 < 8 \pi \) the mass term always wins at the IR end point of the flow of the MSG model and removes the condensate at some low but finite value of the scale \(k \).

The disappearance of spinodal instability and the trivial scaling, \([\tilde{u}_n] \sim k^{-2} \) \cite{7} can be made plausible also by the following, simple analytic consideration. Namely, Eq. (3) can be rewritten as
\[\sum_s \sum_n B_{n,s} k \partial_k \tilde{u}_s(k) = \sum_s \left[-2B_{n,s} + \frac{\alpha_2\beta^2 \pi^2 k^2}{k^2 + M^2} \right] \tilde{u}_s(k), \] \hspace{1cm} (10)
with
\[B_{n,s} = s \delta_{n,s} - \frac{s \beta^2 (n-s)^2 \tilde{u}_{n-s}(0) - (n+s)^2 \tilde{u}_{n+s}(0)}{2(k^2 + M^2)}, \] \hspace{1cm} (11)
resulting
\[B_{n,s} \sim s \delta_{n,s} - \frac{s \beta^2 a_{n,s}}{2M^2}. \] \hspace{1cm} (12)
an RG invariant quantity in the IR scaling region. Finally, the second term on the right hand side of Eq. (10) can be neglected for \(k \ll M \), yielding \(\tilde{u}_n(k) \sim u_n(0)k^{-2} \) in the IR scaling region.

III. PHASE STRUCTURE

The mass term deforms the phase boundary of the SG model by extending the ionized phase. In this phase of the SG model the IR scaling law generates the scale dependence of the coupling constants \(u_n(k) \) with \(n \geq 2 \) through \(u_1(k) \), namely renders the ratios \(R_n^{SG} = u_n(k)/u_1^2(k) \) RG invariant. It was checked numerically that \(R_n^{MSG} = [u_n(k)]/u_1^2(k) \) is RG invariant in the IR scaling region of the MSG model without condensate and the potential at \(k = 0 \) depends on the initial value of \(u_1 \) only.

The phase with condensate is similar to those of the SG model. The potential develops quickly into a superuniversal, initial condition independent shape \cite{14} when \(M < k \approx k_{SI} \), cf. the inset of Fig. 2. But this scaling regime ends at \(k \approx M \) where trivial scaling laws come into force down to \(k = 0 \). The matching of the IR scaling of the SG model \cite{14} with the trivial scaling law gives \(u_n(0) = (-1)^{n+1}2M^2/n^2\beta \).

The modification of the phase boundary induced by the mass can be seen by means of the sensitivity matrix [3, 14], too. This matrix, defined as the derivatives of the running coupling constants with respect to the bare one,
\[S_{n,m} = \frac{\partial u_n(k)}{\partial u_m(\Lambda)}, \] \hspace{1cm} (13)
develops singularities when the UV and IR cutoffs are
removed at the phase boundaries only. The typical behaviour is depicted in Fig. 4, showing that the appearance of the condensate generates first singular turns and leads later to radically different scale-dependence in this matrix.

\[S_{1,1} \sim k^{-2} \frac{k^2 - M^2}{\Lambda^2 + M^2}, \]

and calculate the (1,1) element of the sensitivity matrix in Eq. (13) in the limits \(k \to 0 \) and \(\Lambda \to \infty \),

\[S_{1,1} \sim k^{-2} \frac{\pi - \beta^2}{\pi + \beta^2}. \]

We set \(\beta^2 > 8\pi \), i.e. move deep in the ionized phase in the language of the SG model where all coupling constants are non-renormalizable. But the IR scaling law makes the coupling constants relevant with its factor \(k^{-2} \). More precisely, the dimension 2 coupling constants freeze out meaning that their values counted in the ‘natural’ units of the running cutoff, \(k \), diverge as the IR end point, \(k = 0 \), is approached. The result is the regain of the sensitivity of the long distance physics on the choice of the bare, microscopic, non-renormalizable coupling constants which was suppressed in the UV scaling regime. As long as the UV cutoff \(\Lambda \) and the IR observational scale \(k \) are chosen according to \(k = t - \mu \) and \(\Lambda = \mu \) where \(\mu = \mu_{\text{UV}}(\beta^2/8\pi - 1) > 0 \) (with any \(t > 1 \) and \(\mu > 0 \)), the observed IR dynamics depends on the choice of the bare coupling constant. This rearrangement is reminiscent of the traditional microscope in the sense that the amplification, i.e. divergence of the RG flow in the IR scaling regime balances the suppression, i.e. focusing of the flow in the UV scaling regime. As a result the large scale observations can fix the value of the microscopic parameter with good accuracy. Notice that this kind of dynamics must be put in the theory at microscopic scale even though it starts to influence the physics in the IR scaling regime. Such an interplay between the different scaling regimes represents a highly non-trivial, global extension of the simple universality idea which is based on the local analysis of the RG flow at a given fixed point and might be a key to phenomena like superconductivity and quark confinement [2, 3].

V. TWO PHASES OF QED\(_2\)

The most remarkable consequence of the non-trivial phase structure of the MSG model is that the two-dimensional quantum electrodynamics (QED\(_2\)) also has two phases. The Lagrangian of the QED\(_2\) is given as

\[\mathcal{L} = -\frac{1}{4} F_{\mu \nu} F^{\mu \nu} + \bar{\psi} \gamma^\mu (\partial_\mu - ieA_\mu) \psi - m\bar{\psi}\psi, \]

where \(F_{\mu \nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \), \(m \) and \(e \) are the bare rest mass of the electron and the bare coupling constant, re-
respectively. The bosonization rules give

\[\psi: \rightarrow -cmM \cos(2\sqrt{\pi}\phi), \]
\[\gamma(\phi_0): \rightarrow -cmM \sin(2\sqrt{\pi}\phi), \]
\[j_n: \psi \gamma(\phi_0): \rightarrow \frac{1}{\sqrt{\pi}} \varepsilon_{\mu\nu} \partial^\nu \phi, \]
\[:\bar{\psi} \bar{\gamma}(\phi_0): \rightarrow \frac{1}{2}N_m(\partial_\mu \phi)^2, \quad (17) \]

where \(N_m \) denotes normal ordering with respect to the fermion mass \(m = \exp(\gamma)/2\pi \) with the Euler constant \(\gamma \), and \(M = e/\sqrt{\pi} \) the 'meson' mass. The MSG Hamiltonian

\[\mathcal{H} = N_M \int_x \left[\frac{1}{2} \Pi^2 + \frac{1}{2} (\partial \phi_0)^2 + \frac{1}{2} M^2 \phi_0^2 + u_1 \cos(\beta \phi_0) \right], \quad (18) \]

for \(\beta^2 = 4\pi \) and \(u_1 = cmM \) is the bosonized version of the QED2. According to Eq. (5) the dimensionful electric charge \(e = M/\sqrt{\pi} \) does not evolve. Using Eq. (7) the flow of the electron mass \(m(k) \)

\[m(k) = m(\Lambda) \left(\frac{k^2 + M^2}{\Lambda^2 + M^2} \right)^{1/2}, \quad m(\Lambda) \equiv \frac{u_1(\Lambda)\sqrt{\pi}}{c e}, \quad (19) \]

inherits all the properties of the flow of the first Fourier amplitude \(u_1(k) \). It implies that there exists a critical value

\[m_c(\Lambda) = \frac{u_c(\Lambda)\sqrt{\pi}}{c e} = \sqrt{\frac{2}{4\pi c^2(\Lambda^2 + e^2/\pi)^{1/2}}} \quad (20) \]

of the bare mass which determines whether the IR value of the mass depends on its UV value or not. For \(m(\Lambda) \gg m_c(\Lambda) \) the evolution runs into the spinodal instability and the IR value of \(m \) becomes independent of its bare value:

\[m(k \rightarrow 0) = \frac{2e\sqrt{\pi}}{c e^2}, \quad (21) \]

while for \(m(\Lambda) \ll m_c(\Lambda) \) Eq. (19) implies the IR behaviour

\[m(k \rightarrow 0) = m(\Lambda) \left(\frac{M^2}{\Lambda^2 + M^2} \right)^{1/2}. \quad (22) \]

Therefore the sensitivity matrix in the parameter space \((m, e)\) taking the values \(S_{1,1} = 0 \) for \(m(\Lambda) > m_c(\Lambda) \) and

\[S_{1,1} = \frac{\partial m(k)}{\partial m(\Lambda)} = \left(\frac{k^2 + e^2/\pi}{\Lambda^2 + e^2/\pi} \right)^{1/2}, \quad (23) \]

for \(m(\Lambda) < m_c(\Lambda) \) indicates the existence of two different phases in QED2. Lattice calculations also affirmed this result [17, 18]. For large coupling \((e >> m)\), the model has a unique vacuum at \(\phi = 0 \). For weak coupling \((e << m)\), the reflection symmetry is spontaneously broken and the model has non-trivial vacua, located approximately at \(\phi = \pm \sqrt{\pi}/2 \). According to lattice simulations and density matrix RG studies of the MSG model the critical value which separates the two phases of the model is \(m/e_c = 0.3335 \). The analytical result \(m/e_c = 0.3168 \) for the critical point in Eq. (20) suggests that the RG methods using LPA enables us to determine the phase structure of the MSG model in a reliable manner.

VI. INTERNAL SPACE RENORMALIZATION

One can go beyond the LPA by using the internal space RG method. We define the generating functional of the connected Green functions as

\[W[j] = \log \int \mathcal{D}\phi e^{-S_B[\phi] + j \phi}, \quad (24) \]

with external source \(j_x \). The shorthand notation \(f \cdot g = \int_x f_x g_x \) is used. The effective action is defined as the Legendre-transform of \(W[j] \),

\[\Gamma[\phi] = j \cdot \phi - W[j], \quad (25) \]

where the external source \(j_x \) is expressed in terms of \(\phi_x \) according to the implicit equation

\[\phi = \frac{\delta W[j]}{\delta j}. \quad (26) \]

The idea of internal-space RG is to eliminate quantum fluctuations successively ordering them according to their amplitudes. This can be achieved by introducing an additional mass term into the action,

\[S_\lambda[\phi] = S_B[\phi] + \frac{1}{2} \lambda^2 \phi^2 \quad (27) \]

with the control parameter \(\lambda \). For \(\lambda = \lambda_0 \) being of the order of the UV cut-off \(\Lambda \) the large-amplitude fluctuations are suppressed and decreasing the evolution parameter \(\lambda \) towards zero, they are continuously accounted for. Let us separate off the suppressing mass term from the evolving effective action,

\[\Gamma_\lambda[\phi] = \tilde{\Gamma}_\lambda[\phi] + \frac{1}{2} \lambda^2 \phi^2, \quad (28) \]

and use the ansatz

\[\tilde{\Gamma}_\lambda[\phi] = \int_x \left[\frac{1}{2} (\partial_\mu \phi_0)^2 + U_\lambda(\phi_x) \right], \quad (29) \]

with \(U_\lambda(\phi_x) = \frac{1}{2} M^2 \phi^2 + V_\lambda(\phi) \) and \(V_\lambda(\phi) = \sum_{n=1}^\infty u_n(\lambda) \cos(n\beta \phi) \). The functional evolution equation is

\[\partial_\lambda \tilde{\Gamma}_\lambda = \frac{1}{2} \text{Tr} \left[\lambda^2 \delta_{x,y} + r^{(2)}_{x,y} \right], \quad (30) \]

where \(r^{(2)}_{x,y} = \delta^2 \tilde{\Gamma}_\lambda / \delta \phi_x \delta \phi_y, \quad (13) \), reads

\[\partial_\lambda V_\lambda(\phi) = \frac{1}{2} \int_x f^2 + \lambda^2 + M^2 \lambda + V_\lambda(\phi) \quad (31) \]
for homogeneous field configurations \(\varphi \) for the potential \(V_\Lambda (\varphi) \) of the ansatz Eq. (29) where \(V_\Lambda''(\varphi) = \partial^2 V_\Lambda(\varphi)/\partial \varphi^2 \). The two-dimensional momentum integral can easily be performed, giving

\[
(1 + \lambda^2 \partial_{x^2}) \tilde{V}_\Lambda = \frac{1}{8\pi} \log \left[\frac{(\Lambda/\lambda)^2 + 1 + \tilde{M}_\Lambda^2 + \tilde{V}_\Lambda''}{1 + \tilde{M}_\Lambda^2 + \tilde{V}_\Lambda''} \right],
\]

where the dependences on the field variable \(\varphi \) is suppressed. By performing the Fourier expansion in both sides of Eq. (32) one obtains a set of differential equations for the couplings \(\tilde{u}_n(\lambda) \), \(\beta_\Lambda \) and \(\tilde{M}_\Lambda \). Since the left hand side of Eq. (31) does not contain polynomial terms, the mass parameter does not evolve, \(\tilde{M}_\Lambda = M^2 \). Thus the mass is a relevant parameter of the LPA ansatz for effective action can be calculated perturbatively.

The asymptotic scaling for \(\lambda^2 \) satisfying \(\Lambda^2 \gg \lambda^2 \gg M^2 \gg |V''_\Lambda| \) can be deduced by using the independent mode approximation,

\[
(1 + \lambda^2 \partial_{x^2}) \tilde{V}_\Lambda = -\frac{1}{8\pi} \left[\frac{1}{1 + M^2} - \frac{1}{\Lambda^2/\lambda^2 + 1 + M^2} \right] \tilde{V}_\Lambda''.
\]

The evolution should be started at \(\lambda^2 \sim O(\Lambda^2) \gg M^2 \gg |V''_\Lambda| \). At these 'UV' scales the large-amplitude field fluctuations with \(|\varphi|^2 \gg |V''_\Lambda|/\lambda^2 \) are suppressed and the effective action can be calculated perturbatively.

A. Asymptotic scaling

The asymptotic scaling for \(\lambda^2 \) satisfying \(\Lambda^2 \gg \lambda^2 \gg M^2 \gg |V''_\Lambda| \) can be deduced by using the independent mode approximation,

\[
(1 + \lambda^2 \partial_{x^2}) \tilde{V}_\Lambda = -\frac{1}{8\pi} \left[\frac{1}{1 + M^2} - \frac{1}{\Lambda^2/\lambda^2 + 1 + M^2} \right] \tilde{V}_\Lambda''.
\]

The evolution of the coupling constants decouple and one finds

\[
\tilde{u}_n(\lambda) = \tilde{u}_n(\lambda_0) \left(\frac{\lambda}{\Lambda} \right)^{-2} \left(\frac{\lambda^2 + M^2}{\Lambda^2 + \lambda^2 + M^2} \right)^{n^2/2},
\]

for the dimensionless couplings constants \(\tilde{u}_n(\lambda) \), yielding

\[
\tilde{u}_n \sim \lambda^{n^2/2\pi - 2}. \tag{37}
\]

B. Ionized phase

In order to find out the non-asymptotical regime one has to solve a system of coupled evolution equations for the couplings constants \(\tilde{u}_n(\lambda) \) as the control parameter \(\lambda \) is decreased from \(\lambda_0 = \Lambda \) down to \(\lambda = 0 \). The evolution equations has been derived and solved for \(\beta^2 > 8\pi \) numerically. It was found that the increase of the number of the couplings \(\tilde{u}_n \) beyond \(n = 10 \) does not influence the evolution of the first few couplings, similarly to the WH-RG equations.

The evolution of the first four coupling constants, \(\tilde{u}_1, \ldots, \tilde{u}_4 \) is shown in Fig. 5 for \(\beta^2 = 12\pi \). The internal space RG method gives qualitatively the same scaling laws both in the 'UV' and in the 'IR' regions just as the WH-RG method. The numerical value of the fundamental coupling constant \(\tilde{u}_1(\lambda) \) was found to follow closely the analytic form of Eq. (36). The renormalized trajectory shares the feature, known from the WH-RG scheme that the SG and the MSG models with \(\beta^2 > 8\pi \) agree in the IR scaling regime down to the mass gap.

1. IR scaling

The decrease of the control parameter \(\lambda \) drives us out from the asymptotic region. According to Fig. 5 the IR scaling is \(\tilde{u}_n \sim \lambda^{n^2/2\pi - 2} \). Such a scaling behaviour can be obtained analytically from the functional RG equation in Eq. (32) which becomes

\[
(1 + \lambda^2 \partial_{x^2}) \tilde{V}_\Lambda + \tilde{V}_\Lambda''(1 + \lambda^2 \partial_{x^2}) \tilde{V}_\Lambda = -\frac{1}{8\pi} \tilde{V}_\Lambda'' \tag{38}
\]

for \(M^2 \ll \lambda^2 \ll \Lambda^2 \). Making the ansatz

\[
\tilde{u}_n(\lambda) = c_n \lambda^{n\eta} \tag{39}
\]

with \(\eta > 0 \). For \(n = 1 \) one gets \(\eta = \beta^2/4\pi - 2 > 0 \). For \(n > 1 \) we obtain the recursion relation

\[
c_n = \frac{1}{2} \beta^2 \sum_{s=1}^{n-1} (2 + sn)s(n - s) c_{n-s} c_s. \tag{40}
\]

The coefficients \(c_n \) can be expressed in terms of \(c_1 \), since \(c_1 = \tilde{u}_1(\Lambda)(\lambda/\Lambda)^\eta \) and therefore \(c_n = (-1)^{n+1} \tilde{u}_n(\Lambda) R_n, \) with \(R_1 = 1 \) and all \(R_n \) being independent of the bare couplings. These properties were confirmed numerically. They imply that the dimensionless effective action in the IR regime can be parametrized by the single bare parameter \(\tilde{u}_1(\lambda) \).

In order to consider the effect of the mass \(M \) in the theory we also determined the RG evolution of the couplings for the (massless) SG model, which depicted by
invariant constants $\lambda/M < \pi/2$ is a conclusion that arises because one detects the same scaling behaviour in Eq. (39) goes on to infinitesimal values of λ. We note that all couplings are irrelevant and the effective action is zero in the $\lambda \to 0$ limit. After introducing the mass M it is clear from Fig. 5 that the evolution of the potential freezes out below the mass gap and a non-trivial dimensionless potential is left over in the IR end point. The IR scaling is trivial for $\lambda < M$, $\tilde{u}_n(\lambda) \sim \lambda^{-2}$. Since the evolutions for the SG and MSG models are identical down to the scale $\lambda \sim M$, the evolving effective action of the MSG model inherits the properties of the SG model, namely it depends on the initial value of the fundamental mode $\tilde{u}_1(\lambda_0)$ only. In fact, it was found numerically that $R^{\text{MSG}}_{\tilde{u}} = |u_n(\lambda)|/u_1^2(\lambda)$ is RG invariant in the scaling region $\lambda < M$.

One sees also that for $\beta^2 > 8\pi$ theories with various values of the mass M belong to the same phase. This is conclusion arises because one detects the same scaling behaviour of the dimensionless parameters $\tilde{u}_n(\lambda)$ for $\lambda/M < 1$ and the same qualitative behaviour of the RG invariant constants $R^{\text{MSG}}_{\tilde{u}}$ for all values of M.

C. Molecular phase

The typical evolution is depicted for several bare values $\tilde{u}_1(\Lambda)$ in Fig. 6 for $\beta^2 < 8\pi$. Numerics shows immediately, that the evolution stops at a non-vanishing value of $\lambda = \lambda_c$ due to the appearing a negative argument of the logarithm in Eq. (32) for the $\tilde{u}_1(\Lambda) > \tilde{u}_{1c}$, where \tilde{u}_{1c} is a critical value of the first Fourier amplitude of the bare periodic potential. Then the evolution equation loses its validity and presumably an alternative RG equation is necessary as in the WH-RG framework, where the appearance of the spinodal instability implies a tree-level blocking relation [3, 14, 15]. Though plausible but is not obvious that the singularity in the internal-space evolution is also rooted in the spinodal instability. The clarification of this point needs further efforts.

For bare values $\tilde{u}_1(\Lambda) < \tilde{u}_{1c}$ the evolution does not stop and goes below the mass scale. Then, in the case of $\beta^2 > 8\pi$, the trivial scaling $\tilde{u}_n(\lambda) \sim \lambda^{-2}$ is obtained in the limit $\lambda \to 0$.

Although one cannot follow the RG evolution for $\lambda < \lambda_c$ for $\tilde{u}_1(\Lambda) > \tilde{u}_{1c}$ by means of Eq. (32), one can still determine the critical value \tilde{u}_{1c} analytically, when the local periodic potential is restricted to its first Fourier mode. The singularity appears during the evolution at the scale λ_c satisfying $\lambda^2_c + M^2 + V_1^\phi(\varphi) = 0$ for some φ. Using Eq. (36) as a good approximation of the scaling for $\lambda > \lambda_c$, one finds

$$\lambda^2_c = \Lambda^2 \left(\beta^2 \tilde{u}_1(\Lambda) \right)^{\beta^2 - 8\pi}/8\pi - M^2$$ \hspace{1cm} (41)

for $\beta^2 < 8\pi$. The negativity of the right hand side suggests that the coupling constant is sufficiently weak to allow the mass term to remove the singularity. For the opposite case $\lambda^2 < 0$ one can estimate the critical value of the coupling constant by equating λ_c to M in Eq. (41),

$$\tilde{u}_{1c} = \frac{1}{2\pi} \left(\frac{2M^2}{\Lambda^2} \right)^{1-\frac{\beta^2}{8\pi}}.$$ \hspace{1cm} (42)

The value of λ_c is plotted on the plane $(\beta^2/\pi, \tilde{u}_1(\Lambda))$ in Fig. 7. In contrast to the SG model where the singularity appears for all $\tilde{u}_1(\Lambda)$ for $\beta^2 < 8\pi$ the mass term always wins at the IR end point of the evolution for the MSG model and removes the singularity at some low but finite scale λ_c.
FIG. 7: The scale λ_c, where the singularity appears, as the function of the initial value of the first Fourier amplitude a_{1c} and β^2/π for $M^2 = 10^{-4}$.

The introduction of the wave function renormalization might modify the phase structure. Nevertheless, one expects that both 'molecular' phases survive wave-function renormalization. This is because the MSG model with the particular value of $\beta^2 = 4\pi$ represents the bosonized version of the 2-dimensional quantum electrodynamics QED$_2$ which exhibits two phases.

VII. SUMMARY

Some global features of the RG flow of the MSG model are discussed in this work. It is shown that the model possesses condensate of elementary excitations with non-vanishing momentum, spinodal instability, for weak enough mass in the remnant of the molecular phase of the SG model. This condensate, the sign of the periodicity of the local potential, generates non-trivial effective potential and phase structure despite the explicit, stable mass for elementary excitations in the deep IR region. The sensitivity matrix allows us to study the way the ultraviolet parameters influence the IR physics. It was found that the suppression of the sensitivity on the non-renormalizable bare coupling constants, generated in the UV scaling regime, can be overturned by the increasing sensitivity piled up in the IR scaling regime if the UV and the IR cutoffs are removed in a coordinated manner. As a result, a non-trivial, global extension of the universality is found which goes beyond the local studies of the RG flow around the UV fixed point only.

Acknowledgement

This work has been supported by the Grant MTA-CNRS. S.N. acknowledges the Grant Öveges of the National Office for Research and Technology, and the Grant of Universitas Foundation, Debrecen.