
Cell Calcium xxx (2009) xxx-xxx

Contents lists available at ScienceDirect

Cell Calcium

01

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

journal homepage: www.elsevier.com/locate/ceca

Ionotropic purinergic receptor P2X₄ is involved in the regulation of chondrogenesis in chicken micromass cell cultures

János Fodor^{a, 1}, Csaba Matta^{b, 1}, Tamás Juhász^b, Tamás Oláh^a, Mónika Gönczi^a, Zsolt Szíjgyártó^c, Pál Gergely^c, László Csernoch^a, Róza Zákány^{b,*}

^a Department of Physiology, Medical and Health Science Centre, University of Debrecen, Hungary

^b Department of Anatomy, Histology and Embryology, Medical and Health Science Centre, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary

^c Cell Biology and Signalling Research Group of the Hungarian Academy of Sciences, Department of Medical Chemistry, Research Centre for Molecular Medicine,

Medical and Health Science Centre, University of Debrecen, Hungary

ARTICLE INFO

11	
12	Article history:
13	Received 5 August 2008
14	Received in revised form 2 February 2009
15	Accepted 9 February 2009

- 16 Available online xxx
- Keywords: 18 In vitro cartilage formation 19 20 High density cell culture Fura-2 21 Single cell Ca measurement 22 P2X receptors 23 P2Y receptors 24 ATP secretion 25
- 26 Immunocytochemistry

ABSTRACT

We have previously demonstrated that elevation of free cytosolic Ca²⁺ concentration at the time of differentiation of chondroblasts was mainly due to a Ca²⁺ influx and it was indispensable to cartilage formation in chicken high density mesenchymal cell cultures (HDC) [C. Matta, J. Fodor, Z. Szijgyarto, T. Juhasz, P. Gergely, L. Csernoch, R. Zakany, Cytosolic free Ca²⁺ concentration exhibits a characteristic temporal pattern during in vitro cartilage differentiation: a possible regulatory role of calcineurin in Ca-signalling of chondrogenic cells, Cell Calcium 44 (2008) 310-323]. Here, we report that chondrogenic cells secreted ATP and administration of ATP to the culture medium evoked Ca^{2+} transients exclusively in the presence of extracellular Ca²⁺ and only on day 3 of culturing, when the final commitment of chondroblasts occurs. Moreover, ATP caused elevated protein expression of the chondrogenic transcription factor Sox9 and stimulated cartilage matrix production. Expression pattern of different types of both ionotropic and metabotropic purinergic receptors was detected. Agonists of metabotropic receptors, ADP and UDP did not evoke any Ca²⁺ transients and had no influence on cartilage formation, while UTP caused transient elevation of cytosolic Ca²⁺ concentration in 3-day-old HDC without stimulating matrix production. Suramin, which blocks all P2X receptors but not P2X₄ did not impede the effects of ATP, furthermore, P2X₄ appeared in the plasma membrane fraction and gave signals with immunocytochemistry only from day 3. In summary, we suggest a role of ionotropic purinergic signalling of P2X₄ in the generation of ATP-dependent Ca²⁺ transients of differentiating chondroblasts.

© 2009 Published by Elsevier Ltd.

27 1. Introduction

36

37

38

39

10

Complex regulatory and signalling networks involving cell–matrix and cell–cell interactions, including tightly regulated gene expression, mediate the successive stages of proliferation, nodule formation and differentiation that produce hyaline cartilage [2]. One of the key regulators of these signalling processes in chondrogenic cells is Sox9. Since the expression of collagen type II and the core protein of aggrecan are controlled by this transcription factor, Sox9 is often referred to as the master gene of chondrogenesis [3,4]. Another important factor in the regulation of molecular steps leading to chondrogenic differentiation is the transient elevation of the intracellular Ca²⁺ concentration [1]. The tightly regulated level of cytosolic Ca²⁺ is involved in a number of

E-mail address: roza@chondron.anat.dote.hu (R. Zákány).

¹ These two authors contributed equally to the work.

signalling processes in a variety of cell types. Among non-excitable cells, the role of intracellular Ca²⁺ in the differentiation process of keratinocytes [5] and osteoblasts [6] has been established. Cytosolic-free Ca²⁺ concentration changes are characterized by long-term, high amplitude changes, and by short-term, spontaneous, periodic Ca²⁺ concentration changes, so called oscillations in differentiating mesenchymal stem cells [7]. Moreover, the two different types of Ca²⁺ concentration changes influence the activity of different transcription factors: oscillations activate CREB, while long-time sustained Ca²⁺ concentration elevations activate NFAT [8,9]. Both transcription factors have important functions during chondrogenesis [10,11].

High density cell culture (HDC) established from chondrogenic mesenchymal cells isolated from distal limb buds of 4-day-old chicken embryos is a widely accepted model of *in vitro* cartilage differentiation [12,13], providing data on the molecular regulation of the differentiation of chondroprogenitor mesenchymal cells to chondroblasts. In this model a spontaneous cartilage formation occurs; the initial appearance of chondroblasts and cartilage

Please cite this article in press as: J. Fodor, et al., Ionotropic purinergic receptor P2X₄ is involved in the regulation of chondrogenesis in chicken micromass cell cultures, Cell Calcium (2009), doi:10.1016/j.ceca.2009.02.004

^{*} Corresponding author. Fax: +36 52 432 290.

^{0143-4160/\$ –} see front matter $\textcircled{\sc 0}$ 2009 Published by Elsevier Ltd. doi:10.1016/j.ceca.2009.02.004

J. Fodor et al. / Cell Calcium xxx (2009) xxx-xxx

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

111

114

116

117

118

119

120

specific extracellular matrix molecules takes place on day 3 of culturing, and the majority of cells differentiate into chondrocytes by day 6, when a high amount of cartilage matrix can be detected.

In our previous work [1] we reported that a tight regulation of free cytosolic Ca²⁺ levels (between 80 and 140 nM) is needed for proper chondrogenesis in cells of HDC. We also described a characteristic temporal pattern of the changes of cytosolic Ca²⁺ levels during chondrogenic differentiation with a definitive peak on day 3 of culturing, the day on which chondroprogenitor cells differentiate to chondroblasts. Although intracellular elements of Ca²⁺ homeostasis (e.g. RyR, IP3 receptor and SERCA) were detected in chondrogenic cells, we failed to show any evidence concerning their contribution in evoking Ca²⁺ transients in differentiating chondrob-lasts. Therefore, the extracellular space has been proved to be the source of the elevated cytosolic Ca²⁺ concentration.

In the present work, we aimed to determine transmembrane protein candidates responsible for the Ca²⁺ influx into chondrogenic cells. The family of purinergic receptors is ubiquitously present in a number of cell types and provides receptors for extracellular nucleotides acting as paracrine or autocrine mediators. Purinergic receptors have two major types: P1 receptor families are sensitive to adenosine, while P2 receptor families are sensitive to ATP, ADP, and UTP. The latter is further divided into two major receptor subtypes: P2Y and P2X. Members of the metabotropic P2Y subtype are 7 transmembrane domain-containing receptors coupled to G proteins and linked to PLC signalling transduction pathways that lead to the release of intracellular Ca²⁺ from inositol-1,4,5-trisphosphate (IP₃)-sensitive Ca²⁺ stores. The ionotropic P2X receptors are ATP-gated ion channels allowing Ca-influx. Seven P2X subunits (P2X₁-P2X₇) have been described and cloned so far [14,15]. On the other hand, eight P2Y isoforms have been described in human tissues: P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13 and P2Y₁₄ receptors. Although, based on sequence analysis P2Y₃ and P2Y₅ were supposed to be members of the P2Y subfamily, further studies revealed that they have different phamacology and are involved in non-purinergic signalling pathways as reviewed in [16]. The fact that P2X receptors are sequentially expressed in embryonic rat and mouse skeletal muscle cells and osteoblasts [17-19] raised the possibility of the involvement of these channels in the Ca²⁺ homeostasis of differentiating chondrogenic mesenchymal cells.

In this study, we report that cells of HDC responded to extracellular ATP by elevating their intracellular Ca²⁺ levels mainly at the time of chondroblast formation and administration of ATP to the culture medium stimulated chondrogenesis. Receptors responsible for the elevation of Ca²⁺ concentration seemed to be members of the P2X family, and based on our data, we propose that P2X₄ receptors contribute to the elevation of cytosolic Ca²⁺ levels of chondrogenic cells on day 3 of culturing. Moreover, cells of HDC secreted ATP into the culturing medium, which supports our theory that a purinergic autocrine regulation is involved in the proper control of chondrogenesis.

2. Materials and methods 110

2.1. Cell culture

High density cell cultures were prepared as described in [1]. 112 Briefly, distal parts of the limb buds of 4-day-old Ross hybrid chicken 113 embryos (Hamburger-Hamilton stages 22-24 [20]) were removed and chondrifying micromass cultures of mesenchymal cells were 115 established. 15 or 30 µL droplets of the suspension containing 1.5×10^7 cells/mL were inoculated on round coverglasses (diameter: 30 or 10 mm; Menzel-Gläser, Menzel GmbH, Braunschweig, Germany) placed into plastic Petri dishes (Nunc, Naperville, IL, USA). Cells were allowed to attach to the surface for 2h at $37 \degree$ C. Day of inoculation is considered as day 0. Colonies were grown in Ham's F12 medium (Sigma, Budapest, Hungary) supplemented with 10% fetal calf serum (Gibco, Gaithersburg, MD, USA), antibiotics and antimycotics, and were kept at 37 °C in an atmosphere of 95% air and 5% CO₂ and 80% humidity. The medium was changed on every second day.

2.2. Single cell Ca²⁺ measurements

Measurements were performed on different days of culturing using the calcium dependent fluorescent dye Fura-2 as described previously [1]. Fura-2-loaded cells were placed on the stage of an inverted fluorescent microscope (Diaphot, Nikon, Kowasaki, Japan) and viewed using a $40 \times oil$ immersion objective. Measurements were performed in normal (137 mM NaCl, 5.4 mM KCl, 0.5 mM MgCl₂, 1.8 mM CaCl₂, 11.8 mM HEPES, 1 g/L glucose, pH 7.4) or calcium-free (containing 5 mM EGTA, without CaCl₂) Tyrode's solution. ATP solution was prepared from normal and Ca²⁺-free Tyrode's at 180 µM final concentration. ADP, UDP, UTP (180 µM) and bradykinin (20 µM) were prepared from Ca²⁺-free Tyrode's. Before application of Ca²⁺-free ATP, ADP, UDP and UTP, cells were treated in Ca²⁺-free Tyrode's for 150 s. Suramin solution was prepared in Tyrode's and used at a final concentration of 10 µM. Excitation wavelength was altered between 340 and 380 nm and fluorescence intensities (F₃₄₀ and F₃₈₀) were measured as described previously [1]. Test solutions were directly applied to the cells through a perfusion capillary tube (Perfusion PencilTM; AutoMate Scientific, San Francisco, CA, USA) with an internal diameter of 250 µm at a 1.5 µL/s rate, using a local perfusion system (Valve BankTM 8 version 2.0, AutoMate Scientific). All measurements were performed at room temperature. Data were statistically analyzed by Student's *t*-test.

2.3. Preparation of cell extracts

Cell cultures were harvested on each day of culturing. Cell pellets were suspended in 100 µL of homogenization buffer containing 50 mM Tris-HCl buffer (pH 7.0), 10 µg/mL Gordox, 10 µg/mL leupeptin, 1 mM phenylmethylsulphonyl (PMSF), 5 mM benzamidine, 10 µg/mL trypsin inhibitor and 0.5% Triton X-100. Samples were snap-frozen in liquid nitrogen, and were stored at -70 °C. Samples were sonicated for four times 30 s by 50 cycles (Branson Sonifier, Danbury, USA). For Western blot analyses, total cell lysates and plasma membrane fractions were used. For isolation of plasma membrane fraction of HDC, sonicated samples were centrifuged at $50,000 \times g$ for 90 min at 4 °C. Pellet was triturated continuously in 50 µL homogenization buffer supplemented with 1% Triton X-100 at 4 °C. After 1 h of trituration samples were centrifuged again at $50,000 \times g$ for 55 min at 4 °C, and supernatant containing plasma membrane fraction was used for Western blot analyses.

2.4. RT-PCR analysis

For RT-PCR analysis, cartilage colonies were washed three times with RNase-free physiological sodium chloride, snap-frozen in liquid nitrogen and stored at 70 °C. Total RNA was isolated from cells of HDC of various ages using Quiagen RNeasy[®] Micro Kit according to the instructions of the manufacturer (Quiagen, Budapest, Hungary). The assay mixture (20 µL) for reverse transcriptase reaction (Omniscript, Quiagen) contained 500 ng RNA, 0.25 µL RNase inhibitor, 0.25 μL oligo (dT), 1 μL dNTP (200 μM), 1 μl M-MLV RT in $1 \times RT$ buffer. Amplifications of specific cDNA sequences were performed with specific primers (Integrated DNA Technologies, Coralville, IA, USA) that were designed based on published chicken nucleotide sequences (for sequences of primer pairs, see Supplementary Material, Table 1). PCR reactions were allowed to proceed in a final volume of 50 μ L (containing 2 μ L forward and

12

122

150

151

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

Please cite this article in press as: J. Fodor, et al., Ionotropic purinergic receptor $P2X_4$ is involved in the regulation of chondrogenesis in chicken micromass cell cultures, Cell Calcium (2009), doi:10.1016/j.ceca.2009.02.004

182

183

184

185

186

187

188

189

190

ARTICLE IN PRESS

3

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

reverse primers, 1 μL dNTP [200 μM], and 5 units Promega GoTaq[®] DNA polymerase in 1 × reaction buffer) in a programmable thermocycler (Eppendorf Mastercycle, Netheler, Hinz GmbH, Hamburg, Germany) with the following settings: 2 min at 95 °C for initial denaturation followed by repeated cycles of denaturation at 94 °C for 1 min, primer annealing for 60 s at an optimized temperature, and extension at 72 °C for 1 min 30 s. After the final cycle, further extension was allowed to proceed for another 10 min at 72 °C. PCR products were analyzed using a 1.5% ethidium bromide-stained agarose gel.

191 2.5. Western blot analysis

Total cell lysates and plasma membrane fractions were exam-192 ined by Western blot. Samples for SDS-PAGE were prepared by 193 the addition of 1/5 volume of 5-fold concentrated electrophore-194 sis sample buffer (310 mM Tris-HCl, pH 6.8; 10% SDS, 50% glycerol, 195 100 mM DTT, 0.01% bromophenol blue) to cell lysates and boiled 196 197 for 5 min. About 50 µg of protein was separated by 7.5% SDS-PAGE gel for immunological detection of P2X-receptors. Proteins were 198 199 transferred electrophoretically to nitrocellulose membranes. After blocking in 5% non-fat dry milk in PBS, membranes were incu-200 bated with primary antibodies raised against the carboxy termini 201 of P2X-receptors (Alomone Labs, Jerusalem, Israel) and P2Y₄ recep-202 tor (Sigma, Budapest, Hungary), amino terminus of P2Y₁ receptor 203 204 (Sigma, Budapest, Hungary) and 3rd intracellular loop of P2Y₂ receptor (Alomone Labs, Jerusalem, Israel) overnight at 4 °C in 1:200 205 dilution. After washing three times for 10 min with PBST (PBS sup-206 plemented with 0.1% Tween 20), membranes were incubated with 207 a secondary antibody, anti-rabbit IgG (Sigma, Budapest, Hungary) 208 in 1:1000 dilution in PBS containing 5% non-fat dry milk for 1 h. 209 Signals were detected by enhanced chemiluminescence reaction 210 (Amersham Biosciences, Budapest, Hungary). 211

212 2.6. Immunocytochemical staining of P2X receptors

3-day-old cultures were washed twice with PBS and fixed in 213 4% paraformaldehyde for 15 min at 4 °C. After washing in PBS, cells 214 were permeabilized with 0.1% Triton X-100 in PBS for 30 min. Non-215 specific binding sites were blocked by 30 min preincubation in 1% 216 bovine serum albumin (BSA) in PBS, followed by incubation with 217 the primary antibodies diluted in 1:100 at 4°C overnight. Subse-218 219 quently, the cultures were washed three times with PBS for 10 min, 220 and were incubated with a FITC-conjugated anti-rabbit IgG (Vector Laboratories, Burlingame, CA, USA) diluted 1:500 in PBS for 1 h. 221 Cultures were washed three times with PBS and mounted with 222 Vectashield® mounting medium containing DAPI (Vector Labora-223 tories, Burlingame, CA, USA). Control experiments were carried 224 out with primary antibodies incubated with their control peptides 225 according to the instructions of the manufacturer (data not shown). 226

227 2.7. Administration of extracellular ATP, ADP, UDP, UTP and 228 suramin

ATP (100μ M), ADP, UDP and UTP (180μ M), and suramin (10μ M) were administered to cells of HDC on various days of culturing. The nucleotides and suramin were diluted in the culture medium. Effects on metachromatic cartilage matrix formation were examined by metachromatic staining with dimethylmethylene blue and toluidine blue as described previously [1].

235 2.8. Determination of extracellular ATP in the culture medium

Concentration of extracellular ATP secreted by cells of high den sity cell cultures was determined using Adenosine 5/-triphosphate

(ATP) Bioluminescent Assay Kit (Sigma, Budapest, Hungary). Measurements were carried out according to the instructions of the manufacturer, with minor modifications. Briefly, 20 droplets of the cell suspension (100 µL each) were inoculated into Petri dishes (diameter: 200 mm, Orange Scientifique, Braine-l'Alleud, Belgium) and were fed with 20 mL culture medium. Concentration of ATP secreted by cells of HDC into the culture medium was determined at approximately the same period of each culturing day. The medium was changed every day following measurements. 50 µL of the culture medium (pH adjusted to 7.8) was used to determine the amount of ATP in the culture medium in 2 parallel experiments. Background light emission was determined using blanks (both sterile water and Ham's F12 culture medium). Since the ATP Assay Mix is not stable for a long period, a gradual decrease in the sensitivity may occur. Therefore, a new standard curve was prepared each day prior to measurements (concentrations of ATP standard solutions were as follows: 10^{-6} , 10^{-7} , 10^{-8} , 10^{-9} and 10^{-10} M). Luminescence of samples was determined using a microwell plate reader (Chameleon, Hidex, Turku, Finland).

3. Results

3.1. Cells of HDC respond to extracellular ATP by elevating intracellular Ca^{2+} concentration

ATP at a constant concentration of 180 µM was administered to the close proximity of cells of HDC on various days of culturing. Fig. 1 (A-E) shows that administration of ATP could induce a transient increase in intracellular Ca²⁺ levels in cells of a Ca²⁺ containing bathing solution. Note that both the amplitude of the average response (maximal increase in intracellular Ca²⁺ concentration) and the time of exposure to ATP needed to induce the transient exhibited a differentiation-dependent pattern (see also Fig. 1F-G). The shortest exposure of ATP needed to evoke a Ca²⁺ transient was characteristic to culturing days 3 and 4, and at the same time Ca²⁺ transients with the highest amplitude (179 and 165 nM, respectively) were also recorded on these days. On the first culturing day ATP, even though administered for a long period (120 s), could not evoke any changes in the intracellular Ca²⁺ concentration (Fig. 1A), furthermore, we could hardly detect characteristic peaks in 2-dayold cells either (Fig. 1B). By day 6, the amplitude of the transients decreased and only a prolonged application of ATP could evoke such responses (Fig. 1E).

Striking differences were also observed regarding the number of cells responding to ATP (Fig. 1F and G). While most of the cells (90%) responded to ATP in 3-day-old cultures, essentially none did at day 1 of culturing. Administration of ATP on other days could also induce calcium transients, but the proportion of cells that responded was hardly comparable with that on day 3 (Fig. 1F).

To establish whether metabotropic or ionotropic purinergic receptors were responsible for these effects, ATP was administered to cells in a Tyrode's solution lacking free Ca²⁺ (Fig. 2A and B). In the 30 cells examined, no response was detected on either days of culturing in the absence of extracellular Ca²⁺. This observation firmly supported our theory that influx of extracellular Ca²⁺ was needed to evoke the effect of extracellular ATP and the receptor of ATP could be a member of the ionotropic purinergic receptor family (P2X), but did not exclude the role of metabotropic purinergic receptors and intracellular Ca²⁺ stores.

To find candidates among P2X receptors, their non-specific antagonist suramin was tested on cells of HDC. It is known that suramin inhibits all P2X receptors except P2X₄ and P2X₆ [16]. Cells treated with suramin (10 μ M) showed no significant alteration in the intracellular Ca²⁺ level following the administration of ATP (Fig. 2C). Repetitive administration of ATP could induce

Please cite this article in press as: J. Fodor, et al., Ionotropic purinergic receptor $P2X_4$ is involved in the regulation of chondrogenesis in chicken micromass cell cultures, Cell Calcium (2009), doi:10.1016/j.ceca.2009.02.004

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

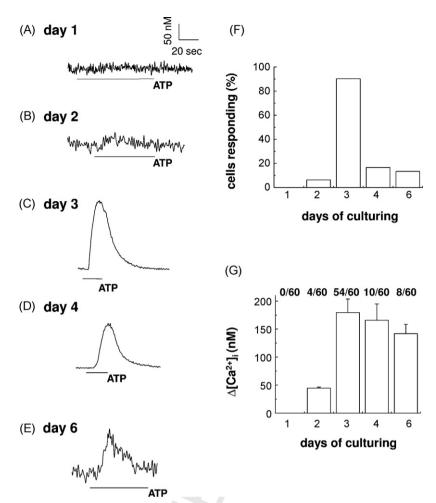
318

319

320

32

322


323

324

325

ARTICLE IN PRESS

J. Fodor et al. / Cell Calcium xxx (2009) xxx-xxx

Fig. 1. Effect of 180 μ M ATP on the cytosolic Ca²⁺ levels of Fura-2-loaded cells of HDC. (A–E) Ca²⁺ transients evoked by administration of ATP in cells on different days of culturing. Representative records of 5 independent experiments. Lines indicate the application of ATP. (F) Ca²⁺ transients were measured in the presence of 1.8 mM external calcium. Ratio of cells responding to ATP on each day of culturing. Representative data of 5 independent experiments. (G) Changes in the peak amplitude of calcium transients detected on different days of culturing. Numbers indicate the proportion of cells responding to ATP. (F) Ca²⁺ transients were measured in the peak amplitude of calcium transients detected on different days of culturing. Numbers indicate the proportion of cells responding to ATP. Representative data of 5 independent measurements.

repetitive and transient elevations in intracellular Ca²⁺ concentration in 3-day-old HDC (Fig. 2D). Relatively short periods of washing (approximately 100 s) were required to allow the cells to recover from the 30-sec-long exposures of ATP. This observation, together with the lack of significant desensitization (Fig. 2D) raised the possibility of the presence and function of P2X₄ and/or P2X₆ receptor subtypes.

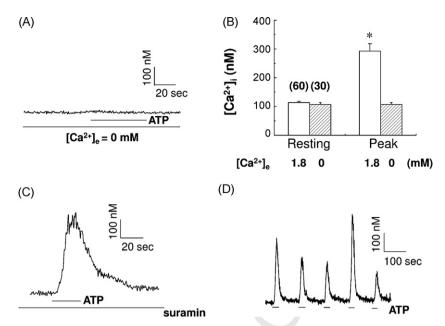
Although the above results clearly suggested that P2X receptors play the decisive role, we also carried out experiments to obtain data on the function of metabotropic P2Y receptors. First we intended to examine whether intracellular Ca²⁺ stores are present and contain releasable Ca²⁺ by the activation of IP₃ pathway. Since bradykinin receptors are known to activate this pathway and are described as being expressed by chondrocytes [21], therefore bradykinin was administered to 3-day-old cells at a concentration of 20 μ M. A slight elevation (30 nM) of free cytosolic Ca²⁺ concentration was observed in 60% of cells proving the presence and active functioning of IP₃ signalling (Fig. 3A).

ADP, UDP and UTP are non-specific agonists of metabotropic purinergic receptors (P2Y). These compounds were administered to cells of HDC at a concentration of 180 μ M on day 3 of culturing (Fig. 3B–D). Slight elevation of cytosolic Ca²⁺ was detected only in 50% of cells measured during the administration of UTP. The average amplitude of UTP-evoked Ca²⁺ transients was 57 nM. On the other hand, administration of ADP and UDP did not result in any significant Ca²⁺ transients.

3.2. Chondrogenic mesenchymal cells express various P2X and P2Y receptor subtypes during differentiation

To identify the presence and expression pattern of various purinergic receptors during chondrogenic differentiation of chicken mesenchymal cells, RT-PCR reactions were performed. mRNA sequences of chicken P2X receptors, but not of P2X₆ (not yet published) as well as P2Y₁, P2Y₃, and P2Y₅ receptors were downloaded from GenBank and specific primer pairs for each mRNA sequence were designed for amplification (see Supplementary Material). Amplimers of expected sizes were identified for all the available mRNAs, except for P2X₂, where only very weak signals were detected (Fig. 4A). mRNA expression of P2X1 and P2X7 receptor subtypes followed a peak-like pattern during differentiation with the highest expression levels on days 3 or 4, respectively. P2X₃ receptor subtype mRNA exhibited a rather variable expression profile: the strongest bands were detected between days 1 and 3 of culturing. P2X₄ and P2X₅ receptor subtypes showed the strongest expression levels. Both receptors expressed markedly on day 1 then the signal became gradually weaker. mRNAs of P2Y₁, P2Y₃ and P2Y₅ showed constant expression levels throughout the culturing period (Fig. 6B).

Western blot analysis showed a different expression profile for the different P2X receptor subtypes (Fig. 4B). We could not detect the P2X₂ receptor subtype, and no signals were visible for P2X₃ and P2X₆, either in total lysates or in isolated plasma membrane


350

326

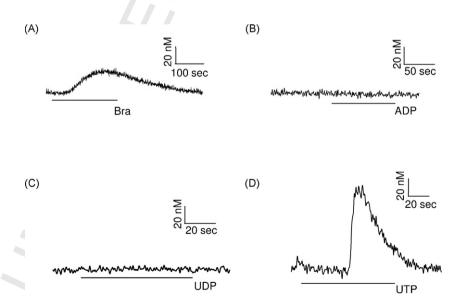
327

Please cite this article in press as: J. Fodor, et al., Ionotropic purinergic receptor $P2X_4$ is involved in the regulation of chondrogenesis in chicken micromass cell cultures, Cell Calcium (2009), doi:10.1016/j.ceca.2009.02.004

J. Fodor et al. / Cell Calcium xxx (2009) xxx-xxx

Fig. 2. Responses of cells of HDC to administration of ATP on day 3 of culturing. (A) Record showing the lack of ATP-evoked Ca^{2+} transients in the absence of external calcium. (B) Basal intracellular Ca^{2+} levels and the peak amplitude of ATP-evoked Ca^{2+} transients in the presence and absence of external calcium. Numbers in parentheses show the number of cells measured. Data represent mean ± standard error of the mean of intracellular Ca^{2+} levels of cells assayed in 5 independent experiments. Asterisk indicates significant (*P < 0.01) increase in peak amplitude of ATP-evoked Ca^{2+} transients as compared to the respective control. (C) Effect of the P2X antagonist suramin (10 μ M) on ATP-evoked calcium transients in the presence of external calcium. (D) Calcium transients evoked by repeated administration of ATP in the presence of external calcium showing the lack of desensitization of P2X receptors in differentiating chondrocytes. Representative record of 5 independent experiments is presented in panels A, C or D. Lines in panels A, C and D indicate the application of ATP. Preceding the application of Ca-free ATP cells were treated in Ca-free Tyrode's for 150 s.

359


351

fractions (data not shown). Protein expression of P2X₁ subtype in total lysates followed a similar profile to the mRNA expression, but in the plasma membrane fractions strong bands were detected on days 1–3, thereafter the protein levels markedly decreased. In contrast with the results of RT-PCR reactions, protein levels of P2X₅ receptor subtype were hardly detectable in total cell lysates, but in plasma membrane fractions of day 4 was characterized by a stronger signal.

For P2X₇, a profile showing a variable expression pattern was observed in total lysates with the strongest bands on days 2 and

observed in total lysates with the strongest bands on days 2 and 4, respectively, however, in the plasma membrane fractions a peak-like pattern with strongest bands on days 2, 3 and 4 was observed.

Nevertheless, protein expression of $P2X_4$ receptor subtype proved to be the most interesting (Fig. 4B). While in total cell lysates it showed a rather variable profile, in isolated plasma membrane fractions it first appeared on day 3 with a strong band, and by days 4 and 6 its expression rapidly diminished. It is important to note that the vast majority of chondrogenic mesenchymal cells responded to ATP on this day of culturing, which also coincides with the day of differentiation characterized by elevated cytosolic Ca²⁺ levels reported earlier [1]. Presence of P2X₁, P2X₄ and

Fig. 3. Functional characterization of P2Y receptors in cells of HDC on day 3 of culturing. (A) 20 μ M bradykinin-evoked Ca²⁺ transients measured in the absence of external calcium. Line indicates the application of bradykinin. (B) Effect of 180 μ M ADP on Ca²⁺ transients measured in the absence of external calcium. Line indicates the application of ADP. (C) Effect of 180 μ M UDP on Ca²⁺ transients measured in the absence of external calcium. Line indicates the application of UDP. (D) 180 μ M UTP-evoked Ca²⁺ transients in the absence of external calcium. Line indicates the application of UTP. Representative records of 3 independent experiments.

Please cite this article in press as: J. Fodor, et al., Ionotropic purinergic receptor $P2X_4$ is involved in the regulation of chondrogenesis in chicken micromass cell cultures, Cell Calcium (2009), doi:10.1016/j.ceca.2009.02.004

362

363

364

365

366

367

368

369

370

371

372

J. Fodor et al. / Cell Calcium xxx (2009) xxx-xxx

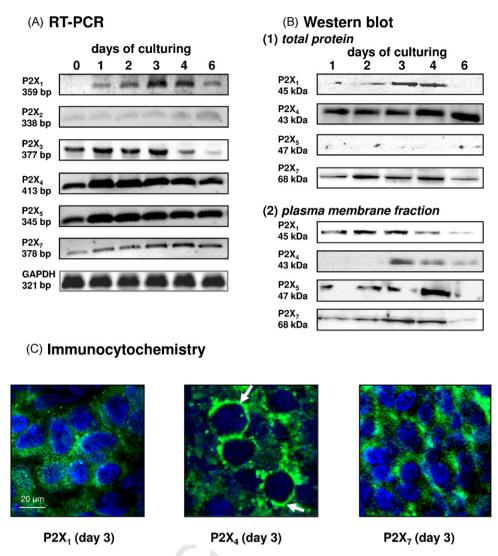


Fig. 4. Expression pattern of P2X receptor subtypes in cells of HDC on different days of culturing. (A) mRNA expression pattern of various P2X receptors was detected by RT-PCR reactions. P2X receptor subtypes (but not P2X₆) were amplified using specific primers and detected at expected sizes. GAPDH was used as a control. (B) Western blot analysis of P2X receptor proteins in cells of HDC. Total protein and membrane fraction samples were used (50 µg in each lane) to examine the protein expression level. Representative data each of 3 independent experiments, performed in triplicates. (C) Immunocytochemical staining of 3-day-old HDC demonstrating presence of P2X1, P2X4 and P2X₇ receptors. Arrows indicate the accumulation of immunopositive signal in the plasma membrane of chondrogenic cells. Images were recorded from 1 µm thick optical slices. Original magnification was 40×. Representative images of 3 independent experiments, each performed in triplicates.

P2X7 receptors was also proved by immunocytochemical staining of HDC. A membrane-bound localization was clearly visible for P2X₄ receptors (Fig. 4C). Furthermore, presence of P2X₄ in cartilagineous primordia in developing limbs of chicken embryos was also demonstrated at a developmental stage (8-day-old embryo) corresponding to approximately 4-day-old HDC (data not shown).

We also detected the expression of metabotropic purinergic receptors in HDC. As P2Y₃ and P2Y₅ receptors are not regarded as functional members of this family of receptors [16], we investigated P2Y₁, P2Y₂, and P2Y₄ protein in total cell lysates and plasma membrane fractions. On day 1, the protein of P2Y₁ was not expressed by cells of HDC, then it was present at a constant level both in total cell lysates and in plasma membrane fractions until day 6, when it showed a small decline. The P2Y₂ receptor protein was found to be expressed in a peak like pattern in total lysates with strongest signals on days 2-4. However, we detected a constant level of expression in the plasma membrane fraction with the exception of day 6, when the signal became weaker. We could only detect specific signals for P2Y₄ receptor in the plasma membrane fraction with a stronger band on day 2, but no immunopositivity was observed in total lysates (Fig. 6C).

3.3. Administration of extracellular ATP on day of differentiation increases matrix production

In order to support our hypothesis that the entrance of extracellular Ca2+ into chondrogenic mesenchymal cells is via P2X receptors, especially via P2X₄ subtype, further experiments were performed. ATP was administered at various concentrations to cells of high density cultures on day 3 of culturing. At the concentration of 100 µM, extensive matrix production occurred by day 6 (Fig. 5A) demonstrated by both DMMB and TB stainings. mRNA levels of collagen II and the core protein of aggrecan also reflected the slightly higher rate of matrix production under the effect of ATP (Fig. 5B). Although mRNA expression level of Sox9 did not change (Fig. 5B), protein expression of this transcription factor became higher as a result of the administration of ATP (Fig. 5C). Treatment of HDC with ATP on days 2 and 4 of culturing did not alter the cartilage matrix production (data not shown). These results indicate that ATP has a positive effect on both cartilage matrix production and chondroblast differentiation when it is applied at the time of final commitment of chondroprogenitor cells and ATP does not exert any effect on premature or mature chondroblasts.

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

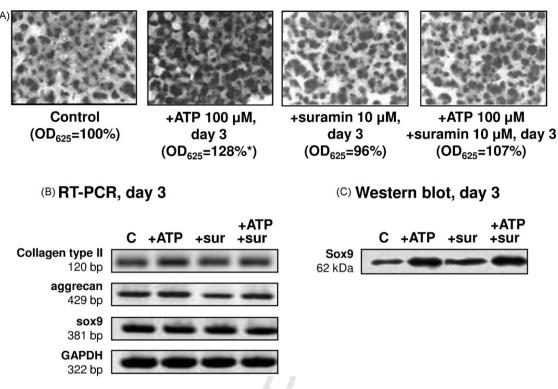
388

389

390

391

392


393

413

394

395

J. Fodor et al. / Cell Calcium xxx (2009) xxx-xxx

Fig. 5. Effects of ATP (100 μ M) and suramin (10 μ M) on cartilage development of chondrifying micromass cultures. Both chemicals were administered on day 3 of culturing. (A) Metachromatic cartilage areas in 6-day-old high density colonies visualized with DMMB dissolved in 3% acetic acid. Optical density (OD₆₂₅) of samples containing toluidine blue extracted with 8% HCl dissolved in absolute ethanol. Data are mean values of each experimental group out of 5 measurements. Standard errors of the means were within \pm 8%. Asterisks indicate significant (P <0.01) increase in optical density of extracted toluidine blue as compared to the respective control. (B) mRNA expression of collagen type II, core protein of aggrecan and sox9 after treatment with ATP and/or suramin. GAPDH was used as a control. Representative data of 3 independent experiments, each performed in triplicates. (C) Effect of ATP and/or suramin on the protein expression of Sox9. Representative data of 3 independent experiments, each performed in triplicates.

Administration of the non-specific P2X receptor antagonist 414 suramin alone or combination with ATP did not cause any signifi-415 cant alteration in the amount of cartilage matrix produced by the 416 end of the 6-day-old culturing period (Fig. 5A). Moreover, the ATP-417 418 stimulated Sox9 expression was not affected by suramin treatment, further supporting our theory that P2X₄ receptor could be involved 419 in the transmission of the chondrogenesis promoting effect of extra-420 cellular ATP (Fig. 5^B and C). 421

422 3.4. Administration of ADP, UDP and UTP to the culture medium 423 has no effect on cartilage formation

We examined the administration of the nucleotides on cartilage matrix production of HDC to elucidate a putative role of metabotropic purinergic receptors. The nucleotides applied at a concentration of $180 \,\mu$ M into the culturing medium on day 3 did not exert any effect on the amount of cartilage matrix produced by the end of the 6-day-long culturing period as revealed by metachromatic staining (Fig. 6A).

3.5. Cells of high density cultures secrete ATP into the culture medium

The demonstration of the effectiveness of administration of ATP 433 on matrix production raises the question whether the chondro-434 genic mesenchymal cells secrete ATP into the culture medium as 435 an autocrine mediator to promote and facilitate their own differen-436 tiation. To investigate this, the culture medium was removed from 437 the cells of high density cultures on each day of culturing and ATP 438 439 assays were performed. We found that on each day of culturing a small amount of ATP was detectable in the culture medium in the 440

range of 2–10 nM, which is comparable to data measured in culture medium of other non-excitable cells [22].

4. Discussion

In vitro chondrogenesis is a dynamic, multistep process regulated by a variety of molecular processes, many of which involve activation and deactivation of protein kinases and phosphatases sensitive to changes of intracellular Ca²⁺ levels. In chicken high density mesenchymal cell cultures, chondrogenic mesenchymal cells differentiate into chondroblasts and then to chondrocytes during a 6-day-long culturing period. The majority of chondroblasts, characterized by the ability of production of a cartilage specific ECM, appear from culturing day 3.

We have previously demonstrated that cytoplasmic-free Ca²⁺ concentration of chondrogenic cells exhibited a characteristic transient elevation on day 3 of culturing. This has been found to be indispensable to proper differentiation and the essential role of the influx of extracellular Ca²⁺ has been documented [1]. Intracellular Ca²⁺ stores have been shown to contain releasable Ca²⁺, but the rate of leak was low and free cytoplasmic Ca²⁺ concentration became only slightly higher in the absence of extracellular Ca²⁺. Moreover, RyR and IP₃ receptors have been found to be expressed weakly and stimulation of RyR did not result in the elevation of cytoplasmic Ca²⁺. Our data have underlined the role of Ca²⁺ influx from extracellular space in the generation of the cytoplasmic Ca²⁺ peak. The intracellular stores seemed to be contributing to the maintenance of cytosolic basal Ca²⁺ concentration [1].

In the present study, we report the possible involvement of P2X and P2Y, ligand-gated purinergic receptors, in the regulation of the Ca²⁺ homeostasis of chondrogenic cells particularly during

442

443

444

445

464

465

466

467

468

469

Please cite this article in press as: J. Fodor, et al., Ionotropic purinergic receptor $P2X_4$ is involved in the regulation of chondrogenesis in chicken micromass cell cultures, Cell Calcium (2009), doi:10.1016/j.ceca.2009.02.004

471

J. Fodor et al. / Cell Calcium xxx (2009) xxx-xxx

(B) **RT-PCR**

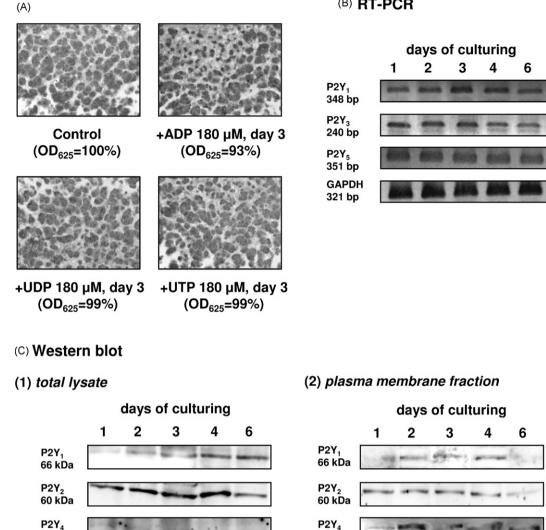


Fig. 6. (A) Metachromatic cartilage areas in 6-day-old HDC visualized with DMMB dissolved in 3% acetic acid. Optical density (OD625) of samples containing toluidine blue extracted from HDC with 8% HCl dissolved in absolute ethanol. Data are mean values of each experimental group out of 4-4 parallel samples of 3 independent measurements. Standard errors of the means were within ± 8%. (B) mRNA expression pattern of various P2Y receptors detected by RT-PCR reactions. P2Y receptor subtypes were amplified using specific primers and detected at expected sizes. GAPDH was used as a control. Representative data of 3 independent experiments, each performed in triplicates. (C) Western blot analysis of P2Y₁ P2Y₂ and P2Y₄ receptor proteins in cells of HDC. Total protein and membrane fraction samples were used (50 µg in each lane) to examine the protein expression level. Representative data of 3 independent experiments, each performed in triplicates.

66 kDa

470 their differentiation. Purinoreceptors are known to be expressed in embryonic tissues [23] and are probably involved in the differentiation process of excitable [24] and non-excitable [25] cells. However, 472 no data are available concerning the possible involvement of such 473 processes in the differentiation of chondroblasts from mesenchy-474 mal cells. During single cell measurements using Fura-2-loaded 475 cells, ATP, an agonist of purinergic receptors, was administered on 476 various days of culturing. We found that the cells of HDC responded 477 to ATP by characteristic Ca²⁺ transients. We also found that most of 478 the cells only responded to ATP on day 3 of culturing, at the time of 479 differentiation of chondroblasts. The phenomenon that some cells 480 showed response on other days than day 3 can be explained by 481 considering the fact that the cells of HDC exhibit some heterogene-482 ity in their stage of differentiation, and though the vast majority 483 differentiates on day 3 of culturing, there are some cells, which 484 could reach this stage of development somewhat earlier or later. 485 We also showed that probably the members of the ionotropic P2X 486 receptor subfamily can be accounted for the influx of extracellular 487 Ca²⁺. 488

66 kDa

We also tested the effect of P2Y receptor agonists on Ca²⁺ transients in cells of 3-day-old HDC. When ATP was administered to the cells in a Tyrode's solution lacking free Ca²⁺, ATP failed to elevate the intracellular Ca²⁺ concentration. ADP, the agonist of P2Y₁, and UDP, the ligand of P2Y₆ receptor, neither evoked any significant elevation in the free cytoplasmic Ca²⁺ concentration, nor did they influence cartilage formation of HDC. However, the agonist of P2Y₂ and P2Y₄ receptors, UTP caused a transient elevation of cytosolic-free Ca²⁺ in 50% of cells investigated. RT-PCR and Western blot analyses proved the presence of P2Y₁, P2Y₂, P2Y₃, P2Y₄ and P2Y₅ receptors in cells of HDC.

All the P2X receptor mRNAs investigated, except that of P2X₂, were expressed by cells of HDC showing variable expression profiles. The phenomenon of age-dependent expression suggests the involvement of purinergic signalling in the mediation of chondrogenic differentiation. Our findings that P2X receptor subtypes are expressed by differentiating chondrogenic cells in a differentiation stage-dependent manner are comparable to studies conducted on hematopoietic cell lines [26]. At the protein level, cells of HDC

507

Please cite this article in press as: J. Fodor, et al., Ionotropic purinergic receptor $P2X_4$ is involved in the regulation of chondrogenesis in chicken micromass cell cultures, Cell Calcium (2009), doi:10.1016/j.ceca.2009.02.004

J. Fodor et al. / Cell Calcium xxx (2009) xxx-xxx

expressed only receptor subtypes P2X₁, P2X₄ P2X₅ and P2X₇ and 508 the expression profiles in total cell lysates and plasma membrane 509 fractions were different. This difference was exceptionally inter-510 esting in the case of P2X₄: this receptor started to appear on 511 day 3 in the plasma membrane fraction with a very strong sig-512 nal, whereas weaker signals were detected on days 4 and 6. The 513 characteristic expression profile of P2X₄ raised the possibility that 514 this ligand-gated receptor could be an important channel through 515 which extracellular Ca²⁺ enter the cytosol and contribute to the 516 elevated Ca²⁺ level needed for the chondrogenic differentiation pro-517 cess. Although other P2X receptors were also present in plasma 518 membrane fractions, ATP-evoked Ca2+ transients were not elimi-519 nated when suramin and ATP were applied simultaneously. Since 520 suramin is not a P2X₄ antagonist but inhibits other P2X type 521 purinergic receptors expressed by cells of HDC, our data suggest 522 that these receptors may contribute to the maintenance of the basal 523 cytosolic Ca²⁺ concentration. 524

The ATP-mediated function of P2X₄ receptor during the differ-525 entiation process was proved by the addition of extracellular ATP 526 to the culture medium. It resulted in an increase of the expres-527 sion of Sox9, the master transcription factor of chondrogenesis. We 528 529 detected higher amount of metachromatic cartilage matrix produced in ATP-treated HDC by the end of the 6-day-long culturing 530 period. This effect was achieved exclusively when ATP was admin-531 istered on day 3 of culturing. When ATP was added prior to (day 3) 532 or after the differentiation period of chondrogenic cells (day 4 of 533 culturing), it did not result in any significant effect on the matrix 534 formation of HDC. This observation underlines the importance of 535 ATP in the facilitation of cartilage differentiation and may rule out 536 its role in the stimulation of matrix production of mature cartilage. 537 Although application of metabotropic P2Y receptor agonists to the 538 culture medium on day 3 caused Ca²⁺ transients similar to those 539 generated by ATP, but did not alter the amount of cartilage matrix 540 produced by the end of the 6-day-long culturing period. Therefore 541 we suggest that metabotropic P2Y receptors rather contribute to 542 the maintenance of basal cytosolic Ca²⁺ concentration in cells of 543 544 HDC.

Although suramin did not eliminate the ATP-evoked Ca²⁺ tran-545 sients of chondrogenic cells, the increased metachromatic cartilage 546 matrix production caused by ATP was completely diminished. This 547 effect does not seem to be exerted via the inhibition of chondrogen-548 esis, since the expression of Sox9, was not reduced by suramin, and 549 the mRNA expression levels of neither collagen type II nor aggre-550 can were affected. Suramin has been reported to inhibit hyaluronic 551 acid synthesis of fibroblasts [27], and hyaluronic acid is responsi-552 ble for holding aggregates of aggrecan together in cartilage matrix. 553 The reduced amount of hyaluronic acid may cause increased loss of 554 aggrecan during metachromatic staining procedures of HDC, caus-555 ing virtual reduction of the detected amount of cartilage matrix. 556

We also showed that cells of HDC secreted ATP into the culture 557 medium. This ATP may act as an autocrine mediator to facilitate and 558 promote their own differentiation. Chondrogenic cells secreted ATP 559 throughout the culturing period, and they responded to the extra-560 cellularly administered ATP with a peak-like elevation of ic. Ca²⁺ 561 concentration only at the time of differentiation. This fact further 562 supports the purinergic concept in the control of chondrogenesis. 563 Our data on ATP concentrations secreted into the culture medium 564 seem significantly less than the concentrations applied for matrix 565 production assays. It is important to emphasize that ATP assays 566 were performed in 20 mL of culture medium. Furthermore, the vol-567 ume of the cell culture itself and the volume of the culture medium 568 differ by a factor of approximately 1000. Therefore, the ATP secreted 569 by the cells could have reached much higher concentrations at the 570 close proximity of cells. Thus the detected concentrations of ATP 571 572 secreted by chondrogenic cells should be in the range in which P2X receptors respond to this ligand [28,29]. 573

In summary, our observations provide the first evidence on the possibility of a purinergic autoregulation of chondrogenesis. Purinergic receptors, members of the Ca^{2+} tool kit used by cells of HDC can be one of the key elements in the regulation of the elevated cytosolic Ca^{2+} levels during cartilage differentiation *in vitro* and *in vivo*.

Acknowledgements

The authors thank Mrs. Krisztina Bíró and Mrs. Ibolya Varga for their excellent assistance. We also thank Ádám Jóna for his work in performing immunohistochemical stainings of P2X₄ receptor on paraffin-embedded chicken embryos. This work was supported by grants from the Hungarian Science Research Fund (OTKA K60620 and OTKA T49151) and from the Hungarian Ministry of Health (ETT 083/2006). R.Z. is supported by a Mecenatura grant (29/ME-02) from the Medical and Health Science Centre, University of Debrecen, Hungary.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ceca.2009.02.004.

References

- [1] C. Matta, J. Fodor, Z. Szijgyarto, T. Juhasz, P. Gergely, L. Csernoch, R. Zakany, Cytosolic free Ca²⁺ concentration exhibits a characteristic temporal pattern during *in vitro* cartilage differentiation: a possible regulatory role of calcineurin in Ca-signalling of chondrogenic cells, Cell Calcium 44 (2008) 310–323.
- [2] M.B. Goldring, K. Tsuchimochi, K. Ijiri, The control of chondrogenesis, J. Cell Biochem. 97 (2006) 33–44.
- [3] W.M. Kulyk, J.L. Franklin, L.M. Hoffman, Sox9 expression during chondrogenesis in micromass cultures of embryonic limb mesenchyme, Exp. Cell Res. 255 (2000) 327–332.
- [4] V. Lefebvre, W. Huang, V.R. Harley, P.N. Goodfellow, C.B. de, SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene, Mol. Cell Biol. 17 (1997) 2336–2346.
- [5] C.L. Tu, Y. Oda, L. Komuves, D.D. Bikle, The role of the calcium-sensing receptor in epidermal differentiation, Cell Calcium 35 (2004) 265–273.
- [6] M. Zayzafoon, Calcium/calmodulin signaling controls osteoblast growth and differentiation, J. Cell Biochem. 97 (2006) 56–70.
- [7] S. Kawano, K. Otsu, S. Shoji, K. Yamagata, M. Hiraoka, Ca(2+) oscillations regulated by Na(+)-Ca(2+) exchanger and plasma membrane Ca(2+) pump induce fluctuations of membrane currents and potentials in human mesenchymal stem cells, Cell Calcium 34 (2003) 145–156.
- [8] W.G. Fisher, P.C. Yang, R.K. Medikonduri, M.S. Jafri, NFAT and NFkappaB activation in T lymphocytes: a model of differential activation of gene expression, Ann. Biomed. <u>Eng. 34</u> (2006) 1712–1728.
- [9] S. Chawla, H. Bading, CREB/CBP and SRE-interacting transcriptional regulators are fast on-off switches: duration of calcium transients specifies the magnitude of transcriptional responses, J. Neurochem. 79 (2001) 849–858.
- [10] S. Piera-Velazquez, D.F. Hawkins, M.K. Whitecavage, D.C. Colter, D.G. Stokes, S.A. Jimenez, Regulation of the human SOX9 promoter by Sp1 and CREB, Exp. Cell Res. 313 (2007) 1069–1079.
- [11] M. Tomita, M.I. Reinhold, J.D. Molkentin, M.C. Naski, Calcineurin and NFAT4 induce chondrogenesis, J. Biol. Chem. 277 (2002) 42214–42218.
- [12] R. Zakany, E. Bako, S. Felszeghy, K. Hollo, M. Balazs, H. Bardos, P. Gergely, L. Modis, Okadaic acid-induced inhibition of protein phosphatase 2A enhances chondrogenesis in chicken limb bud micromass cell cultures, Anat. Embryol. [Berl.] 203 (2001) 23–34.
- [13] P.B. Ahrens, M. Solursh, R.S. Reiter, Stage-related capacity for limb chondrogenesis in cell culture, Dev. Biol. 60 (1977) 69–82.
- [14] F. Soto, M. Garcia-Guzman, W. Stuhmer, Cloned ligand-gated channels activated by extracellular ATP (P2X receptors), J. Membr. Biol. 160 (1997) 91–100.
- [15] R.A. North, A. Surprenant, Pharmacology of cloned P2X receptors, Annu. Rev. Pharmacol. Toxicol. 40 (2000) 563–580.
- [16] V. Ralevic, G. Burnstock, Receptors for purines and pyrimidines, Pharmacol. Rev. 50 (1998) 413–492.
- [17] I.R. Orriss, G.E. Knight, S. Ranasinghe, G. Burnstock, T.R. Arnett, Osteoblast responses to nucleotides increase during differentiation, Bone 39 (2006) 300–309.
- [18] C. Collet, C. Strube, L. Csernoch, N. Mallouk, C. Ojeda, B. Allard, V. Jacquemond, Effects of extracellular ATP on freshly isolated mouse skeletal muscle cells during pre-natal and post-natal development, Pflugers Arch. 443 (2002) 771–778.
- [19] M. Ryten, A. Hoebertz, G. Burnstock, Sequential expression of three receptor subtypes for extracellular ATP in developing rat skeletal muscle, Dev. Dyn. 221 (2001) 331–341.

9

574

575

576

577

578

570

58

582

592

593 594

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

Please cite this article in press as: J. Fodor, et al., Ionotropic purinergic receptor P2X₄ is involved in the regulation of chondrogenesis in chicken micromass cell cultures, Cell Calcium (2009), doi:10.1016/j.ceca.2009.02.004

J. Fodor et al. / Cell Calcium xxx (2009) xxx-xxx

- [20] V. Hamburger, H.L. Hamilton, A series of normal stages in the development of
- the chick embryo. 1951, Dev. Dyn. 195 (1992) 231–272.
 [21] M. Koolpe, J.J. Rodrigo, H.P. Benton, Adenosine 5'-triphosphate, uridine 5'-triphosphate, bradykinin, and lysophosphatidic acid induce different patterns of calcium responses by human articular chondrocytes, J. Orthop. Res. 16 (1998) 217-226.
- [22] A.L. Taylor, B.A. Kudlow, K.L. Marrs, D.C. Gruenert, W.B. Guggino, E.M. Schwiebert, Bioluminescence detection of ATP release mechanisms in epithelia, Am. J. Physiol. 275 (1998) C1391–C1406.
- V.H. Roberts, L.H. Waters, T. Powell, Purinergic receptor expression and activa-[23] tion in first trimester and term human placenta, Placenta 28 (2007) 339-347.
- [24] P. Majumder, C.A. Trujillo, C.G. Lopes, R.R. Resende, K.N. Gomes, K.K. Yuahasi, L.R. Britto, H. Ulrich, New insights into purinergic receptor signaling in neuronal differentiation, neuroprotection, and brain disorders, Purinergic. Signal. 3 (2007) 317-331.
- [25] K. Inoue, M. Denda, H. Tozaki, K. Fujishita, S. Koizumi, K. Inoue, Characterization of multiple P2X receptors in cultured normal human epidermal keratinocytes, J. Invest Dermatol. 124 (2005) 756-763.
- [26] M.K. Bernhard, K. Ulrich, Rt-PCR study of purinergic P2 receptors in hematopoietic cell lines, Biochemistry (Mosc.) 71 (2006) 607-611.
- [27] E.M. August, K.L. Duncan, N.M. Malinowski, R.L. Cysyk, Inhibition of fibroblast hyaluronic acid production by suramin, Oncol. Res. 5 (1993) 415-422.
- [28] S.L. Xia, L. Wang, M.N. Cash, X. Teng, R.A. Schwalbe, C.S. Wingo, Extracellular ATP-induced calcium signaling in mIMCD-3 cells requires both P2X and P2Y purinoceptors, Am. J. **Physiol. Renal Physiol. 287** (2004) F204–F214. [29] E.M. Schwiebert, A. **Z**sembery, Extracellular ATP as a signaling molecule for
- epithelial cells, Biochim. Biophys. Acta 1615 (2003) 7-32.

670

671

10

646

647

648

649

650

651

652

653

654

655

656

657

658 659