THE SMALLEST UNIVOQUE NUMBER IS NOT ISOLATED

VILMOS KOMÔRNIK, PAOLA LORETI, AND ATTILA PETHŐ

Dedicated to the 80th birthday of Professor Lajos Tândoróy.

Abstract. Komôrk and Loreti [9] showed that there exists a smallest univoque number $q \approx 1.787$. Later Allouche and Cassaigne [1] proved that this number is transcendental. The aim of this note is to construct a (decreasing) sequence of algebraic numbers converging to q.

1. Introduction

Given a real number $1 \leq q \leq 2$, there exists at least one sequence (c_i) of zeroes and ones satisfying the equality

$$1 = c_1 \frac{1}{q} + c_2 \frac{1}{q^2} + c_3 \frac{1}{q^3} + \ldots$$

One such sequence, denoted by (γ_i), can be obtained by the so-called greedy algorithm of Rényi [13]: proceeding by induction, we choose $c_i = 1$ whenever possible. Among all expansions for a given q, this is lexicographically the largest.

If $q = 2$, then this is the unique possible expansion: $c_i = 1$ for all i. Erdős, Horváth and Joo [5] discovered that there exist also smaller numbers q having this curious uniqueness property; following Daróczy and Kátai [3] we call them univoque numbers. Subsequently, they were characterized algebraically in [6] (see also [10] for an extension of this result):

Theorem 1. A number $1 \leq q \leq 2$ is univoque if and only if there exists an expansion (γ_i) of 1 satisfying the following two conditions (in the lexicographic sense):

$$\gamma_{i+1}\gamma_{i+2} \ldots < \gamma_1\gamma_2 \ldots \quad \text{whenever} \quad \gamma_i = 0$$

and

$$\gamma_{i+1}\gamma_{i+2} \ldots \gamma_i \gamma_{i+1} \ldots < \gamma_1\gamma_2 \ldots \quad \text{whenever} \quad \gamma_i = 1.$$

Here and in the sequel we use the notation $\bar{c} := 1 - c$.

Among several interesting properties of the set U of univoque numbers, for which we refer to the papers [1], [2], [3], [4], [5], [8] and [9], we recall from [9] that there exists a smallest univoque number $q \approx 1.787$, and the corresponding expansion is given by the truncated Thue–Morse sequence

$$(\bar{c})_{i=1}^\infty = 1101001101\ldots$$

Date: July 17, 2002.

Mathematics Subject Classification: 11A63, 11A67, 11B85

Key words and phrases: β-expansion, univoque number, Thue–Morse sequence.

The research of the first two authors was partially supported by the Consiglio Nazionale delle Ricerche. The research of the third author was partially supported by Hungarian National Foundation for Scientific Research, Grant No. T29030 and A8228.
The purpose of this note is to investigate the following two questions:

- One may wonder whether q' is an isolated univoque number or not. In the first case one could look for the second smallest univoque number, and so on.
- Allouche and Cassaigne proved in [1] that q' is transcendental. It is then natural to look for the smallest algebraic univoque number if it exists.

Both problems are solved by the following

Theorem 2. There exists a (decreasing) sequence of algebraic univoque numbers converging to q'. In particular, q' is not an isolated point of U.

2. Proof of Theorem 2

For the purpose of the present paper, it is advantageous to adopt the following definition of the Thue-Morse sequence (τ_i): if

$$t = \varepsilon_k 2^k + \cdots + \varepsilon_0$$

is the dyadic expansion of some nonnegative integer i, then we define

$$\tau_i := \begin{cases} 1 & \text{if } \varepsilon_k + \cdots + \varepsilon_0 \text{ is odd}, \\ 0 & \text{if } \varepsilon_k + \cdots + \varepsilon_0 \text{ is even}. \end{cases}$$

In particular, $\tau_0 = 0$. See [9] for its equivalence with another usual definition.

Our main tool is the following strengthening of a property of the Thue-Morse sequence τ_1, τ_2, \ldots, established in [6].

Lemma 3. Let $1 \leq i < 2^{N+1}$ for some nonnegative integer N.

(a) If $\tau_i = 0$, then $\tau_{i+1} \ldots \tau_{i+2^N} < \tau_1 \ldots \tau_{2^N}$ in the lexicographic sense.

(b) If $\tau_i = 1$, then $\tau_{i+1} \ldots \tau_{i+2^N} < \tau_1 \ldots \tau_{2^N}$ in the lexicographic sense.

Remark. In fact, part (a) remains valid even if $\tau_i = 1$, except the case where $N = 0$ and $i = 1$, while part (b) remains always valid even if $\tau_i = 0$. An analogous property was established recently by Gledhill and Sidorenko [7].

Proof. Consider first the case $\tau_i = 0$. Then $\varepsilon_k + \cdots + \varepsilon_0$ is even and therefore $\varepsilon_k + \cdots + \varepsilon_0 \geq 2$ because $i \geq 1$ by assumption. Hence we may write $i = 2^n + 2^m + j$ with $2^n > 2^m > j \geq 0$. We claim that

$$\tau_{i+1} \ldots \tau_{i+2^N} < \tau_{j+1} \ldots \tau_{j+2^N}.$$

We distinguish two cases. If $n \geq m + 2$, then using (4) we have

$$\tau_{i+k} = \tau_{j+k} \quad \text{for} \quad 1 < k < 2^m - j$$

but

$$\tau_{i+2^m - j} = \tau_{j+2^m + j} = 0 < 1 = \tau_{2^m} = \tau_{j+2^m - j}.$$

Since

$$2^m \cdot j \leq 2^m \leq 2^N < 2^{N+1},$$

this proves (5).

If $n = m + 1$, then using (4) we obtain by a similar reasoning that

$$\tau_{i+k} = \tau_{j+k} \quad \text{for} \quad 1 \leq k < 2^{m+1} - j$$

but

$$\tau_{i+2^{m+1} - j} = \tau_{j+2^{m+1} - j} = 0 < 1 = \tau_{2^{m+1}} = \tau_{j+2^{m+1} - j}.$$
Since
\[2^{m+1} - j < 2^{m+1} = 2^n \leq 2^N, \]
(5) follows again.

Since \(\tau_j = \tau_i = 0 \), we may iterate (5) until we obtain \(j = 0 \), thereby proving the desired inequality.

Now consider the case \(\tau_j = -1 \) and write \(i = 2^m + j \) with \(2^m > j > 0 \). We claim that
\[(6) \quad \tau_{i+1} \cdots \tau_{i+2^N} < \tau_{j+1} \cdots \tau_{j+2^N}. \]
Indeed, using (4) we have
\[\tau_{i+1} = \tau_{j+1} \quad \text{for} \quad 1 \leq k < 2^m - j \]
but
\[\tau_{i+2^m-j} = \tau_{2^m} = 0 < 1 = \tau_{2^m} = \tau_{j+2^m-j}. \]
Since
\[2^m - j \leq 2^m \leq 2^N, \]
this proves (6).

If \(j = 0 \), then we are done. If \(j > 0 \), then we complete the proof by combining (5) and (6). \(\square \)

Now fix a nonnegative integer \(N \) and introduce the following sequence:

\[(7) \quad c_i := \begin{cases} \tau_i & \text{if } 1 \leq i < 2^{N+1}, \\ 2^N & \text{if } i \geq 2^{N+1}. \end{cases} \]

This sequence was used for different purposes in a recent work of Glendinning and Sidorov [7]. Observe that the sequence \((c_n) \) is periodic with period \(2^N \) beginning with \(c_0 \). Let us write down the first 16 elements of the Thue-Morse sequence and of the sequences \((c_n) \) for \(N = 0, 1, 2 \):

\[
\begin{align*}
(c_i) & : & \quad 1101001100101101\ldots \\
N = 0 & : & \quad 11111111111111\ldots \\
N = 1 & : & \quad 11010101010101\ldots \\
N = 2 & : & \quad 1101001100110011\ldots
\end{align*}
\]

Let us note for further reference that

\[(8) \quad \tau_i = \tau_{i-2^N} \quad \text{for} \quad 2^{N+1} \leq i < 2^{N+1} + 2^N. \]

Indeed, this follows easily from (4).

It is clear that the equation
\[(9) \quad 1 = \frac{c_1}{\sqrt{3}} + \frac{c_2}{\sqrt{2}} + \frac{c_4}{\sqrt{2}} + \ldots \]
defines an algebraic number \(1 < q_N \leq 2 \) satisfying \(q_N \to q^2 \) as \(N \to \infty \).
Proof of Theorem 2. Thanks to Theorem 1, it suffices to verify that the sequence \((c_n)\) is admissible in the following sense:

\[
(10) \quad c_{i+1} \cdots c_{i+2^n} < c_1 \cdots c_{2^n} \quad \text{whenever} \quad c_i = 0
\]

and

\[
(11) \quad c_{i+1} \cdots c_{i+2^n} < c_1 \cdots c_{2^n} \quad \text{whenever} \quad c_i = 1.
\]

For \(1 \leq i < 2^{N+1}\) both relations follow from the similar properties of the Thue–Morse sequence established in the preceding lemma because the first \(2^{N+1} + 2^N - 1\) of the two sequences coincide by equation (8).

For \(i \geq 2^{N+1}\) the relations (10) and (11) now follow by induction because the sequences \(c_{i+1} \cdots c_{i+2^n}\) and \(c_{i+1} \cdots c_{i+2^n}\) coincide, and also \(c_i = c_{i-2^n}\), so that \(c_i = 0\) implies \(c_{i-2^n} = 0\) and \(c_i = 1\) implies \(c_{i-2^n} = 1\). \(\square\)

REFERENCES

THE SMALLEST UNIVOQUE NUMBER IS NOT ISOLATED

Institut de Recherche Mathématique Avancée, Université Louis Pasteur et CNRS, 7, rue René Descartes, 67084 Strasbourg Cedex, France
E-mail address: komornik@math.u-strasbg.fr

Dipartimento di Metodi e Modelli, Matematica per le Scienze Applicate, Università di Roma "La Sapienza", Via A. Scarpa, 16, 00161 Roma, Italy
E-mail address: loreti@dmm.uniroma1.it

Department of Computer Science, University of Debrecen, H-4010 Debrecen, P.O. Box 12, Hungary
E-mail address: petho@neumann.math.klte.hu