
Some Aspects about the Efficiency of Bit Voters Implementation

Szabolcs Szilágyi
 *
, Daniela E.Popescu

 **
 and Mirela Pater

* Department of Computer Science,

University of Oradea, Faculty of Electrotehnics and Informatics,
410087 Oradea, Romania, E-Mail: depopescu@uoradea.ro

** Department of Computer Science,

University of Oradea, Faculty of Electrotehnics and Informatics,
410087 Oradea, Romania, E-Mail: sszilagyi@uoradea.ro

*** Department of Computer Science,

University of Oradea, Faculty of Electrotehnics and Informatics,

410087 Oradea, Romania, E-Mail: mirelap@uoradea.ro

Abstract - Voting is a fundamental operation in the

realization of ultrareliable systems that are based on

multi-channel computations. When data to be voted

on are generated at a high rate, the voter must be

able to keep up with the processing speed. The

actual voting delay might not be critical but the

voter throughput must match or exceed the input

data rate. Designs of hardware voters are presented

that can be easily pipelined to accommodate

extremely high data rates. Design strategies for bit

voters are described. Examples of resultant designs

are given and each design is evaluated with respect

to cost and performance.

Keywords: hardware voter, m-out-of-n voter,

majority circuit, ALTERA

I. INTRODUCTION

Voting is an important operation in the realization

of ultrareliable systems that are based on the multi-
channel computation paradigm. Voting is required

whether the multiple computation channels consist of

redundant hardware units, diverse program modules

executed on the same basic hardware, identical

hardware and software with diverse data, or any other
combination of hardware/program/data redundancy

and/or diversity. Depending on the data volume and

the frequency of voting, hardware or software voting

schemes are appropriate. Low-level voting with high

frequency necessitates the use of hardware voters

whereas high-level voting on the results of fairly
complex computations can be performed in software

without serious performance degradation or overhead.

The use of voting for obtaining highly reliable

data from multiple unreliable versions was first

suggested by von Neumann in the mid 1950s. Since
then, the concept has been used in fault-tolerant

computer systems and has been extended and refined

in many ways. Reliability modeling of voting

schemes by considering compensating errors,

handling of imprecise or approximate data,

combination with standby or active redundancy,

voting on digital “signatures” obtained from

computation states to reduce the amount of
information to be voted on, and dynamic modification

of vote weights based on a priori reliability data

constitute some of these extensions and refinements.

More recently, generalized voting with unequal vote

weights has been proposed for maintaining the
reliability and consistency of data stored with

replication in distributed computer systems. This has

become a very active research area.

Replicated systems operating synchronously can

achieve extremely high reliabilities if each
computation result is voted upon as it is produced.

Such frequent voting involves some delay which

lengthens the system cycle time and degrades the

performance.

This paper considers the design of bit-voters and
we compare our design based on the performance and

the cost implied by each method applied for design.

A. Gate-Level Design

A voter can be constructed as a two-level AND-

OR digital logic circuit with

g = n!/[m! (n - m)!] m-input AND gates and a

single g-input OR gate for small values of the

parameters m and n. Also, a two-level OR-AND
realization, requiring

g' = n!/[(m - 1)! (n - m + 1)!] (n-m+l)-input OR

gates and a single g'-input AND gate, is possible. In

the first realization, all distinct subsets of m inputs are

ANDed together and the voter output is “1” if at least
one of the AND results is “1”. In the second

realization, all possible subsets of n - m + 1 inputs are

ORed together and the voter output is “0” if at least

one of the OR results is “0”.

The two-level AND-OR realization is “simpler”

than the two-level OR-AND version (in terms of both

gate count and gate-input count) if m > (n + l)/2. The

complexities are equal for odd n if m = (n + l)/2.

As an example, for a 2-out-of-5 voter, the two-
level AND-OR design uses 10 two-input AND gates

and a single 10-input OR gate while the OR-AND

design is less complex with 5 four-input OR gates and

one 5-input AND gate.

For large values of n, two-level designs are
impractical. Assuming the use of f-input gates and

ignoring the possibility of gate sharing, the total

number of gates in the two-phase AND-OR and OR-

AND realizations will change from g + 1 and g’ + 1

to:

G = g liub((m-l)/(f-l))+ liub((g-l)/(f-l))

G’ = g’ liub((n-m)/(f-l))+liub((g'-1)/(f-l))

With gate sharing, an exact general gate-count

analysis becomes difficult. However bounds for the
number of gates can be obtained that are close to

actual values and show the excessive complexity of

this approach for large values of n. It is thus

imperative to explore more structured design

techniques.

B . Decomposition-Based Design

Hierarchical decomposition strategy (divide-&-

conquer) can be used to facilitate the design. There

are two ways to proceed with the decomposition

approach:

1) Picking a partitioning scheme and then designing

a suitable merging network.

2) Selecting a merging network and then designing
the required partitioning algorithm.

With the first approach, we divide the inputs into

disjoint subsets, enumerate the various combinations

in which different subsets can contribute votes in

such a way that the voting threshold is matched or
exceeded, provide smaller voters to realize these

contributions, and finally, design a logic network for

combining the results. Because the subsets can be

selected in many different ways, this approach does

not lend itself to general analyses. We will thus limit

our discussion to a simple example:

Consider the design of a 3-out-of-5 voter using the

subsets 1S ={ 321 ,, xxx } and 2S = { 54 , xx }. The

combinations that match or exceed the threshold of 3

are:

3-of-3 in 1S + (2-of-3 in 1S and l-of-2 in 2S) +

(l-of-3 in 1S and 2-of-2 in 2S)

This yields the logical expression:

54321

541332214321

)(

))((

xxxxx

xxxxxxxxxxxx

+++

+++++

which directly translates into a 4-level logic circuit

with 10 gates and 25 input lines.

We next explore the second decomposition

strategy with multiplexers used as merging networks.

Our interest in this approach arises from the
availability of multiplexers as off-the-shelf universal

components. The strategy is to select a subset of the

inputs as control inputs to a multiplexer, determine

the residual input functions, and then repeat the

process for each function, if needed, until easily

realizable functions are obtained.
For example, with a 2-input multiplexer in the first

decomposition stage, the residual functions

correspond to an m-out-of-(n-l) voter and an (m-l)-

out-of-(n-l) voter. To design a 3-out-of-5 voter using

2-input multiplexers, we take 1x as the first control

variable. The residual functions corresponding to 1x

= 0 and 1x = 1 are 542532432 xxxxxxxxx ++ and

545343524232 xxxxxxxxxxxx +++++ ,

yielding the result:

)]]

('[])('['[

5

43221254321

x

xxxhxxhxxxxxx

+

+++++

where 545343 xxxxxxh ++= has the 2-input

multiplexer realization

)]()('[543543 xxxxxxh ++= .

The resulting circuit implementation using

ALTERA MAX+PLUS II is shown in Figure 1a.

Clearly, a 4-input multiplexer can replace the last two

levels. With 8-input multiplexers, the expression
becomes:

]''''

'''''[

321232123211321

232113211321

xxxhxxxhxxxhxxx

hxxxhxxxhxxx

++++

+++

where)(541 xxh = and)(542 xxh += . The

resulting circuit is depicted in Figure 1b.

Figure 1a

Figure 1b

C. Arithmetic-Based Design

In the “arithmetic” approach, the sign of –t +

∑)(iivx is computed. The products iivx can

computed by AND gates and then added by standard

carry-save technique to yield the final result. If the

iv s are fixed, the hardware realization can be

optimized in each case by compressing the constant

0s in the binary numbers to be added.

Consider as an example a voter with 6 bit-inputs
having fixed associated votes of 2, 2, 2, 2, 1, 1 and

the threshold of 5. The arithmetic expression to be

evaluated is:

-5 + 2 1x + 2 2x + 2 3x + 2 4x + 5x + 6x

The multiple-operand binary addition (1011) 2 +

(41xx) 2 + (52xx) 2 + (63xx) 2 can be performed

by 4 full adders and 2 half adders organized in a 4-

level circuit.(Figure 2) The leftmost 1 can be ignored

since it only causes a complementation that cancels
the complementation needed for obtaining the

resultant output from the sign bit.

Figure 2

Instead of using full adders and half adders, one

can use larger building blocks known as parallel

counters, and parallel compressors, which convert a

number of input bits to a smaller number of output

bits while maintaining the arithmetic value being

represented.

D. Design with Selection Networks

The design of an m-out-of-n voter is equivalent to

selecting the
thm largest value from among n input

bits. Selection networks can be built from 2-sorter

(comparator) cells. Knuth defines three types of

selection networks with n inputs:

1) Select the m largest values and move them to m

outputs in no particular order.

2) Select the
thm largest value and move it to a

specified output line.

3) Select the m largest values and move them to m

output lines in sorted order.

Denoting the number of 2-sorter or comparator

cells by U(m, n), V(m, n), and W(m, n) for type-1,

type-2, and type-3 selectors above, we have:

U(m,n) < V(m,n) < W(m,n)

When dealing with bits, a two-sorter simply

consists of a pair of 2-input gates: An OR to produce

the larger and an AND to produce the smaller of the

two values.

Type-3 selectors do more than what is required

here. Type-2 selectors do exactly what we want.

However, for most practical values of m and n, a type-

1 selector augmented by an AND or OR circuit (that

indicates whether all of the m largest values are 1s or

whether all of the n - m + 1 smallest values are not all
0s) is both faster and more economical.

Consider the design of a 4-out-of-8 voter. The

required type-1 selection network that selects the 4

largest bit values and moves them to the upper half of

the output lines is given in Figure 3.

Figure 3

This selector requires 14 comparators (sorters) or

28 two-input gates with 4 gate levels of delay. A 4-
input AND gate connected to the upper 4 outputs

completes the circuit. Note that a 5-out-of-8 majority

voter results if we connect an OR gate to the lower 4

output lines.

II. COMPARISON OF VARIOUS DESIGNS

We will compare the designs only for simple

majority voters (i.e., when m = glib(n/2)+1. Figure4

shows the cost of majority voters designed based on

2-level logic expressions (“gate-level”), two-input
multiplexer decomposition, the arithmetic-based

approach, and selection networks, assuming

maximum gate fan-in of 4. Figure 4 indicates that the

gate-level or multiplexer-based approach is best for

small values of n whereas selection networks offer the

most economical solution for larger values of n. The
theory of selection networks is well-developed and

efficient designs are available.

Figure 4

A comparison of delays is much more difficult. If
the designs are used with pipelining, the differences

in latencies (number of gate levels) are not significant

as far as throughput is concerned. However, the

number of gate levels does affect the cost due to the

requirement for latches between pipeline stages. A

general analysis is impractical because the number of
logic signals going from one pipeline stage to the next

cannot be expressed as a simple function of the

relevant parameters.

III. CONCLUSIONS

In this paper, we have explored and compared

some useful design techniques for m-out-of-n bit-

voters. Despite the fact that the designs are quite

practical, and in some cases asymptotically optimal,

no claim is made as to their absolute efficiency or
optimality. There may be other methods that yield

better designs for a given set of requirements.

REFERENCES

[1] Vári K., Ştefan, “Sisteme Tolerante la Defecte”,

Editura UniversităŃii din Oradea, 2001
[2] Parhami, B., "Voting Networks", IEEE Transactions

on Reliability, Vol. 40, pp. 380-386, Aug. 1991.

[3] Knuth, D.E., The Art of Computer Programming —
Vol. 3: Sorting and Searching, Addison-Wesley,
1973, Section 5.3.4, pp. 220-246.

[4] Parhami, B., "Design of m-out-of-n Bit-Voters", IEEE

Transactions on Reliability, pp. 1260-1264, Aug.
1991.

[5] Swartzlander, E.E., "Parallel Counters," IEEE
Transactions on Computers, Vol. C-22, No. 11, Nov.
1973, pp. 1021-1024.

[6] Waser, S. and M.J. Flynn, Introduction to Arithmetic
for Digital System Designers, Holt, Rinehart, &
Winston, 1982.

[7] Parhami, Behrooz., “Introduction to Parallel Processing

– Algorithms and Arhitectures”, New York, pp. 129-
133

