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Abstract - Voting is a fundamental operation in the 

realization of ultrareliable systems that are based on 

multi-channel computations. When data to be voted 

on are generated at a high rate, the voter must be 

able to keep up with the processing speed. The 

actual voting delay might not be critical but the 

voter throughput must match or exceed the input 

data rate. Designs of hardware voters are presented 

that can be easily pipelined to accommodate 

extremely high data rates. Design strategies for bit 

voters are described. Examples of resultant designs 

are given and each design is evaluated with respect 

to cost and performance. 
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I. INTRODUCTION 

 

Voting is an important operation in the realization 

of ultrareliable systems that are based on the multi-
channel computation paradigm. Voting is required 

whether the multiple computation channels consist of 

redundant hardware units, diverse program modules 

executed on the same basic hardware, identical 

hardware and software with diverse data, or any other 
combination of hardware/program/data redundancy 

and/or diversity. Depending on the data volume and 

the frequency of voting, hardware or software voting 

schemes are appropriate. Low-level voting with high 

frequency necessitates the use of hardware voters 

whereas high-level voting on the results of fairly 
complex computations can be performed in software 

without serious performance degradation or overhead. 

 

The use of voting for obtaining highly reliable 

data from multiple unreliable versions was first 

suggested by von Neumann in the mid 1950s. Since 
then, the concept has been used in fault-tolerant 

computer systems and has been extended and refined 

in many ways. Reliability modeling of voting 

schemes by considering compensating errors, 

handling of imprecise or approximate data, 

combination with standby or active redundancy, 

voting on digital “signatures” obtained from 

computation states to reduce the amount of 
information to be voted on, and dynamic modification 

of vote weights based on a priori reliability data 

constitute some of these extensions and refinements. 

More recently, generalized voting with unequal vote 

weights has been proposed for maintaining the 
reliability and consistency of data stored with 

replication in distributed computer systems. This has 

become a very active research area.  

 

Replicated systems operating synchronously can 

achieve extremely high reliabilities if each 
computation result is voted upon as it is produced. 

Such frequent voting involves some delay which 

lengthens the system cycle time and degrades the 

performance. 

 

This paper considers the design of bit-voters and 
we compare our design based on the performance and 

the cost implied by each method applied for design. 

 

A.  Gate-Level Design 

 
A voter can be constructed as a two-level AND-

OR  digital logic circuit with  

 

g = n!/[m! (n - m)!] m-input AND gates and a 

single g-input OR gate for small values of the 

parameters m and n. Also, a two-level OR-AND 
realization, requiring  

 

g' = n!/[(m - 1)! (n - m + 1)!] (n-m+l)-input OR 

gates and a single g'-input AND gate, is possible. In 

the first realization, all distinct subsets of m inputs are 

ANDed together and the voter output is “1” if at least 
one of the AND results is “1”. In the second 

realization, all possible subsets of  n - m + 1 inputs are 



ORed together and the voter output is “0” if at least 

one of the OR results is “0”. 
 

The two-level AND-OR realization is “simpler” 

than the two-level OR-AND version (in terms of both 

gate count and gate-input count) if m > (n + l)/2. The 

complexities are equal for odd n if m = (n + l)/2.  

As an example, for a 2-out-of-5 voter, the two-
level AND-OR design uses 10 two-input AND gates 

and a single 10-input OR gate while the OR-AND 

design is less complex with 5 four-input OR gates and 

one 5-input AND gate. 

 

For large values of n, two-level designs are 
impractical. Assuming the use of f-input gates and 

ignoring the possibility of gate sharing, the total 

number of gates in the two-phase AND-OR and OR-

AND realizations will change from g + 1 and g’ + 1 

to: 

G = g liub((m-l)/(f-l))+ liub((g-l)/(f-l))  
 

G’ = g’ liub((n-m)/(f-l))+liub((g'-1)/(f-l)) 

 

With gate sharing, an exact general gate-count 

analysis becomes difficult. However bounds for the 
number of gates can be obtained that are close to 

actual values and show the excessive complexity of 

this approach for large values of n. It is thus 

imperative to explore more structured design 

techniques. 

 
B . Decomposition-Based Design 

 

Hierarchical decomposition strategy (divide-&-

conquer) can be used to facilitate the design. There 

are two ways to proceed with the decomposition 

approach: 
 

1)   Picking a partitioning scheme and then designing 

a suitable merging network. 

 

2)  Selecting a merging network and then designing 
the required partitioning algorithm. 

 

With the first approach, we divide the inputs into 

disjoint subsets, enumerate the various combinations 

in which different subsets can contribute votes in 

such a way that the voting threshold is matched or 
exceeded, provide smaller voters to realize these 

contributions, and finally, design a logic network for 

combining the results. Because the subsets can be 

selected in many different ways, this approach does 

not lend itself to general analyses. We will thus limit 

our discussion to a simple example: 
 

Consider the design of a 3-out-of-5 voter using the 

subsets 1S ={ 321 ,, xxx } and 2S = { 54 , xx }. The 

combinations that match or exceed the threshold of  3 

are:  

3-of-3 in 1S  + (2-of-3 in 1S  and l-of-2 in 2S ) + 

(l-of-3 in 1S  and 2-of-2 in 2S ) 

 

This yields the logical expression:   

54321
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xxxxxxxxxxxx
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which directly translates into a 4-level logic circuit 

with 10 gates and 25 input lines. 

 

We next explore the second decomposition 

strategy with multiplexers used as merging networks. 

Our interest in this approach arises from the 
availability of multiplexers as off-the-shelf universal 

components. The strategy is to select a subset of the 

inputs as control inputs to a multiplexer, determine 

the residual input functions, and then repeat the 

process for each function, if needed, until easily 

realizable functions are obtained. 
For example, with a 2-input multiplexer in the first 

decomposition stage, the residual functions 

correspond to an m-out-of-(n-l) voter and an (m-l)-

out-of-(n-l) voter. To design a 3-out-of-5 voter using 

2-input multiplexers, we take 1x  as the first control 

variable. The residual functions corresponding to 1x  

= 0 and 1x  = 1 are 542532432 xxxxxxxxx ++  and 

545343524232 xxxxxxxxxxxx +++++ , 

yielding the result: 
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where 545343 xxxxxxh ++=  has the 2-input 

multiplexer realization  
 

)]()('[ 543543 xxxxxxh ++= .  

 

The resulting circuit implementation using 

ALTERA MAX+PLUS II is shown in Figure 1a. 

Clearly, a 4-input multiplexer can replace the last two 

levels. With 8-input multiplexers, the expression 
becomes: 
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where )( 541 xxh =  and )( 542 xxh += . The 

resulting circuit is depicted in Figure 1b. 

 



 
 

Figure 1a 

 

 

 

                       
 

Figure 1b 

 
 

 

C.  Arithmetic-Based Design 

 
In the “arithmetic” approach, the sign of  –t + 

∑ )( iivx  is computed. The products iivx  can 

computed by AND gates and then added by standard 

carry-save technique to yield the final result. If the 

iv s are fixed, the hardware realization can be 

optimized in each case by compressing the constant 

0s in the binary numbers to be added. 

Consider as an example a voter with 6 bit-inputs 
having fixed associated votes of 2, 2, 2, 2, 1, 1 and 

the threshold of 5. The arithmetic expression to be 

evaluated is: 

 

 

-5 + 2 1x  + 2 2x  + 2 3x  + 2 4x  + 5x  + 6x  

 

The multiple-operand binary addition (1011) 2  + 

( 41xx ) 2  + ( 52xx ) 2  + ( 63xx ) 2  can be performed 

by 4 full adders and 2 half adders organized in a 4-

level circuit.(Figure 2) The leftmost 1 can be ignored 

since it only causes a complementation that cancels 
the complementation needed for obtaining the 

resultant output from the sign bit. 

 



 
 

Figure 2 

 
Instead of using full adders and half adders, one 

can use larger building blocks known as parallel 

counters, and parallel compressors, which convert a 

number of input bits to a smaller number of output 

bits while maintaining the arithmetic value being 

represented. 

 
D. Design with Selection Networks 

 

The design of an m-out-of-n voter is equivalent to 

selecting the 
thm  largest value from among n input 

bits. Selection networks can be built from 2-sorter 

(comparator) cells. Knuth defines three types of 

selection networks with n inputs: 

 
1)    Select the m largest values and move them to m 

outputs in no particular order. 

2)   Select the 
thm  largest value and move it to a 

specified output line. 

3)    Select the m largest values and move them to m 

output lines in sorted order. 

Denoting the number of 2-sorter or comparator 

cells by U(m, n), V(m, n), and W(m, n) for type-1, 

type-2, and type-3 selectors above, we have: 

 

U(m,n) < V(m,n) < W(m,n) 

 
When dealing with bits, a two-sorter simply 

consists of a pair of  2-input gates: An OR to produce 

the larger and an AND to produce the smaller of the 

two values. 

 
Type-3 selectors do more than what is required 

here. Type-2 selectors do exactly what we want. 

However, for most practical values of m and n, a type-

1 selector augmented by an AND or OR circuit (that 

indicates whether all of the m largest values are 1s or 

whether all of the n - m + 1 smallest values are not all 
0s) is both faster and more economical. 

 

Consider the design of a 4-out-of-8 voter. The 

required type-1 selection network that selects the 4 

largest bit values and moves them to the upper half of 

the output lines is given in Figure 3.  

 

 

 
 

Figure 3 

 

 



This selector requires 14 comparators (sorters) or 

28 two-input gates with 4 gate levels of delay. A 4-
input AND gate connected to the upper 4 outputs 

completes the circuit. Note that a 5-out-of-8 majority 

voter results if we connect an OR gate to the lower 4 

output lines. 

 

II. COMPARISON OF  VARIOUS DESIGNS 

 

We will compare the designs only for simple 

majority voters (i.e., when m = glib(n/2)+1. Figure4 

shows the cost of majority voters designed based on 

2-level logic expressions (“gate-level”), two-input 
multiplexer decomposition, the arithmetic-based 

approach, and selection networks, assuming 

maximum gate fan-in of 4. Figure 4 indicates that the 

gate-level or multiplexer-based approach is best for 

small values of n whereas selection networks offer the 

most economical solution for larger values of n. The 
theory of selection networks is well-developed and 

efficient designs are available. 

 

 

 

                      
Figure 4 

 

 

A comparison of delays is much more difficult. If 
the designs are used with pipelining, the differences 

in latencies (number of gate levels) are not significant 

as far as throughput is concerned. However, the 

number of gate levels does affect the cost due to the 

requirement for latches between pipeline stages. A 

general analysis is impractical because the number of 
logic signals going from one pipeline stage to the next 

cannot be expressed as a simple function of the 

relevant parameters. 

 

 

 

 

III. CONCLUSIONS 
  

In this paper, we have explored and compared 

some useful design techniques for m-out-of-n bit-

voters. Despite the fact that the designs are quite 

practical, and in some cases asymptotically optimal, 

no claim is made as to their absolute efficiency or 
optimality. There may be other methods that yield 

better designs for a given set of requirements.  
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