
Deformation and Clusterization in Atomic Nuclei
J. Cseh∗, A. Algora∗, J. Darai†, P. O. Hess∗∗, N. V. Antonenko‡, R. V. Jolos‡

and W. Scheid‡

∗Institute of Nuclear Research, Debrecen, Hungary
†Institute of Experimental Physics, University of Debrecen, Debrecen, Hungary

∗∗Instituto de Ciencias Nucleares, UNAM, Mexico
‡Institut für Theoretische Physik der Justus-Liebig-Universität, Giessen, Germany

Abstract. The relation of the quadrupole deformation and clusterization in atomic nuclei is studied
from the viewponts of energetics and exclusion principle.

Keywords: quadruploe deformation and clusterization, SU(3) symmetry, selection rule, energetic
stability
PACS: 21.60.Fw, 21.60.Gx.

As for the quadrupole deformation of the atomic nuclei is concerned, today we
know not only normal deformed states, but superdeformed and hyperdeformed states
as well. As for the clusterization of the atomic nucleus is concerned, today we know not
only alpha-clusters, but exotic clusters (e.g. 14C) and very exotic clusters (e.g. 108Mo)
as well. Therefore, the classical question: how these two phenomena, i.e. quadrupole
deformation and clusterization are related to each other, is more interesting than ever
before.

One of the ways of studying this interrelation is provided by the application of cluster
models. Indeed, several aspects of the problem has been investigated by applying cluster
models to both light and heavy nuclei.

A simple and successful cluster model is the local potential model [1] in which a
local potential describes the cluster-cluster interaction. In many cases this model is
able to reproduce the energies of the cluster states, their half-lives, and electromagnetic
transitions. The cluster-configuration is not determined in this model directly (it is
an a priori assumption), therefore, external arguments have to be applied for their
determination. Several such arguments have been tested, the most general one is based
on the binding energies. According to that the larger

D(1,2) = [B(1)−BL(1)]+ [B(2)−BL(2)] (1)

value corresponds to more probable clusterization. Here B(i) is the experimental binding
energy of the ith cluster and BL(i) stands for the liquid drop value [2]. In a more refined
version of the method this argument of the energetic stability is combined with another
empirical rule of the no-dipole constraint:

Z1

A1
≈ Z2

A2
≈ ZT

AT
, (2)

where Z and A stand for charge and mass number, respectively, 1 and 2 indicate the
clusters, while T means total.
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Another model which applies also a potential for the description of the intercluster in-
teraction is the dinuclear system model (DNS) [3]. This approach is able to take into ac-
count different cluster-configurations, characterised by the charge and mass-asymmetry
coordinates, which are taken as a dynamical variables, thus their values are determined
by a differential equation. In this way the best possible configuration is provided by the
internal arguments of the model, based also on the best energetic circumstances, but in
this case the cluster-cluster interaction (both nuclear and Coulombic) are included as
well.

When we consider the problem of the building up of an atomic nucleus from nucleons
(also when it is done in a two-step procedure, by applying clusters of nucleons as
building blocks), there are two basic principles which govern the process: the energy-
minimum principle, and the Pauli-exclusion principle. The first one is taken care by the
phenomenologic potential models mentioned above, the second one, however, is not. It
can be dealt only microscopically, and it is usually a very complicated problem. In order
to illustrate the difficulties, let us take the simple example of the 18O nucleus.

When 18O is described in the shell model, it can be considered as two neutrons in the
average potential of the 16O core, therefore, it is a two-body-problem in a limited model
space. (Even in a better approximation, when particle-hole excitations are allowed the
problem is still tractable.) When, however, we describe it in terms of a microscopic
cluster model, the antisymmetrization of the 18-body wave-functions has to be carried
out. The problem is even more difficult, of course, if instead of 18 nucleons we have
A = 118 or A = 218. Then the fully microscopic description is out of question.

How can we take into account the consequences of the exclusion principle, when the
number of nucleons is large? Like in many other problems in physics it turns out that
symmetry-considerations can provide us with a simple solution to a complex problem.
The logic of the solution is the following: if we have a symmetry, then a conservation law
follows from it, providing us with conserved quantities, i.e. with good quantum numbers.
Based on them one can formulate a selection rule, which helps us to distinguish between
Pauli-allowed and Pauli-forbidden states.

The U(3) symmetry is known to be a good approximative symmetry in nuclei [4].
Based on this symmetry one can formulate a simple selection rule (for binary clusteri-
zation) [5]:

[n1,n2,n3] = [n(1)
1 ,n(1)

2 ,n(1)
3 ]⊗ [n(2)

1 ,n(2)
2 ,n(2)

3 ]⊗ [nR,0,0]. (3)

Here [n1,n2,n3] is the set of good quantum numbers (labels of an irreducible represen-
tation) characterising a specific state (e.g. the ground state) of the parent nucleus, the
superscript 1 or 2 refer to the clusters, while R stands for their relative motion. This se-
lection rule was derived first for harmonic oscillator interactions [6, 7], but it turns out to
be valid for more general interactions as well [8]. The selection rule says that if one of
the set of U(3) quantum numbers obtained from the triple product of he right-hand side
matches with that of the left-hand side, then the cluster-configuration is Pauli-allowed,
if not it is forbidden.

When a cluster configuration is forbidden, we can characterise its forbiddenness quan-
titatively in the following way [9]. The distance between a U(3) reaction channel and
the irrep of the parent nucleus is defined as: min(

√
(∆n1)2 +(∆n2)2 +(∆n3)2), where
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∆ni = |ni − nc
i,k|. Here ni refers to the U(3) representation of the parent nucleus, while

nc
i,k stands for the U(3) representation of channel c, obtained from the right-hand-side

of Eq.(3), while the k index distinguishing the different product-representations. Based
on this quantity we determine, for reasons of convenience, the reciprocal forbiddenness
S in such a way, that 0 ≤ S ≤ 1:

S =
1

1+min(
√

(∆n1)2 +(∆n2)2 +(∆n3)2)
. (4)

Then S = 0, and S = 1 correspond to completely forbidden and allowed clusterizations,
respectively.

It is worth stressing here that the conditions formulated by Eqs (1-4) for the selection
of clusterizations (both from the energetics and from the exclusion principle point of
views) can be generalised to ternary and multicluster configurations in a straighforward
way.

The application of the present considerations to the binary clusteriztions of the 36Ar
nucleus give the result as shown in Fig. 1. The superdeformed sate of this nucleus
has been identified experimentally [10], while for the hyperdeformed state there is
a theoretical prediction [11]. A more detailed discussion on the application of the
microscopic selection rule to this system is given in [12]. In short we can summarise
its result by saying that in the normal deformed state the asymmetric clusterization is
preferred, in the hyperdeformed state the symmetric clusterization is allowed, while the
situation of the superdeformed state is in between: there is an island of allowed cluster-
configurations which does not include the most symmetric, and the most asymmetric
fragmentations. Our preliminary results [13] for the binary clusterizations of the 40Ca
nucleus show some similar features.

Concerning the energetic stability of the binary cluster-configurations, it is remark-
able, that the simple binding energy argument and the more detailed DNS model cal-
culation results in the same sequence of clusterizations: alpha > berilium > carbon >
oxigen. (Preliminary calculations show that for 40Ca the carbon is energetically more
favoured than the berilium, from both models.)

In conclusion we can say that the two aspects of nucler clusterization, i.e. the energetic
preference and the exclusion principle are complementary to each other, therefore, they
do not necessarily prefer the same cluster-configuration. The likely candidates are those
ones, which are favoured by both aspects. Another interesting finding of our calculations
is that the same cluster-configuration (e.g. 24Mg+12C) can be present both in the ground
state and in the superdeformed as well as in the hyperdeformed state of a nucleus
(36Ar), if we do not apply oversimplifying model-assumptions, i.e. fully appreciate the
deformed nature of the clusters, their possible relative orientations with respect to he
molecular axis, and the exclusion principle.

For heavy nuclei the U(3) symmetry is not valid in its original form, as we discussed
here, however, a generalised version of it, called effective or quasidynamical U(3)
symmetry may still survive. Based on that concept the present considerations can be
extended to heavy nuclei as well [14].

Work is in progress for the description of ternary cluster-configurations in a similar
manner [15].
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FIGURE 1. Left panel: reciproc forbiddenness (S) for the 36Ar clusterizations. ND stands for the normal
deformed (ground) state, while SD and HD indicate super and hyperdeformed states, respectively. a) and
b) correspond to two candidates for the U(3) symmetries of the SD and HD states. Right panel: Energetic
stability of binary clusterizations in 36Ar, based on binding energies (upper part) and from DNS model-
calculation (lower part). D(1,2) is defined in Eq. (1), while U stands for potential energy.
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