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List of symbols and abbreviations

SMAs

DSC

Aug
ASC
AS.

do
d

shape memory alloys
austenitic phase

martensitic phase
temperature

martensite start temperature
martensite finish temperature
austenite start temperature

austenite finish temperature

applied uniaxial stress
start martensite stress
finish martensite stress
start austenite stress

finish austenite stress

differential scanning calorimeter

martensite volume fraction

chemical Gibbs free energy

derivative of the chemical Gibbs free energy by &

non chemical Gibbs free energy

chemical Gibbs free energy of martensite phase

chemical Gibbs free energy of austenite phase

the equilibrium temperature

difference of the internal energy of the martensite and austenite phases,
AU - UM - U,

derivative of the AU, by &

entropy change, AS, - M- SAC

derivative of the AS. by §

total dissipative energy

total elastic energy

derivative of the total dissipative energy by &

dissipative energy contribution in the austenite phase (at & =0)

dissipative energy contribution in the martensite phase (at § =1)



derivative of the total elastic energy by &

elastic energy contribution in the austenite phase (at g =0)
elastic energy contribution in the martensite phase (at § =1)
magnetic field

pressure

magnetization

molar volume

transformation strain

heat of transformation

heat capacity of austenite

heat capacity martensite

resistance

volume ratio of the stress induced (single) variant martensite



Introduction

The amazing shape memory property of shape memory alloys (SMAS)
attracted the attention of many scientists and engineers in the last decades, because of
a wide range of important technical applications. Many models have been published
for the description of the shape memory property as well as for the determination of
critical parameters important for the technology. Furthermore, many experiments
have also been carried out to understand the basic mechanisms and the details of the

shape memory effect (SME).

In my thesis - after an introduction containing the most important definitions,
notations and terminologies - I will describe in details one of these models (developed
in Debrecen) and use it for analysis of the experimental results obtained in Cu based
single and  polycrystalline  samples  (CuAl(11.5wt%)Ni(5.0wt%)  and
CuAl(11,6wt%)Be(0.36wt%) respectively). By using this model I was able to
calculate the non chemical (elastic and dissipative) free energy terms and their
contributions to the martensite/austenite phase transformation and could also obtain
the stress and temperature dependence of these energies. Furthermore, I also
determined the dependence of the above energies on the number of thermal as well as

mechanical cycles.



Aim of my work

Experimental investigation of thermal and stress induced martensitic
transformations in single and polycrystalline Cu-based shape memory alloys. Using
the model developed in Debrecen, carry out the separation of the non-chemical energy
contributions (dissipative and elastic energies) from the free energy of the
transformation. Determining how the dissipative and elastic energies depend on the
stress and temperature as well as on the number of the thermal and mechanical cycles.
Since in the interpretation of data obtained, the stress and temperature dependence of
the transformation strain has a central role, these functions also have to be determined

experimentally.

My work was

¢ Finding the full transformation strain as the function of temperature
(for mechanically induced transformation) and stress (for thermally
induced transformations). Determining the start and finish temperatures
as well as start and finish stresses in the martensite transformations as a
function of temperature and stress, and the effect of the contribution of
the elastic energy on these parameters;

e Studying the stress and temperature dependence of the dissipative and
elastic energies;

e Studying the effects of the thermal and mechanical cycling on the

elastic and dissipative energies.



Chapter |
Shape memory alloys

This chapter summarizes the most

important  definitions,
terminologies and typical examples of application of shape memory alloys.

1.1 Active materials

notations,

In the last few decades the demand for lighter, stronger materials with tailored

properties addressing stringent structural requirements and providing

engineering functionality (e.g., sensing, actuation, electromagnetic shie

additional

Iding) has

created a new branch of materials called multifunctional materials. A specific

subgroup of multifunctional materials exhibiting sensing and actuation capabilities is

known as active materials. Active materials in general exhibit a mechanical response

when subjected to a non mechanical field (thermal, electrical, magnetic, etc.; see Fig.

1.1.). Examples of active materials are piezoelectric and electrostrictive (coupling of

mechanical and electric fields), piezomagnetic and magnetostrictive (coupling of

mechanical and magnetic fields) materials and shape memory alloys [1.1].
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Fig. I.1. Actuation stress-strain diagram for active materials [I.1].



1.2 Shape memory alloys

Shape Memory Alloys (SMAs) form a unique class of alloys with ability to
remember their original shape and returning back to the pre-deformed shape by
heating, even under high load, i.e. they can be used as actuators. Furthermore, SMAs
can be used as vibration damping units absorbing and dissipating mechanical energy.
In the last few decades many publications have been devoted to the understanding of

their properties, microstructural behaviour and their industrial applications [1.1, 1.2].
1.3 Martensitic transformation

SMAs have two phases with two different crystal structures; the austenitic
phase (A) at high temperature - it is called as parent phase as well - and the
martensitic phase (M) at low temperature. The transformation from one phase to the
other is diffusionless, i.e. takes place by the change of the crystal structure by short
local rearrangements of atoms [1.3]. This transformation is called martensitic phase
transformation (Fig.1.2.).
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Fig. 1.2. Phase change during A/M (and M/A) transformation: the first step is the
development of multivariant martensite structure. In the second and third steps the
application of the stress results in the rearrangement of the variant structure
(approaching to a single variant structure) with large shape change. During the last
step (M/A transformation) the original shape is recovered. This is the so-called one-

way shape memory effect.



Usually the austenite phase has cubic (high symmetry) structure, whereas the
martensite structure may be tetragonal, orthorhombic or monoclinic (with low
symmetry). The martensite phase can be formed in crystallographically equivalent but
differently oriented regions: these are called variants. During the A/M
phase transformation - without applying any external stress - randomly oriented
multivariant (or twinned) martensite structure develops with small or negligible shape
change (Figs. 1.2. and 1.3.).

Fig. 1.3. shows the transformation from one phase to the other phase showing
the four characteristic temperatures associated with the phase transformation. From
the martensite to the austenite phase (by heating up) the austenite starts at 4, and
finishes at 4. Similarly, from the austenite to the martensite phase (by cooling down)
the martensite phase starts at A/ and finishes at M.

These transformation temperatures can be determined by measuring certain
physical properties, such as the absorbed and released heat in DSC, resistance,

elongation, etc., as the function of temperature.
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Fig. 1.3. Thermally induced phase transformation.

The change from one phase to another can be triggered not only thermally but
also by applying mechanical stress. At fixed temperature, by increasing the applied

stress there will be a phase transformation from austenite to martensite, with single

10



variant structure (Fig. 1.4.) having a visible change in the shape of sample. In the

literatures, four characteristic stresses are used; start and finish of martensite, o,,; and

o/, and start and finish of austenite, o4, and .41, respectively (see Fig. 1.4.).

>

Detwinned Martensite

Stress, o

Af

Austenite

Strain, ¢

Fig. 1.4. Mechanically induced phase transformation [I.1].

1.4 Basic thermodynamics of martensitic transformations

Because there is no change in the composition during the martensitic
transformation, the chemical Gibbs free energy can be plotted as a function of the
temperature as shown in Fig. 1.5. 7} is the equilibrium temperature where the
chemical Gibbs free energies of the martensite and austenite phases (G, and G.*,

respectively) are equal to each other. At this point
4G, =GM-GA =AU, ~T,4S.= 0 (1.1)

where AU, and A4S, denote the internal energy and entropy change of the

transformation, respectively.
In general the total change of the Gibbs free energy (i.e taking also into

account the elastic and dissipative energy contributions) can be given as:

11



AG, = AG, + AGu. =AGc + (D + E). (1.2)

Here AG. = (T,-T)AS. chemical term is the driving force for the transformation (and it
is negative for 7<T, because AS.=S." - S, <0: see also Fig. 1.5), and D and E denote
the dissipative and elastic energy, respectively. The dissipative energy is due to the
frictional motion of the interfaces, while the elastic energy accumulated/released
because of the overlapping of elastic fields of the different martensite nuclei and/or
variants. Thus, the elastic energy is positive for the A—M transformation and negative
for the reverse direction. On the other hand, the dissipative energy is positive for both

directions [1.4].

G

Fig. I. 5. Temperature dependence of the chemical Gibbs free energies and the

position of the equilibrium transformation temperature.

It is clear from Fig. 1.5. and eq. (1.2) that at a certain temperature below T, (here AG.
is negative and both D and E are positive). AG; will be zero when the chemical and
non-chemical terms have the same absolute value. From this point the particle formed
can grow further or become smaller only by undercooling or overheating, respectively

(balance between the chemical and non-chemical terms).
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1.5 Terminology

1.5.1 Shape memory effect

SMAs exhibit the shape memory effect (SME) when they are deformed in the
martensitic phase and then unloaded at a temperature below A4s. The reversible shape
change, leading to a large elastic deformation, is due to the stress induced phase
transformation as it is illustrated in Fig. 1.4. This behaviour is called super or pseudo
elasticity.

If one applies uniaxial stress on the material in martensitic state just after
cooling down from austenite, then the firstly formed randomly oriented martesite
variant structure will be rearranged to the single variant structure with high plastic
deformation, which can be as large as about 6% (see the first three steps in Fig. 1.2.).
This deformation remains even if one removes the stress. This is the so called super-
plastic behaviour, during which there is only a very moderate dislocation activity
(which is typical in common plasticity).

If the material deformed in martensitic phase is heated above A it will retain
to its original shape by transforming back into the parent austenitic phase (see also

Fig. 1.6.). This is the one-way shape memory effect.

O (MPa)
Detwinned
800 Martensite

% C

600

Twinned
Martensite 0
6% €
i -
Detwinned
Martensite

Fig. 1.6. Stress - strain - temperature diagram for NiTi SMA4 [1.1].
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1.5.2 Two-way shape memory effect

In the case, schematically (a) 293K =
illustrated in Fig. 1.2., only the shape of
the austenite phase is remembered. But, (b) 293K ALY
it is also possible to remember the shape
of the martensitic phase under certain {c] 373K -
conditions. For example repeating many
. (e} 293K
times the subsequent steps shown on —— R
Fig. 1.2. it happens that during a next
_ ) _ ) {a) 373K o
heating martensite variants mainly
belonging to the single variant structure
. . (f) Z73K 'erw
(see the shape after the third step) will
develop and thus, after such a “learning (g) 373K -
process”, the sample will change its 1Gem

shape in each cycle. This is the two way _
Fig. 1.7. Shape memory effect and the two

the specimen remembers the shape of the

martensite phase too can be explained as follows. Upon heavy deformation in
martensite phase, some dislocations are also introduced and these dislocations can still
exist even in the austenite phase after heating [1.5]. In the next cooling step the
presence of these dislocations can help the nucleation of those variants of the
martensite which existed just before the heating.

Fig. 1.7. illustrates the learning process and the two way shape memory
behaviour. When the applied stress (and strain) in the martensitic state (b) is relatively
small, the specimen reverts to the original shape completely (steps a-c). However,
when the applied stress is large (d), irreversible slips also occur, and the shape does
not revert to the original one even after heating above 45 [(c) and (e)]. In the next
cooling cycle, the specimen elongates automatically as shown in (f). Then, if heating
and cooling is repeated, the specimen changes its shape between (g) and (f),

respectively.

14



1.6 Typical shape memory alloys

Several alloys have been developed that display varying degrees and types of
shape memory behavior. The most commercially successful have been Ni-Ti, Ni-Ti-
X and Cu-based alloys [1.6, 1.7], Ni-Ti and ternary Ni-Ti—X alloys are used in more
than 90% of new SMA applications. Ni-Ti alloys are more expensive than copper
alloys, but they are preferred for their ductility, stability in cyclic applications,
corrosion resistance, biocompatibility, and higher electrical resistivity for resistive
heating in actuator applications. The most common Cu-based alloys, Cu—Al-Ni, Cu-
Zn—Al, and Cu—-Al-Be are used for their narrow thermal and adaptability to two-way

memory training [1.8].

1.7 SMA's Applications

Because of the amazing properties of the SMAs, there are lots of applications

from aerospace industry to consumer products.

1.7.1 Aerospace

Many of the initial ideas for production and applications of SMAs were pioneered
in the aerospace industry. SMA materials are used to take advantage of properties such
as high power-to-mass ratios and ideal actuating behavior in zero-gravity conditions.
Designs that use these properties replace heavier, more complex conventional devices

because of reduced weight, design simplicity, and reliability.

e Cryofit Hydraulic Pipe Couplings
SMA couplings were one of the first successful commercial applications
of SMAs. In 1969, Raychem Corporation introduced shrink-to-fit hydraulic
pipe couplings for F-14 jet fighters. This coupling is fabricated from a Ni-Ti—
Fe alloy whose martensitic transformation temperature is below -120 °C. It is
machined at room temperature to an inner diameter approximately 4% smaller
than the outer diameter of the piping designed to join. When cooled below -

120 °C, the coupling is forced to a diameter 4% greater than the pipe diameter

15



for an overall internal strain of about 8%. When warmed up, the coupling

diameter decreases to form a tight seal between the pipes.

Fig. 1.8. SMA devices. Clockwise from top left: memory card ejector mechanism for
laptop computers; Cryofit hydraulic pipe couplings; Cryocon electrical connector; fire

safety lid release for public garbage receptacles [1.8].

e Mars Sojourner Rover Actuator
SMA Ni-Ti wire was used to actuate a glass plate above a small solar
cell on the Rover unit during the Pathfinder/Sojourner mission to Mars. A
material adhesion experiment performed during the mission used the actuator
to replace large, heavy motors and solenoids.
e Smart Airplane Wings
Composite structures that have SMA wires embedded can be used to
change the shape of an airplane wing. The embedded wires may be activated
to constrict and improve the vibrational characteristics of the wing, heated to
change their effective modulus to reduce vibration, or activated to alter the

shape of the wing for optimal aerodynamics. All of these properties can be

16



used to produce an adaptive airplane wing that alters as environmental

conditions change to improve efficiency and reduce noise.

1.7.2 Medical

Because of its excellent biocompatibility (except for some persons
having Ni allergy) and corrosion resistance, Ni—Ti has been used in many successful
medical devices and is now widely accepted throughout the medical industry.

e Orthodontic Dental Arch Wires

e Orthopedic Devices

Fig. 1.9. Medical application of SMA4s [1.1].

1.7.3 Other industrial applications

SMAs applications for the automotive industry are challenging for two primary
reasons: the extreme range of operating temperatures expected during use and the
market demand for low-cost components. Some of the applications are like; Pressure
Control Governor Valve, Toyota Shape-Memory Washer, Rock Breakers, Heat

Engines ... etc.

17



1.7.4 Consumer Products

Nowadays, SMAs are used everywhere in our life here some of these applications

¢ Robotic Doll e Superelastic eyeglass frames
e Miscellaneous Products e Portable Phone Antennae

¢ Nicklaus Golf Clubs e Greenhouse Window Opener
e Recorder Pen Mechanism ¢ Rice Cooker Valve.

Fig. 1.10. Other applications of SMAs [1.1].

1.8 Magnetic shape memory alloys

The martenstic phase transformation can also be triggered by applying
external magnetic field in some ferromagnetic alloys SMAs such as Ni,MnGa and
CozNiAl [1.5, 1.9]. The strain can be up to 10%. This big strain is due to the
reorientation of the martenstic variants to one preferred variant according to the
magneto-elastic coupling between the martensite variants and magnetic domains: the
magnetic field tends arrange the magnetic domains and their rearrangement is coupled
to the rearrangement of the martensite variant structure too. The frequency of the
actuation is very high — can be even in the kHz range - because here the driving force
is the magnetic field and not the change of the temperature.

18
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Chapter 1l

Theoretical Background

In this chapter, I will describe in details of the model (Beke-Daroczi) [11.1-116]
used, i.e. the way of the determination of non-chemical (elastic and dissipative)

energy terms from the experimental data.
11.1 Introduction

Since the discovery of the martensite/austenite transformation by the German
metallurgist Adolf Martens (1850—1914), many models have been published about the
determination of the characteristic parameters such as 7, (equilibrium transformation
temperature, at which the chemical free energies of the two phases equals)) and the
elastic and the dissipative energies belonging to the phase transformation.

There is a long standing debate in the literature that while the contribution of
the dissipative energy, D, to the austenite/martensite, A/M, (or reverse, M/A)
transformation can be directly obtained from the experimental data (thermal hysteresis
loop, mechanical hysteresis loop, DSC curves), the contributions from the elastic, E,
and the chemical free energy, AGc, can not be separated. Since the temperature
dependence of AG, is described by AG.=AU.-TAS.=(T-Ty)AS., where AS.=AU./T,
(see also below) is the entropy change of the phase transformation, the separation of £
and AG, would need the knowledge of AS¢ and 7y. While the direct determination of
ASc 1s possible (e.g. from the measured DSC curves [I1.7]) the determination of 7} is
rather difficult. It has been shown that the simple expression proposed by Tong and

M +A4 .
Waynman [I1.8]: T, :S—zf— (where Ms and A4, are the martensite start and

austenite finish temperatures respectively) can not be valid in general. Salzbrenner
and Cohen [I1.9] have illustrated that this expression is valid only if the elastic energy

contributions to Mg and 4, can be neglected.
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1.2 Model of thermoelastic martensitic transformations

Martensitic transformations, as first order phase transformations with
hysteresis loops, can take place in both directions (i.e. austenite/martensite, A/M, and
reverse M/A) [11.10]. During such a transformation the change of the Gibbs free
energy per mole can be written e.g. as [II.11, I1.12] (if we neglect the interface term

for nucleation):
AGY = GM - G'= AG.* + E*+ D”. (IL1)

Obviously a similar expression can be written for the 4 —»M transformation as
well, using the index " Here AGCJis the change in the chemical Gibbs-free energy. E ’
and D* are the elastic and dissipative energies, respectively.

The elastic energy accumulates as well as releases during the down and up
processes just because the formation of differently oriented nuclei/variants of the
martensite phase is usually accompanied by a development of an elastic energy field
(due to the overlapping of transformation strains of different nuclei). It is usually
supposed that E* = - E” >0. The dissipative energy is always positive in both
directions. In principle, one more additional term, proportional to the entropy
production, should be considered, but it can be supposed [II.13] that for thermoelastic
transformations all the energy losses are mechanical works, which are dissipated
without entropy production, i.e. the dissipation is mainly energy relaxation in the form
of elastic waves. Indeed acoustic waves were detected as acoustic emissions during
the transformation. Thus in the following the term proportional to the entropy
production will be neglected. Furthermore, usually there is also a nucleation term on
the right hand side of (II.1), proportional to the interface energy between the two
phases. However, since this term, similarly to the dissipative energy, is positive in
both directions and thus it is difficult to separate from D, it can be considered to be
included in the dissipative term.

Let us denote the martensite (volume) fraction by & The transformation
temperature 79 (at which the two phases are in equilibrium for a given &) can be given

as:
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AG¢_AG}+AE+AD
o o¢ o¢ of

—Ag, +e' (O)+d*(£)=0 (I1.2)

where it is assumed that Agcl is independent of & and

Agc‘[ = Auf -TASC{

(IL3)
with Auc‘lzuM -u' (<0) and ASC\ZZSM -s* (<0) (the M phase is the low temperature
phase). Furthermore, at the “equilibrium transformation temperature”, 7, (the

temperature of zero-change in the chemical free energy)

Au v Au T
Ag *(T)=0,ie. T, =—c =" 1.4
g. (T,) 0 Asj ASCT (IL.4)

and e.g. at any temperature different from 7
oy ¥
Ag.(T) = (T-T) As.”. (IL.5)
If T<T, then there is an under-cooling and Agf( T) is negative.

In thermoelastic transformations the elastic term plays a determining role. For
example at a given under-cooling, when the elastic term will be equal to the chemical
one, for the further growth of the martensite an additional under-cooling is required.
Thus, if the sample is further cooled the M phase grows further, while if the sample is
heated it becomes smaller. Indeed, in thermoelastic materials it was observed that
once a particle formed and reached a certain size its growth stops and grows further or
decreases with increasing or decreasing the temperature. This is the thermoelastic

behaviour (the thermal and elastic terms are balanced).
11.2.1Thermal hysteresis loop

Starting from (I1.2) and (I1.3), introducing the notation AS:ASC‘ZZ-ASC 7\( <0), as

well as taking the assumptions usual in the treatment of thermoelastic transformations
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(in accordance with the signs of £ and D): e(§)=e¢(§)=-e ?(5) as well as
d(é) =d¢( &=d ?( &), one can arrive at the following relations [I1.3,11.6]

T¢(§)=To—%+:@ (I1.6.2)
TN =T, +%;:(§) . (IL6.b)

Thus, by taking the sum as well as the difference of 7 7\( &) and T’ (&) one can get the
e($) and d(¢), respectively from:

S aL7)
and
A e (Ls)

The inverses of (II.6a) and (I1.6b), i.e. the §(T“l ) and &T ?) functions, are the
down and up braches of the thermal hysteresis loops. The martensite (austenite) start,
My (Ay) and finish, My, Ay temperatures can be obtained from (II.6a) (and (II.6b)),
respectively taking them at £= 0 as well as £=1 (See Fig. II.1.).

A

R

A\

RAT

Fig. II.1. The é‘(T“L ) and &T 7) functions (a) and their inverses (b).
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Fig. I1.2. illustrates the shape of the hystersis curves for the following
schematic cases: a) both d(&§) and e(§) are zero; b) e(£)=0 and d(£)#0, but d(§) is
constant; c) d(§) is constant and e(§) linearly depends on & It can be seen that in a)
the transformation takes place at 7,, in b) there is already a hystersis, but the &(’ T ) and

. . M_ +A4, .
&T 7) branches are vertical. In this case 7)) can be found as 7', = 5—2L as it can be

seen from (II.8), in accordance with the Tong-Waynman relation [IL.8]. For the case
of c) the hysteresis curve is tilted, reflecting the £ dependence of e, so the branches
have slopes because of the contribution of the & dependent e to the phase
transformation.

In general case, i.e. in the presence of other external fields, causing also phase
transformations (like, uniaxial stress, o, magnetic field ,B, or pressure, p), Agcl has
the form

Aglt=Aut-TAs'-oVe™ +pAV™-BAm™ (IL.9)

where V is the (molar) volume, £” is the transformation strain as well as Am" and AV”
are the change of magnetization and volume of phase transformation, respectively.
Then, similarly to the definition of 7, one can also define the equilibrium

transformation stress, G,, as

Auc¢ B AucT
O S (10
&1 &1
1 —— 14
1 —— I 3 f I—
To T T T
a) b) c)

Fig. I1.2. Martensite volume fraction (&) vs. temperature (7) considering the

chemical (a) and non-chemical energy, (elastic (b) and dissipative (c¢)) contributions.
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In the following the simultaneous effect of temperature and uniaxial stress is
treated (extension to more general cases is very plausible). In this case Tj (from Au,*-

TAs'-oVé™*=0) has to be replaced by

ol
To(0)=To(0)+V—8A(U), (IL.11)
giving the o dependence of 7,. Furthermore, instead of (II.10),
JO(T):%(O)E (0) TAs _[T,(0)-T]As (L12)

e"(T) Ve (T) Ve (T)

holds for the temperature dependence of o,. It can be seen that (II.11) and (I1.12) are
the well known Clausius-Clapeyron relations and they are linear only if &'(c) as well

as &'(T) are constant.

In general the terms containing £” (or 4m”) have tensor character and, even if one
considers uniaxial loading condition, leading to scalar terms in (II.2), the field
dependence of them is related to the change of the variant (magnetic domain)
distribution in the martensite phase with increasing o. Thus, at zero o values
thermally induced, randomly oriented multi-variant martensite structure (or multi-
variant magnetic domain structure) forms in thermal hysteresis, while at high enough
values of o a well oriented array i.e. a single variant (or single domain) structure
develops. Accordingly, £” has maximal value for the single variant structure, while it
can be close to zero for thermally induced multi-variant structure. Thus, & can

depend on T or otaking the (o) or &(T) hysteresis loops, respectively.
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11.2.2 Mechanical hysteresis loop

Similarly as relations (I1.6)-(I1.8) were obtained, expressions for the branches

of the £(o) or g(o) (in measurements it can be usually assumed that ~&) hysteresis

loops (see Fig. I1.3) are given by

Yoo d()+e(d)
o (C)—UO(T)+—V8,,(T)
Ty _d(&)—e(©)
o (§)=0,) Ve
Thus
Loy oo 2d(E)
o'(§)-o (g)_Vg”(T)
and
' Ty 2e(¢)
o' (§)+o (4)—200(T)+Vg,,(T)-

The simple relations (11.6)-(11.8) and (11.13)

(I.13a)

(IL.13b)

(IL14)

(IL.15)

(11.15) allow the

determination of the dissipative and elastic energy contributions as the function of &

at different fixed values of o as well as T from the thermal and stress induced

hysteresis loops, respectively. Thus, even the cand T dependence of E and D can be

calculated by integrating the e(&) and d(¢£) functions between £&=0 and &=1.

Wy

G s

Stress,

(b)

(eR Vi

Strain, e

Fig. I1.3. (a) Mechanical hysteresis loops and (b) their inverses.
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The elastic energy contributions (see eqs. (IL.8), (I1.12) and (II.15)) can be
determined only exclusive the term containing 7,(0), if its value is not known. (The
values of As can be obtained from DCS measurements (by integrating the dQ/T up
and down curves, where Q is the heat of transformation: see also below) and the &"(7)
and &'(o) values can be read out from the &) and &7) hysteresis loops,
respectively). Nevertheless, the stress and temperature dependence of the elastic
energy contributions can be determined, since 7,(0) appears only in the intercept of

the e(o) and e(T) or E(o) and E(T) functions.

11.2.3 Start and finish temperatures and stresses

From relations (I1.6) and (II.13) expressions for the start and finish

temperatures as well as stresses can be simply obtained at £=0 and at £=1:

M, (0)=T, (o)~ L2t
‘ —As
d +e
M, (0)=T,(0) -
d,—e
4, (0)=T,(o)+ i £
4,(0)=T, (o) + L=
(1L.16)
and
d, +e
oy, ) =0,T)- _(;/_gtro
Gy (T) =0y ) -2
Mf 0 BT
d, —e
0, (T)=0,(T)+ =20
d —e
UAS(T)=<70(T)+_;/—gt,1 :
(IL.17)
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Here in principle the d, ,d;, e, and e; can also be stress or temperature
dependent: in this case e.g. the stress dependence of the start and finish temperatures
can be different from the stress dependence of 7. It can be seen from relations (I1.16)
that the simple expression proposed by Tong and Waynman [IL.8] for 7, as

M +4, ) . . . . .
T, =S—2L can not be valid only if e, is zero. Indeed, in their ingenious

measurements Salzbrenner and Cohen [I1.9] have been nicely illustrated that 7, can be
calculated only in those cases when the elastic energy can be neglected as we
mentioned above. In their paper the phase transformation was driven by a slowly
moving temperature gradient in a single crystalline sample, which resulted in slow
motion of only one interface across the specimen (single-interface transformation).
This way the elastic energy could easily relax by the formation of the surface relief at
the moving (single) phase-boundary. In general experiments for the determination of

hysteresis loops this separation is not possible.
11.2.4 DCS measurements

It is worth summarizing what kind of information can be obtained from the
analysis of the results obtained by a differential scanning calorimeter, DSC. The
absorbed and released heat energies during the M/A4 and A/M transformations (see also

Fig.114.) can be given by

0 = [T’ + e(d + d(D]d (IL18)

and

0 = f-u.’ - e(9 + d(9]dé (IL.19)

here Auf =- Aucris the latent heat of transformation (per unit volume fraction).

It is worth noting that the heat measured is negative if the system evolves it:
thus e.g. the first term in (I1.18) has a correct sign, because it is negative (Auc¢<0).
Similarly the dissipative and elastic terms should be positive for cooling (the system

absorbs these energies): indeed e(<&), d(&)>0, while for heating e(&) ¢=-e( &) ?Ze( ¢) and
d(&*=d(&"=d(&.
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Now, using the notations [Au.*=AU.(<0), H(&dE= D(>0), Je(&dé= E (>0)

0*= AU.+E +D (I1.20)

and
0’ =_AU.- E +D. (IL.21)

(In obtaining (I1.20) and (I.21) it was used that Auci is independent of &)

Consequently
T A
Q' -0"=-24U, + 2E (11.22)
and
AT
Q' +0"=2D. (I1.23)
Heat Flow 4

L

Fig. I1.4. Schematic plot of DSC curve showing the gained Q?and released QJ heat.
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It is important to keep in mind that the last equations are strictly valid only if
after a cycle the system has come back to the same thermodynamic state, i.e. it does
not evolve from cycle to cycle. Furthermore, it can be shown [II.14,I1.15] that these
are only valid if the heat capacities of the two phases are equal to each other: Cy = Cy,.

The DSC curves also offer the determination of As. Indeed the integrals of the
Q¢/T as well as Qf/T curves between M, and My as well as between 4, and 4y,
respectively give the As” as well as As” values. If, again the ¢4 = ¢ condition fulfils,

then As* = As[I1.14,IL.15].

Finally, it is possible, by using the DSC curve [II.7], to obtain the volume
fraction of the martensite & as a function of temperature (both for cooling, 7* and
heating T l) as the ratio of the partial and full area of the DSC curve (4us-r and Auss-gs
respectively) (Fig. 11.5.):

e 1%
Ti _ DOMsT gs r
5 ( ) AMs—Mf AJI d?i . (I1.24)

Similar relation holds for the & (T O curve (obviously in this case the above
integrals run between A, and T as well as A, and 4y, respectively). The denominator is
just the entropy of this transformation (see eq. (I.24)). Thus, the e() and d(<&)

energies can be calculated at o = 0 according to relations (1.7 and 11.8) .
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Fig. I1.5. DSC curve measured at zero stress (a) and the £ (7) hysteresis curve (b)

calculated from the DSC curve.
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Chapter I1I:

Experiments and Evaluation of Data

I11.1 The samples

1. Cu(79.2wt%)AI(15.9wt%)Ni(4.9wt%) single crystalline samples. The samples
were obtained from Prof. Jan Van Humbeeck (KUL Leuven, Belgium). Rods
were cut by a simple spar erosion machine and the final dimensions were: 41
mm in length and 0.45 mm” in square cross section for elongation-temperature
tests and 0.59 mm” for strain-stress tests. The stress was applied parallel to the
[110]a axis.

2. Cu(88.04wt%)AIl(11,6wt%)Be(0.36wt%) polycrystalline  SMA  samples
provided by Nimesis technology (Metz, France). The dimensions of the

samples were 0.8 mm in diameter and 85mm in length.

111.2 Experimental techniques
I11.2 .1 The stress-strain set-up

The stress-strain curves were obtained by a tensile machine (Chatillon
TCD225; see Fig. III.1.) applying an external heating chamber using thermal
resistance with temperature regulator for controlling the heating and cooling rate. The
heating as well as cooling rates were 8K/min. The stress-induced hysteresis loops

were determined between 373K and 423 K (at 8 fix temperatures).
111.2.2 Temperature-strain set-up

We developed our own machines for the determination of temperature-strain,

T-&, and temperature-resistance, 7-R, curves at fixed loads (Fig.III1.2.).
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— Sample
—  Thermocouple

— Heaters

Fig. III.1. The tensile machine (Chatillon TCD225). The inset is the external heating

system.

This developed system allows us to measure the resistance as well as the
elongation of the samples by using the four wire method and by using a digital
micrometer, respectively. A small resistance furnace is used to heat up the sample. To
avoid the oxidation and the condensation of water vapor, the sample was placed in
tube filled with H, and then put the system in liquid nitrogen for cooling down. The
furnace is connected to a temperature regulator to keep the heating and cooling rate

constant.
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Fig. I11.2. Scheme of the set-up for the determination of T-¢ and T-R curves under

fixed uniaxial stress.

111.2.3 DSC measurements

Perkin-Elmer DSC-7 power compensation differential scanning calorimeter
(DSC) was used at zero uniaxial stress to measure the absorbed and the released heat
during the martensitic transformation at different heating-cooling rates, as well as to
make thermal cycling on the samples.

The entropy of transformation was estimated from the obtained curves, according

to the relation
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1

M L
As =As* = f—dQ
T

Ay T
“AsT = jdi. (I1L1)
M, A, T
Here Q?and QJ denote the absorbed and released heat during the up and down
transformations, respectively. Note that (III.1) is valid only if the heat capacity of the
austenite and martrensite phases are the same [III.1, II1.6]. Since the difference of the
magnitudes of the entropy changes, estimated from the up and down curves, were the

same within the experimental error, this approximation was used.

There are many parameters controlling the thermoelastic transformation: the
chemical composition, temperature, applied stress and its orientation relative to the
single crystal axis [III.2-1I1.5]. In the investigated temperature and stress range only
the transformation from the high temperature cubic £ phase to the #’(18R) phase
takes place [III.2, II1.3] in single crystalline samples. In the polycrystalline CuAlBe

samples the same type of phase transformation takes place [II1.7].

111.3 Experimental results
All results presented in this chapter were published in [II1.8] and [II1.10].

111.3.1 Single crystalline samples
111.3.1.1 DSC Measurements

Figure II1.3. shows the DSC curves measured. Both the heating and cooling
rate were 2K/min. According to the relation (III.1), the absolute values of the entropy
were calculated from the heating and cooling branches. The two values were nearly
the same (the difference was within the experimental errors) As= -1.26 J/Kmol. This
value is in good agreement with the values obtained in alloys of similar composition
and having f phase to £’ phase transformation [III.3]. The molar volume of our

sample was V=7.9%10"° m*/mol.
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Fig. I11.3. DSC curve measured at zero stress.
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Fig. I11.4. Thermal hysteresis loops (£ vs. T curves) at four different uniaxial stress

levels.
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111.3.1.2 Thermal Hysteresis loops (e-T loops)

Fig. II1.4. shows the strain-temperature hysteresis loops at different constant
uniaxial stress levels. It can be seen that at lower stress levels, the transformation
strain, &”, is small and there is a sudden increase between 15 and 30 MPa. Using
Fig.I1.4. the transformation strain as a function of the applied stress can be calculated
as shown in Fig. IIL5. illustrating that there is a saturation of the & value after 40 MP:

this saturation value is about 6 %.

7
6
5
e 4
5, 3
2
1
0
0 40 80 120 160 200
o (Mpa)

Fig. IIL.5. Transformation strain as a function of stress (" is the maximal of value of ¢

in Fig. I11.4.).

111.3.1.3 Strain-stress hysteresis loops

Strain-stress (& o) hysteresis loops measured at different constant temperatures
are shown in Figure II1.6. All curves were obtained at temperatures greater than Ay
We can see that all curves turn back to the starting points (i.e. to &=0) showing pseudo
elastic behavior. Fig. IIl.7. shows the transformation strains as a function of
temperature: they were calculated from the or¢) loops (see Fig. I11.6.). It can be seen

that there is a large change between 355 and 383 K before reaching the saturation: the
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saturation value of the transformation strain is about 6 %, similar to the value shown

on Fig. IIL.5.

240

T[K]

Fig. I11.7. Transformation strain as a function of temperature (read out from curves

shown in Fig. IIL.6.).
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111.3.1.4 Temperature and stress dependence of the start and finish stresses and

temperatures

From Fig. I11.4. and from Fig. III.6. one can determine the transformation
temperatures Ms, As, Myand Aras well as the transformation stresses oy, 045, Ouy and

o4 The procedure is shown in Fig. II1.8. where the ideal form of the g(T) hysteresis

curve is shown.

E B

>

=F Ia'.Fla'.S -clrf - “l
M M7 AT 4 T

Fig. II1.8. Determination of Ms, As, Myand A,temperatures from the ¢~T

curves.
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Fig. I11.9. Start and finish temperatures as the function of stress.
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Figs. I11.9. and III.10. show the stress and the temperature dependence of the
start and finish temperatures and stresses, respectively. One can see that the
transformation temperatures and transformation stresses strongly depend on the
applied stress and temperature, respectively. The slopes of transformation

temperatures as well as transformation stresses are given in Table III.1.

200 - * Omg
T H OM¢
160 - A OAg
| * OAf
_ 120 -
n‘\'_i 4 .
% 80 -
© i
40 - M
0 . ‘ . T . T T . | . |
365 375 385 395 405 415 425
T [K]
Fig. I11.10. Start and finish stresses as the function of temperature.
SLOPE (K/MPA) SLOPE (MPA/K)
Ms 0.58 Ous 1.60
M; 0.5 Ot 1.96
As 0.52 Oas 217
A¢ 0.61 Oar 1.54

Table III.1. The slopes calculated from the curves shown in Fig.III.9. and
Fig.I11.10.
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111.3.1.5 Cycling effect

Deeper understanding of the thermomechanical cycling effects on the
transformation can lead to improved control of the shape memory function. Many
applications of shape memory devices e.g. actuators require a large number of thermal
and mechanical cycles and also a stable and reliable shape memory effect. Training or
teaching the SMA refers to applying an external field such as thermal or mechanical
loading cycles until the stabilization of all the SMA parameters e.g. start and finish
temperatures as well as start and finish stresses [II1.9]. As a first step to understand
the basic mechanisms of fatigue we carried out investigations on the effect of number
of thermal and stress driven cycling on the £ to f’ phase transformation in single

crystalline CuAl(11.5wt%)Ni(5.0wt%) alloy [II1.10].
1111.3.1.5.1 Thermal cycling

Thermal cycling was carried out by using a differential scanning calorimeter,
DSC, at zero uniaxial stress and 10 K/min heating and cooling rate. The transformed
martensite fraction, versus temperature curves as well as the heat of transformations,
0, at zero stress was obtained. Fig. III.11. shows the DSC heating and cooling curves
obtained at zero stress. Fig. III.12. shows the normalized &-T hysteresis loops
calculated from the DSC curves for three different N. It can be seen that both the area
of the loops and the slopes of the upper and lower branches have systematic changes

with N.

8 Heating

2

Heat flow [mW)]

320 340 360 380 400 420
T [K]

Fig. ITII.11. DSC curves at zero stress for different cycles.
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Fig. I11.12. Hysteresis loops calculated from the DSC curves.
111.3.1.5.2 Mechanical cycling

Mechanical cycling was carried out to see the effect of the cycling on the
dissipative and elastic energies. The stress-strain curves for different cycles, at 373 K
(starting form the austenite phase, 7>4;) are shown in Fig. III.13. As one can see

there is a moderate increase in the transformation strain at higher number of cycles.

250 1

200 - 3

& [o/o]

Fig. I11.13. o versus ¢ at different number of cycles at fixed temperature.
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111.3.2 Polycrystalline samples

We have seen before that at higher stresses the elastic energy decrease, so we
investigated the effect of the high stress on the dissipative and the elastic energies in
the CuAl(11,6wt%)Be(0.36wt%) polycrystalline shape memory alloy too. The
resistance — temperature (R-7) hysteric loops at constant stresses are shown in Fig.
II1.14. The normalized curves coming from the R-T hysteric loops are shown in Fig.
III.15. One can see that the loops shift to higher temperatures at higher stress, and the

slopes of the branches increase indicating a lower elastic energy contribution.

0.014 - — 382 MPa
—273 MPa
—109 MPa
0.012 -
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= 0.01 1
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0.008 -
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Fig. I11.14. Stress dependence of the R-T with hysteresis loops.
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0.8 -
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Fig. III1.15. Normalized R-T curves.
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Chapter IV

Analysis of Experimental Data

IV. 1 Result on single crystalline samples
IV.1.1 Temperature and stress dependence of the transformation strain

Let us consider now the &' (o) and £"(T) functions obtained from £~T and &~c
hysteresis loops and illustrated in Figs. I11.5. and IIL.7. It can be seen that both £"(o)
and &(T) has a sudden change between 15 and 30 MPa as well as 355 and 483 K
respectively. The saturation values for both of them are the same, about 6%. The field
dependence of & is related to the change of the martensite variant distribution with
increasing field parameters [IV.1]. Indeed, £ can be very small or even close to zero
for the formation of the thermally induced (randomly oriented) martensite variants
(usually there is a very small resultant (remnant) strain in single crystalline samples,

as seen in Fig I11.5.).

For the description of this, the volume fraction of the stress-induced (single)
variant martensite structure, 77, has been introduced in [IV.1]. Accordingly, the stress

as well as the temperature dependence of & can be expressed via the 77 dependence of
&'(n) as

&=er+(eo- €)1, (IV.1)

where &7 and ¢, are the transformation strains when fully thermally induced multi
variant structure forms (77=0), as well as when the martensite consists of a fully
ordered array of stress preferred variants (single variant state, 77=1), respectively.

It is worth noting that in Fig. I11.6. the martensite start stress at 373 K is about
30 MPa and on the curve shown in Fig. IIL.5. this leads to about 4% & value, which is
approximately the same as was observed at this temperature (see Fig. I11.7.). Since in

the expression for Ag (Ag= Au - TAs - oV&",) the elastic and thermal terms play
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equivalent roles with opposite sign in the thermoelastic balance [IV.2, IV.3], at higher
temperatures higher stress is necessary to start the transformation and the formed

martensite structure will be more oriented: 7 and thus & will be larger.
1VV.1.2 Analysis of the results on thermal hysteresis loops

In the relations presented in the section I1.2, we can see that 7,(c) is not linear
in general because of the transformation strain &(c;T) is not constant (see Fig. I11.5.),
furthermore, the elastic and dissipative terms (e;, d;, i=0,1) as a function of the stress
can also contribute the stress dependence of the start and finish temperatures (see
relations (II.16)). Thus, we plotted the 7,(c)—-7,(0) values versus oin Fig. IV.1. using
the relation (I1.11) and the measured value of As/V and the & (o) curve (Fig. I11.5.).
By neglecting the small deviations in the interval between 0 and 40 MPa in Fig IV.1.
we can see that this function can be approximated by a straight line. This small
deviation - S-shape part up to 40MPa - is coming from the stress dependence of &”
(see the inset in Fig. IV.1.). The slope of the fitted straight line in the whole stress
range is 0.39+0.05 K/MPa, and from Table III.1. the slopes of M, and A,as well as M,
and A (see Fig. II1.9. and Table III.1.) are practically the same: 0.59 as well as 0.50
K/MPa, respectively. Thus, these slopes are different from the obtained slope of the

T,(0).
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Fig. IV.1. Calculated stress dependence of the equilibrium transformation

temperature, 7.
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We can study the effect of the contribution of the stress dependence of d; and
e; parameters in the difference slopes. We can calculate dy and d; by using the relation
(IL.16) by taking the difference of the A, c) and M,(o) and Ayc) and M/ o),
respectively. As well as the e, and e; in terms of 7,(0)As can be calculated from the
sums of the M,(0)+A440) and My(o)+A4,(0), respectively with the help of the quantities
oV (o).

Fig. IV.2. shows the stress dependence of the d, and d; quantities. It can be
seen that, there is an increase up to 60 MPa then decrease again for both dj and d;: the
maximum is around 18 and 22 J/mol for dy and d; respectively. It is worth mentioning
that the maximum value is around the point corresponding to the where stress value of
the saturation of £’(o) starts. This can be related to the change in the formation of
thermally induced (randomly oriented) and stress-induced (well oriented) martensite
variants. At lower stresses many different variants with high dissipation are present,
but by increasing the applied uniaxial stress, one variant will be preferred and

hence the dissipation will be a bit lowered.

But even if we take the average value of d; (i=1 or 0) and consider its error, the
average value is about 1243 J/mol for both dy and d;. However, it is clear that the
deviation reflected in the different slopes of 7 as well as of the start and finish

temperatures originate not from the dissipative contributions.

On the other hand, we can see that from Fig. IV.3. that the e, and e;
parameters have a linear stress dependence. The vertical axis of this figure is
T,(0)As+e(i=0,1). Note that since the 7,(0)As quantity is negative (As<0) and, thus
from the fact that the values on the vertical axis are negative, one can conclude that
eo(0)<| T,(0) 4]

The slopes of these curves are - 0.25 and - 0.14 J/molMPa, respectively, or
dividing them by As we have the contributions of the elastic energy contributions to
the slopes of the start and finish temperatures (see eq. (I.17)): d(e,/4s)do = 0.20
K/MPa and d(e;/4s)do=0.11 K/MPa, respectively. Taking into account that the errors
in the estimation of slopes are about +0.05 K/MPa, it can be concluded that the
difference between the slopes of the 7,(o) and M,(o) or As(o) is caused by the stress

dependence of the elastic energy contributions [IV.4].
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Fig. IV.3. Stress dependence of the elastic energy terms.

1V.1.3 Analysis of the results obtained from o-¢ hysteresis loops

The determination of the temperature dependence of o,(7) is difficult because

we can not apply a similar procedure as for the stress dependence of 7,(o), because
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we do not know the value of 7,(0) (see eq. (I1.12)), where & has temperature
dependence as seen in Fig. II1.7.). Nevertheless, the slopes of the straight lines fitted
to the start and finish stresses versus temperature functions (Fig. II1.10) are given in
Table III.1. Furthermore, the d;(7) and e;(7T) functions, are shown in Figs. IV.4. as
well as IV.5., respectively as calculated from the differences of o4(7) and o(7) and
the sums of the oy, (7) and oy (T) curves (see Fig. II1.10 and Table II1.1.), and using
the &(T) values given in Fig. II1.7. For the elastic terms one can write, by using

relations (I11.10), (I1.12) and (I1.17),

Ve @Mloy, T)+o, T)]
2

+T As =V &" (T )o,(T ) +e,(T)

=To(0)As + e,(T)
.= 00(0)Vesteo(T). (IV.2)

8 +d,
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Fig. IV.4. Temperature dependence of the d; quantities (i=0,1).

A similar relation holds for e;. On the left hand side of (IV.2) all the quantities

(and their temperature dependence) are known. It can be seen from Fig. IV.4. that
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do(T) and d;(T) are constant within the experimental errors, and their average value
(about 4.0+1.5 J/mol) is lower than the values of d,(o) and d;(o) shown on Fig. IV.2.
On the other hand, e,(7) and e;(7T) are temperature dependent with slopes - 0.55
J/molK and - 0.18 J/molK, respectively (Fig. IV.5.).
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m e
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B .\‘\.\\.
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=
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+
S 480 - s
)
< 490 - .
'500 I I \ I I I
370 380 390 400 410 420 430
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Fig. IV.5. Temperature dependence of the TAs+e; quantities (i=0,1).

1V.1.4 Relations between the start and finish stresses and the test temperature

In order to get expression e.g. for oy(7) let us take the first relations of (I1.16)

(at 0=0) and (I1I.17) and make the use of (II.12):

oy (T) = - [#jm)m M, (0)]
1
+ [m][do(am)"‘eo(o'm)]
1
- [W][do(())"'eo(o)]-

(IV.3)

51



Note that in the relations used in obtaining (IV.3) the transformation strain and
the martensite fraction derivatives of the dissipative and elastic terms were considered
to be stress dependent. It can be seen that the relation (IV.3) will have the form
usually found in the literature (see e.g. [IV.5, IV.6]) only if the sum of the last two
terms is zero and, even in this case, it will have a linear temperature dependence only
if &'(0,(T)) is constant. Similar relations can be obtained for the other start and finish
stresses. In the case of oy the difference of d; and e; appears in the second term, and
£" should be taken at ouy, while for oy and oy, the e,-d, as well as e;-d; differences
will be present. For example;

As

o, T)=— [W‘O(T))][T —A4,(0)]

1
+ [W][el(o'm)—dl (O]
1

- [m][el(())—dl(o)]- (IV.4)

One can recognize from (IV.3) or (IV.4) that interestingly if the contributions
from the elastic and dissipative contributions are neglected, the slopes of all start and
finish stresses versus temperature have the same value.

It can be seen that the functions on Fig. II1.10. can be approximated by straight
lines and Table III.1 contains their slopes. However, while the slopes of oy(7) and
ou(T) as well as oyy(T) and oy,(T) are the same, the slopes of these two groups differ
from each other more than the estimated error (about 0.05 MPa/K [IV .4]).

In (IV.3) and (IV.4) both d, and d; terms are practically temperature
independent [II1.4] while e,(ous(T)) depends on temperature (Fig. IV.5: ce,/cl=-0.50
J/molK, &;/T=-0.18 J/molK [IV.4]). Furthermore, the &'(c,(T)) and &"(ou(T))
functions should be considered in the temperature interval 373-425K (Figs. I11.7 and
111.10) i.e. & (0,(T))= & (ous(T))= 0.055. Thus, the terms containing 1/V¢" will be
approximately constant //V&” =2.3x10° mol/m’ (a bit larger than the value belonging
t0 V& par: 2.1x10° mol/m’).

Thus, one can estimate the contributions of the 1st, 2nd and 3rd terms in (IV.3)
and (IV.4) to the slope of oy vs. T function (Table IV.1). The slope of the third term

is 0 (£"(0o(T))=€" (ous(T))=const.) and from the second term only the elastic term
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contributes to the slope. This also explains why the slopes of o, and oy as well as
ourand oy, are similar, because they contain the temperature derivatives of e, and e;,
respectively.

It is worth mentioning that it was already mentioned in [IV.4] that the d,
(i=0,1) values have a decreasing tendency with increasing temperature, but the slope
was not estimated because of the relatively high experimental errors. Now if we put
straight lines to the points in Fig. IV.4. we get for both slopes -0.028 J/molK, which
leads to a -0.064 MPa/K contribution from the 3™ term in (IV.3) or (IV.4), which is
just around the experimental error of the slopes in Fig. III.10. Taking all the
contributions into account the agreement between the estimated and experimental

values is very good.

Experimental [IV.4] oms vs. T oMt VS. T | oar vs. T |oasvs. T
Slope in MPa/K 1.6 2.0 1.5 2.2
Estimated Eq. 1* term 2term  [2™ termin| 3™ term in
(parts)  |(IL12)[in (IV.3) & (IV.4)|in (IV.3) e, | (IV.4)e; |(IV.3)or (IV.4)
d():di
Slope in MPa/K| 2.59 2.83 -1.15 -0.41 0 or -0.028
Estimated (whole) oms vs. T omr VS. T | oar vs. T | ocasvs. T
Slope in MPa/K 1.68 or 1,65 |2.42 or 2.45|1.68 or 1.65(2.42 or 2.45

Table I'V.1. Experimental and estimated values of the slopes of the start and finish
stresses versus T.

1V.1.5 Self-consistency of our analysis

The following facts confirm the self-consistency of the analysis carried out
above. In both sets of investigations (thermally and stress induced transformations)
we have observed that the transformation strain depends on the field parameter (Figs.
III.5. and III.7.), but both have the same saturation value. This can be interpreted by
the increase of the fraction of the stress-induced (single) martensite variant structure,
n, according to relation (IV.1), from which e.g. an S-shape 7(o) function follows.

The difference of the slopes of the linear stress dependence of the start and
finish temperatures as well as the slope of the 7, temperature corresponds to the
contribution from the stress dependence of the elastic energy terms (the dissipative

terms are practically independent of o).
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The values obtained for the d, and d; quantities have almost the same values in
both sets, but their value is lower for the &o loops by a factor of 3. It is worth
mentioning that most probably both d;(o) and d;(T) (i=0,1) functions are not constant
but the resolution of their dependence on o and 7, respectively, due to their small
values and the experimental errors, is not possible from our data. Nevertheless, Fig.
IV.2. (and Fig. IV.7. showing D versus o) suggest that the d;(o) function could have a
maximum at about 60 MPa, while at o =0 MPa as well as at o =178 MPa its average
value is about 6-7J/mol, which is close to 4 J/mol obtained from the d,(7) functions.
Furthermore, since at higher temperatures higher stress is necessary to start the
transformation, it is also plausible that the negative slope of the second part on Fig.
IV.2. should correspond to a negative slope on the d;(7) functions. Indeed, there is a
slight decreasing tendency with increasing 7" on Fig. IV .4. Unfortunately, the accuracy
of our present results does not allow a deeper and proper analysis of the field
dependence of the dissipative terms. In addition, the details of the transformation (and
thus the magnitude of d;) can be different for stress and temperature induced
transformations as well as can also depend on the prehistory of the samples (not

investigated here).

IV.1.6 Stress and temperature dependence of the total dissipative, D, and elastic
energy, E
IV.1.6.1 Stress dependence

Fig. IV.6. shows the d(&) function calculated from the inverses of the
normalized hysteresis &7 loops (see relations (II.6) and appendix 1) at different
stresses. In Fig. IV.7. the twice of the integral of d(¢{) function for the whole thermal
cycle (i.e. between &=0 and &=1), D(o) is plotted versus ¢. The full dots in Fig. IV.7.
show the values obtained from integration, while the open dot at o=0 was calculated
from the DSC curves (Fig. I11.3.) according to the relation QJ + Qrz 2D (Q¢ =-331.6
J/mol, Q¢=357.6 J/mol). It can be seen that full dots fit self-consistently within the
experimental errors to the open dot calculated from the independent (DSC)
measurement. Again we can see the maximum of the dissipative energy around 60
MPa. Nevertheless, the value of D can be taken to be constant within the experimental

scatter and its average is about 12 J/mol [IV.7].
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Fig. IV.6. Dissipative energy (d(¢) = [do)+ d;i(S)]/2) term versus the transformed

martensite fraction, calculated from the normalized &T loops, at different stress levels.

Fig. IV.7. Energy dissipated within one &7 hysteresis loop as the function of o.
Fig. IV.8. shows the THO+T(&)=2T,(c)+2e(Ec)/[-As) vs. & functions

calculated from the &-T curves at different stresses. It can be seen that the curve at

zero stress, calculated from the DSC measurement, fits sel-consistently to the others.
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Fig. IV.9. shows the integrals of the curves of Fig. IV.8. giving the total elastic
energy, E, per one cycle (irrespective of the constant As7) value). We can see that the
total elastic energy decreases with increasing applied unixial stress. This is because
the stored elastic energy can be at lowest value when the martensite phase has only

one variant due to the high stress.
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Fig. IV.9. Stress dependence of the total elastic energy, E. The point at zero stress is

obtained from the DSC data.
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IV.1.6.2 Thermal Dependence

The functions
0 (-0"() =2d (ET/VE (0) and 0 (@) +0 (O =20,(T) +2e(ETIVE () vs. &
functions were plotted at different temperatures. The integrals of these functions give
the total dissipative energy, 2D(T), and the 2E(T)+ 2T,(0)As quantity, containing total
elastic energy [IV.8]. These functions are plotted in Figs. IV.10. and IV.11. From Fig.
IV.10. we can see that the dissipative energy has no temperature dependence, and its
value scatters within the experimental errors around 7 J/mol. On other hand the elastic
energy has strong temperature dependence (Fig IV.11.). Since the 7,(0)As quantity is
negative (4s<0), from the fact that the values on the vertical axis are negative it can
be concluded that £(0)< ‘ T,(0)As ‘ . Furthermore, it is clear from the sign of the slopes

in Fig. IV.11. that E decreases with increasing temperature.

D [J/mol]

Fig. IV.10. Temperature dependence of the total dissipative energy, D.

This is quite plausible because the elastic energy can be larger for thermally
induced (random) multi-variant structure, because in this case the overlapping of
elastic fields of the differently oriented variants leads to more remarkable elastic

energy accumulation.
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Fig. IV.11. Temperature dependence of the total elastic energy, E.

IVV.1.7 Dependence of the dissipative and elastic energies on the number of cycles

The results presented in this chapter were published in [IV.9].

IVV.1.7.1 Thermal cycling

The slopes of the up and down branches as well as the area of the hysteresis
curves in Fig.III.12. show changes with increasing number of cycles: the lower area
indicates lower dissipative energy contribution and larger slopes show larger elastic
energy contribution (Fig.IV.12. and Fig.IV.13.). The & dependence of the elastic and
dissipative energy can be obtained from the sum and difference of 7' and T* curves in
Fig. II1.12. (see eq. (I1.6)), respectively. Fig.IV.12. and Fig.IV.13. show how the total
elastic (E), and the total dissipative (D) energy, change with the number of cycles, as
calculated from the integrals of the above curves (between &=0 and ¢&=1), versus N.
We can get £ and D by using the well-known relations O*+Q'=2D and Q'-
QT =2E+2TyAS as well. These results fit well to the points calculated from the above

integrals (see Figs.IV.12. and Fig.IV.13.).
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Fig. IV.13. Total dissipative energy as the function of number of cycles for thermal

loops (m from the &-T loops, ® from the heats of transformation).
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1V.1.7.2 Mechanical cycling

The elastic and the dissipative energies were calculated from Fig III.13. using
the relations of the integrals of o*(&)+0c' (&) and o*(&-0' (&) respectively. Fig IV.14.
and Fig IV.15. show the N dependence of calculated total elastic energy as well as

total dissipative energy, respectively.
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Fig. IV.14. Total elastic energy versus the number of cycles.
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Fig. IV.15. Total dissipative energy as the function of number of cycles.
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In the calculations of £ and D the o dependence of & on N was neglected and
&"=0.046 was taken (as read out from the curves in Fig. IIL.5. which is also in a good
accordance with the value obtained from the temperature dependence of & at 373K
(see Fig II1.7.). It is clear that the elastic energy decreases before reaching a constant
value after few cycles, while the dissipative energy increases by increasing N and

saturates after a few mechanical cycles.

1V.7.3 Results on polycrystalline samples

The elastic and dissipative energy contributions as the function of stress are
plotted in Figs. IV.16. and IV.17., respectively for the CuAl(11,6wt%)Be(0.36wt%)
samples. (Here we investigated only the 7(¢) loop and the effect of thermal cycling).
One can see that the elastic energy decreases with increasing applied uniaxial stress
and it reaches a saturation value at high enough stresses. On other hand, the

dissipative energy increases and saturates at high stresses.
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Fig. IV.16. Total elastic energy as a function of the applied stress.

61



D [J/mol]

Heat flow [mW]

0 50 100 150 200 250 300 350 400 450
o [MPa]

Fig. IV.17. Total dissipative energy as a function of the applied stress.

The effect of thermal cycling on the DSC curves is shown in Fig. IV.18. and it can be

seen that there is no cycling-effect at zero stress.
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Fig. IV.18. Thermal cycling effect on the CuAl(11,6wt%)Be(0.36wt%)
polycrystalline shape memory alloy.
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Chapter V

Summary

Two types of high temperature Cu-based shape memory alloys have been
investigated: CuAl(11.5wt%)Ni(5.0wt%) single crystalline and
CuAl(11,6wt%)Be(0.36wt%) polycrystalline samples. Our main goal was the
determination of the non-chemical energy contributions (e.g. the elastic and
dissipative energy contributions) to the martensitic phase transformations during
thermal and stress induced cycling. In both alloys only the the transformation from the
high temperature cubic 3 phase to the ' (18R) phase takes place at the investigated

compositions.

I. CuAl(11.5wt%)Ni(5.0wt%) single crystal

Two separated sets of measurements have been carried out investigating the
characteristic parameters; i) determination of the martensite fraction-temperature §(T)
curves at different constant stresses; ii) strain-stress (o) hysteresis curves at different

constant temperatures (e~§).

From the measurements of (¢-T) and the (e-0) hysteresis curves, the stress and
the temperature dependences of the transformation strain (&") was determined [V.1].
The transformation strain, ", determined from the c-€ loops at constant temperatures,
shows a saturation value of about 6.1%, close to the theoretic maximal value. As it is
expected, the same saturation value was obtained from the &(T) loops. The stress and
temperature dependence of " is interpreted by the gradual change of the martensite
structure formed: at higher uniaxial stress values more oriented martensite variants

develop with higher resultant strain.

From the DSC curves we could calculate the entropy of the examined alloy as

well as we could obtain the &(T) hysteresis curve at zero stress.

64



By using the model developed from our laboratory, the derivatives of the

non-chemical free energy contributions, by the martesite volume fraction (&), to the

phase transformation at fixed temperatures as well as at fixed stresses have been

calculated. These contributions were calculated from the (o) hysteresis curves at

constant temperatures and §(T) loops at constant stresses.

It was obtained that: [V.1 — V 4]
The derivatives of the elastic energy by the martensite volume fraction, &,
have strong temperature and stress dependence;
The derivatives of the dissipative energy were practically constant, or the
changes were almost within the experimental errors;
The elastic energy, calculated from the start and finish temperatures of the &-
T hysteresis curve at zero stress obtained from the DSC curve, fits very well
to the straight lines obtained for the start and finish temperatures of the &-T
hysteric curves at different 60 levels;
The slopes of the start and finish stresses versus temperature as well as the
start and finish temperatures versus stress functions are different from the
slopes of the equilibrium transformation stress versus temperature, oo(T), as
well as of the equilibrium transformation temperature versus stress, To(G),
functions, respectively. It is shown that this is due to the temperature as well
as stress dependence of the elastic energy contributions;
The total dissipative and total elastic energy contributions were also
calculated from the integrals of their derivatives. Both the stress and
temperature dependence of the total elastic energy per cycle show a linear
dependence in the range investigated with slopes -1.30 J/mol MPa and -1.04
J/mol K, respectively. The total elastic energy (E) decreases with increasing
stress in accordance with the increasing volume fraction of the well oriented
single variant structure;
The total dissipative energy (D) does not show any stress or temperature
dependence. The value of D(c) is constant within the experimental scatter
and its average is about 12 J/mol, and the average value of D(T) is about 7

J/mol.
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Mechanical and thermal cycling on the CuAl(11.5wt%)Ni(5.0wt%) single

crystal shape memory alloy have been carried out to see the effect of the cycling on

the contributions of the elastic and the dissipative energy in the phase transformations.

The following results were obtained [V.5]:

Both the dissipative (D) and elastic energy (E) show a definite dependence
on the number of cycles in the first few cycles and then a saturation value is
reached with increasing N. i.e. the stress-strain and strain-temperature
responses stabilize;

In thermal cycling the elastic energy, E, as well as the dissipative energy, D
per one cycle increases as well as decreases, respectively with increasing
number of cycles, while in mechanical cycling there is an opposite tendency.
These changes are related to the change in the martensite variant structure

during cycling.

I1. CuAl(11,6wt%)Be(0.36wt%) polycrystalline shape memory alloy

Similar set of measurements, as carried out for CuAl(11.5wt%)Ni(5.0wt%)

single crystalline samples, were carried out in CuAl(11,6wt%)Be(0.36wt%)

polycrystalline samples. But only the e~T loops were measured at different stress

levels and the effect of cycling was investigated.

It was obtained that the elastic energy decreases with increasing applied
uniaxial stress and it reaches a saturation value at high enough stresses. On
other hand the dissipative energy increases and saturates at high stresses.

No thermal cycling effect has been detected on the DSC curves measured at

Z€10 O.
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Magyar nyelvii 6sszefoglalo

A dolgozat f6 célkitlizése a martenzites atalakulasokat leird szabadenergia
fliggvények nem kémiai (rugalmas és disszipativ) részének a vizsgélata volt termikus,
¢s fesziiltség indukalt &talakuldsok soran. Munkam sordn magas atalakulasi
hémérsékletii réz alapu 6tvozeteken végeztem kisérleteket. Vizsgéltam a nem kémiai
szabadenergia tagok viselkedését egykristaly (CuAl(11.5wt%)Ni(5.0wt%)) valamint
polikristalyos (CuAl(11.6wt%)Be(0.36wt%) mintakon. Mindkét 6tvozetben csak a 3

— B' (18R) szerkezeti fazisatalakulas jatszodik le a vizsgalt dsszetételeknél.

I. CuAl(11.5wt%)Ni(5.0wt%) egykristaly mintak

Két kolonallo mérési sorozatban vizsgaltam a kovetkezd jellemzoket: 1)
konstans egytengelyli fesziiltség értékek mellett meghataroztam az 4talakult martenzit
hanyad-hémérséklet (E-T) gorbéket; ii) allandd homérsékleteken mértem a relativ
megnyulas fesziiltség (e-c) gorbéket (e~E).

A (&-T) valamint (e-0) hiszterézis gorbékbdl meghataroztam az atalakulési
deformacio (") fesziiltség és hémérséklet fiiggését [V.1]. Az e-o hurkokbol
meghatérozott €" értéke 6.1%-nél, amely kdzel van az elméletileg varhaté maximalis
értékhez, telitést mutat. Mint ahogy varhato volt, ugyanez a telitési értek adodott az -
T gorbékbol is. € fesziiltség és homérséklet fiiggését a martenzit varidns
szerkezetének fokozatos valtozdsaval magyaraztam: nagyobb egytengelyl
fesziiltségeknél egy jobban (egyiranyban) rendezett varidns szerkezet alalkul ki,
melyhez nagyobb visszamaradé deformaci6 tartozik.

A DSC gorbékbdl ki tudtam szamitani az atlakulashoz tartozd enrtopidt,
valamint nulla fesziiltséghez tartoz6 (e-T) gorbét is meg tudtam hatarozni.

A fazis atalakulasokhoz tartoz6 nem-kémiai szabadenergia jarulékok atalakult
anyaghanyad szerinti derivaltjainak hdmérséklet és fesziiltségfiiggését a (§-T) és (&-0)
figgvényekbdl szamitottam ki, a tanszéken kordbban publikalt modell
felhasznalasaval.

A fébb eredmények a kovetkezdk [V.1 — V.4]:

e A rugalmas szabadenergia jarulékok atalakult anyaghdnyad szerinti

derivaltjai erds hdmérséklet és fesziiltségfiiggést mutatnak.
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e A disszipativ szabadenergia derivaltak nem mutattak mérhetd hdmérséklet
ill. fesziiltségfliggést.

e A DSC gorbékbdl nyert (&-T) fiiggvények kezdeti- ¢és vég-
hémérsékleteibdl kiszamitottam az elasztikus energia-derivaltak értékeit.
Ugyanezen  értékek  fesziiltségfliggését is  meghataroztam  a
megnyulasmérésekbol  0-t6l  kiillonbozé  huzofesziiltségeknél. A
megnyuldsmérésekbdl =0 fesziiltségre extrapolalt, valamint a DSC
mérésbol kapott értékek jo egyezést mutatnak, ami a kiértékelési modszer
onkonzisztens voltat bizonyitja.

e A transzformdciok kezdeti- ¢és vég- hoémérsékleteit a fesziiltség
fliggvényében abrazolva azt tapasztaltam, hogy ezen gorbék meredeksége
eltér a termodinamikai egyensulyi hdmérséklet fesziiltségfiiggését megado
gorbe meredekségétdl. Hasonlo jelenség tapasztalhatdo a kezdeti- és vég-
fesziiltségek valamint az egyensulyi fesziiltség hémérsékletfiiggését
vizsgalva is. Megmutattam, hogy ez a rugalmas energia jarulékok
homérseklet és fesziiltség fiiggésével all 6sszefliggésben.

e A rugalmas ¢és disszipativ szabadenergia derivaltak integralasaval
kiszamitottam a teljes transzformaciohoz tartozoé rugalmas és disszipativ
energidkat. A E teljes rugalmas energia a fesziiltség illetve a hdmérséklet
fliggvényében linedaris fliggést mutat -1.30J/molMPa, illetve -1.04 J/molK
meredekségekkel. Az rugalmas energia csokkenése a fesziiltség
novelésekor azzal magyarazhat6, hogy egyre jobban orientalt egyre
kevesebb variansbol 4llé6 martenzit szerkezet jon 1étre.

e Nem tapasztalhat fesziiltség vagy homérsékletfiiggés a teljes ciklusra
szamitott disszipativ energia (D) esetében. A fesziiltség fiiggvényében
mérve (a hdmérsékleti hurkokbol szamolt) D(c) atlagértéke 12J/mol-nak
mig a homérséklet fliggvényében (a fesziiltségi hurkokbol szamolt érték)

7J/mol-nak adodott.

Az egykristaly mintdkat mechanikai és termikus ciklizalasnak aldvetve az alabbi
eredményeket kaptam [V.5]:
e Mind a rugalmas, mind a disszipativ energia erésen valtozik az els6é néhany

ciklus soran majd nagyobb ciklusszamoknal tart egy telitési értékhez.
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e Termikus ciklizalds soran a rugalmas energia novekvd ciklusszdmmal né a
disszipativ energia pedig csokken. Mechanikus ciklizalas sordn a fentivel
ellentétes tendenciat figyeltem meg. Ezek a valtozasok a martenzit varians-

szerkezet ciklizalas soran bekdvetkezo atrendezédésének tulajdonithatok.

I1. CuAl(11,6wt%)Be(0.36wt%) polikristalyos mintak
Az egykristaly mintdkon elvégzettekhez hasonld termikus ciklizalast végeztem
polikristalyos szerkezetli (CuAl(11.6wt%)Be(0.36wt%) Osszetételli anyagokon
kiillonbozd huzofesziltségek mellett, de itt csak az e~T gorbéket mértem kiillonb6zo
fesziiltségeknél valamint a ciklizaldsnak ezekre gyakorolt hatdsat vizsgaltam.
Eredmények:
e Az clasztikus energia novekvd fesziiltségek hatdsara csokken, nagy
fesziiltségszinteknél egy telitési értékhez tart. A disszipativ energia
hasonlo, de ellentétes tendencidji valtozast mutat.

e A termikus ciklizdldas a DSC gorbéken nem okozott megfigyelhetd

valtozast.
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Appendices

Appendix |

Normalized hysteresis curves of the -T curves at 4 different applied stresses
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