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List of symbols and abbreviations  
SMAs   shape memory alloys   

A   austenitic phase  

M   martensitic phase 

T   temperature  

Ms   martensite start temperature  

Mf   martensite finish temperature 

As   austenite start temperature 

Af  austenite finish temperature 

σ   applied uniaxial stress 

σms   start martensite stress 

σmf   finish martensite stress 

σAs   start austenite stress 

σAf   finish austenite stress 

DSC   differential scanning calorimeter 

ξ   martensite volume fraction 

Gc   chemical Gibbs free energy 

gc  derivative of the chemical Gibbs free energy by ξ   

Gnch   non chemical Gibbs free energy 

Gc
M   chemical Gibbs free energy of martensite phase 

Gc
A   chemical Gibbs free energy of austenite phase 

T0   the equilibrium temperature 

∆Uc   difference of the internal energy of the martensite and austenite phases,  

∆Uc = UM
c – UA

c 

∆uc  derivative of the ∆Uc by ξ 

∆Sc   entropy change, ∆Sc = SM
c - SA

c 

∆sc  derivative of the ∆Sc by ξ  

D   total dissipative energy 

E   total elastic energy 

d  derivative of the total dissipative energy by ξ 

d0  dissipative energy contribution in the austenite phase (at ξ =0) 

d1  dissipative energy contribution in the martensite phase (at ξ =1) 
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e   derivative of the total elastic energy by ξ 

e0  elastic energy contribution in the austenite phase (at ξ =0) 

e1  elastic energy contribution in the martensite phase (at ξ =1) 

B   magnetic field 

p  pressure 

M   magnetization 

V   molar volume  

εtr   transformation strain 

Q   heat of transformation 

CA   heat capacity of austenite 

Cm   heat capacity martensite 

R   resistance  

η   volume ratio of the stress induced (single) variant martensite 
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Introduction 
 

 

The amazing shape memory property of shape memory alloys (SMAs) 

attracted the attention of many scientists and engineers in the last decades, because of 

a wide range of important technical applications. Many models have been published 

for the description of the shape memory property as well as for the determination of 

critical parameters important for the technology. Furthermore, many experiments 

have also been carried out to understand the basic mechanisms and the details of the 

shape memory effect (SME).  

 

In my thesis - after an introduction containing the most important definitions, 

notations and terminologies - I will describe in details one of these models (developed 

in Debrecen) and use it for analysis of the experimental results obtained in Cu based 

single and polycrystalline samples (CuAl(11.5wt%)Ni(5.0wt%) and 

CuAl(11,6wt%)Be(0.36wt%) respectively). By using this model I was able to 

calculate the non chemical (elastic and dissipative) free energy terms and their 

contributions to the martensite/austenite phase transformation and could also obtain 

the stress and temperature dependence of these energies. Furthermore, I also 

determined the dependence of the above energies on the number of thermal as well as 

mechanical cycles.  

  

 

 

 

 

 

 



 7

 

 
Aim of my work 

 

 

Experimental investigation of thermal and stress induced martensitic 

transformations in single and polycrystalline Cu-based shape memory alloys. Using 

the model developed in Debrecen, carry out the separation of the non-chemical energy 

contributions (dissipative and elastic energies) from the free energy of the 

transformation. Determining how the dissipative and elastic energies depend on the 

stress and temperature as well as on the number of the thermal and mechanical cycles. 

Since in the interpretation of data obtained, the stress and temperature dependence of 

the transformation strain has a central role, these functions also have to be determined 

experimentally.      

 

My work was 

• Finding the full transformation strain as the function of temperature 

(for mechanically induced transformation) and stress (for thermally 

induced transformations). Determining the start and finish temperatures 

as well as start and finish stresses in the martensite transformations as a 

function of temperature and stress, and the effect of the contribution of 

the elastic energy on these parameters;  

• Studying the stress and temperature dependence of the dissipative and 

elastic energies; 

• Studying the effects of the thermal and mechanical cycling on the 

elastic and dissipative energies. 
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Chapter I 

Shape memory alloys 

 

 This chapter summarizes the most important definitions, notations, 

terminologies and typical examples of application of shape memory alloys. 

 I.1 Active materials 

In the last few decades the demand for lighter, stronger materials with tailored 

properties addressing stringent structural requirements and providing additional 

engineering functionality (e.g., sensing, actuation, electromagnetic shielding) has 

created a new branch of materials called multifunctional materials. A specific 

subgroup of multifunctional materials exhibiting sensing and actuation capabilities is 

known as active materials. Active materials in general exhibit a mechanical response 

when subjected to a non mechanical field (thermal, electrical, magnetic, etc.; see Fig. 

I.1.). Examples of active materials are piezoelectric and electrostrictive (coupling of 

mechanical and electric fields), piezomagnetic and magnetostrictive (coupling of 

mechanical and magnetic fields) materials and shape memory alloys [I.1]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. I.1. Actuation stress-strain  diagram for active materials [I.1]. 
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I.2 Shape memory alloys 

Shape Memory Alloys (SMAs) form a unique class of alloys with ability to 

remember their original shape and returning back to the pre-deformed shape by 

heating, even under high load, i.e. they can be used as actuators. Furthermore, SMAs 

can be used as vibration damping units absorbing and dissipating mechanical energy. 

In the last few decades many publications have been devoted to the understanding of 

their properties, microstructural behaviour and their industrial applications [I.1, I.2]. 

I.3 Martensitic transformation 

SMAs have two phases with two different crystal structures; the austenitic 

phase (A) at high temperature - it is called as parent phase as well - and the 

martensitic phase (M) at low temperature. The transformation from one phase to the 

other is diffusionless, i.e. takes place by the change of the crystal structure by short 

local rearrangements of atoms [I.3]. This transformation is called martensitic phase 

transformation (Fig.I.2.).  

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. I.2. Phase change during A/M (and M/A) transformation: the first step is the 

development of multivariant martensite structure. In the second and third steps the 

application of the stress results in the rearrangement of the variant structure 

(approaching to a single variant structure) with large shape change. During the last 

step (M/A transformation) the original shape is recovered. This is the so-called one-

way shape memory effect. 
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Usually the austenite phase has cubic (high symmetry) structure, whereas the 

martensite structure may be tetragonal, orthorhombic or monoclinic (with low 

symmetry). The martensite phase can be formed in crystallographically equivalent but 

differently oriented regions: these are called variants. During the A/M  

phase transformation - without applying any external stress - randomly oriented 

multivariant (or twinned) martensite structure develops with small or negligible shape 

change (Figs. I.2. and I.3.).  

Fig. I.3. shows the transformation from one phase to the other phase showing 

the four characteristic temperatures associated with the phase transformation. From 

the martensite to the austenite phase (by heating up) the austenite starts at As and 

finishes at Af. Similarly, from the austenite to the martensite phase (by cooling down) 

the martensite phase starts at Ms and finishes at Mf. 

These transformation temperatures can be determined by measuring certain 

physical properties, such as the absorbed and released heat in DSC, resistance, 

elongation, etc., as the function of temperature.  

 

 

 

 

    

 

 

 

 

 

 

 

 

 

Fig. I.3. Thermally induced phase transformation. 

  

The change from one phase to another can be triggered not only thermally but 

also by applying mechanical stress. At fixed temperature, by increasing the applied 

stress there will be a phase transformation from austenite to martensite, with single 

T 

T 
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variant structure (Fig. I.4.) having a visible change in the shape of sample. In the 

literatures, four characteristic stresses are used; start and finish of martensite, σms and 

σmf; and start and finish of austenite, σAs and σAf, respectively (see Fig. I.4.). 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

Fig. I.4. Mechanically induced phase transformation [I.1]. 

 

I.4 Basic thermodynamics of martensitic transformations 

Because there is no change in the composition during the martensitic 

transformation, the chemical Gibbs free energy can be plotted as a function of the 

temperature as shown in Fig. I.5. T0 is the equilibrium temperature where the 

chemical Gibbs free energies of the martensite and austenite phases (Gc
M and Gc

A, 

respectively) are equal to each other. At this point  

 

 ∆Gc = Gc
M - Gc

A = ∆Uc –To∆Sc = 0      (I.1) 

 

where ∆Uc and ∆Sc denote the internal energy and entropy change of the 

transformation, respectively.  

 In general the total change of the Gibbs free energy (i.e taking also into 

account the elastic and dissipative energy contributions) can be given as: 
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∆Gt = ∆Gc + ∆Gnc =∆GC + (D + E).         (I.2) 

 

Here ∆Gc = (To-T)∆Sc chemical term is the driving force for the transformation (and it 

is negative for T<To because ∆Sc=Sc
M - Sc

A <0: see also Fig. I.5), and D and E denote 

the dissipative and elastic energy, respectively. The dissipative energy is due to the 

frictional motion of the interfaces, while the elastic energy accumulated/released 

because of the overlapping of elastic fields of the different martensite nuclei and/or 

variants. Thus, the elastic energy is positive for the A→M transformation and negative 

for the reverse direction. On the other hand, the dissipative energy is positive for both 

directions [I.4]. 

 

 

       

 

 

 

 

 

 

 

 

 

 

Fig. I. 5. Temperature dependence of the chemical Gibbs free energies and the 

position of the equilibrium transformation temperature. 

 

It is clear from Fig. I.5. and eq. (I.2) that at a certain temperature below To (here ∆Gc 

is negative and both D and E are positive). ∆Gt will be zero when the chemical and 

non-chemical terms have the same absolute value. From this point the particle formed 

can grow further or become smaller only by undercooling or overheating, respectively 

(balance between the chemical and non-chemical terms). 

 

 

T
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I.5 Terminology 

I.5.1 Shape memory effect 

 SMAs exhibit the shape memory effect (SME) when they are deformed in the 

martensitic phase and then unloaded at a temperature below AS. The reversible shape 

change, leading to a large elastic deformation, is due to the stress induced phase 

transformation as it is illustrated in Fig. I.4. This behaviour is called super or pseudo 

elasticity.  

 If one applies uniaxial stress on the material in martensitic state just after 

cooling down from austenite, then the firstly formed randomly oriented martesite 

variant structure will be rearranged to the single variant structure with high plastic 

deformation, which can be as large as about 6% (see the first three steps in Fig. I.2.). 

This deformation remains even if one removes the stress. This is the so called super-

plastic behaviour, during which there is only a very moderate dislocation activity 

(which is typical in common plasticity).   

 If the material deformed in martensitic phase is heated above Af, it will retain 

to its original shape by transforming back into the parent austenitic phase (see also 

Fig. I.6.). This is the one-way shape memory effect.         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. I.6. Stress - strain - temperature diagram for NiTi SMA [I.1]. 
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Fig. I.7. Shape memory effect and the two 
way shape memory effect in TiNi. 

I.5.2 Two-way shape memory effect 

 In the case, schematically 

illustrated in Fig. I.2., only the shape of 

the austenite phase is remembered. But, 

it is also possible to remember the shape 

of the martensitic phase under certain 

conditions. For example repeating many 

times the subsequent steps shown on 

Fig. I.2. it happens that during a next 

heating martensite variants mainly 

belonging to the single variant structure 

(see the shape after the third step) will 

develop and thus, after such a “learning 

process”, the sample will change its 

shape in each cycle. This is the two way 

shape memory effect. The reason why 

the specimen remembers the shape of the 

martensite phase too can be explained as follows. Upon heavy deformation in 

martensite phase, some dislocations are also introduced and these dislocations can still 

exist even in the austenite phase after heating [I.5]. In the next cooling step the 

presence of these dislocations can help the nucleation of those variants of the 

martensite which existed just before the heating.  

  

 Fig. I.7. illustrates the learning process and the two way shape memory 

behaviour. When the applied stress (and strain) in the martensitic state (b) is relatively 

small, the specimen reverts to the original shape completely (steps a-c). However, 

when the applied stress is large (d), irreversible slips also occur, and the shape does 

not revert to the original one even after heating above Af, [(c) and (e)]. In the next 

cooling cycle, the specimen elongates automatically as shown in (f). Then, if heating 

and cooling is repeated, the specimen changes its shape between (g) and (f), 

respectively.  
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I.6 Typical shape memory alloys 

Several alloys have been developed that display varying degrees and types of 

shape memory behavior. The most commercially successful have been Ni–Ti, Ni–Ti-

X and Cu-based alloys [I.6, I.7], Ni–Ti and ternary Ni–Ti–X alloys are used in more 

than 90% of new SMA applications. Ni–Ti alloys are more expensive than copper 

alloys, but they are preferred for their ductility, stability in cyclic applications, 

corrosion resistance, biocompatibility, and higher electrical resistivity for resistive 

heating in actuator applications. The most common Cu-based alloys, Cu–Al–Ni, Cu–

Zn–Al, and Cu–Al–Be are used for their narrow thermal and adaptability to two-way 

memory training [I.8]. 

   

I.7 SMA's Applications 

Because of the amazing properties of the SMAs, there are lots of applications 

from aerospace industry to consumer products.  

  

I.7.1 Aerospace 

Many of the initial ideas for production and applications of SMAs were pioneered 

in the aerospace industry. SMA materials are used to take advantage of properties such 

as high power-to-mass ratios and ideal actuating behavior in zero-gravity conditions. 

Designs that use these properties replace heavier, more complex conventional devices 

because of reduced weight, design simplicity, and reliability. 

 

 

• Cryofit Hydraulic Pipe Couplings  

SMA couplings were one of the first successful commercial applications 

of SMAs. In 1969, Raychem Corporation introduced shrink-to-fit hydraulic 

pipe couplings for F-14 jet fighters. This coupling is fabricated from a Ni–Ti–

Fe alloy whose martensitic transformation temperature is below -120 0C. It is 

machined at room temperature to an inner diameter approximately 4% smaller 

than the outer diameter of the piping designed to join. When cooled below -

120 0C, the coupling is forced to a diameter 4% greater than the pipe diameter 
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for an overall internal strain of about 8%. When warmed up, the coupling 

diameter decreases to form a tight seal between the pipes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. I.8. SMA devices. Clockwise from top left: memory card ejector mechanism for 

laptop computers; Cryofit hydraulic pipe couplings; Cryocon electrical connector; fire 

safety lid release for public garbage receptacles [I.8]. 

 

• Mars Sojourner Rover Actuator  

 SMA Ni–Ti wire was used to actuate a glass plate above a small solar 

cell on the Rover unit during the Pathfinder/Sojourner mission to Mars. A 

material adhesion experiment performed during the mission used the actuator 

to replace large, heavy motors and solenoids.  

• Smart Airplane Wings  

 Composite structures that have SMA wires embedded can be used to 

change the shape of an airplane wing. The embedded wires may be activated 

to constrict and improve the vibrational characteristics of the wing, heated to 

change their effective modulus to reduce vibration, or activated to alter the 

shape of the wing for optimal aerodynamics. All of these properties can be 
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used to produce an adaptive airplane wing that alters as environmental 

conditions change to improve efficiency and reduce noise. 

 

I.7.2 Medical 

  Because of its excellent biocompatibility (except for some persons 

having Ni allergy) and corrosion resistance, Ni–Ti has been used in many successful 

medical devices and is now widely accepted throughout the medical industry.  

• Orthodontic Dental Arch Wires 

• Orthopedic Devices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. I.9. Medical application of SMAs [I.1]. 

 

I.7.3 Other industrial applications  

 SMAs applications for the automotive industry are challenging for two primary 

reasons: the extreme range of operating temperatures expected during use and the 

market demand for low-cost components. Some of the applications are like; Pressure 

Control Governor Valve, Toyota Shape-Memory Washer, Rock Breakers, Heat 

Engines … etc. 

 



 18

I.7.4 Consumer Products  

Nowadays, SMAs are used everywhere in our life here some of these applications 

• Superelastic eyeglass frames 

• Portable Phone Antennae 

• Greenhouse Window Opener 

• Rice Cooker Valve. 

• Robotic Doll 

• Miscellaneous Products 

• Nicklaus Golf Clubs 

• Recorder Pen Mechanism

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. I.10. Other applications of SMAs [I.1]. 

 

 

I.8 Magnetic shape memory alloys 

 

The martenstic phase transformation can also be triggered by applying 

external magnetic field in some ferromagnetic alloys SMAs such as Ni2MnGa and 

Co2NiAl [I.5, I.9]. The strain can be up to 10%. This big strain is due to the 

reorientation of the martenstic variants to one preferred variant according to the 

magneto-elastic coupling between the martensite variants and magnetic domains: the 

magnetic field tends arrange the magnetic domains and their rearrangement is coupled 

to the rearrangement of the martensite variant structure too. The frequency of the 

actuation is very high – can be even in the kHz range - because here the driving force 

is the magnetic field and not the change of the temperature.  
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Chapter II 

Theoretical Background 

 

 
In this chapter, I will describe in details of the model (Beke-Daroczi) [II.1-II6] 

used, i.e. the way of the determination of  non-chemical (elastic and dissipative) 

energy terms from the experimental data.  

II.1 Introduction 

Since the discovery of the martensite/austenite transformation by the German 

metallurgist Adolf Martens (1850–1914), many models have been published about the 

determination of the characteristic parameters such as T0 (equilibrium transformation 

temperature, at which the chemical free energies of the two phases equals)) and the 

elastic and the dissipative energies belonging to the phase transformation. 

There is a long standing debate in the literature that while the contribution of 

the dissipative energy, D, to the austenite/martensite, A/M, (or reverse, M/A) 

transformation can be directly obtained from the experimental data (thermal hysteresis 

loop, mechanical hysteresis loop, DSC curves), the contributions from the elastic, E, 

and the chemical free energy, ∆GC, can not be separated. Since the temperature 

dependence of ∆Gc is described by ∆Gc=∆Uc-T∆Sc=(T-T0)∆Sc, where ∆Sc=∆Uc/To 

(see also below) is the entropy change of the phase transformation, the separation of E 

and ∆Gc would need the knowledge of ∆SC and T0. While the direct determination of 

∆SC is possible (e.g. from the measured DSC curves [II.7]) the determination of T0 is 

rather difficult. It has been shown that the simple expression proposed by Tong and 

Waynman [II.8]: 0 2
s fM AT +

=  (where MS and Af are the martensite start and 

austenite finish temperatures respectively) can not be valid in general. Salzbrenner 

and Cohen [II.9] have illustrated that this expression is valid only if the elastic energy 

contributions to MS and Af can be neglected.  
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II.2 Model of thermoelastic martensitic transformations  

 Martensitic transformations, as first order phase transformations with 

hysteresis loops, can take place in both directions (i.e. austenite/martensite, A/M, and 

reverse M/A) [II.10]. During such a transformation the change of the Gibbs free 

energy per mole can be written e.g. as [II.11, II.12] (if we neglect the interface term 

for nucleation): 

 

∆G↓ = GM - GA= ∆Gc
↓ + E↓

 +  D↓.            (II.1) 

 

Obviously a similar expression can be written for the A→M transformation as 

well, using the index ↑. Here ∆Gc
↓ is the change in the chemical Gibbs-free energy. E↓ 

and D↓ are the elastic and dissipative energies, respectively.  

The elastic energy accumulates as well as releases during the down and up 

processes just because the formation of differently oriented nuclei/variants of the 

martensite phase is usually accompanied by a development of an elastic energy field 

(due to the overlapping of transformation strains of different nuclei). It is usually 

supposed that E↓ = - E↑ >0. The dissipative energy is always positive in both 

directions. In principle, one more additional term, proportional to the entropy 

production, should be considered, but it can be supposed [II.13] that for thermoelastic 

transformations all the energy losses are mechanical works, which are dissipated 

without entropy production, i.e. the dissipation is mainly energy relaxation in the form 

of elastic waves. Indeed acoustic waves were detected as acoustic emissions during 

the transformation. Thus in the following the term proportional to the entropy 

production will be neglected. Furthermore, usually there is also a nucleation term on 

the right hand side of (II.1), proportional to the interface energy between the two 

phases. However, since this term, similarly to the dissipative energy, is positive in 

both directions and thus it is difficult to separate from D, it can be considered to be 

included in the dissipative term.    

Let us denote the martensite (volume) fraction by ξ. The transformation 

temperature T0 (at which the two phases are in equilibrium for a given ξ) can be given 

as: 
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c

GG E D g e dζ ζ
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↓↓
↓ ↓∆∆ ∆ ∆

= + + = ∆ + + =
∂ ∂ ∂ ∂

         (II.2) 

 

where it is assumed that ∆gc
↓ is independent of ξ and  

 

∆gc
↓ = ∆uc

↓ -T∆sc
↓

,              (II.3) 

 

with ∆uc
↓=uM -uA (<0) and ∆sc

↓=sM -sA (<0) (the M phase is the low temperature 

phase). Furthermore, at the “equilibrium transformation temperature”, T0 (the 

temperature of zero-change in the chemical free energy) 

 

0 0( ) 0,  . .    c c
c

c c

u ug T i e T
s s

↓ ↑
↓

↓ ↑

∆ ∆
∆ = = =

∆ ∆
           (II.4) 

 

and e.g. at any temperature different from T0  

 

∆gc
↓(T) = (To-T) ∆sc

↓
.              (II.5) 

 

If T<To then there is an under-cooling and ∆gc
↓(T) is negative. 

  

In thermoelastic transformations the elastic term plays a determining role. For 

example at a given under-cooling, when the elastic term will be equal to the chemical 

one, for the further growth of the martensite an additional under-cooling is required. 

Thus, if the sample is further cooled the M phase grows further, while if the sample is 

heated it becomes smaller. Indeed, in thermoelastic materials it was observed that 

once a particle formed and reached a certain size its growth stops and grows further or 

decreases with increasing or decreasing the temperature. This is the thermoelastic 

behaviour (the thermal and elastic terms are balanced). 

 

II.2.1Thermal hysteresis loop 

Starting from (II.2) and (II.3), introducing the notation ∆s=∆sc
↓=-∆sc

↑(<0), as 

well as taking the assumptions usual in the treatment of thermoelastic transformations 
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(in accordance with the signs of E and D): e(ξ)=e↓(ξ)=-e↑(ξ) as well as 

d(ξ)=d↓(ξ)=d↑(ξ), one can arrive at the following relations [II.3,II.6] 

 

  0
( ) ( )( ) d eT T

s
ζ ζζ↓ +

= −
−∆

           (II.6.a) 

 

  0
( ) ( )( ) d eT T

s
ζ ζζ↑ −

= +
−∆

 .          (II.6.b) 

 

Thus, by taking the sum as well as the difference of T↑(ξ) and T↓(ξ) one can get the 

e(ξ) and d(ξ), respectively from: 

          

 2 ( )( ) ( ) dT T
s
ζζ ζ↑ ↓− =

−∆
               (II.7) 

and 

        

 02 2 ( )( ) ( ) T eT T
s
ζζ ζ↑ ↓ −

+ =
−∆

             (II.8) 

 

The inverses of (II.6a) and (II.6b), i.e. the ξ(T↓) and ξ(T↑) functions, are the 

down and up braches of the thermal hysteresis loops. The martensite (austenite) start, 

MS (As) and finish, Mf, Af temperatures can be obtained from (II.6a) (and (II.6b)), 

respectively taking them at ξ = 0 as well as ξ =1 (See Fig. II.1.). 

 

 

 

 

 

 

 

 

 

 

Fig. II.1. The ξ(T↓) and ξ(T↑) functions (a) and their inverses (b). 
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Fig. II.2. illustrates the shape of the hystersis curves for the following 

schematic cases: a) both d(ξ) and e(ξ) are zero; b) e(ξ)=0 and d(ξ)≠0, but d(ξ) is 

constant; c) d(ξ) is constant and e(ξ) linearly depends on ξ. It can be seen that in a) 

the transformation takes place at To, in b) there is already a hystersis, but the ξ(T↓) and 

ξ(T↑) branches are vertical. In this case T0 can be found as 0 2
s fM AT +

=  as it can be 

seen from (II.8), in accordance with the Tong-Waynman relation [II.8]. For the case 

of c) the hysteresis curve is tilted, reflecting the ξ dependence of e, so the branches 

have slopes because of the contribution of the ξ dependent e to the phase 

transformation. 

In general case, i.e. in the presence of other external fields, causing also phase 

transformations (like, uniaxial stress, σ, magnetic field ,B, or pressure, p), ∆gc
↓ has 

the form 

∆gc
↓=∆uc

↓-T∆s↓-σVεtr↓+p∆Vtr↓-B∆mtr↓                        (II.9) 

 

where V is the (molar) volume, εtr is the transformation strain as well as ∆mtr and ∆Vtr 

are  the change of magnetization and volume of phase transformation, respectively. 

Then, similarly to the definition of T0, one can also define the equilibrium 

transformation stress, σo, as   

       

 0 (0)
( 0) ( 0)

c c
tr tr

u u
V T V T

σ
ε ε

↓ ↑

↓ ↑

∆ ∆
= =

= =
           (II.10) 

 

 

 

 

 

 

 

 

 

Fig. II.2. Martensite volume fraction (ξ) vs. temperature (T) considering the 

chemical (a) and non-chemical energy, (elastic (b) and dissipative (c)) contributions. 
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In the following the simultaneous effect of temperature and uniaxial stress is 

treated (extension to more general cases is very plausible). In this case T0 (from ∆uc
↓-

T∆s↓-σVεtr↓=0) has to be replaced by  

        

 0 0
( )( ) (0) ,

trVT T
s

ε σσ
↓

= +
−∆

              (II.11) 

 

giving the σ dependence of To. Furthermore, instead of (II.10),  

 

     

 0 0 0
0

(0) ( ) [ (0) ]( )
( ) ( ) ( )

tr

tr tr tr

T T sT sT
T V T V T

σ ε σσ
ε ε ε

− ∆∆
= − =                (II.12) 

 

holds for the temperature dependence of σo. It can be seen that (II.11) and (II.12) are 

the well known Clausius-Clapeyron relations and they are linear only if εtr(σ) as well 

as εtr(T) are constant.  

  

In general the terms containing εtr (or ∆mtr) have tensor character and, even if one 

considers uniaxial loading condition, leading to scalar terms in (II.2), the field 

dependence of them is related to the change of the variant (magnetic domain) 

distribution in the martensite phase with increasing σ. Thus, at zero σ values 

thermally induced, randomly oriented multi-variant martensite structure (or multi-

variant magnetic domain structure) forms in thermal hysteresis, while at high enough 

values of σ a well oriented array i.e. a single variant (or single domain) structure 

develops. Accordingly, εtr has maximal value for the single variant structure, while it 

can be close to zero for thermally induced multi-variant structure. Thus, εtr can 

depend on T or σ taking the ξ(σ) or ξ(T) hysteresis loops, respectively.  
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II.2.2 Mechanical hysteresis loop 

 Similarly as relations (II.6)-(II.8) were obtained, expressions for the branches 

of the ξ(σ) or ε(σ) (in measurements it can be usually assumed that ε∼ξ) hysteresis 

loops (see Fig. II.3) are given by        

     0
( ) ( )( ) ( )

( )tr

d eT
V T
ζ ζσ ζ σ
ε

↓ +
= +         (II.13a) 

 

0
( ) ( )( ) ( ) .

( )tr

d eT
V T
ζ ζσ ζ σ
ε

↑ −
= −               (II.13b) 

Thus  

   2 ( )( ) ( )
( )tr

d
V T

ζσ ζ σ ζ
ε

↓ ↑− =                    (II.14) 

and    

   0
2 ( )( ) ( ) 2 ( )

( )tr

eT
V T

ζσ ζ σ ζ σ
ε

↓ ↑+ = + .       (II.15) 

 

 The simple relations (II.6)-(II.8) and (II.13) - (II.15) allow the 

determination of the dissipative and elastic energy contributions as the function of ξ 

at different fixed values of σ as well as T from the thermal and stress induced 

hysteresis loops, respectively. Thus, even the σ and T dependence of E and D can be 

calculated by integrating the e(ξ) and d(ξ) functions between ξ=0 and ξ=1. 

 

 

  

 

 

 

 

 

 

 

 

Fig. II.3. (a) Mechanical hysteresis loops  and (b) their inverses. 

(b) 
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 The elastic energy contributions (see eqs. (II.8), (II.12) and (II.15)) can be 

determined only exclusive the term containing To(0), if its value is not known. (The 

values of ∆s can be obtained from DCS measurements (by integrating the dQ/T up 

and down curves, where Q is the heat of transformation: see also below) and the εtr(T) 

and εtr(σ)  values can be read out from the ε(σ) and ε(T) hysteresis loops, 

respectively). Nevertheless, the stress and temperature dependence of the elastic 

energy contributions can be determined, since To(0) appears only in the intercept of 

the e(σ) and e(T) or E(σ) and E(T) functions.  

 

II.2.3 Start and finish temperatures and stresses 

 From relations (II.6) and (II.13) expressions for the start and finish 

temperatures as well as stresses can be simply obtained at ξ=0 and at ξ=1: 

 

0 0
0

1 1
0

0 0
0

1 1
0

( ) ( )

( ) ( )

( ) ( )

( ) ( )

s

f

f

s

d eM T
s

d eM T
s

d eA T
s

d eA T
s

σ σ

σ σ

σ σ

σ σ

+
= −

−∆
+

= −
−∆
−

= +
−∆
−

= +
−∆

      

               (II.16) 

 

and  
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Here in principle the do ,d1, eo and e1 can also be stress or temperature 

dependent: in this case e.g. the stress dependence of the start and finish temperatures 

can be different from the stress dependence of To. It can be seen from relations (II.16) 

that the simple expression proposed by Tong and Waynman [II.8] for To as 

0 2
s fM AT +

=  can not be valid only if eo is zero. Indeed, in their ingenious 

measurements Salzbrenner and Cohen [II.9] have been nicely illustrated that To can be 

calculated only in those cases when the elastic energy can be neglected as we 

mentioned above. In their paper the phase transformation was driven by a slowly 

moving temperature gradient in a single crystalline sample, which resulted in slow 

motion of only one interface across the specimen (single-interface transformation). 

This way the elastic energy could easily relax by the formation of the surface relief at 

the moving (single) phase-boundary. In general experiments for the determination of 

hysteresis loops this separation is not possible.   

II.2.4 DCS measurements  

It is worth summarizing what kind of information can be obtained from the 

analysis of the results obtained by a differential scanning calorimeter, DSC. The 

absorbed and released heat energies during the M/A and A/M transformations (see also 

Fig.II4.) can be given by  

 

   Q↓ = ∫ [∆uc
↓ + e(ξ) + d(ξ)]dξ        (II.18) 

 

and  

   Q↑ = ∫[-∆uc
↓ - e(ξ) + d(ξ)]dξ.        (II.19) 

 

here ∆uc
↓ = - ∆uc

↑ is the latent heat of transformation (per unit volume fraction). 

It is worth noting that the heat measured is negative if the system evolves it: 

thus e.g. the first term in (II.18) has a correct sign, because it is negative (∆uc
↓<0). 

Similarly the dissipative and elastic terms should be positive for cooling (the system 

absorbs these energies): indeed e(ξ), d(ξ)>0, while for heating e(ξ)↓=-e(ξ)↑=e(ξ) and 

d(ξ)↓=d(ξ)↑=d(ξ).  
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Now, using the notations ∫∆uc
↓=∆Uc(<0),  ∫d(ξ)dξ= D(>0),  ∫e(ξ)dξ= E (>0)  

 

    Q↓ =  ∆Uc + E  + D            (II.20) 

and 

           

    Q↑ = - ∆Uc -  E  + D.             (II.21) 

 

(In obtaining (II.20) and (II.21) it was used that ∆uc
↓ is independent of ξ.) 

Consequently     

           

    Q↑ -Q↓ = -2∆Uc + 2E            (II.22) 

and  

           

    Q↑ +Q↓ = 2D.             (II.23) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. II.4. Schematic plot of DSC curve showing the gained Q↑ and released Q↓ heat. 

 

Heat Flow 
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It is important to keep in mind that the last equations are strictly valid only if 

after a cycle the system has come back to the same thermodynamic state, i.e. it does 

not evolve from cycle to cycle. Furthermore, it can be shown [II.14,II.15] that these 

are only valid if the heat capacities of the two phases are equal to each other: CA ≅ CM. 

 The DSC curves also offer the determination of ∆s. Indeed the integrals of the 

Q↓/T as well as Q↑/T curves between Ms and Mf, as well as between As and Af, 

respectively give the ∆s↓ as well as ∆s↑  values. If, again the cA ≅ cM condition fulfils, 

then ∆s↓ ≅- ∆s↑ [II.14,II.15].    

Finally, it is possible, by using the DSC curve [II.7], to obtain the volume 

fraction of the martensite ξ as a function of temperature (both for cooling, T↓ and 

heating T↓) as the ratio of the partial and full area of the DSC curve (AMs-T and AMs-Mf, 

respectively) (Fig. II.5.): 

( ) Ms T

Ms Mf 

AT
A

T

M s
M f

M s

dQ
T

dQ
T

ξ

↑

↑

↓ −

−

∫
= =

∫
 .            (II.24) 

 

Similar relation holds for the ξ (T↑) curve (obviously in this case the above 

integrals run between As and T as well as As and Af, respectively). The denominator is 

just the entropy of this transformation (see eq. (II.24)). Thus, the e(ξ)  and d(ξ) 

energies can be calculated at σ = 0 according to relations (II.7 and II.8) . 
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Fig. II.5. DSC curve measured at zero stress (a) and the ξ (T) hysteresis curve (b) 

calculated from the DSC curve. 
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Chapter III:  

Experiments and Evaluation of Data 
 

 

 

III.1 The samples  

 

1. Cu(79.2wt%)Al(15.9wt%)Ni(4.9wt%) single crystalline samples. The samples 

were obtained from Prof. Jan Van Humbeeck (KUL Leuven, Belgium). Rods 

were cut by a simple spar erosion machine and the final dimensions were: 41 

mm in length and 0.45 mm2 in square cross section for elongation-temperature 

tests and 0.59 mm2 for strain-stress tests. The stress was applied parallel to the 

[110]A axis.  

2. Cu(88.04wt%)Al(11,6wt%)Be(0.36wt%) polycrystalline SMA samples 

provided by Nimesis technology (Metz, France). The dimensions of the 

samples were 0.8 mm in diameter and 85mm in length. 

 
III.2 Experimental techniques 

III.2 .1 The stress-strain set-up 

The stress-strain curves were obtained by a tensile machine (Chatillon 

TCD225; see Fig. III.1.) applying an external heating chamber using thermal 

resistance with temperature regulator for controlling the heating and cooling rate. The 

heating as well as cooling rates were 8K/min. The stress-induced hysteresis loops 

were determined between 373K and 423 K (at 8 fix temperatures). 

 

III.2.2 Temperature–strain set-up 

We developed our own machines for the determination of temperature-strain, 

T-ε, and temperature-resistance, T-R, curves at fixed loads (Fig.III.2.). 
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Fig. III.1. The tensile machine (Chatillon TCD225). The inset is the external heating 

system. 

 

This developed system allows us to measure the resistance as well as the 

elongation of the samples by using the four wire method and by using a digital 

micrometer, respectively. A small resistance furnace is used to heat up the sample. To 

avoid the oxidation and the condensation of water vapor, the sample was placed in 

tube filled with H2 and then put the system in liquid nitrogen for cooling down. The 

furnace is connected to a temperature regulator to keep the heating and cooling rate 

constant. 
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Fig. III.2. Scheme of the set-up for the determination of T-ε and T-R curves under 

fixed uniaxial stress. 

 

III.2.3 DSC measurements 

 

Perkin-Elmer DSC-7 power compensation differential scanning calorimeter 

(DSC) was used at zero uniaxial stress to measure the absorbed and the released heat 

during the martensitic transformation at different heating-cooling rates, as well as to 

make thermal cycling on the samples. 

The entropy of transformation was estimated from the obtained curves, according 

to the relation 
 

Load 

Power 
supply 
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Here Q↑ and Q↓ denote the absorbed and released heat during the up and down 

transformations, respectively. Note that (III.1) is valid only if the heat capacity of the 

austenite and martrensite phases are the same [III.1, III.6]. Since the difference of the 

magnitudes of the entropy changes, estimated from the up and down curves, were the 

same within the experimental error, this approximation was used. 

  

 There are many parameters controlling the thermoelastic transformation: the 

chemical composition, temperature, applied stress and its orientation relative to the 

single crystal axis [III.2-III.5]. In the investigated temperature and stress range only 

the transformation from the high temperature cubic β phase to the β’(18R) phase 

takes place [III.2, III.3] in single crystalline samples. In the polycrystalline CuAlBe 

samples the same type of phase transformation takes place [III.7].  

 

III.3 Experimental results 

All results presented in this chapter were published in [III.8] and [III.10]. 

 

III.3.1 Single crystalline samples 

III.3.1.1 DSC Measurements 

Figure III.3. shows the DSC curves measured. Both the heating and cooling 

rate were 2K/min. According to the relation (III.1), the absolute values of the entropy 

were calculated from the heating and cooling branches. The two values were nearly 

the same (the difference was within the experimental errors) ∆s= -1.26 J/Kmol. This 

value is in good agreement with the values obtained in alloys of similar composition 

and having β phase to β’ phase transformation [III.3]. The molar volume of our 

sample was V=7.9*10-6 m3/mol.  
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Fig. III.3. DSC curve measured at zero stress. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III.4. Thermal hysteresis loops (ε vs. T curves) at four different uniaxial stress 

levels. 
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III.3.1.2 Thermal Hysteresis loops (ε-T loops)  

Fig. III.4. shows the strain-temperature hysteresis loops at different constant 

uniaxial stress levels. It can be seen that at lower stress levels, the transformation 

strain, εtr, is small and there is a sudden increase between 15 and 30 MPa. Using 

Fig.III.4. the transformation strain as a function of the applied stress can be calculated 

as shown in Fig. III.5. illustrating that there is a saturation of the εtr value after 40 MP: 

this saturation value is about 6 %. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III.5. Transformation strain as a function of stress (εtr is the maximal of value of ε 

in Fig. III.4.). 

 

III.3.1.3 Strain-stress hysteresis loops  

Strain-stress (ε-σ) hysteresis loops measured at different constant temperatures 

are shown in Figure III.6. All curves were obtained at temperatures greater than Af. 

We can see that all curves turn back to the starting points (i.e. to ε=0) showing pseudo 

elastic behavior. Fig. III.7. shows the transformation strains as a function of 

temperature: they were calculated from the σ(ε) loops (see Fig. III.6.). It can be seen 

that there is a large change between 355 and 383 K before reaching the saturation: the 
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saturation value of the transformation strain is about 6 %, similar to the value shown 

on Fig. III.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III.6. σ versus ε at four different temperatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III.7. Transformation strain as a function of temperature (read out from curves 

shown in Fig. III.6.). 
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III.3.1.4 Temperature and stress dependence of the start and finish stresses and 

temperatures 

From Fig. III.4. and from Fig. III.6. one can determine the transformation 

temperatures MS, AS, Mf and Af as well as the transformation stresses σMs, σAs, σMf  and 

σAf. The procedure is shown in Fig. III.8. where the ideal form of the ε(T) hysteresis 

curve is shown.   

 

 

 

 

 

 

 

 

Fig. III.8. Determination of MS, AS, Mf and Af temperatures from the  ε ~T 

curves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III.9. Start and finish temperatures as the function of stress. 
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Figs. III.9. and III.10. show the stress and the temperature dependence of the 

start and finish temperatures and stresses, respectively. One can see that the 

transformation temperatures and transformation stresses strongly depend on the 

applied stress and temperature, respectively. The slopes of transformation 

temperatures as well as transformation stresses are given in Table III.1. 
 

 

 

 

 
  

 

 

 

 

 

 

 

 

  

Fig. III.10. Start and finish stresses as the function of temperature. 

 

 

 SLOPE (K/MPA)  SLOPE (MPA/K) 

MS 0.58 σMs 1.60 

Mf 0.5 σMf 1.96 

AS 0.52 σAs 2.17 

Af 0.61 σAf  1.54  

 

 

Table III.1. The slopes calculated from the curves shown in Fig.III.9. and 
Fig.III.10. 
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III.3.1.5 Cycling effect 

Deeper understanding of the thermomechanical cycling effects on the 

transformation can lead to improved control of the shape memory function. Many 

applications of shape memory devices e.g. actuators require a large number of thermal 

and mechanical cycles and also a stable and reliable shape memory effect. Training or 

teaching the SMA refers to applying an external field such as thermal or mechanical 

loading cycles until the stabilization of all the SMA parameters e.g. start and finish 

temperatures as well as start and finish stresses [III.9]. As a first step to understand 

the basic mechanisms of fatigue we carried out investigations on the effect of number 

of thermal and stress driven cycling on the β to β’ phase transformation in single 

crystalline CuAl(11.5wt%)Ni(5.0wt%) alloy [III.10].      

IIII.3.1.5.1 Thermal cycling  

Thermal cycling was carried out by using a differential scanning calorimeter, 

DSC, at zero uniaxial stress and 10 K/min heating and cooling rate. The transformed 

martensite fraction, versus temperature curves as well as the heat of transformations, 

Q, at zero stress was obtained. Fig. III.11. shows the DSC heating and cooling curves 

obtained at zero stress. Fig. III.12. shows the normalized ε-T hysteresis loops 

calculated from the DSC curves for three different N. It can be seen that both the area 

of the loops and the slopes of the upper and lower branches have systematic changes 

with N. 

 

  

 

 

 

 

 

 

 

 

Fig. III.11. DSC curves at zero stress for different cycles. 

 

Heating 
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Fig. III.12. Hysteresis loops calculated from the DSC curves. 

III.3.1.5.2 Mechanical cycling 

Mechanical cycling was carried out to see the effect of the cycling on the 

dissipative and elastic energies. The stress-strain curves for different cycles, at 373 K 

(starting form the austenite phase, T>As) are shown in Fig. III.13. As one can see 

there is a moderate increase in the transformation strain at higher number of cycles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III.13. σ versus ε at different number of cycles at fixed temperature. 
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III.3.2 Polycrystalline samples 

We have seen before that at higher stresses the elastic energy decrease, so we 

investigated  the effect of the high stress on the dissipative and the elastic energies in 

the CuAl(11,6wt%)Be(0.36wt%) polycrystalline shape memory alloy too. The 

resistance – temperature (R-T) hysteric loops at constant stresses are shown in Fig. 

III.14. The normalized curves coming from the R-T hysteric loops are shown in Fig. 

III.15. One can see that the loops shift to higher temperatures at higher stress, and the 

slopes of the branches increase indicating a lower elastic energy contribution. 

 

 

 

 

 

 

 

 

 

 

 

Fig. III.14. Stress dependence of the R-T with hysteresis loops. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III.15. Normalized R-T curves.  
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Chapter IV 
 
Analysis of Experimental Data 

 
 

 

IV. 1 Result on single crystalline samples 

IV.1.1 Temperature and stress dependence of the transformation strain 

Let us consider now the εtr(σ) and εtr(T) functions obtained from ε ~T and ε~σ 

hysteresis loops and illustrated in Figs. III.5. and III.7. It can be seen that both εtr(σ) 

and εtr(T) has a sudden change between 15 and 30 MPa as well as 355 and 483 K 

respectively. The saturation values for both of them are the same, about 6%. The field 

dependence of εtr is related to the change of the martensite variant distribution with 

increasing field parameters [IV.1]. Indeed, εtr can be very small or even close to zero 

for the formation of the thermally induced (randomly oriented) martensite variants 

(usually there is a very small resultant (remnant) strain in single crystalline samples, 

as seen in Fig III.5.). 

 
For the description of this, the volume fraction of the stress-induced (single) 

variant martensite structure, η, has been introduced in [IV.1].  Accordingly, the stress 

as well as the temperature dependence of εtr can be expressed via the η dependence of 

εtr(η) as  

    εtr=εT +(εσ - εT)η ,            (IV.1) 

where εT and εσ are the transformation strains when fully thermally induced multi 

variant structure forms (η=0), as well as when the martensite consists of a fully 

ordered array of stress preferred variants (single variant state, η=1), respectively.  

It is worth noting that in Fig. III.6. the martensite start stress at 373 K is about 

30 MPa and on the curve shown in Fig. III.5. this leads to about 4% εtr value, which is 

approximately the same as was observed at this temperature (see Fig. III.7.). Since in 

the expression for ∆g (∆g= ∆u - T∆s - σVεtr,) the elastic and thermal terms play 
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equivalent roles with opposite sign in the thermoelastic balance [IV.2, IV.3], at higher 

temperatures higher stress is necessary to start the transformation and the formed 

martensite structure will be more oriented: η and thus εtr will be larger. 

IV.1.2 Analysis of the results on thermal hysteresis loops  

In the relations presented in the section II.2, we can see that To(σ) is not linear 

in general because of the transformation strain εtr(σ,T) is not constant (see Fig. III.5.), 

furthermore, the elastic and dissipative terms (ei, di,, i=0,1) as a function of the stress 

can also contribute the stress dependence of the start and finish temperatures (see 

relations (II.16)). Thus, we plotted the To(σ)−Το(0) values versus σ in Fig. IV.1. using 

the relation (II.11) and the measured value of ∆s/V and the εtr(σ) curve (Fig. III.5.). 

By neglecting the small deviations in the interval between 0 and 40 MPa in Fig IV.1. 

we can see that this function can be approximated by a straight line. This small 

deviation - S-shape part up to 40MPa - is coming from the stress dependence of εtr 

(see the inset in Fig. IV.1.). The slope of the fitted straight line in the whole stress 

range is 0.39±0.05 K/MPa, and from Table III.1. the slopes of Ms and Af as well as Mf  

and As (see Fig. III.9. and Table III.1.) are practically the same: 0.59 as well as 0.50 

K/MPa, respectively.  Thus, these slopes are different from the obtained slope of the 

To(σ).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. IV.1. Calculated stress dependence of the equilibrium transformation 

temperature, To. 
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We can study the effect of the contribution of the stress dependence of di and 

ei parameters in the difference slopes. We can calculate d0 and d1 by using the relation 

(II.16) by taking the difference of the Af(σ) and Ms(σ) and As(σ) and Mf(σ), 

respectively. As well as the eo and  e1 in terms of To(0)∆s can be calculated from the 

sums of the Ms(σ)+Af(σ) and Mf(σ)+As(σ), respectively with the help of the quantities 

σVεtr(σ). 

Fig. IV.2. shows the stress dependence of the do and d1 quantities. It can be 

seen that, there is an increase up to 60 MPa then decrease again for both d0 and d1: the 

maximum is around 18 and 22 J/mol for d0 and d1 respectively. It is worth mentioning 

that the maximum value is around the point corresponding to the where stress value of 

the saturation of εtr(σ) starts. This can be related to the change in the formation of 

thermally induced (randomly oriented) and stress-induced (well oriented) martensite 

variants. At lower stresses many different variants with high dissipation are present, 

but by increasing the applied uniaxial stress, one variant will be preferred and 

hence the dissipation will be a bit lowered.  

 

But even if we take the average value of di (i=1 or 0) and consider its error, the 

average value is about 12±3 J/mol for both d0 and d1. However, it is clear that the 

deviation reflected in the different slopes of T0 as well as of the start and finish 

temperatures originate not from the dissipative contributions. 

 

On the other hand, we can see that from Fig. IV.3. that the eo and e1 

parameters have a linear stress dependence. The vertical axis of this figure is 

To(0)∆s+ei(i=0,1). Note that since the To(0)∆s quantity is negative (∆s<0) and, thus 

from the fact that the values on the vertical axis are negative, one can conclude that 

eo(0)<⏐To(0)∆s⏐.  

The slopes of these curves are - 0.25 and - 0.14 J/molMPa, respectively, or 

dividing them by ∆s we have the contributions of the elastic energy contributions to 

the slopes of the start and finish temperatures (see eq. (II.17)): ∂(eo/∆s)∂σ = 0.20 

K/MPa and ∂(e1/∆s)∂σ =0.11 K/MPa, respectively. Taking into account that the errors 

in the estimation of slopes are about ±0.05 K/MPa, it can be concluded that the 

difference between the slopes of the To(σ) and Ms(σ) or As(σ) is caused by the stress 

dependence of the elastic energy contributions [IV.4]. 
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Fig. IV. 2. Stress dependence of the dissipative terms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. IV.3. Stress dependence of the elastic energy terms. 

IV.1.3 Analysis of the results obtained from σ-ε hysteresis loops  

The determination of the temperature dependence of σo(T) is difficult because 

we can not apply a similar procedure as for the stress dependence of To(σ), because 
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we do not know the value of To(0) (see eq. (II.12)), where εtr has temperature 

dependence as seen in Fig. III.7.). Nevertheless, the slopes of the straight lines fitted 

to the start and finish stresses versus temperature functions (Fig. III.10) are given in 

Table III.1. Furthermore, the di(T) and ei(T) functions, are shown in Figs. IV.4. as 

well as IV.5., respectively as calculated from the differences of σAf(T) and σMs(T) and 

the sums of the σAs (T) and σMf (T) curves (see Fig. III.10 and Table III.1.), and using 

the εtr(T) values given in Fig. III.7. For the elastic terms one can write, by using 

relations (II.10), (II.12) and (II.17), 

 

0 0
( )[ ( ) ( )] ( ) ( ) ( )

2

tr
trMs AfV T T T T s V T T e Tε σ σ ε σ+

+ ∆ = +    

      = To(0)∆s + eo(T) 

                 . = σ0(0)Vεtr
o+eo(T).         (IV.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. IV.4. Temperature dependence of the di quantities (i=0,1). 

 

A similar relation holds for e1. On the left hand side of (IV.2) all the quantities 

(and their temperature dependence) are known. It can be seen from Fig. IV.4. that 



 51

do(T) and d1(T) are constant within the experimental errors, and their average value 

(about 4.0±1.5 J/mol) is lower than the values of do(σ) and d1(σ) shown on Fig. IV.2. 

On the other hand, eo(T) and e1(T) are temperature dependent with slopes - 0.55 

J/molK and - 0.18 J/molK, respectively (Fig. IV.5.).    

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. IV.5. Temperature dependence of the T0∆s+ei quantities (i=0,1). 

IV.1.4 Relations between the start and finish stresses and the test temperature    

In order to get expression e.g. for σMs(T) let us take the first relations of (II.16) 

(at σ=0) and (II.17) and make the use of (II.12):    
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(IV.3)  
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Note that in the relations used in obtaining (IV.3) the transformation strain and 

the martensite fraction derivatives of the dissipative and elastic terms were considered 

to be stress dependent. It can be seen that the relation (IV.3) will have the form 

usually found in the literature (see e.g. [IV.5, IV.6]) only if the sum of the last two 

terms is zero and, even in this case, it will have a linear temperature dependence only 

if εtr(σo(T)) is constant.  Similar relations can be obtained for the other start and finish 

stresses. In the case of σMf the difference of d1 and e1 appears in the second term, and 

εtr should be taken at σMf, while for σAf  and σAs the eo-do as well as e1-d1 differences 

will be present.  For example; 

0

1 1

1 1
0

( )   [ ][ (0)]
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One can recognize from (IV.3) or (IV.4) that interestingly if the contributions 

from the elastic and dissipative contributions are neglected, the slopes of all start and 

finish stresses versus temperature have the same value.   

It can be seen that the functions on Fig. III.10. can be approximated by straight 

lines and Table III.1 contains their slopes. However, while the slopes of σMs(T) and 

σAf(T)  as well as σMf(T) and σAs(T) are the same, the slopes of these two groups differ 

from each other more than the estimated error (about 0.05 MPa/K [IV.4]). 

In (IV.3) and (IV.4) both do and d1 terms are practically temperature 

independent [III.4] while eo(σMs(T)) depends on temperature (Fig. IV.5: ∂eo/∂T=-0.50 

J/molK, ∂e1/∂T=-0.18 J/molK [IV.4]). Furthermore, the εtr(σo(T)) and εtr(σMs(T)) 

functions should be considered in the temperature interval 373-425K (Figs. III.7 and 

III.10) i.e. εtr(σo(T))≅ εtr(σMs(T))≅ 0.055. Thus, the terms containing 1/Vεtr will be 

approximately constant 1/Vεtr ≅ 2.3x106 mol/m3 (a bit larger than the value belonging 

to Vεtr
max: 2.1x106 mol/m3). 

Thus, one can estimate the contributions of the 1st, 2nd and 3rd terms in (IV.3) 

and (IV.4) to the slope of σMs vs. T function (Table IV.1). The slope of the third term 

is 0 (εtr(σo(T))≅εtr(σMs(T))≅const.) and from the second term only the elastic term 

(IV.4) 



 53

contributes to the slope. This also explains why the slopes of σMs and σAf as well as 

σMf and σAs are similar, because they contain the temperature derivatives of eo and e1, 

respectively.  

It is worth mentioning that it was already mentioned in [IV.4] that the di 

(i=0,1) values have a decreasing tendency with increasing temperature, but the slope 

was not estimated because of the relatively high experimental errors. Now if we put 

straight lines to the points in Fig. IV.4. we get for both slopes -0.028 J/molK, which 

leads to a -0.064 MPa/K contribution from the 3rd term in (IV.3) or (IV.4), which is 

just around the experimental error of the slopes in Fig. III.10. Taking all the 

contributions into account the agreement between the estimated and experimental 

values is very good.  

Experimental [IV.4] σMs vs. T σMf  vs. T σAf  vs. T σAs vs. T
Slope in MPa/K 1.6 2.0 1.5 2.2 

 
Estimated 

(parts) 
Eq. 

(II.12) 
1st term 

in (IV.3) & (IV.4)
2nd term 

in (IV.3) eo 

2nd  term in 
(IV.4) e1 

3rd term in 
(IV.3) or (IV.4) 

d0=di 

Slope in MPa/K 2.59 2.83 -1.15 -0.41 0 or  -0.028 
 

Estimated (whole) σMs vs. T σMf  vs. T σAf  vs. T σAs vs. T 
Slope in MPa/K 1.68 or 1,65 2.42 or 2.45 1.68 or 1.65 2.42 or 2.45

 
Table IV.1. Experimental and estimated values of the slopes of the start and finish 

stresses versus T. 

IV.1.5 Self-consistency of our analysis  

The following facts confirm the self-consistency of the analysis carried out 

above. In both sets of investigations (thermally and stress induced transformations) 

we have observed that the transformation strain depends on the field parameter (Figs. 

III.5. and III.7.), but both have the same saturation value. This can be interpreted by 

the increase of the fraction of the stress-induced (single) martensite variant structure, 

η, according to relation (IV.1), from which e.g. an S-shape η(σ) function follows.  

The difference of the slopes of the linear stress dependence of the start and 

finish temperatures as well as the slope of the To temperature corresponds to the 

contribution from the stress dependence of the elastic energy terms (the dissipative 

terms are practically independent of σ). 



 54

The values obtained for the do and d1 quantities have almost the same values in 

both sets, but their value is lower for the ε-σ loops by a factor of 3. It is worth 

mentioning that most probably both di(σ) and di(T) (i=0,1) functions are not constant 

but the resolution of their dependence on σ and T, respectively, due to their small 

values and the experimental errors, is not possible from our data. Nevertheless, Fig. 

IV.2. (and Fig. IV.7. showing D versus σ) suggest that the di(σ) function could have a 

maximum at about 60 MPa, while at σ =0 MPa as well as at σ =178 MPa its average 

value is about 6-7J/mol, which is close to 4 J/mol obtained from the di(T) functions. 

Furthermore, since at higher temperatures higher stress is necessary to start the 

transformation, it is also plausible that the negative slope of the second part on Fig. 

IV.2. should correspond to a negative slope on the di(T) functions. Indeed, there is a 

slight decreasing tendency with increasing T on Fig. IV.4. Unfortunately, the accuracy 

of our present results does not allow a deeper and proper analysis of the field 

dependence of the dissipative terms. In addition, the details of the transformation (and 

thus the magnitude of di) can be different for stress and temperature induced 

transformations as well as can also depend on the prehistory of the samples (not 

investigated here). 

 

IV.1.6 Stress and temperature dependence of the total dissipative, D, and elastic 

energy, E 

IV.1.6.1 Stress dependence 

.  Fig. IV.6. shows the d(ξ) function calculated from the inverses of the 

normalized hysteresis ε-T loops (see relations (II.6) and appendix 1) at different 

stresses. In Fig. IV.7. the twice of the integral of d(ξ) function for the whole thermal 

cycle (i.e. between ξ=0 and ξ=1), D(σ) is plotted versus σ. The full dots in Fig. IV.7. 

show the values obtained from integration, while the open dot at σ=0 was calculated 

from the DSC curves (Fig. III.3.) according to the relation Q↓ + Q↑ = 2D (Q↓ =-331.6 

J/mol, Q↑=357.6 J/mol). It can be seen that full dots fit self-consistently within the 

experimental errors to the open dot calculated from the independent (DSC) 

measurement. Again we can see the maximum of the dissipative energy around 60 

MPa. Nevertheless, the value of D can be taken to be constant within the experimental 

scatter and its average is about 12 J/mol [IV.7]. 
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Fig. IV.6. Dissipative energy (d(ξ) = [d0ξ)+ d1(ξ)]/2) term versus the transformed 

martensite fraction, calculated from the normalized ε-T loops, at different stress levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. IV.7. Energy dissipated within one ε-T hysteresis loop as the function of σ.  

 

Fig. IV.8. shows the T↓(ξ)+T↑(ξ)=2To(σ)+2e(ξ,σ)/[-∆s) vs. ξ functions 

calculated from the ξ-T curves at different stresses. It can be seen that the curve at 

zero stress, calculated from the DSC measurement, fits sel-consistently to the others. 
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Fig. IV.8. T↓ (ξ) + T↑(ξ) vs. ξ  at different stresses. 

 

Fig. IV.9. shows the integrals of the curves of Fig. IV.8. giving the total elastic 

energy, E, per one cycle (irrespective of the constant ∆sT0 value). We can see that the 

total elastic energy decreases with increasing applied unixial stress. This is because 

the stored elastic energy can be at lowest value when the martensite phase has only 

one variant due to the high stress.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. IV.9. Stress dependence of the total elastic energy, E. The point at zero stress is 

obtained from the DSC data. 
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IV.1.6.2 Thermal  Dependence 

 The functions  

σ↓(ξ)-σ↑(ξ) =2d (ξ,T)/Vεtr(σ) and σ↓(ξ)+σ↑(ξ)=2σo(T)+2e(ξ,T)/Vεtr(σ)  vs. ξ 

functions were plotted at different temperatures. The integrals of these functions give 

the total dissipative energy, 2D(T), and the 2E(T)+ 2To(0)∆s quantity, containing total 

elastic energy [IV.8]. These functions are plotted in Figs. IV.10. and IV.11. From Fig. 

IV.10. we can see that the dissipative energy has no temperature dependence, and its 

value scatters within the experimental errors around 7 J/mol. On other hand the elastic 

energy has strong temperature dependence (Fig IV.11.).  Since the To(0)∆s quantity is 

negative (∆s<0), from the fact that the values on the vertical axis are negative it can 

be concluded that E(0)<⏐To(0)∆s⏐. Furthermore, it is clear from the sign of the slopes 

in Fig. IV.11. that E decreases with increasing temperature. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. IV.10. Temperature dependence of the total dissipative energy, D. 

 

This is quite plausible because the elastic energy can be larger for thermally 

induced (random) multi-variant structure, because in this case the overlapping of 

elastic fields of the differently oriented variants leads to more remarkable elastic 

energy accumulation. 
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Fig. IV.11. Temperature dependence of the total elastic energy, E. 

 

 

IV.1.7 Dependence of the dissipative and elastic energies on the number of cycles 

The results presented in this chapter were published in [IV.9]. 

IV.1.7.1 Thermal cycling  

  The slopes of the up and down branches as well as the area of the hysteresis 

curves in Fig.III.12. show changes with increasing number of cycles: the lower area 

indicates lower dissipative energy contribution and larger slopes show larger elastic 

energy contribution (Fig.IV.12. and Fig.IV.13.). The ξ dependence of the elastic and 

dissipative energy can be obtained from the sum and difference of T↑ and T↓ curves in 

Fig. III.12. (see eq. (II.6)), respectively. Fig.IV.12. and Fig.IV.13. show how the total 

elastic (E), and the total dissipative (D) energy, change with the number of cycles, as 

calculated from the integrals of the above curves (between ξ=0 and ξ=1), versus N. 

We can get E and D by using the well-known relations Q↓+Q↑=2D and Q↓-

Q↑=2E+2T0∆S as well. These results fit well to the points calculated from the above 

integrals (see Figs.IV.12. and Fig.IV.13.).  
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Fig. IV.12. Total elastic energy as the function of number of cycles for thermal loops 
(■ from the ξ-T loops, ● from the heats of transformation). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. IV.13. Total dissipative energy as the function of number of cycles for thermal 

loops (■ from the ξ-T loops, ● from the heats of transformation). 
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IV.1.7.2 Mechanical cycling  

The elastic and the dissipative energies were calculated from Fig III.13. using 

the relations of the integrals of σ↓(ξ)+σ↑(ξ) and σ↓(ξ)-σ↑(ξ) respectively. Fig IV.14. 

and Fig IV.15. show the N dependence of calculated total elastic energy as well as 

total dissipative energy, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. IV.14. Total elastic energy versus the number of cycles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. IV.15. Total dissipative energy as the function of number of cycles. 
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In the calculations of E and D the σ dependence of εtr on N was neglected and 

εtr =0.046 was taken (as read out from the curves in Fig. III.5. which is also in a good 

accordance with the value obtained from the temperature dependence of εtr at 373K 

(see Fig III.7.). It is clear that the elastic energy decreases before reaching a constant 

value after few cycles, while the dissipative energy increases by increasing N and 

saturates after a few mechanical cycles.  

IV.7.3 Results on polycrystalline samples 

The elastic and dissipative energy contributions as the function of stress are 

plotted in Figs. IV.16. and IV.17., respectively for the CuAl(11,6wt%)Be(0.36wt%) 

samples. (Here we investigated only the T(ε) loop and the effect of thermal cycling). 

One can see that the elastic energy decreases with increasing applied uniaxial stress 

and it reaches a saturation value at high enough stresses. On other hand, the 

dissipative energy increases and saturates at high stresses. 

 

 

  

 
 

 

 

 

 

 

 

 

 

 

 

Fig. IV.16. Total elastic energy as a function of the applied stress. 
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Fig. IV.17. Total dissipative energy as a function of the applied stress. 

 

The effect of thermal cycling on the DSC curves is shown in Fig. IV.18. and it can be 

seen that there is no cycling-effect at zero stress.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. IV.18. Thermal cycling effect on the CuAl(11,6wt%)Be(0.36wt%) 

polycrystalline shape memory alloy. 
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Chapter V  

Summary  
 

Two types of high temperature Cu-based shape memory alloys have been 

investigated: CuAl(11.5wt%)Ni(5.0wt%) single crystalline and 

CuAl(11,6wt%)Be(0.36wt%) polycrystalline samples. Our main goal was the 

determination of the non-chemical energy contributions (e.g. the elastic and 

dissipative energy contributions) to the martensitic phase transformations during 

thermal and stress induced cycling. In both alloys only the the transformation from the 

high temperature cubic β phase to the β' (18R) phase takes place at the investigated 

compositions. 

 

I. CuAl(11.5wt%)Ni(5.0wt%) single crystal 

Two separated sets of measurements have been carried out investigating the 

characteristic parameters; i) determination of the martensite fraction-temperature ξ(T) 

curves at different constant stresses; ii) strain-stress ε(σ) hysteresis curves at different 

constant temperatures (ε∼ξ).  

 

From the measurements of (ε-T) and the (ε-σ) hysteresis curves, the stress and 

the temperature dependences of the transformation strain (εtr) was determined [V.1]. 

The transformation strain, εtr, determined from the σ-ε loops at constant temperatures, 

shows a saturation value of about 6.1%, close to the theoretic maximal value. As it is 

expected, the same saturation value was obtained from the ε(T) loops. The stress and 

temperature dependence of εtr is interpreted by the gradual change of the martensite 

structure formed: at higher uniaxial stress values more oriented martensite variants 

develop with higher resultant strain. 

 

From the DSC curves we could calculate the entropy of the examined alloy as 

well as we could obtain the ε(T) hysteresis curve at zero stress. 
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     By using the model developed from our laboratory, the derivatives of the 

non-chemical free energy contributions, by the martesite volume fraction (ξ), to the 

phase transformation at fixed temperatures as well as at fixed stresses have been 

calculated. These contributions were calculated from the ξ(σ) hysteresis curves at 

constant temperatures and ξ(T) loops at constant stresses.  

 

It was obtained that: [V.1 – V.4] 

• The derivatives of the elastic energy by the martensite volume fraction, ξ,  

have strong temperature and stress dependence;  

• The derivatives of the dissipative energy were practically constant, or the 

changes were almost within the experimental errors;  

• The elastic energy, calculated from the start and finish temperatures of the ξ-

T hysteresis curve at zero stress obtained from the DSC curve, fits very well 

to the straight lines obtained for the start and finish temperatures of the ξ-T 

hysteric curves at different σ≠0 levels; 

• The slopes of the start and finish stresses versus temperature as well as the 

start and finish temperatures versus stress functions are different from the 

slopes of the equilibrium transformation stress versus temperature, σ0(T), as 

well as of the equilibrium transformation temperature versus stress, T0(σ), 

functions, respectively. It is shown that this is due to the temperature as well 

as stress dependence of the elastic energy contributions;  

• The total dissipative and total elastic energy contributions were also 

calculated from the integrals of their derivatives. Both the stress and 

temperature dependence of the total elastic energy per cycle show a linear 

dependence in the range investigated with slopes -1.30 J/mol MPa and -1.04 

J/mol K, respectively. The total elastic energy (E) decreases with increasing 

stress in accordance with the increasing volume fraction of the well oriented 

single variant structure;  

• The total dissipative energy (D) does not show any stress or temperature 

dependence. The value of D(σ) is constant within the experimental scatter 

and its average is about 12 J/mol, and the average value of D(T) is about 7 

J/mol. 
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Mechanical and thermal cycling on the CuAl(11.5wt%)Ni(5.0wt%) single 

crystal shape memory alloy have been carried out to see the effect of the cycling on 

the contributions of the elastic and the dissipative energy in the phase transformations. 

The following results were obtained [V.5]: 

• Both the dissipative (D) and elastic energy (E) show a definite dependence 

on the number of cycles in the first few cycles and then a saturation value is 

reached with increasing N. i.e. the stress-strain and strain-temperature 

responses stabilize;  

• In thermal cycling the elastic energy, E, as well as the dissipative energy, D 

per one cycle increases as well as decreases, respectively with increasing 

number of cycles, while in mechanical cycling there is an opposite tendency. 

These changes are related to the change in the martensite variant structure 

during cycling.  

 

II. CuAl(11,6wt%)Be(0.36wt%) polycrystalline shape memory alloy 

Similar set of measurements, as carried out for CuAl(11.5wt%)Ni(5.0wt%) 

single crystalline samples, were carried out in CuAl(11,6wt%)Be(0.36wt%) 

polycrystalline samples. But only the ε∼T loops were measured at different stress 

levels and the effect of cycling was investigated.   

• It was obtained that the elastic energy decreases with increasing applied 

uniaxial stress and it reaches a saturation value at high enough stresses. On 

other hand the dissipative energy increases and saturates at high stresses.  

• No thermal cycling effect has been detected on the DSC curves measured at 

zero σ.  
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Magyar nyelvű összefoglaló 

 
A dolgozat fő célkitűzése a martenzites átalakulásokat leíró szabadenergia 

függvények nem kémiai (rugalmas és disszipatív) részének a vizsgálata volt termikus, 

és feszültség indukált átalakulások során. Munkám során magas átalakulási 

hőmérsékletű réz alapú ötvözeteken végeztem kísérleteket. Vizsgáltam a nem kémiai 

szabadenergia tagok viselkedését egykristály (CuAl(11.5wt%)Ni(5.0wt%)) valamint 

polikristályos (CuAl(11.6wt%)Be(0.36wt%) mintákon. Mindkét ötvözetben csak a β 

→ β' (18R) szerkezeti fázisátalakulás játszódik le a vizsgált összetételeknél.     

  

I. CuAl(11.5wt%)Ni(5.0wt%) egykristály minták  

 Két kölönálló mérési sorozatban vizsgáltam a következő jellemzőket: i) 

konstans egytengelyű feszültség értékek mellett meghatároztam az átalakult martenzit 

hányad-hőmérséklet (ξ-T) görbéket; ii) állandó hőmérsékleteken mértem a relatív 

megnyúlás feszültség (ε-σ) görbéket (ε∼ξ).   

A (ξ-T) valamint (ε-σ) hiszterézis görbékből meghatároztam az átalakulási 

deformáció (εtr) feszültség és hőmérséklet függését [V.1]. Az ε-σ hurkokból 

meghatározott εtr értéke 6.1%-nál, amely közel van az elméletileg várható maximális 

értékhez, telítést mutat. Mint ahogy várható volt, ugyanez a telítési értek adódott az ε-

T görbékből is. εtr feszültség és hőmérséklet függését a martenzit variáns 

szerkezetének fokozatos változásával magyaráztam: nagyobb egytengelyű 

feszültségeknél egy jobban (egyirányban) rendezett variáns szerkezet alalkul ki, 

melyhez nagyobb visszamaradó deformáció tartozik.          

A DSC görbékből ki tudtam számítani az átlakuláshoz tartozó enrtópiát, 

valamint  nulla feszültséghez tartozó  (ε-T) görbét is meg tudtam határozni.    

A fázis átalakulásokhoz tartozó nem-kémiai szabadenergia járulékok átalakult 

anyaghányad szerinti deriváltjainak hőmérséklet és feszültségfüggését a (ξ-T) és (ξ-σ) 

függvényekből számítottam ki, a tanszéken korábban publikált modell 

felhasználásával.   

A főbb eredmények a következők [V.1 – V.4]: 

• A rugalmas szabadenergia járulékok átalakult anyaghányad szerinti 

deriváltjai erős hőmérséklet és feszültségfüggést mutatnak. 
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• A  disszipatív szabadenergia deriváltak nem mutattak mérhető hőmérséklet 

ill. feszültségfüggést.  

• A DSC görbékből nyert (ξ-T) függvények kezdeti- és vég- 

hőmérsékleteiből kiszámítottam az elasztikus energia-deriváltak értékeit. 

Ugyanezen értékek feszültségfüggését is meghatároztam a 

megnyúlásmérésekből 0-tól különböző húzófeszültségeknél. A 

megnyúlásmérésekből σ=0 feszültségre extrapolált, valamint a DSC 

mérésből  kapott értékek jó egyezést mutatnak, ami a kiértékelési módszer 

önkonzisztens voltát bizonyítja. 

• A transzformációk kezdeti- és vég- hőmérsékleteit a feszültség 

függvényében ábrázolva azt tapasztaltam, hogy ezen görbék meredeksége 

eltér a termodinamikai egyensúlyi hőmérséklet feszültségfüggését megadó 

görbe meredekségétől. Hasonló jelenség tapasztalható a kezdeti- és vég-

feszültségek valamint az egyensúlyi feszültség hőmérsékletfüggését 

vizsgálva is. Megmutattam, hogy ez a rugalmas energia járulékok 

hőmérséklet és feszültség függésével áll összefüggésben. 

• A rugalmas és disszipatív szabadenergia deriváltak integrálásával 

kiszámítottam a teljes transzformációhoz tartozó rugalmas és disszipatív 

energiákat. A E teljes rugalmas energia a feszültség illetve a hőmérséklet 

függvényében lineáris függést mutat -1.30J/molMPa, illetve -1.04 J/molK 

meredekségekkel. Az rugalmas energia csökkenése a feszültség 

növelésekor azzal magyarázható, hogy egyre jobban orientált egyre 

kevesebb variánsból álló martenzit szerkezet jön létre.  

• Nem tapasztalható feszültség vagy hőmérsékletfüggés a teljes ciklusra 

számított disszipatív energia (D) esetében. A feszültség függvényében 

mérve (a hőmérsékleti hurkokból számolt) D(σ) átlagértéke 12J/mol-nak 

míg a hőmérséklet függvényében (a feszültségi hurkokból számolt érték) 

7J/mol-nak adódott. 

 

Az egykristály mintákat mechanikai és termikus ciklizálásnak alávetve az alábbi 

eredményeket kaptam [V.5]: 

• Mind a rugalmas, mind a disszipatív energia erősen változik az első néhány 

ciklus során majd nagyobb ciklusszámoknál tart egy telítési értékhez.  
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• Termikus ciklizálás során a rugalmas energia növekvő ciklusszámmal nő a 

disszipatív energia pedig csökken. Mechanikus ciklizálás során a fentivel 

ellentétes tendenciát figyeltem meg. Ezek a változások a martenzit variáns-

szerkezet ciklizálás során bekövetkező átrendeződésének tulajdoníthatók. 

 

 

II. CuAl(11,6wt%)Be(0.36wt%) polikristályos minták 

Az egykristály mintákon elvégzettekhez hasonló termikus ciklizálást végeztem 

polikristályos szerkezetű (CuAl(11.6wt%)Be(0.36wt%) összetételű anyagokon 

különböző húzófeszültségek mellett, de  itt csak az ε∼T görbéket mértem különböző 

feszültségeknél valamint a ciklizálásnak ezekre gyakorolt hatását vizsgáltam. 

Eredmények: 

• Az elasztikus energia növekvő feszültségek hatására csökken, nagy 

feszültségszinteknél egy telítési értékhez tart. A disszipatív energia 

hasonló, de ellentétes tendenciájú változást mutat. 

• A termikus ciklizálás a DSC görbéken nem okozott megfigyelhető 

változást. 
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Appendix I 

 
Normalized hysteresis curves of the ε-T curves at 4 different applied stresses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 74

Acknowledgments 
 

First of all I would like to thank my supervisor Professor Dezső Beke deeply for 

giving me the opportunity to work in the very interesting area of shape memory alloys 

at the Department of Solid State Physics. In particular, I would like to thank him for 

sharing his ideas and knowledge with me, and helping me in all ways.  

 

I would also like to thank Dr. Lajos Daróczi he has taught me for a lot of things 

that helped me in doing the experiments, and I think that I will be able to construct 

what I want using his ideas. 

 

I would like to thank every one in the Department of Solid State Physics, I felt that 

this department is like one family, and I felt that I am one member of this kind family. 

 

Many thanks for all my friends and colleagues they played a very important rule in 

my life. 

 

At the last, I would like to thank also my family for supporting me throughout all 

that years.  

 

The work is supported by the TÁMOP-4.2.2/B-10/1-2010-0024 project. 
The project is co-financed by the European Union and the European Social Fund. 

And also supported by the Hungarian Scientific Research Fund (OTKA) project No. 

K 84065    

 




