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Chapter 1

Introduction

A clear understanding of the fracture phenomena of various types of ma-
terials is essential in modern engineering, therefore the physics of fracture
has been in the focus of intensive research in recent decades. Fracture, i.e.
the separation of a body into two or more pieces under the action of stress,
can occur in many different ways depending on the loading method and

geometrical conditions.

In a more specific sense fracture usually refers to phenomena where the
sample splits into two parts with the propagation of a well defined crack
in between. The brittle fracture of materials has two substantially differ-
ent scenarios depending on the amount of structural disorder: for homoge-
neous materials such as crystalline solids at the critical stress a single crack
is formed which propagates in an unstable manner. However, in materi-
als with a high degree of heterogeneity fracture develops progressively, i.e.
under an increasing external load first microcracks nucleate at local weak-
nesses which may then undergo several steps of growth and arrest. Finally
macroscopic fracture occurs as the culmination of the gradual accumula-
tion of damage. The nucleation and growth of cracks is accompanied by
the emission of elastic waves which can be recorded in the form of acoustic
noise. In ferromagnetic materials the shifting and sudden change of orien-
tation of magnetic domains due to microcracking activity also gives rise to
magnetic noise. Measuring acoustic and magnetic emission (AE and ME)
is the primary source of information on the microscopic dynamics of the
damaging and fracture of heterogeneous brittle materials. Experiments of

the past two decades have reported that the fracture of such materials is
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generally accompanied by crackling noise which has a scale-invariant struc-
ture, i.e. the probability distributions of the energy of breaking bursts and
the waiting times between them both follow power-law behaviour with the
exponent showing dependence on loading conditions and material proper-
ties such as ductility. Understanding the mechanisms behind crackling noise
may provide valuable information on the integrity of structural components
in engineering and may even enable us in some cases to foresee imminent

failure.

Fragmentation is a substantially different form of breakup, where a sam-
ple breaks into many small pieces due to a large amount of energy suddenly
imparted to the system. Fragmentation occurs in nature on a huge variety
of length scales, ranging from the breakup of heavy nuclei through geo-
logical phenomena to supernovae. It also forms the basis of a number of
industrial applications such as crushing, milling and grain liberation tech-
niques, therefore a lot of scientific effort for over half a century has been
put into studying such processes. A striking result of most fragmentation
experiments on heterogeneous brittle materials is that the fragment mass
distribution follows a power-law behaviour with an exponent independent of
the amount or form of imparted energy and material type. The universal ex-
ponent proved to be mainly determined by the dimensionality of the system.
A number of studies showed that the behaviour of a system near the frag-
mentation threshold energy resembles that of critical systems where some
important quantities diverge or go to zero at the critical point. These findigs
imply that fragmentation processes may be considered analogous to contin-
uous phase transitions and accordingly universality classes of fragmentation

may be identified.

During my Ph.D. studies I investigated the fracture and fragmentation
of heterogeneous materials by means of computer simulations of realistic
discrete element models. I concentrated on analyzing the crackling noise
emerging in single crack propagation in a two-dimensional rectangular spec-
imen subject to three-point bending conditions. For this purpose a two-
dimensional discrete element model (DEM) was used, consisting of randomly
shaped convex polygons to capture the granular structure of the material.
I carried out simulations applying a constant low strain rate and analyzed

statistically the various features of the propagating crack. The main focus of



my study was identifying and characterizing the bursts in crack propagation
that correspond to crackling noise in experiments. In my DEM approach
I was able to reproduce the scale-invariant structure of the distributions
of various important quantities related to bursts, as seen in experiments.
My simulations also provide a better understanding of the spatial structure
of microcrackings in front of the propagating crack. In addition to crack
propagation, I carried out a detailed study of the impact fragmentation of
spheres by using a three- dimensional discrete element model. In this case
a random packing of spherical particles was used to model the structure of
heterogeneous materials. My goal was to achieve a better understanding of
the fragmentation phase transition. I showed that the exponent of fragment
mass distributions is independent of the impact velocity. I carried out a
finite size scaling analysis to numerically obtain the critical exponents of
the transition. I also derived novel scaling laws regarding the impact veloc-
ity dependence of the damage and damage rate in brittle materials. As an
extension of the existing discrete element model I introduced new features
that enabled me to simulate the impact of plastic spheres. I found that
the impact fragmentation of such materials is substantially different from
that of brittle ones. Most importantly the exponent of the fragment mass
distribution proved to be significantly smaller than in the brittle case, sug-
gesting that the fragmentation of plastic materials belongs to a universality
class different from that of brittle materials. This striking prediction was
confirmed by the impact fragmentation experiments we carried out on small

polypropylene particles.

The structure of the thesis is as follows: Chapter 2 gives an overview
of fracture and fragmentation phenomena, summarizing the most important
experimental findigs and theoretical studies with special attention to the
most successful simulation methods in the field. I give a more detailed in-
troduction to discrete element models and molecular dynamics simulations.
As an example, I present the details of a particular DEM, that I used to
study the properties of crackling noise in single crack propagation. In Chap-
ter 3 I present the results of my studies on crackling noise. Chapter 4 gives
a detailed overview of the three-dimensional model used to simulate the im-
pact of heterogeneous brittle materials and I discuss my results regarding

the analysis of the fragmentation process. In Chapter 5 I give an overview
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of the techniques used in performing impact fragmentation experiments of
polypropylene particles followed by a summary of the most interesting exper-
imental results. I then present the model extensions I proposed to simulate
the impact of plastic spheres and discuss my numerical results which are in

very good agreement with the experiments.



Chapter 2

Fracture and fragmentation

This chapter gives a basic overview of the scientific literature regarding frac-
ture and fragmentation phenomena, listing the most significant experimental
and theoretical studies. I give a more detailed description of simulation tech-
niques used in the fields, with special attention to results that are important

from the point of view of my research.

2.1 Fracture

Fracture generally refers to the separation of a body into two parts due to
the application of stresses. Fracture phenomena may be categorized in nu-
merous ways, e.g. according to the dimensionality of the sample, geometrical
conditions, material properties or the method of stress-application.

It is a well-known fact that fracture occurs in solids at much lower
stresses, than what can be deduced from simple solid state physics esti-
mations of crystalline structures. In most materials the ratio of estimated
to observed fracture strength is around two or three orders of magnitude.
This discrepancy can be easily resolved with the assumption that the stress-
field inside the body can never be homogeneous due to the disordered nature
of all materials under normal conditions. The characteristic length scale of
disorder can vary greatly. Microscopically disorder can mean for example
vacancies, inclusions, dislocations. Larger scales of disorder are involved in
the structure of composites or granular materials like ceramics or concrete.
Disorder can be in motion: dislocations can migrate, microcracks can form

and heal, interstitials can diffuse, etc. When dealing with the fracture or
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fragmentation of solids however, the time scale of the fluctuations of the
relevant type of disorder is always very large compared to the time scale
of the process investigated. In this case disorder is called “quenched” and
can be considered time-independent |[1]. Due to the presence of disorder the
stresses inside a loaded specimen are concentrated around weak spots such
as flaws, grain boundaries, triple points, causing fractures to initiate there.
Griffith |2, 3] used this assumption to derive his classic criterion for crack
propagation in brittle materials in static or quasi-static conditions. His re-
sults have excellent agreement with experiments of brittle materials, that
can be considered homogeneous. This marks the beginning of the develop-
ment of fracture mechanics. Modifications of Griffith’s theory to include the
plastic zone developing at the crack tip were made by Irwin [4, 5|, while
Bazant [6] made generalizations for quasi-brittle materials. Linear elastic
fracture mechanics (LEFM) and elastic-plastic fracture mechanics (EPFM)
have had huge success in predicting the behaviour of various different materi-
als commonly used in engineering, however these theories are not applicable
to highly disordered materials and cannot deal with problems such as frac-
ture due to creep, fatigue or the emergence of crackling noise. Explaining
these phenomena requires a thorough understanding of the dynamics of the

nucleation and correlation of cracks in disordered media.

2.1.1 Crackling noise

Materials of low disorder typically fail due to the sudden initiation and rapid
propagation of one single crack [7]. The fracture of highly disordered materi-
als however occurs progressively [8, 9]. As stress is applied, first uncorrelated
micro-cracks nucleate throughout the volume of the sample at points of high
stress concentration, typically due to flaws near grain boundaries. Increasing
the load will cause the existing micro-cracks to grow while new nucleations
continue to occur. Approaching the critical stress results in localization in
the form of one single growing crack along which the specimen falls apart.
When cracks nucleate or propagete, elastic energy is dissipated mainly
in creating new crack surface but also due to heating and by altering the
structure of the material near the crack surface. As is the case in driven
dissipative systems in general, the energy dissipation rate is a highly ir-

regular function [10]. This is caused by the fact that energy is generally
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dissipated in avalanches of correlated microscopic fracture events. Such an
avalanche or breaking burst causes the emission of elastic waves that can be
measured in experiments as acoustic signals, reffered to as crackling noise.
This phenomenon is abundant in nature and has been observed in a variety
of materials subject to various different forms of external driving. The en-
ergy scales involved in processes producing crackling noise range over many

orders of magnitude.

2.1.2 Experimental findings

Crackling noise occurs in many different scenarios in driven dissipative sys-
tems [11]. A typical example is the Barkhausen noise arising in ferromag-
netic materials driven by a slowly varying magnetic field or by applying a
slowly increasing strain. Barkhausen noise can be measured in the form
of acoustic and magnetic emission caused by rapid changes in the domain
structure [12, 13, 14]. The acoustic emission of disordered solids subjected
to quasi-static loading was intensively studied in Refs. [15, 16, 17, 18|.
The plastic deformation of some crystals has also been shown to produce
crackling noise due to the jerky behaviour of slip-mechanisms involved in
the process [19]. This phenomenon has even been found in superconductors
where avalanches of superconducting vortices were investigated [20]. A com-
mon observation for such systems is that the structure of crackling noise is
found to be scale-invariant, i.e. the probability distributions of the sizes of
measured avalanches and the waiting times between two successive events
have a power-law form.

Understanding the statistical properties of crackling noise is extremely
important from the point of view of fracture phenomena, as it provides valu-
able information on the microscopic dynamics of the initiation and propaga-
tion of cracks. In recent decades, measuring the acoustic emission (AE) of
stressed solids has been the major form of investigations regarding the emer-
gence of crackling noise. In Ref. [16] Petri et al. presented results of uniaxial
loading experiments on laboratory samples of synthetic plaster. They found
power-law distributions of the amplitudes of bursts and also waiting times
in the measured AE spectra. They suggested that the self-similarity in
crackling noise is a manifestation of self-organized criticality (SOC), as the

system seems to be in a stable critical state without any control parameter.
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Maes et al. reported results of AE measurements in creep experiments per-
formed on cellular glasses [15]. They found that the AE signal consists of
bursts with power-law distributed amplitudes and waiting times. They also
analyzed spatial correlations and observed that the distance between two
consecutive events also shows scale invariance. In Ref. [21] tensile and creep
tests on polyurethane foams were analyzed by Deschanel et al. by measur-
ing AE signals. They showed that the energy of bursts and waiting times
are power-law distributed in every case and that the exponent for energies
shows a striking universality in the sense that it proved to be independent
of material property and loading conditions. By performing experiments at
various different temperatures (thus controlling the mechanical response of
the samples) they found that the scaling exponents of energies and waiting
times are much more strongly related to mechanical behaviour than the mi-
crostructure of the material. Salminen et al. reported results of crackling
noise produced by the tensile fracture of paper sheets [17], where they found
power-law distributed energies and waiting times in AE spectra. Recently
the crackling noise arising in the dynamic fracture of steel specimens was
investigated in Ref. [22]. The so-called Charpy impact test was used in
the experiments, which is a common method in engineering to determine
fracture toughness of materials. As a crack propagates in a ferromagnetic
material, the opening up of the crack causes magnetic flux leakage. In this
way the jerky movement of the crack tip results in rapid changes of the mag-
netic flux. These changes can be transformed to voltage in an appropriately
placed coil, thus making it possible to record magnetic emission (ME) spec-
tra. Bursts in dynamic crack propagation were analyzed that correspond
to peaks in the recorded voltage. It was found that the amplitude, area
and energy of voltage peaks are all power-law distributed with exponents
independent of the hammer impact velocity. However they found clear de-
pendence of the exponents on the mechanical behaviour, i.e. the ductility
of the sample. Niccolini et al. performed flexural loading experiments in a
three-point bending geometry on fiber reinforced concrete samples and ana-
lyzed the waiting times between successive AE events [23]. They found that

the distribution of waiting times T follows a scaling law of the form

P(T) ~ Rf(RT), (2.1)
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where R denotes the mean rate of events in the time window considered.
This scaling behaviour was found by Corral [24] to describe earthquake time
series with good quality.

In light of the documented magnitudes and occurrance times of earth-
quakes, it has been a long standing argument, that seismic activity, like
crackling noise, shows self-organized criticality. The Gutenberg-Richter law
of the magnitudes of earthquakes and the Omori law of aftershock times
show scale-invariant behaviour similarly to the power-law distributions of
energies and waiting times observed in AE and ME in fracture experiments.
Experimental results presented in Refs. |23, 25| further enforce the analogy

between crackling noise in fracture and earthquake time series.

2.1.3 Theoretical approaches

Due to the complicated nature of the problem of fracture in disordered solids,
the possibilities of pure analytical approaches in this field are rather lim-
ited. Most theoretical investigations rely on numerical simulations of discrete
stochastic models. An important branch of such models can be classified as
lattice models, of which the random fuse model (RFM) has proved to be
the most successful, introduced by Arcangelis et al. [26]. This approach
models breaking processes by the break-down of a network of fuses under
an increasing external voltage or current. Initially a regular lattice is con-
sidered, where bonds are either fuses, with probability p, or insulators, with
probability 1 — p. The value of p is chosen to be larger than the percolation
threshold, therefore the network of fuses is a spanning cluster on the given
lattice. An external voltage is applied across the network, and the voltages
at each node are calculated. The fuse with the highest voltage difference,
i.e. the hottest fuse is identified and turned into an insulator (it burns out).
After every burning event the voltages are recalculated, and the new hottest
fuse is identified, then removed. This procedure is continued until a dividing
crack emerges, i.e. the cluster of fuses is no longer a spanning cluster. Figure
2.1 shows a lattice of fuses without random dilution, i.e. p = 1, where some
fuses have already burned out.

Such an electrical network is the scalar analog of a network of elastic
beams, where the burning out of individual fuses as the external voltage

is increased corresponds to the physical breaking of beams as a result of
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O

Figure 2.1: A network of fuses in the random fuse model with fuse probability
p =1, i.e. all bonds are fuses initially. The system is loaded by slowly increasing
the current I between the bus bars. The figure shows a state of the system when
some fuses have already burned out.

increasing mechanical stress [26]. RFM-type approaches provide a simple
understanding of many features of fracture processes in disordered, quasi-
brittle materials.

Zapperi et al. investigated the structure of crack surfaces in a two-
dimensional random fuse model and found a universal roughness exponent
[27]. They also observed, that macroscopic failure is preceeded by avalanches
of fuses burning out, with the size distribution of such avalanches also fol-
lowing universal power-law behaviour. In Ref. [28] Alava et al. studied the
size dependence of the strength of disordered materials with a flaw via a two-
dimensional RFM. In the limit of large flaw size, they confirmed, that LEFM
gives a good approximation of fracture strength, however for smaller flaws
they showed that the presence of a fracture process zone (FPZ) determines
the size effects. The process zone refers to a cloud of microcracks (burnt
out fuses) in areas of high stress concentration, near the crack tip. Their
simulations showed that the process zone plays a key role in determining
crack propagation in highly disordered materials. An exponential decay of
the damage profile along the crack axis was found. Their results regarding
the size scaling of material strength proved to be in very good agreement
with experiments on the fracture of paper sheets with flaws [28].

An other class of stochastic models that has been intensively studied is
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the so-called fiber bundle model (FBM) [29, 30, 31, 32, 33, 34, 35]. This
approach models the strained specimen as a bundle of elastic fibers usually
with a constant Young’s modulus, but varying breaking thresholds. As an
increasing force F' is applied to the bundle, all the fibers gradually become
increasingly elongated, until the point when the weakest of the fibers breaks.
The bundle as a whole however has to equal the force F', so the load carried
by the broken fiber is redistributed among the intact fibers. This might
result in some further fiber breakings. After the system stabilizes, F' can be
further increased until another fiber is broken. The procedure is continued
until all the fibers in the bundle are broken. In the original formulation of
the model, the extra load of broken fibers is redistributed equally among all
the remaining fibers |18, 29|. This type of FBMs is called equal or global
load sharing (ELS or GLS) FBM. This approach corresponds to mean-field
methods in statistical physics, and is simple enough in some cases to yield
analytic results. Actually the ELS FBM is exactly the mean field version of
the RFM.

An ELS fiber bundle is depicted in Fig. 2.2, where the rigidity of the

loading bars ensures that no stress fluctuation can arise.

Figure 2.2: Schematic representation of the equal load sharing fiber bundle model.
A force F is applied to the bundle, due to which all the fibers become strained.
Weak fibers break and the load is then redistributed equally on all the remaining
fibers.

Another type of FBMs, which is more realistic in many cases, is the so-
called local load sharing (LLS) fiber bundle model [18, 30, 36]. In this case,
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the load of broken fibers is redistributed only among nearby fibers according
to a decay function. In the extreme localized case, the load is redistributed
only on nearest neighbours of the broken fiber [18, 30]. Several characteris-
tics of fracture phenomena can be investigated via fiber bundle models. A
most appealing feature of FBMs is that avalanches of fiber breakings can be
comfortably studied either analytically, in some cases, or by doing numerical
simulations. Hansen et al. showed that the distribution of avalanche sizes
in GLS model of elastic fibers follows a power-law with a universal exponent
& = 5/2 for a broad class of disorder distributions [29]. In the LLS case,
the distribution is also a power-law, however the exponent is significantly
higher, £ = 9/2 [30]. An interesting observation of Pradhan et al. was that
the exponent of the avalanche size distribution shows a crossover to a lower
value £ = 5/2 — 3/2 near the point of global breakdown [31, 32]. The same
behaviour was found in random fuse models. This phenomenon has great
relevance when monitoring the mechanical state of structural components,
as the crossover of the exponent is a clearly observable sign of imminent

failure.

2.2 Fragmentation

The breakup of a system into many pieces, i.e. fragmentation is a ubiquitous
phenomenon in nature. Examples cover a huge variety of length scales rang-
ing from the breakup of heavy nuclei through geological processes like the
fragmentation of rocks to events on an astronomic scale such as supernovae.
Apart from its scientific relevance, understanding fragmentation phenomena
has great importance in industry since it forms the basis of processes such

as comminution, crushing, milling and grain liberation [37, 38, 39, 40, 41].

Fragmentation generally occurs when a large amount of energy is sud-
denly imparted to a physical system resulting in the disintegration of the
system into many small fragments, whose sizes are significantly smaller than
the system size. The form of energy transfer can be explosion, impact on a
hard wall, impact of a projectile, crushing, etc. [41, 42, 43, 44, 45, 46, 47].
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2.2.1 Experimental results, universality in fragmentation

Before the rapid technological advances of recent decades, the only means of
studying fragmentation processes was the analysis of fragment size distribu-
tions (FSDs) mainly done by sieving debris from fragmented rock samples.
The most striking observation regarding size distributions is that they seem
to follow a power-law behaviour with a universal exponent, i.e. an exponent
independent of the amount or form of energy input or type of material. This
form of fragment size distribution has been long known in the engineering
and mining community as the Gates-Gaudin-Schuhmann law [48, 49, 50].
In [51, 52, 53| Turcotte, Lawn and Wilshaw gave a long enumeration
of power-law exponents observed in brittle fragmentation ranging from 1.9
to 2.6. Experiments of fragmentation of volcanic pyroclasts [42, 43], liquid
droplets [54, 55] and plastic materials [56] have reported smaller exponents in
the range 1.1 - 1.6. Power-laws for small fragments have long been accepted
as a naturally occurring common characteristic of fragmentation, suggesting,

in many cases, that the process is related to critical phenomena.

2.2.2 Effect of dimensionality

All promising models of fragmentation, as well as overwhelming evidence
from experiments suggest that universal power-law behaviour of fragment
mass distributions is a common natural consequence of fragmentation pro-
cesses. The power-law exponent proved to be independent of the amount
of energy imparted, the form of energy transfer or type of material. The
effective dimensionality of the system however plays an important role in
the emerging structure of FSDs.

Fragmentation in one dimension was studied by Matsushita and Ishii
[57] using thin glass rods dropped vertically onto the floor. They found
the fragment size distribution to vary from log-normal to power-law with
increasing impact energy. Stochastic models of one-dimensional fragmenta-
tion can be found in [58|, where fracture points are chosen randomly along
the rod. Power-law, exponential and log-normal size distributions can be
derived depending on the a priori distribution of fracture points.

Kun et al. [59, 60] studied the explosive and impact fragmentation of
closed shells. They compared experiments to simulations of a discrete ele-

ment model based on the Delaunay triangulation of randomly distributed
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points on a spherical surface. They found good quality agreement of power-
law exponents obtained from the experiments and simulations, which proved
to be slightly smaller than those found for two dimensional fragmentation
experiments. They also found interesting non-trivial scaling laws regarding
fragment shapes in experiments performed with egg shells and hollow glass
spheres [61].

A number of experiments of impact fragmentation of brittle plates and
discs [44, 45, 62| have been carried out over recent decades and a universal
power-law behaviour of FSDs was always found. Figure 2.3 shows the re-
constructed final states of experiments of the fragmentation of brittle plates
subject to different loading conditions [44]. Oddershede et al. [46] car-

i ol
lcm
lcm
7 #266
S¥- 308x307x5.1 mm
100x100x1.0 mm Impact Velocity
h =150 cm 4.00 km/s

Figure 2.3: Crack patterns and fragment positions in the fragmentation experi-
ments of Kadono et al. [44]. Circular plates of glass and plaster were fragmented
in the following ways: (left) A glass plate trapped in a ’sandwich’ configuration
with a heavy iron projectile dropped on top of it. (right) Plaster plate fragmented
by the impact of a small, high velocity projectile shot from the right.

ried out impact experiments with different types of materials with various
shapes. They found that scaling exponents depend on the over-all mor-
phology of the objects, but not on the type of material. Because of the
universal power-law behaviour found without any control parameter, they
concluded that fragmentation processes are self-organized critical processes
with exponent ~ 1.6. Experiments of impact fragmentation of spheres were
carried out in Refs. [63, 64, 65]. Exponents observed in the fragmentation of
three-dimensional objects are slightly higher than those of two-dimensional

objects.
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2.2.3 Stochastic models of fragmentation

Over recent decades several possible mechanisms have been proposed to
explain the emergence of the universal power-law behaviour. The first com-
prehensive study of fragment size distributions is attributed to Mott in the
1940s 66, 67, 68] where he reports experiments with fragmentation of thick
shells. He compared his results with those of a one-dimensional Poisson-
process and also proposed a simple two-dimensional fragmentation model: a
random construction of horizontal and vertical lines dividing the plane into
parts [69]. He showed that this model predicts a cumulative size distribu-
tion of the form N (S) ~ v SK(v/'S) where K is a modified Bessel function.
Size S refers to the area of fragments. This is fairly similar to the resulting
FSD of a one-dimensional Poisson-process, N(S) ~ exp(—v/S).

Grady and Kipp |70] considered several models of various different con-
structions of lines dividing a two-dimensional plane into parts. The most
realistic of these as models of fragmentation are ones that do not allow lines
to intersect, representing a crack-merging scenario in solids. These models
typically results in size distributions similar to that of a two-dimensional
Poisson-process, N(S) ~ exp(—S).

Gilvarry [71, 72] derived a form of the fragment size distribution by
assuming that given a distribution of fragments, further fragmentation is
determined by the uncorrelated activation of flaws within the volume, on
the surface and along the edges of existing fragments. To fit experimental
findings he concluded that edge flaws dominate flaw activation in explosive

fragmentation. This leads to a probability density function of the form

n(S) ~ q(8)S~ "/ dexp(—S/S,) (2.2)

where d is the Euclidean dimension and ¢(.S) is the a priori density of frag-
ment sizes. Size here means either area or volume, depending on the di-
mensionality of the fragments. Gilvarry chose ¢(S) = V5/S, with which
Eq. (2.2) provides excellent fits to FSDs in a great number of experiments
of brittle fragmentation. The power-law exponent acquired in this case is
v = (2d — 1)/d for density functions and consequently v —1 = (d — 1)/d
for cumulative distribution functions. In his derivation Gilvarry assumed
cracks to form smooth crack surfaces, which is certainly not the case in ex-

plosive and impact fragmentation. Rapidly propagating cracks have been
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shown to be unstable and as the crack accelerates beyond a critical velocity,
crack branching and crack-tip splitting begin to appear. These processes
have to be taken into account when dealing with fragmentation phenomena
as a great number of fragments can be expected to be created by merging
cracks.

Astrom et al. [73, 74, 75, 76] proposed models based on this crack
branching-merging scenario in two and three dimensions and derived FSDs
identical to Gilvarry’s result, i.e. power-law behaviour for small fragments
and an exponential cutoff for large fragment sizes. They showed that the
emergence of a power-law with a universal exponent v = (2d — 1)/d can
be attributed to the branching and merging tendency of rapidly propagat-
ing cracks in fragmentation processes, while an exponential cutoff for large
fragments may result from the stopping of side branches due to energy dissi-
pation. Besides the power-law they propose an additional exponential term
in the FSD resulting from the Poisson process of the merging of single cracks
nucleated at the beginning of the breakup process. Thus the complete form

of the fragment mass distribution, as introduced in Ref. [75], is the following:

p(m) = fm =% ™ + (1 — B)e ™2, (2.3)

where m; is the cutoff mass for fragments resulting from the branching-
merging of instable cracks, while my is the average fragment size produced
by the Poisson process of merging single cracks. [ indicates the relative
importance of the two mechanisms. In most cases of brittle fragmentation
a has been shown to be close to the value (2d — 1)/d. Figure 2.4 shows
FSDs obtained in numerical simulations in Ref. |[75] with various different
parameter settings. All curves can be very well fitted with Eq. (2.3).
Levandovsky and Balazs [77] proposed a detailed model of crack prop-
agation in thin brittle plates undergoing mode I fracture, based on a dis-
cretization of the continuum theory of linear elasticity. Their lattice model
approach used a breaking criterion depending on the maximum eigenvalue
of the strain tensor evaluated at the nodes. According to their numeri-
cal simulations fragments formed as a consequence of the merging of side
branches giving rise to power-law FSDs with exponents falling in the vicinity
of (2d—1)/d = 1.5 in two dimensions. An advantage of their model is that it

allows insight into the relationship between various characteristics of brittle



2.2 Fragmentation 17

10°  10'  10° 10° 10’ 1802 10°

Figure 2.4: Fragment size distributions obtained in numerical simulations (see
Ref. [75]). Eq. (2.3) provides an excellent fit in both cases.

fracture processes such as crack roughness, fractal dimension and fragment
size distributions.

Motivated by the studies of the fractal structure of fault gouge in rocks
Steacy and Sammis [78] considered an automaton model of fragmentation
patterns based on the idea of preferential fracture, at all length scales, of
neighbours of a particle that have the same size as the particle itself. Their
results for two and three dimensions predict the emergence of random fractal
fragmentation patters, with size distribution exponents falling in the range
of those observed in experiments [79].

In addition to mechanism based models of fragmentation, a mean-field
type approach is introduced in [80] where the time evolution of the concen-
tration ¢(x,t) of fragments of mass less than x at time ¢ is governed by a
rate equation of the form

8c§,t) = —a(x)c(z,t) + /:0 c(y,t)aly) f(zly)dy. (2.4)

a(z) (supposed not to depend on time) is the rate at which fragments of
mass x break into smaller ones and f(x|y) is the conditional probability
that a fragment of mass x was generated from a fragment of mass y > «x.
Some exact solutions of Eq. (2.4) are presented in [80] with some appropri-
ate assumptions made about f(z|y), in general however solutions are very
difficult to obtain. The mean field approach has successfully been applied to

describe the gradual size reduction of particles in comminution devices [81],
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and in granular gases [82].

Various mechanism based models provide a reasonably good explanation
of the development of fragmentation patterns and the values of power-law
exponents, however they lack an understanding of the complete picture in
terms of dynamics, energy considerations and time evolution of fragmenta-

tion processes.

2.2.4 Discrete element models

Rapid advances of recent years in computational technology have made
it possible to utilize very realistic Discrete Element Modelling (DEM) ap-
proaches in modeling the fracture and fragmentation of disordered materials.
Molecular Dynamics (MD) simulations of DEMs have proved to be a valu-
able tool in studying such complicated processes |83, 84|. MD simulation
methods deal with physical systems of many constituents, whose motion can
be considered deterministic. The elements or particles of the system inter-
act with each other via well defined physical laws, depending on the relevant
length scale of the model. MD generates the time evolution of the system by
determining the trajectories of all the particles solving Newton’s equations
of motion.

Two dimensional approaches are mainly based on random polygonal tes-
selations of the 2D plane, polygons acting as grains, with elastic beams con-
necting them [1]. Three dimensional models mostly focus on random close
packings of spheres or other simple objects instead of space-filling construc-
tions to save computational time [85]. Model parameters can be calibrated
to various disordered solids to achieve excellent agreement in the elastic
behaviour of simulated systems and real materials. Such realistic models
provide access to previously unexplored details of fragmentation processes.

Here we give a typical example of a two-dimensional DEM that has been
used to model disordered solids. The model was introduced long ago in
Refs. [86, 87, 88], later on it was successfully applied to investigate the
fracture and fragmentation of heterogeneous materials under various types
of loading conditions [88, 89, 90, 91|. During my Ph.D. I used this model to
study the propagation of a crack along a weak interface in such a way that
I implemented the three-point bending loading condition in the simulation

code of the model. Since the model can be considered as a prototype of
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discrete element approaches, in the following we present the details of the

model construction.

Granularity

The granular structure of disordered solids is modeled with a vectorizable
random lattice of randomly shaped convex polygons. The random configura-
tion is obtained via Voronoi-construction [86, 87|, the randomness of which
can be easily varied with one parameter. The procedure is the following:
We start out with a square lattice. We scatter the points necessary for
the Voronoi-construction in a way, that there is exactly one point in ev-
ery square. More precisely, this one point is required to lie inside a smaller
square of length a inside every lattice-square of unit length. This way we can
control the amount of structural disorder by varying one single parameter:
a (Figs. 2.5, 2.6).

square lattice
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Figure 2.5: The figure on the left shows the square of unit length and in its center
the square of length a in which we place the initial lattice sites necessary for the
Voronoi-construction. The structure of the random lattice can be seen in the figure
on the right. The points used for the Voronoi-construction are marked with black
dots. These dots are placed randomly and independently in the squares of length
a as described above.

The Voronoi method assigns a so-called Voronoi cell to each of the scat-
tered points P;, namely the set of all the points in the plane that lie closer to
P; than any other point P; (j =1,2,3...N, j # i, N being the total number
of scattered points). The parameter a responsible for structural disorder
is kept constant at a suitable value throughout all my simulations. The
Voronoi cells thus generated are randomly shaped convex polygons with a

relatively narrow size distribution thanks to the regularization method de-
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scribed above. The polygons obtained in this way represent a larger group
of atoms. These polygons - the basic elements of our simulations - interact
with each other elastically. In two dimensions each polygon has three de-
grees of freedom: the two coordinates of the center of mass and an angle of

rotation.

a=0.001 a=0.4

a=0.8 a=0.99

Figure 2.6: Different degrees of disorder. ¢ = 1 means maximal disorder while
a = 0 corresponds to the totally ordered square lattice.

Elastic behaviour

Elastic behaviour in our model is achieved in the following way: the poly-
gons symbolize rigid bodies that cannot be deformed or broken. This of
course causes them to overlap when pressed against one another, and in our
model, overlapping polygons exert repulsive forces on each other. Hence
macroscopic deformation is made up of these small overlaps. Two overlap-
ping polygons usually have two intersection points that define a contact-line.

We define the repulsive force acting on the polygons to be proportional to



2.2 Fragmentation 21

the overlap area A and to be applied at the midpoint of the contact-line.
The direction of the force is chosen to be perpendicular to the contact-line
(Fig. 2.7).

Figure 2.7: The elastic contact force caused by the overlap of two polygons. We
define the contact line as the segment P; P». The F' contact force is perpendicular
to the contact line and proportional to the overlap area.

The exact expression of the contact force acting between the it" and j*

particles:

0 (2.5)

where Y is the grain’s Young’s modulus, 7 is the unit vector normal to the
contact line and L, is the characteristic length of the given pair of polygons.
This is defined in the following way:

1 1

L—c——Q(%+%), (2.6)
where 7; and r; are the diameters of such circles that have areas equal to
those of the i** and j** polygon. It is clear that the polygons generated
by the Voronoi method have no overlaps, therefore there are no internal
stresses present in the initial configuration. In order to form a granular
solid, we also need to introduce a cohesion force between the polygons.
We define beams for this purpose. We require that the center of mass of
every polygon be connected by such a beam to the centers of mass of all the
neighbouring polygons. These beams are elastic, they can be elongated, bent
and broken. The polygons are kept together with the help of the attractive
force exerted on them due to the beams’ elongations. Due to the randomness

of the Voronoi-construction the positions and orientations of the beams are
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random. We introduce the following constants to characterize the behaviour

of the beams:

1)
a oIk (2.7)
i lij
ij3
=17 (2.9)
EIv

where E and G are the beam’s Young’s and shear modulus, I is the beam’s
moment of inertia with respect to shear and S% is the beam’s cross section
area. By this we mean the length of the common side of the two polygons
connected by the given beam. The beam’s length [%/ is the distance between

the centers of mass of the two polygons it connects (Fig. 2.8).

—

Figure 2.8: A beam connecting the centers of mass of two polygons, whose length
" is the distance between the centers of mass of the polygons.

One fixed value of E was used for all the polygons, while G was chosen
such that Y = 2a% should hold. The beams’ lengths, cross section areas
and moments of inertia are determined by the initial arrangement of the
polygons. The values of the beams’ F Young’s moduli and the Y Young’s
moduli of the polygons are chosen independently. In our model all the
polygons have three degrees of freedom: the two components (uﬁc,u;) of
the displacement vector of the i** polygon and the orientation given by a
bending angle ©¢ (Fig. 2.9).

The force and torque acting on the i** polygon caused by the beam

connecting the i*" and j** positions:
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PN
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Figure 2.9: (left) The displacement vectors at the two ends of a beam connecting
two lattice sites. (right) The bending angles at the two ends of the beam.

Fi =o' (u] —ul), (2.10)

i 5 (0] i 5ijlij i J
F,=p (uy—uy)—T(G +©7), (2.11)

i ﬁijlij j i i g 51352 1 F i
MZ:T(uy—uy—i—l ©7) 4+ 6717 (e — "), (2.12)

and 6% = Bid (& 4 3). This beam model is a

where o = —
ct

simplified version of the Cosserat-equations of continuum elasticity |1], which
is to be used to describe the elastic behaviour of granular solid materials
instead of the Lamé-equation. The parameters of the beams are assigned
in a way to ensure that every beam is in elastic equilibrium in the initial

configuration, therefore the sample is completely stress-free in the beginning.

Mbolecular Dynamics simulation

DEMs can provide a very realistic modeling approach for granular systems.
The time evolution of discrete element models is generally obtained by means
of Molecular Dynamics simulations, where the motion of all the elements are
calculated numerically using classical mechanics. Here we provide a brief
overview of MD simulation methods [83, 84, 92].

There is a variety of different algorithms for integrating systems of dif-
ferential equations, with greatly varying attributes such as computational
time, precision, stability [83, 92]. These have to be taken into consideration
when choosing an appropriate algorithm to carry out simulations of a spe-
cific physical system. Some examples of the simplest and most time-efficient
numerical integrators are the 1%¢-order Euler, 2"%-order Runge-Kutta, 37%-

order Verlet methods [83, 92]. When simulating systems of many particles
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for many time steps however, more precise, higher order algorithms are pre-
ferred, that require only one evaluation of the interactions, the numerically
most expensive operation, in each time step. A commonly used numerical in-
tegrator for MD simulations is the Predictor-Corrector method, which fulfils
the requirement of precision and efficiency. We give a brief overview of the
main ingredients of a 3"-order Predictor-Corrector method based on Ref.
[92]. (We consider the one-dimensional case for simplicity. Generalization

to higher dimensions is straightforward.)

Predictor-Corrector method

As a first step one has to fix the step At of the finite difference integration
in terms of which the numerical solution will be tabulated. The value of At
should be set taking into account the characteristic time scale of the process
investigated. A Predictor-Corrector method executes three operations in
every iteration for every particle:

Predictor step: Given z(t) and v(t), we make a prediction of the values z(t+
At) and v(t+At). Evaluation step: We evaluate the acceleration (using the
defined interactions) at time ¢+ At assuming the predicted values x(t + At)
and v(t+ At). Corrector step: We make corrections to the predicted values
x(t + At) and v(t + At) using the coordinates and velocity values from
the previous iteration and the evaluated acceleration. The corrected values
are then accepted as the numerical solution of the equation. The specific
formulae for a 3"%-order Gear predictor-corrector method are given in the
following [92]:

Predictor step: Taylor expansion of the coordinates and their derivatives

truncated to obtain a closed equation system:

2P (t 4+ At) = z(t) + v(t)At + %a(t)AtQ + éb(t)At:g, (2.13)
WP(E+ AF) = v(t) + a(t) At + %b(t)AtQ, (2.14)
aP(t + At) = a(t) + b(t)At, (2.15)
(t + At) = b(t). (2.16)

Evaluation step:
In this step we calculate the forces and torques acting on the particles as-

suming the predicted values of the coordinates:
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FP
FP = F(aP,0P) — a®(t + At) = —. (2.17)
m
From F? we determine the so-called corrected acceleration a®(t+ At) at time
t + At. Note that the predicted one is given by Eq. (2.15).
Corrector step:
We use a®(t + At) calculated in the above step to make corrections to the

predicted values. To do this we first calculate

Aa(t + At) = a°(t + At) — aP(t + At), (2.18)

then make the corrections according to the following linear equations:

z¢(t + At) xP(t + At) o
¢ A P A
AN EEAD e A A,
a®(t + At) al(t + At) )
be(t + At) bP(t + At) 3

The values of the constants (co, 1, c2,c3) are chosen to achieve the desired
precision. For second order differential equations their values are ¢y = 3/16,
c1 = 251/360, ca =1, c3 = 11/18 [92].

Fracture

We defined cohesive contacts (beams) between grains (polygons) through
which they can exert forces and torques on one-another. Our model thus
constructed can reproduce the macroscopic elastic behaviour of solids [88].
In order to be able to simulate fracture as well, we assume our beams to
have a certain rigidity with regard to deformation. By this we mean that
if the elongation or bending of a beam exceeds a threshold value, then that
particular beam is considered broken, it is taken out of the simulation, it no
longer has any effect on the evolution of the system. Macroscopic fracture
can be achieved through a series of such small microscopic fractures (Fig.
2.10).

The beams, modeling cohesive forces between grains, can be broken ac-

cording to a physical breaking rule, which takes into account the stretching
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Figure 2.10: (left) Neighboring polygons of the initial Voronoi tessellation are
connected by beams. This way a triangular beam lattice is obtained. (right) Due
to subsequent breaking of beams a crack forms along the edge of polygons.

and bending of the connections [91, 93]

2
(i) 4 maz([01],[8:)) o | (2.19)
Eth @th

Here € denotes the longitudinal deformation of a beam, while © and ©4 are
bending angles at the two beam ends (see Fig. 2.9 (right)). The breaking
rule Eq. (2.19) contains two parameters &g, Oy, controlling the relative
importance of the stretching and bending breaking modes, respectively. The
energy stored in a beam just before breaking is released in the breakage
giving rise to energy dissipation. At the broken beams along the surface
of the polygons cracks are generated inside the solid and as a result of the
successive beam breaking the solid falls apart (see Fig. 2.10).

The time evolution of the polygonal solid is obtained by solving the
equations of motion of the individual polygons. At each iteration step we
evaluate the breaking criterion Eq. (2.19) and remove those beams which
fulfil the condition. The simulation is continued until a relaxed state is
achieved where no beams break anymore. For more details of the model
construction see Refs. [88, 91].

The breaking parameters g4, and Oy, of beams are stochastic variables in
the model, i.e. they are sampled from probability density functions p(ey, ) and
p(Oy4). The Weibull distribution provides a comprehensive description of
the stochastic fracture strength of brittle materials, hence, for both threshold
values the Weibull form is prescribed

m o r\™l o ym
Pam(T) = by (X) e~ @™, (2.20)
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where x denotes the two breaking thresholds €4, ©4;. The Weibull distribu-
tion has two parameters: A sets the characteristic scale of threshold values
while the exponent m determines the scatter of the variable. Increasing the
value of the exponent m the width of the Weibull distribution Eq. (2.20)
decreases and converges to the delta function in the limit m — oo (see Fig.
2.11).

Figure 2.11: Weibull probability density functions for A = 1, at different values of
the parameter m.

Varying the scale parameters A\. and Ag of the breaking thresholds the
relative importance of stretching and bending can be controlled in the break-
ing process. We note that the elastic constants of beam elements depend
on the Young’s modulus of beams, furthermore, also on their length and
cross section. In the model the geometry of beams is determined by the
Voronoi tessellation, i.e. the length and cross section of beams are defined
as the distance between the centers of mass and the length of the common
side of the two neighboring polygons, respectively. It has the consequence
that besides the strength disorder of beams there is also structural disorder
in the system determined by the initial Voronoi tessellation.

As an illustration, Fig. 2.12 presents the final stage of the breakup
process of a disc-shaped solid induced by impact against a hard wall. It can
be observed that around the impact site the sample is completely shattered,
i.e. all the fragments are single polygons. Large fragments are formed when

cracks reach the surface of the sample. For details of the simulations see



28 2 Fracture and fragmentation

Ref. [91].

(a) (b)

Figure 2.12: Final reassembled states of the breakup process of a disc of radius 30
cm at different impact velocities dropped on a hard frictionless plate. (a) vo = 100
em/s. The cone is not fully developed and only a few oblique cracks are present.
(b) vo = 200 c¢m/s. More oblique cracks develop and travel a greater distance. (c)
vo = 600 cm/s. Both oblique cracks and secondary cracks are present. (See Ref.

[91].)

DEM studies of fragmentation of discs were carried out in the 1990’s [90,
91] and more recently a detailed analysis of impact fragmentation of spheres
was given in [85]. The simulations could reproduce experimental results to
a very good approximation. A general observation in the simulations was
that in every case a damaged and a fragmented state of the system could be
defined as a function of the imparted energy with a rather sharp transition.
For low energies the system sustains some damage but remains intact, while
increasing the energy would, at some transition point E. ultimately result

in a complete disintegration of the sample.

2.2.5 Fragmentation as a phase transition

To obtain a comprehensive understanding of the observed universality of
fragmentation phenomena is the main driving force of theoretical studies.
Based on discrete element simulations of the collision induced breakup of
disordered solids, Kun and Herrmann [90] showed that fragmentation ex-
hibits strong analogies to continuous phase transitions. Their simulations
revealed that depending on the amount of imparted energy, the breakup pro-
cess can have two substantially different outcomes: at low energy the solid

only gets damaged, i.e. some microcracks nucleate, however, a big residue
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survives which does not break into pieces. To achieve fragmentation the
imparted energy has to surpass a threshold value E., where the power law
FSD first occurs. To obtain a quantitative characterization of the damage-
fragmentation transition they analyzed the moments My of the fragment

N k

mass distributions, defined as My, =3 "."; m; — MFE m; being the mass of

max?
the ith fragment, N the total number of fragments and k a non-negative in-
teger. Careful calculations revealed that the average fragment mass, defined
as My /M, exhibits a strong maximum at F,. suggesting a possible scaling

form

~ ~E—ET (2.21)

as seen in percolation theory [94], v being a critical exponent of the tran-
sition. Simulation results proved to fit Eq. (2.21) with reasonable quality,
indicating v ~ 0.26 for the fragmentation phase transition in two dimen-
sions. They also analyzed the behaviour of the mass of the largest fragment
Mpae compared to the total mass My, as a function of the imparted en-
ergy, and found that My,4, = My for E < E., but M,,,, has a rather sharp
drop near the transition point, the function M;,,,(F) having a change of
curvature at F.. They found that the largest fragment also shows critical

behaviour at F,, in the form

M, maz
Mtot

~ (E—-E,)" (2.22)

for ¥ < E., B being another critical exponent, 8 ~ 0.11 giving the best fit.
This suggests that the relative mass of the largest fragment, corresponding to
the strength of the infinite cluster in percolation theory [94], can be treated
as the order parameter of the phase transition. The value M,4:/Myor is
close to unity in the damaged phase below the transition point and rather
rapidly, but continuously, drops to values near zero in the fragmented phase
above F., indicating that brittle fragmentation can be considered analogous
to continuous phase transitions. These results suggest that the observed
universality in fragmentation phenomena is the consequence of an underlying
phase transition which is continuous [90].

Since then further simulations [85, 91| and experiments [55, 95, 96|

have confirmed the validity of the phase transition picture of fragmentation.
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Some important questions however still remain open regarding fragmenta-
tion phase transitions. How robust fragmentation universality classes are,
what effect dimensionality or various material properties have on the phase

transition are questions that have not been fully investigated yet.

2.3 Goals of research

Theoretical studies of crackling noise emerging in the fracture of heteroge-
neous materials have so far mostly relied on numerical simulations of simple
stochastic models. The power law form of the distributions of burst sizes
could be reproduced in most modelling approaches and the values of the
exponents lie fairly close to those found in experiments. However, a clear
understanding of how crackling noise is produced in the propagation of a
single crack and the effect of the fracture process zone on the dynamics of
the crack tip is still lacking. I planned to do molecular dynamics simulations
of a realistic two-dimensional discrete element model to obtain a clearer pic-
ture of the mechanisms that produce crackling noise in the propagation of
a single crack. To obtain a quantitative characterization of the jerky crack
propagation I wanted to analyze the statistics of the jumps of the crack
tip and the structure of the process zone emerging ahead of the crack tip.
Details of the related research can be found in Chapter 3.

The critical nature of the fragmentation transition in brittle materials
has long been recognized based on a number of experimental and theoretical
studies. However, the values of critical exponents, the robustness of univer-
sality classes and the analogy to continuous phase transitions are matters of
which our understanding is still rather limited. The aim of my research was
to investigate the impact fragmentation phase transition of heterogeneous
brittle materials by means of molecular dynamics simulations of a three-
dimensional discrete element model. As a novel approach, finite size scaling
analysis was planned to obtain a precise characterization of the system near
the fragmentation critical point. Details of the related research can be found
in Chapter 4.

The concept of universality in brittle fragmentation has been accepted
for several decades. Experimental results have shown that relevant char-
acteristics of the fragmentation process, most importantly the exponent of

the fragment size distribution, depend mainly on the dimensionality of the
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fragmenting system. The effect of material properties, such as plasticity,
on the breakup process however is not very well known. To overcome this
limitation I wanted to work out an extension of three-dimensional discrete
element models capturing the effect of plasticity. Simulating the impact
fragmentation of plastic spheres my goal was to clarify how plastic energy
dissipation affects the outcomes of fragmentation processes. Details of the

related research can be found in Chapter 5.



Chapter 3

Crackling noise in single crack
propagation

We study the crackling noise emerging during single crack propagation in a
specimen under three-point bending conditions. We carried out molecular
dynamics simulations of a two-dimensional discrete element model in which
the sample is discretized in terms of convex polygons and cohesive elements
are represented by beams. Our simulations revealed that fracture proceeds
in bursts whose size, duration and waiting time distributions have a power
law functional form with an exponential cutoff. We obtained a scaling form
for the characteristic quantities of crackling noise of quasi-brittle materials
by varying the degree of brittleness of the sample through the amount of
disorder. Our DEM approach also provides valuable insight into the spatial
structure of damage, allowing us to analyze the development of a process
zone in front of the crack-tip. We found that the process zone expands
and shrinks in discrete steps, the sizes of which vary in a wide range. We
analyzed the distribution of such steps and could also determine statistically
the functional form of the damage profile in front of the propagating crack.
The details of this work are published in Refs. [97, 98, 99].

3.1 The model

To study the dynamic fracture of disordered solids we performed Molecular
Dynamics simulations |83, 84| of a realistic two-dimensional discrete element

model. Considering the current speed of CPUs it would not be worth sim-
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ulating in three dimensions, because the increased cost in computational
time in 3D calculations would force us to settle for simulating much smaller
systems. Molecular Dynamics uses Newton’s equations, i.e. it calculates the
motion of particles using classical mechanics. We solve the necessary differ-
ential equations using a Predictor-Corrector method. To model disordered
solids we used a two-dimensional DEM, the details of which were presented
in Chapter 2. The granular structure of the solid is represented by randomly
shaped convex polygons that interact with each other via a repulsive over-
lap force. The polygons are connected by deformable elastic beams for the
purpose of cohesion. These beams break if their deformation state fulfils a
breaking criterion that has two breaking threshold parameters for the two
possible breaking modes: A for stretching and Ag for bending. A; and Ag
are stochastic variables sampled from Weibull distributions.

In our study we only investigated the two limiting cases of beam breaking
dominated by pure stretching or bending with the parameter settings A\. =
0.05, A@ = 100, or A. = 100, Ao = 1, respectively. The Weibull exponents
were changed in the range 1 < m < 50 for both threshold distributions in
order to control the amount of disorder in the system. For further details

see Chapter 2.

Simulation setup

In the simulations a bar shaped specimen is considered with longer and
shorter side lengths L and L., respectively.

In order to make a realistic representation of three-point loading, the
three loading plates are realized by additional polygonal elements, i.e. squares
in Fig. 3.1 with side length S = 5[, much smaller than the longer side
L = 2001, of the bar S < L. These loading plates interact with the parti-
cles of the bar via the overlap force, however, no beams are coupled to them.
Strain controlled loading of the bar is implemented in such a way that the
two loading plates at the bottom are fixed while the third one on the top
is moved vertically downward in Fig. 3.1 with a constant speed vg. The
moving plate overlaps the boundary polygons on the top of the bar which
results in an increasing loading force. The stiffness of the plates is set high
enough to keep the overlap below 20% of the average polygon area. Simula-

tions were carried out varying the value of vy in a range, which allows for an
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Figure 3.1: Three-point bending of a bar composed of polygonal particles. The
particles are coupled by elastic beams which are colored according to the longi-
tudinal deformation (yellow: nearly unstressed beams; red and black: elongated
beams; blue and green: compressed beams). Beams are allowed to break solely
along the center line of the bar. A relatively small sample is presented to have a
clear view on the details of the model construction. The two loading plates at the
bottom are fixed while the third one on the top moves downward.

efficient damping of the elastic waves and ensures a reasonable CPU time
for the computations. The main advantage of three-point bending tests is
that the highly stressed zone, where the crack appears, falls in the middle
of the bar which helps to make efficient monitoring of the fracture process.
In order to simplify the numerical measurements on crack propagation, we
introduce a “weak” line in the middle of the bar in such a way that solely
those beams are allowed to break which connect the two sides of the line
(see Fig. 3.1).

3.2 Macroscopic response

We characterize the macroscopic mechanical response of the material in our
three-point bending experiment by measuring the force F' acting on the
moving plate at the top of the sample as a function of time ¢ (see Fig.
3.1). Our experiments are strain-controlled, the loading plate moves at
a constant speed. Thus the deflection of the bar is proportional to ¢, so
F(t) can be considered to be the constitutive curve of the sample (Fig.
3.2). It can be observed in Fig. 3.2 (left) that the macroscopic response
is linear all the way up to the peak, where the force drops suddenly. The
drop becomes more drastic if we increase the brittleness of the sample by

increasing the value of the Weibull exponent. In the linear part of the curve
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Figure 3.2: (left) Force F normalized by the maximum value F,,,, as a function
of time ¢t during the loading process. Since the deflection of the bar is proportional
to ¢ the curve can be considered as the constitutive curve of the sample. Oscilla-
tions occur due to elastic waves generated by the loading process. After the peak
the decreasing part of F'(t) indicates stable crack propagation where our analysis
is focused. t,+ denotes the time of the last beam breaking. (right) Damage ac-
cumulated up to the peak of F(t) as a function of the Weibull exponent m. The
curves can be very well fitted with the functional form Eq. (3.1). The value of the
exponent is p = 1.9 and p = 1.5 for the stretching and bending limits, respectively.

smooth oscillations about the time-average are present, which are caused by
elastic waves generated by the loading plate travelling back and forth inside
the sample. The period T of these oscillations is approximately 7"~ 2L./c,
¢ being the speed of sound inside the sample. The fact that these oscillation
are so pronounced is due to the value of vg being relatively large, i.e. not
negligable compared to ¢. Smaller values of vy however would make the
computational time for simulations unacceptably long.

As the loading of the sample proceeds, the curve becomes more and
more noisy due to microcracks nucleating throughout the breakable surface.
It can be seen in Fig. 3.2 that after the maximum, the force drops down
rather drastically, however the macroscopic failure is not totally abrupt.
After the sharp drop, the relatively small strain rate allows for stable crack
propagation where the crack gradually advances until the sample falls apart.
As the bar is loaded, microcracks nucleate throughout the interface, which
correspond to uncorrelated beam breaking events. This way damage is accu-
mulated inside the sample before the onset of crack propagation. Local beam

breakings inside the sample are always perfectly brittle, however the disor-
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der in breaking thresholds can result in a quasibrittle macroscopic response
where the constitutive curve exhibits nonlinear behaviour. It is difficult to
quantify the strength of nonlinearity numerically in the F'(¢) curve due to the
disturbing effect of the oscillations. Also this nonlinearity might not be so
apparent because beam breakings are limited to the weak interface. Hence
we characterize the degree of brittleness of the sample and its dependence
on the amount of threshold disorder by measuring the accumulated damage
prior to the peak of the force as a function of the Weibull exponent m. We
define a damage parameter D as the fraction of beams broken before a single
crack starts propagating. In Fig. 3.2 we present the damage parameter D
for the stretching and bending limits as a function of the Weibull exponent

m. The curves can be very well fitted with the functional form

D(m) =B+ Am™ ", (3.1)

where the parameters A, B and p proved to be different for the stretching
and bending limits.

The power law form of D(m) can be motivated by the following simpli-
fied assumption: Let us consider a mean-field approximation of the system,
where all the beams along the interface share the same ¢ strain at any given
time during the process. This way the breakable interface of the bar is substi-
tuted by a parallel bundle of beams with equal load sharing, whose breaking
process can easily be described analytically [33, 34, 35]. The fraction of in-
tact beams at any € can be given as 1 — P(¢) where P(¢) is the cumulative
probability distribution of the breaking thresholds. The macroscopic stress

o as a function of strain € can then be written in the form
o(e) = [1 — P(e)] Ee = e &/N" e, (3.2)

where E is the Young’s modulus of the beams. Under strain controlled
loading of the bundle, stable crack propagation starts at the peak of the
constitutive curve o(e). After differentiating Eq. (3.2) the position of the
maximum &, reads as e, = A(1/m)Y/™ for the Weibull distribution. The
fraction of broken beams accumulated up to the peak of o(¢) can be obtained
by plugging €. into the cumulative distribution of thresholds P(e.), hence,

the damage parameter D as a function of the Weibull exponent m can be
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cast into the final form for large enough m values
D(m)~1—e W™ ~m=t (3.3)

The numerical results on the amount of damage prior to the force peak in
Fig. 3.2 are consistent with the above analytic prediction. The higher value
of the measured exponents u® = 1.9 + 0.1 (stretching) and p® = 1.5 £ 0.1
(bending) is the consequence of the strain gradient in the load direction,
which was completely neglected in the analytic calculations. Note that in
the limit of high m values, the amount of damage does not converge to
zero, instead it takes a finite value B > 0. The non-zero value of B in
Eq. (3.1) can be attributed to the structural disorder in the sample, which
is present and is the same for all values of the Weibull exponent. This
structural disorder gives rise to fluctuations of the beam parameters which
in turn result in a noisy breaking sequence in spite of the constant breaking
parameters [91, 93].

Perfectly brittle failure of the bar would be characterized by a linear
behavior of F(t) up to the maximum without any damaging which is then
followed by an abrupt breaking. Our simulation results demonstrate that
varying the amount of threshold disorder we can control the degree of brit-
tleness of the DEM sample from highly (but not perfectly) brittle to quasi-
brittle. It is a very interesting question how the degree of brittleness affects
the properties of crackling noise and the spatial structure of damage along

the interface.

3.3 Crackling noise during crack propagation

Figure 3.1 shows the snapshot of our simulation of a three-point bending
experiment. The colour code indicates the highly elongated state of the bot-
tom of the specimen, where consequently the crack starts. We can observe
high tensile stress concentration at the crack tip, which provides the driving
force for crack propagation.

Figure 3.3 presents a better picture of the developing stress field inside
the sample when the propagating crack is half-way along the cross-section of
the specimen. This map was constructed by applying a moving average over
the stress state of the beams and averaging over 100 simulations with varying

initial geometry. One clearly sees the high stress concentration around the
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Figure 3.3: Tensile stress field inside the sample with the propagating crack half-
way along the cross-section. Grey corresponds to unstressed regions, while yellow
refers to tensile and blue to compressive stress. The tensile stress concentration
around the crack-tip is clearly visible.

crack tip and also the high compressive stress arising near the loading plate
and the two holding plates at the bottom. Stress relaxation along the crack
surface is also visible. The constant speed of the loading plate ensures a
strain-controlled loading of the specimen at a fixed strain rate. Due to the
low value of the loading speed at most one beam breaks in one iteration
step of the MD simulation. After a local breaking event the stress gets
redistributed, increasing the stress concentration on the intact beams ahead
of the crack. This may give rise to additional breakings, resulting in a
correlated trail of breaking events.

In order to identify bursts of local breakings we introduce a correlation
time tcopr: if the time difference of two consecutive beam breakings occurring
at times ¢; and t; 41 is smaller than the correlation time t;41 —t; < teorr the
two breakings are considered to belong to the same burst. The value of the
correlation time was chosen in such a way that it is larger than the time step
At used in the integration of the equation of motion but it is much smaller
than the total duration t;,; of the breaking process, i.e. we set teorr = 10At
for which 10%t.0rr < tior holds. The size of bursts A is defined as the num-
ber of beams breaking during the correlated sequence. When the amount
of disorder is very high m — 1, especially in the bending limit of breakings,

it may happen in DEM simulations that very distant beams break within
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the correlation time, however, without any correlation. To obtain informa-
tion on the strength of spatial correlations in an avalanche, we calculate
the distance h; = |y; — y;+1| between consecutive beam breakings with the
positions y; and y;41 and sum it up inside an avalanche h = Z?;ll hj. For
a strongly correlated avalanche where each consecutive breaking occurs on
adjacent beams the ratio of h and of the burst size A is close to the charac-
teristic polygon size h/A ~ [,. In order to filter out avalanches dominated
by random coincidences we introduce a threshold value for this ratio, i.e.
those avalanches for which h/A > 2[, holds are removed from the statis-
tics. Computer simulations showed that in the stretching limit the above
condition has no effect, however, in the bending limit where a high amount
of distributed cracking occurs, about 10% of the avalanches are filtered out

due to random coincidences (compare also to Fig. 3.2 (right)).
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Figure 3.4: Time series of bursts in a single fracture simulation. The bursts are
correlated breaking sequences of beams which then result in sudden jumps of the
extending crack. N denotes the total number of beams along the weak interface
where the crack propagates. For all the simulations its value was set to N = 200.
At the beginning of the loading process, for a considerable time no breaking occurs,
most of the breaking events appear at larger deflections beyond the peak of the
constitutive curve (see Fig. 3.2). Hence, we magnify the final section of the bending
process.

In Figure 3.4 we present a time series of bursts in a single fracture simula-
tion, the length of vertical lines representing the size of the bursts calculated
in the manner defined above. Bursts are visibly separated by silent periods

of greatly varying length. These waiting times correspond to the durations



40 3 Crackling noise in single crack propagation

of states of the system where the crack tip is pinned due to the presence
of some strong beams. At the beginning of the loading process the bursts
are small compared to the cross section of the specimen, with increasing
deflection of the bar however, bursts become larger and their size A tipi-
cally reaches a maximum somewhat before the onset of macroscopic failure.
After the maximum, as the crack approaches the top of the bar, burst sizes
decrease while waiting times increase indicating a slowing down of the crack.

We determined numerically the size distribution of bursts P(A) varying
the amount of disorder in the breaking thresholds. The size distributions
for different values of the Weibull exponent for the absolute stretching and
bending limits are presented in the insets on the left and right hand sides
of Fig. 3.5 respectively. It can be observed that increasing the Weibull
exponent m, i.e. decreasing the amount of disorder, the bursts get larger

but the functional form of the distributions does not change.
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Figure 3.5: (left) Inset: Avalanche size distributions for the absolute stretching
limit varying the value of the Weibull exponent m. The main panel presents the
excellent data collapse obtained by rescaling the distributions with the average
burst size according to Eq. (3.4). Scaling exponents: o}, =1.44+0.5,0, = 1.8+ 1.
The parameter values obtained by fitting Eq. (3.5) are a}, = 0.55,7% = 1.3+
0.2,b% = 22,64 = 1.5+ 0.3. (right) Inset: avalanche size distributions for the
absolute bending limit. The main panel shows that rescaling the distributions
according to Eq. (3.4) an excellent data collapse is obtained. Scaling exponents:
oy = 14+05,6% = 1.8+ 1. The fit parameters of the scaling function are
ay =0.85,78 =0.8+0.3,b% =1.4,64 =1.3+0.3.

For small bursts a power-law behaviour is obtained followed by a rapidly

decreasing cutoff regime. The main panels in Fig. 3.5 demonstrate that the
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burst size distributions P(A) obtained at different m values can be made to
collapse onto a master curve by using the average burst size A as a scaling

variable. The data collapse implies the scaling structure

P(A) = A (AR, (3.4)

where the values of the exponents were determined numerically o, = 1.4 £
0.5, B3 = 1.8+ 1, and oy = 1.4+ 0.5, g4 = 1.8 + 1 which provide the
best quality collapse for stretching and bending, respectively. The scaling
function f can be very well fitted by the form

f(z) = az e~ @/’ (3.5)

where the parameter values providing the best fit are ay, = 0.55,7% = 1.3 £
0.2,b% = 2.2,6% = 1.540.3 (stretching), and a\ = 0.85, 78 = 0.840.1,b% =
1.4,6% = 1.3 £0.3 (bending).
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Figure 3.6: (left) Inset: Avalanche duration distributions for the absolute
stretching limit varying the value of the Weibull exponent m. The main panel
presents the excellent data collapse obtained by rescaling the distributions with
the average burst duration according to Eq. (3.4). Scaling exponents: of, =
1.6 £0.5,65, = 2.1 £1. The parameter values obtained by fitting Eq. (3.5) are
as, = 0.003,75, = 0.9 £ 0.15,b5, = 560,05, = 1.5+ 0.3. (right) Inset: Avalanche
duration distributions for the absolute bending limit. The main panel shows that
rescaling the distributions according to Eq. (3.4) an excellent data collapse is ob-
tained. Scaling exponents: agt =1.6%+0.5, ﬂgt = 2.1+ 1. The fit parameters of the
scaling function are a}, = 0.001, 7%, = 0.6 £ 0.1,b%, = 320,62, = 1.1 £0.2.
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Another quantity that characterizes the magnitude of bursts is their
duration, defined simply as the difference in time of the last and the first
breaking event in one particular burst. The distributions of burst durations
have been determined numerically for the same set of Weibull exponents as

earlier in both the stretching and bending limit (Fig. 3.6).

Duration distributions proved to have the same scaling structure as the
size distributions (Eq. (3.4)), with the form Eq. (3.5) once again being a very
good approximation of the scaling function. The values of the scaling expo-
nents are o, = 1.6 0.5, 85, = 2.1£1, and of, = 1.6 0.5, 82, = 2.1+£1 for
stretching and bending respectively. The parameter values giving the best
fit of the scaling function are af, = 0.003, 75, = 0.9 & 0.15,b3, = 560,05, =
1.5:£0.3 (stretching), and a}, = 0.001,7¢, = 0.6£0.1,b%, = 320,62, = 1.140.2
(bending). It is not surprising that the functional form and scaling behaviour
of duration distributions is so similar to those of size distributions, both be-
ing quantities characterizing the magnitude of bursts. The exponents 73,
and Tgt of duration distributions however tend to be smaller than those of

the corresponding size distributions (73 and 73).

These results demonstrate that the growth of a crack in a disordered
medium is not a smooth process. Slow driving results in a jerky crack prop-
agation composed of a large number of discrete steps. The growth steps are
sudden bursts of breakings with variable size and duration. The correlation
of consecutive local beam breakings leads to a power-law functional form
of the size and duration distributions with exponential cutoffs. Our most
striking result is that the amount of disorder affects only the characteristic
scale of bursts but the functional form and the value of the power law ex-
ponents remain the same. It is also interesting to note that the power-law
exponents corresponding to stretching- and bending-dominated breaking are
significantly different (beyond error bars). The functional form Eq. (3.5) has
also been found to provide a good quality description of the amplitude dis-
tribution of acoustic bursts in three-point bending experiments on concrete
samples [23, 100].

It can be observed in Fig. 3.4 that the bursts are separated by silent
periods where no beam breaking occurs. The system relaxes slightly after
every burst and is able to withstand a further increase of strain as the loading

plate gradually advances. After some waiting time 7" however the crack is
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reactivated in the form of another burst. It can be seen in Fig. 3.4 that the

duration T of these waiting times varies in a broad range.
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Figure 3.7: (left) Waiting time distributions for absolute stretching. The main
panel presents curves for low disorder, where the fit was obtained with the exponent
77 = 1.9£0.15. The inset shows the corresponding curves for high disorder, where
a crossover is obtained to a lower exponent 7 = 1.5 £ 0.1. (right) Waiting time
distributions for the absolute bending limit. The amount of disorder only affects
the cutoff but the exponent is constant 7% = 1.8 +0.15.

Waiting time distributions P(T") are presented in Fig. 3.7 for the stretch-
ing limit separated for high (inset) and low disorder (main panel). For low
enough disorder (main panel of Fig. 3.7) the waiting time distributions were
found to be the same, showing no dependence on the Weibull exponent.
The functional form of P(T) can be well fitted by the expression [Eq. (3.5)]
where the value of the exponent 77 = 1.9£0.15 was obtained. The relatively
high value of 7} implies that long waiting times are very rare in the trail of
bursts when the material is very brittle. However, in the limit of high disor-
der m — 1 (inset of Fig. 3.7) waiting times span a broader range and reach
an order of magnitude larger values than for the very brittle materials with
low disorder. The most remarkable feature of waiting time distributions is
that increasing the disorder the exponent of the power law regime changes
to the lower value 77 = 1.5 coinciding with the recurrence time exponent of
one-dimensional random walks. In the absolute bending limit (see Fig. 3.7)
P(T) has qualitatively the same behavior as in the stretching limit. Due to
the fragility of the system at all Weibull exponents m, the change of disorder

only results in a change of the cutoff, however, the value of the exponent of
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the power law regime remains constant T% =1.8£0.15.

3.4 Spatial structure of damage

As discussed earlier, at the time of the sudden drop of the force a crack ini-
tiates at the bottom of the breakable interface of the sample and proceeds in
a jerky manner. Crackling noise analyzed in the previous section character-
izes the temporal fluctuations of the advancing crack. Our discrete element
modeling approach allows us to investigate the spatial structure of damage
as well. In our simulations we identify a crack as a continuous region of
broken beams starting from the bottom of the interface, as demonstrated
in Figure 3.8. Due to the high stress concentration ahead of the crack tip
and the quenched disorder of the local strength of beams, we observe the
emergence of a sequence of broken and intact beams in front of the crack

followed by a continuous region of intact elements reaching to the top of the

interface.
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Figure 3.8: Crack tip and the process zone in front of it. Red dots indicate the
positions of broken beams. The process zone is identified as a sequence of broken
and intact beams starting at the crack tip and ending at the start of the continuous
sequence of intact fibers.

In our model the position of the crack tip can be precisely defined as the
position of the first intact beam starting from the bottom of the specimen.
The sparse region of broken and intact beams between the crack tip and
the last broken contact, can be identified as the fracture process zone (FPZ)
whose dynamics has a strong influence on the time evolution of the breaking
process [101]. It is important to note that before the crack starts propagating

there is already an initial background damage D present in the sample in
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the form of uncorrelated breakings of weak beams (see Fig. 3.2). This also
affects the extension of the process zone. The higher amount of background
damage in the bending limit results in a larger extension of the process zone

than for the case of stretching dominated breaking.

3.4.1 Dynamics of the process zone

Crack propagation is strongly determined by the dynamics of the process
zone. As a beam in front of the crack breaks, a sudden discrete change in
the extension of the process zone occurs. When there is a beam breaking
(microcrack nucleating) inside the intact zone the FPZ extends by a length
lnuer called the nucleation length. I, is simply the distance between the
beginning of the intact zone (prior to the last breaking) and the position of
the most recently broken beam. When the beam at the crack tip breaks,
we witness a shrinkage of the process zone which corresponds to a jump of
the crack tip (CTJ) by a distance o7y, which is the distance between the
position of the crack tip before and after the beam breaking. The notion of
crack tip jump lengths has also recently been introduced in the framework
of Quantized Fracture Mechanics [102, 103, 104]. If there is a beam breaking

inside the process zone than the extension of the FPZ remains the same.

Figure 3.9: (left) Crack tip jump length distributions for the absolute bending
limit. The values of the exponent 7° of the fitted curves are 1.8 and 4. (right)
Crack tip jump length distributions for the absolute stretching limit. The value of
the exponent of the power law regime is v* = 2.2 + 0.1, it does not depend on the
amount of disorder.

In order to characterize the dynamics of the process zone we investigate
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the probability distribution of nucleation lengths p(l,,,¢;) and the lengths of
crack tip jumps p(lcrs). Fig. 3.9 shows that for low disorder (high Weibull
exponent m) in the bending limit of breakings the distribution of crack tip
jumps has a power law decay in the regime of small {op; values which is

complemented by an exponential form for large o7

p(lery) = alé%J + celera /b, (3.6)

The additive coupling of the two terms of Eq. (3.6) shows that different
mechanisms are responsible for generating small and large crack tip jumps.
The small ones are determined by the stress concentration at the crack tip
and by the resulting correlation of local breakings.

The Poisson-like behaviour of large crack tip jumps however originates
from the randomness of the rather large initial jump-in of the crack at the
onset of crack propagation. The value of the exponent 7° changes from
v =1.8+0.1 to~y* =4 +0.2 as the amount of disorder decreases. In the
stretching limit of breakings the sample behaves in a less fragile way, less
background damage is accumulated before the onset of crack propagation
(see also Fig. 3.2), significantly decreasing the length of the initial jump-
in. Hence, the additive exponential term does not occur in the probability
distributions of the stretching limit (Fig. 3.9). The functional form of the
distributions in this case is purely a power-law with an exponential cutoff.
The value of the exponent v* = 2.2 4+ 0.1 does not depend on the amount of
disorder and it falls between that of the low- and high-disorder limits of the
bending limit.

The statistics of crack tip jumps was acquired throughout the intire
crack propagation process. When collecting nucleation length data, we only
analyzed microcracks occurring ahead of the crack tip at the time when the
crack is approximately half-way across the interface.

Figure 3.10 shows the distribution p(l,,,¢) for the bending limit for var-
ious values of the Weibull exponent. A power-law form is obtained for low

length values

p(lnucl) ~ l;{fcl (37)

with an exponent s = 1.8 £ 0.15. The form of the distribution functions
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Figure 3.10: (left) Nucleation length distributions for the absolute bending limit
varying the Weibull exponent m. The amount of disorder does not have a relevant
effect on the distribution. The exponent of the fitted power law is x* = 1.8.
(right) Nucleation length distributions for the absolute stretching limit. Decreasing
disorder leads to localization of damage at the crack tip.

is not affected greatly by the amount of disorder, and for low disorder it
doesn’t show dependence on m at all.

The situation is very different in the case when breakings are dominated
by tensile stresses (Fig. 3.9). At high disorder the form of the distributions is
similar to those of the bending limit with nucleation length values spanning
approximately two orders of magnitude. The presence of very weak beams
in these cases permits nucleation lengths of up to 40% of the cross section
of the specimen. At low disorder however the nucleation of new microcracks
is localized to the close vicinity of the crack tip and the largest nucleation
lengths reach only about 1% — 2% percent of the cross section. These results
on the distance to new nucleations and the length of crack tip jumps clearly
demonstrate that in the case of bending dominated breaking varying the
amount of disorder does not have a strong effect on the spatial distribution
of damage. The dynamics of the process zone is mainly determined by the
long range redistribution of stresses arising from the bending distorsion.
However, when breaking is dominated by tensile deformation, disorder plays
a crucial role in the evolution of the fracture process zone, i.e. at low disorder
the process zone expands in a large number of small steps while shrinking
occurs in the form of a few larger jumps. When the disorder is high, both

shrinking and expanding steps can span a broad range.
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3.4.2 Damage profile

To analyze quantitatively the extension and the structure of the process
zone, we calculated the spatial distribution of damage in front of the crack
tip when the crack spans half of the specimen’s cross section. Fig. 3.11
presents the damage d, i.e. the probability of beam breaking as a function

of the distance r measured from the crack tip for the stretching limit of the

model.
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Figure 3.11: (left) Damage profile for different values of the Weibull exponent
m. The distance r measured from the crack tip is normalized by the cross section
L. of the specimen. The values of the fitting parameters are: p = 0.5, rg = 0.05
(m=2),p=101r =003 (m =4), p =15, rg = 0.033 (m = 6). (right)
Main panel: average tensile stress as a function of the distance from the crack tip.
The form of the function can be very well approximated by Eq. (3.12) with the
power-law exponent w = 0.46. The inset shows the stress decay with a slightly
better resolution for shorter distance. The best fit here is provided by w = 0.35.

The numerical results clearly demonstrate the fact that larger Weibull
exponents, i.e. higher degree of brittleness results in smaller process zones.
For all Weibull exponents the curves can be well described by a power law

functional form with an exponential cutoff

d(r) ~r~Pexp(r/ro), (3.8)

where the extension of the process zone can be characterized by the length
rg. It can be observed in Fig. 3.11 that both the exponent p and the

characteristic length ry depend on the amount of disorder m. Fitting the
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formula Eq. (3.8) to the simulated data we obtained the following parameter
values: p = 0.5, rg = 0.05 (m = 2), p = 1.0, ro = 0.035 (m = 4), p = 1.5,
ro = 0.033 (m = 6).

In order to obtain an analytic understanding of the functional form of
the damage profile d(r) we can start from the result of fracture mechanics

that in the vicinity of the crack tip the stress has a power law decay

o(r)=ar “. (3.9)

For the exponent w linear fracture mechanics predicts the value w = 1/2
[101], while fractal cracks and plastic or hyper-elastic constitutive laws lead
to different values of w [105].

Hence, the probability of beam breaking as a function of r can be esti-

mated as

d(r) = P(o(r)), (3.10)

where P(x) is the cumulative distribution function of the breaking thresh-
olds. Since our breaking thresholds are Weibull distributed, we have d(r) =
1—e @M/ = 1_e=r™™) where b = (a/\)™. Restricting the calculation

for small distance we arrive at the form

d(r) ~ br—m. (3.11)

The curves of Eq. (3.8) in Fig. 3.11 are consistent with the analytical
expression Eq. (3.11) for low values of r.

Comparing the results to Eq. (3.8) the exponent p obtained by fitting
the numerical data can be written as a product of the exponents of stress
decay and disorder p = wm. Substituting the numerical values of p and the
Weibull exponents m the exponent w describing the decay of the stress field
can be determined as w =~ 0.25 for all m values. The independence of w
from the disorder shows the consistency of our results. Also this value of
the stress decay exponent falls rather close to the analytic result of w = 1/2

of linear fracture mechanics [101].
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In our DEM approach we can numerically calculate the form of the ten-
sile stress decay function by applying a moving average smoothing over the
stress state of beams in the vicinity of the crack tip and averaging over 100
simulations. The averaging was done in all cases when the crack tip was ex-
actly half-way along the interface. Figure 3.11 (right hand side, main panel)
demonstrates that the stress decay in our simulations can be well fitted with

the form

(1) ~ (r) e /)" (3.12)

with the values w = 0.46, ¥ = 3. A curve with a finer resolution of the stress
decay for shorter distance however (Fig. 3.11 right hand side, inset) gives a
slightly smaller exponent w = 0.35. This is quite close to the value w = 0.25
we obtained from our calculations of the damage profile. These low values
of the exponent probably arise from the shielding effect of the microcracks
in front of the crack tip. In our case this shielding of the stress field is only
a weak effect due to the fact that microcracks can only nucleate along the
interface. If we were to allow breakings anywhere in the two-dimensional
plane, presumably the shielding would be more drastic, resulting in a purely
exponential damage profile, as reported in [28, 106]. Our results clearly
demonstrate that the amount of disorder can have a strong effect both on

the shape and extension of the process zone.

3.4.3 Conclusions

We investigated the properties of crackling noise emerging during the jerky
propagation of a crack in three-point bending tests using a discrete element
modeling technique. Our two-dimensional DEM approach provides a real-
istic representation of the microstructure of the material, the formation of
microcracks, and the emerging complicated stress field naturally accounting
for the correlation of microfractures. We proposed a numerical technique to
identify avalanches based on the temporal and spatial correlation of micro-
fractures [97, 98, 99].

We showed that for quasi-brittle materials the size of bursts and the
waiting times between consecutive events are characterized by power law

functional forms with an exponential cutoff. The numerical value of the
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exponents have a reasonable agreement with recent experimental findings
on crackling noise in three-point bending tests on concrete specimens [23,
100, 107, 108, 109, 110, 111]. This agreement also demonstrates the impor-
tance of spatial correlations of consecutive microfractures in the emergence
of crackling noise.

An important advantage of our DEM approach is that it provides direct
access to the spatial structure of damage. Simulations revealed that ahead of
the crack tip a process zone develops which is a sparse region of broken and
intact elements. The fracture process zone proved to play an important role
in the advancement of the crack: on the one hand the crack progresses by
shrinking and expanding steps of the zone, on the other hand, micro-cracks
can shield the stress field around the crack tip which helps to stabilize the
system. Recently the spatial structure of damage has been analyzed in the
framework of the fuse model |28, 106]. Quasistatic loading simulations were
performed starting with a notch in the middle of the fuse lattice analyzing
the damage structure in the vicinity of the crack tip just before macroscopic
breakdown. It was found that the damage profile has an exponential decay
along the line of the crack and the characteristic length scale of the exponen-
tial was suggested as the extension of the process zone. Since linear fracture
mechanics predicts a power law decay of the stress to the background level
ahead of the crack tip, the authors argued that the cloud of microcracks
shields the crack tip giving rise to an exponential decay. In our system at
short distances a power law decay of the damage profile was obtained which
is followed by an exponential cutoff. We think the power law functional form
prevails in our system for the damage profile because microcrack nucleation
cannot occur in the two-dimensional plane but it is restricted to a “weak
line” in the sample which decreases the effect of shielding. This shielding,
however, is responsible for the lower exponent of the stress decay w and
for the exponential cutoff of the damage profile. Computer simulation are
complemented by analytic calculations under simplifying conditions, which

provided a reasonable agreement with the numerical results [97].



Chapter 4

Scaling in impact
fragmentation

We investigate the impact fragmentation of spherical solid bodies made of
heterogeneous brittle materials by means of a three- dimensional discrete
element model [112]. Our primary aim was to obtain a better understand-
ing of the damage-fragmentation transition which has been shown to share
numerous similarities with continuous phase transitions. We carried out
molecular dynamics simulations and performed a finite size scaling analysis
to determine the critical exponents of the phase transition and deduce scal-
ing relations in terms of the size R and impact velocity vyg. Our analysis
proved that the exponent of the fragment mass distribution is independent
of the impact velocity. We studied the dependence of the characteristic time
scale of the breakup process on the impact velocity and found a novel scaling
behavior in the fragmented regime which is substantially different from its

two-dimensional counterpart.

4.1 The model

We have been using a Discrete Element Model (DEM) to carry out molecular
dynamics simulations of the fragmentation of a spherical body due to impact
on a hard wall. The model was introduced in Ref. [85] and it has been
successfully applied to study the impact fragmentation of brittle spheres
[85]. The spherical sample is represented as a random packing of spheres

with a bimodal size distribution (Fig. 4.1), i.e. a one-to-one mixture of
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spheres of two different sizes is generated to avoid artificial ordering.

Figure 4.1: Spherical DEM sample impacting on a hard plate. The sample is
made up of a random close packing of 22013 small spherical particles.

The interaction of particles is defined such that the model correctly re-
produces the macroscopic constitutive behaviour of linearly elastic materials.
To capture fracture and fragmentation of the solid, the interparticle contacts
break when they get overstressed according to a physical breaking rule. De-
tails of the model construction have recently been presented in Ref. [85],

here we provide a short summary of the main ingredients.

4.1.1 Contact forces

We consider spherical particles and the Hertz contact law [113] provides the
repulsive force acting between them as a function of their overlap distance
(Fig. 4.2). The repulsive force 13;; between spheres i and j depends on their
relative position 7;; = 7; — 7, elastic moduli E; and FE;, Poisson ratios v;
and v;, and radii R; and R;:

%ERI/%Z/Q ti; & >0,

0 §ij <0,

FZ; = (4.1)
where 1/E = (1 — ll?)/f?Z + (1 — Z/JZ)/E]', R = RZRJ/(RZ + Rj) and 52-3- =
R; + R; —rj; and 7;; = 755 /r;j. (We symbolize unit vectors with the hat “"”

notation.)
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Figure 4.2: (a) Hertzian interaction of spherical elements. The repulsive contact
force is given in Eq. (4.1). (b) Two particles connected by an elastic beam. The
forces and torques arising at the centers of mass of the particles are calculated
according to Equations (4.5, 4.6, 4.1).

A normal damping force and a tangential frictional force are included to
the sphere-sphere interaction, acting only during each collision, that is, for
&j > 0. The normal damping force depends on the normal component of

the relative velocity 0;; = ¥; — ¥/ and is given by:
= o
Fij = =y (U3 - F4j) T (4.2)

The factor -, is the normal damping coefficient and is assumed to be the
same for all spheres.
The tangential friction force FE is proportional to the tangential com-

ponent of the relative velocity of the surfaces 17%:

—

Fyy = —min (o035, uFY ) 05, (43)

where

0y = Uij — (vij - Tij) Fij —
Here &J; and &; are the angular velocities, v, is the sliding friction coefficient
and p is the static friction coefficient, setting an upper limit to the tangential

friction force to ;LFZ.CJI-.
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In order to simulate impact, the elements also interact with walls. A
wall with elastic modulus £, and Poisson ratio v, is specified by a point
P = (x1,x2,x3) that belongs to the plane, and the plane’s normal vector
n = (n1,n2,n3). When a sphere is in contact with this plane, a repulsive

force acts, normal to the plane, given by

. AprRIPe32h ¢ >0,

PP = (4.4)
0 §<0,

where 1/E* = (1 —v?)/E; + (1 — Vg)/Ep, and £ = R; — r, with r being the
distance from the center of the sphere to the plane surface (Fig. 4.3).

Figure 4.3: Interaction of a spherical element with a hard wall. The repulsive
force acting on the particle is calculated using Eq. (4.4).

Again, frictional forces calculated as in Equations (4.2) and (4.3) are

included in the simulations.

4.1.2 Cohesive forces

The spherical particles are connected by beams along the edges of a Delaunay
triangulation of the initial positions of the particles. The 3D representation
of beams used in this work is an extension of the two-dimensional case of
Euler-Bernoulli beams described in Ref. [114]. In 3D the total deformation
of a beam is calculated by the superposition of elongation, torsion, as well
as bending and shearing in two different planes.

The restoring force acting on sphere j connected by a beam to sphere ¢

due to the elongation of the beam is given by
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Felo = —Eb Abeiy;, (4.5)

where E is the beam stiffness, ¢ = (|7i;| — lp) /lo, with the initial length of
the beam [y and its cross section AP.

The flexural forces and moments transmitted by a beam are calculated
from the change in the orientations of each beam end, relative to the body-
b b

¢%). Given the angles 67 and

fixed coordinate system of the beam (€3,é,, €}

0%, the corresponding bending force Qj-’b and moment sz b for the elastic

deformation of the beam are given by Ref. [114]:

(67 +65)

— 7b

O L (4.6a)
. 07 — 0 ,

M = g0 7 ’)éZ + (Qf’b X |71 éi) : (4.6b)

where [ is the beam moment of inertia. Corresponding equations are written

b
Yo

Additional torsion moments are added to consider a relative rotation of the

for general rotations around é., and the forces and moments are added up.

elements around é2:

€T x
b byt (9'_9‘)4;
M}’ = -G IO”%%, (4.1)
with G® and I'" representing the shear modulus and moment of inertia
of the beams along the beam axis, respectively. The bending forces and
moments are transformed to the global coordinate system before they are

added to the contact forces.

4.1.3 Breaking criterion

Overstressed beams can break in order to explicitly model damage, fracture,
and failure of the solid. The imposed breaking rule takes into account break-
ing due to stretching and bending of a beam [88, 89, 91, 115, 116|, which
breaks if

<i>2+w>1, (4.2)

Eth Otn, o
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where ¢ = Al/lp is the longitudinal strain, and 6; and 6; are the general
rotation angles at the beam ends between elements ¢ and j, respectively.
(&, et ¢ib

er’. ér’ év) define the i—particle’s orientation

C_ gib . b
Here cos0; = ¢ - €;, where (€, ¢, €%

z
in the beam body-fixed coordinate system. A similar calculation is per-
formed to evaluate ;. The criterion Eq. (4.2) has the same form as in
the two-dimensional beam lattice presented in Chapter 3. Equation (4.2) is
analogous to the von Mises yield criterion for metal plasticity [115, 117]. The
first part of Eq. (4.2) refers to the breaking of the beam through stretch-
ing and the second through bending, with ¢, and 6;;, being the respective
threshold values.

In discrete element simulations of fragmentation phenomena, spring or
beam elements are allowed to break solely under tension [1]. In the original
setup of our model used in Ref. [85], the breaking thresholds of beams
g, and 6y, are random variables characterized by Weibull distributions.
Extensive computer simulations have revealed that this strength disorder
of beams is irrelevant when structural disorder is present in the form of a
random length, cross-section, ... of beams determined by the initial packing
of particles. Therefore, in the present study the breaking thresholds for all
the beams have fixed values at g4, = 0.03 and Oy, = 3.

4.1.4 Time evolution

The time evolution of the system is obtained by numerically solving the
equations of motion for the translation and rotation of all spheres using a 6"-
order Gear predictor-corrector algorithm, and the dynamics of the rotations
of the spheres is described using quaternions [83, 114]. The breaking rules are
evaluated at each time step, removing those beams which fulfil the condition
of Eq. (4.2). Beam breaking is irreversible, which means that broken beams
are excluded from the force calculations for all future time. As a result
of subsequent beam breakings, cracks develop in the sample which lead to
fragmentation. The simulation is stopped when there is no beam breaking

over 1000 consecutive time steps.

4.1.5 Simulation setup

We carried out MD simulations of the impact process varying the impact

velocity vg in a broad range. We used four different system sizes with fixed
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radii R = 3.5,5.63,7.03,8.12 mm where the average radius of single particles
is 7 = 0.5 mm. The number of particles fluctuates in the samples about the
average values (V) = 1763,7337,14285,22013. Fragments are identified in
the final state as sets of particles connected by the surviving beams. Further
details of the model construction together with the parameter settings and
test simulations can be found in Ref. [85]. For impact fragmentation of
spheres it has been shown in Ref. [85] that the experimentally observed
dynamics of crack formation and breakup scenarios can be rather accurately
reproduced by our DEM. In our study we focused on the transition from
the damaged to the fragmented state in the impact induced breakup as the

impact velocity is gradually increased.

4.2 Damage-fragmentation transition

In the limit of very low impact velocities no beam breaking is induced,
i.e. the sample gets deformed and rebounds from the wall without any
damaging. Simulations have shown that in this case the impact process
can be described by the Hertz theory [118, 119]. The main characteristic
quantities of the Hertz impact obey simple power law scaling with the impact
velocity: the behavior of the maximum deformation h ~ vg/ ® and of the

1/5

duration of contact 7 ~ v, """ is reproduced by our DEM simulations with
a good precision.

Increasing the impact velocity the sample gets damaged and gradually
breaks into pieces. The degree of breakup can be quantitatively charac-
terized by the mass of the largest fragment M,,,, compared to the total
mass of the body My [90, 91]. Simulations revealed that depending on the
impact velocity the final outcomes of the breakup process of the spherical
sample fall into two substantially different classes: at low impact velocities
some cracks appear, however, the sample retains its integrity. Broken bonds
form cracks which initiate from the contact surface with the hard wall, how-
ever, they get arrested without creating fragments or only some very small
pieces are chopped out of the sample. Cracks are concentrated in a con-
ical volume (Hertz cone [118, 119]), whose base is the contact circle with
the hard wall. Consequently, in the final state of the process only small
fragments comprising only a few spheres and a big residue can be observed

[85]. This low velocity regime is the damage phase of the system, where the
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mass of the largest fragment is practically equal to the total mass of the
sample Mya0 /Moy = 1. To achieve complete breakup the impact velocity
has to exceed a threshold value v, above which even the largest fragment
becomes significantly smaller than the original body M,,4: /Mot < 1. This
first happens when meridional cracks starting from the Hertz cone reach the
surface of the sample opposite to the impact site [85]. Further increasing vy,
segmentation cracks are formed between meridional cracks further reducing

the size of fragments [85].
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Figure 4.4: (left) Inset: mass of the largest fragment normalized by the total mass
of the sample (Mpqa./Miot) as a function of the impact velocity vy for different
system sizes. Main panel: scaling collapse obtained by rescaling the two axis
according to Eq. (4.5). (right) Inset: Average fragment mass as a function of
the impact velocity for different system sizes. Main panel: Rescaling (m) and
the impact velocity vy by an appropriate power of R, the curves corresponding to
different system sizes collapse on a master curve.

The inset of Figure 4.4 (left) presents the sample average of the fraction
of the largest fragment (M,,q4./Mior) as a function of the impact velocity
for the four different system sizes R considered. It can be observed that the
curves are monotonically decreasing and they have a curvature change whose
position v.(R) can be identified with the transition point from the damaged
to the fragmented regime [90, 91]. Note that with increasing system size R
the transition gets sharper and the transition point shifts to lower values
typically observed for continues phase transitions. It has been shown in Ref.
[90] that the strength of the largest fragment (M4, /Myot) can be considered

to be the order parameter of the transition.
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The damage-fragmentation transition becomes more transparent by in-
vestigating the average mass of fragments (m) which is defined as the ratio

of the second and first moments of fragment masses (see also Chapter 2)
(m) = (Ma/My) . (4.3)

(m) is obtained by averaging the ratio My/M; over a large number of sim-
ulations [90]. It can be observed in the inset of Fig. 4.4 (right) that (m) is
strongly peaked which gets sharper with increasing R. We determined the
finite size critical point v.(R) of the system as the position of the maximum
of (m) which coincides with the point of curvature change of (M,40/Miot)
at a reasonable precision [112]. The critical velocities are v.(R;) = 146 m/s,
ve(R2) = 131 m/s, v.(R3) = 126 m/s, v.(R4) = 123.5 m/s. Assuming the

scaling form for the critical velocity
ve(R) = vo(o0) + ARV, (4.4)

in terms of the system size [94, 120] we determined numerically the critical
velocity of the infinite system v.(oc0) and the correlation length exponent v
of the transition [112]. In Fig. 4.5 a power law is obtained with an excellent

quality by setting v.(c0) = 107 m/s in Eq. (4.4).

R

Figure 4.5: Difference of the critical value of the impact velocity of finite and
infinite systems v.(R) — ve(c0) as a function of the system size R. The value of
v.(00) was tuned to obtain the best quality power law according to Eq. (4.4).

The value of the exponent v was obtained by fitting v = 1 £ 0.05. The

result implies that in the limit of very large system sizes the critical ve-
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locity of the damage-fragmentation transition converges to v.(cc). Starting
from the finite size scaling of the critical velocity Eq. (4.4) we can analyze
the size dependence of the normalized mass of the largest fragment. Since
(M /Mot ) is the order parameter of the damage-fragmentation transition,
it is reasonable to assume the scaling structure

<Jff‘> (vo, R) = R PU (v — ve(o0)) R), (45)

where 3 is the order parameter critical exponent and F(!) denotes the scaling
function. It can be observed in Fig. 4.4 (left) that rescaling the impact
velocity vg and (Mnqaz/Miot) according to Eq. (4.5) the curves obtained at
different system sizes can be collapsed with a reasonable accuracy. In Fig.
4.4 only the value of § was tuned providing 8 = 0.25 4 0.03, while for v and
ve(00) the above values were inserted. It can also be seen in the figure that
data collapse has the best quality in the vicinity of the transition point as
it is expected [112].

The average fragment mass with the above definition characterizes the
fluctuations of fragment masses [90, 94], hence, the finite size scaling anal-
ysis of (m) reveals the v exponent of the damage-fragmentation transition.
Assuming that the system has a continuous phase transition, the scaling
structure

(m) = R FO (v — ve(c0)) RY7), (4.6)
should hold [94, 120], where F® denotes the scaling function. Figure 4.4
(right) illustrates the good quality data collapse of the (m) curves which was
obtained by inserting the above value of v and v.(00) varying v as the only
free parameter of the functional form Eq. (4.6). Best collapse was obtained
with the exponent v = 0.1 4+ 0.02. For consistency, we also checked for the
largest system size the validity of the behavior (m) ~ |vg — v.(R)|” 7, which
proved to hold with the same « within the error bars [112].

4.3 Fragment mass distribution

The most important characteristic quantity of the fragmenting system is the
mass distribution of fragments p(m). It has been shown by experiments that

p(m) exhibits a power law behavior

p(m) ~m™" (4.7)
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for small masses m < M, at and above the critical point v. [44, 45, 75,
95, 121, 122]|. The most striking observation on fragmentation phenomena
is the universality of the exponent 7 of the mass distribution: fragmentation
experiments on a large variety of heterogeneous materials have shown that
the value of 7 does not depend on materials’ micro-structure, on the way the
energy is imparted, and on the relevant length scale [54, 62, 95, 123, 124]. It
is mainly determined by the dimensionality of the system [59, 74, 90| and by
the mechanical response (brittle or ductile) of the sample [56]. DEM sim-
ulations of fragmentation processes have been able to reproduce the power
law functional form [56, 59, 61, 74, 75, 85| with various types of cohesive
interactions from Lennard-Jones solids [125, 126, 127, 128] through spring
lattices [124, 128] to beam networks [74, 85, 93]. The concept of univer-
sality motivated the development of mechanism based stochastic models of
fragmentation [77, 78|, among which the crack branching-merging scenario
proved to be the most successful |73, 76]. Recent DEM simulations of a
generic model of brittle solids have reported a surprising result: the frag-
ment mass exponent 7 of a two-dimensional disc impacted against a hard
wall was found to slowly increase with the imparted energy Ep. Based on
the numerical analysis of the simulation data a logarithmic functional form
was deduced 7 ~ In Ey above the critical point [125, 129].

The universality of the mass distribution exponent 7 is a crucial problem
not solely from theoretical point of view but it has even practical importance
in engineering design, e.g. when estimating the energy consumption or load-
ing conditions in ore processing to achieve the desired size reduction. In
order to settle the problem, we performed a large number of simulations for
impact velocities above v. and carried out a scaling analysis of the mass
distributions p(m) for our largest system. In Ref. [85] it has been shown
that for impact velocities slightly above v. the fragment mass distribution
of impacting spheres is composed of two distinct parts: for small fragment

masses a power law distribution is obtained with an exponential cutoff
p(m) ~m~Tem/mo (4.8)

while for the large ones p(m) has a maximum which can be fitted with a
Weibull or lognormal form. Here mg denotes the characteristic fragment
mass. These outcomes are in agreement with the generic functional form

proposed in Ref. [74] based on the stochastic nucleation of the first major
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Figure 4.6: Inset: Mass distribution of fragments at different impact velocities for
the largest system considered. Main panel: rescaling the two axis with appropriate
powers of the average fragment mass a high quality data collapse is obtained.

cracks and the branching-merging scenario of the smaller ones. We selected
impact velocities above v, where the disturbing effect of the surviving large
pieces can be avoided. The inset of Fig. 4.6 presents mass distributions at
three different impact velocities. It can be observed that they can quali-
tatively be described by the functional form Eq. (4.8). Note that as the
impact velocity vy approaches v, from above the cutoff of the distributions
moves towards larger values. To check whether the exponent 7 of the dis-
tribution depends on vy, we calculated the average fragment mass Eq. (4.3)
and rescaled p(m) with some powers of (m) along both axis. Figure 4.6
demonstrates that a high quality data collapse can be obtained with the
scaling exponents k = 1.15 + 0.02 and § = 2.15 + 0.02. The result implies
that the fragment mass distributions p(m,vy) obtained at different impact

velocities vy have the scaling structure
p(m,vo) = (m)™° ®(m/ (m)*~), (4.9)

where the dependence on the impact velocity vg is comprised by (m) in the
form (m) ~ |vg — v.(R)|”7. Since x = 1, the scaling function ® in Eq. (4.9)
is consistent with Eq. (4.8) widely used in the literature. In Fig. 4.6 the
bold black line was fitted using Eq. (4.8) from which the value of 7 could
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be determined accurately 7 = 1.8 + 0.05. It follows from the condition of
normalization of the distributions, that the three exponents 7, §, and x must

fulfill the scaling relation
0 = TK. (4.10)

Substituting the numerical values, it can be seen that the relation Eq. (4.10)

holds with a good precision [112].

4.4 Time evolution of damage

The above analysis of the phase transition nature of fragmentation required
the investigation of the final state of the breakup process. On the micro-
level, cracks are generated by breaking beams such that fragments form when
cracks either completely surround sets of particles connected by the surviving
beams, or cracks span from surface to surface of the body. The total amount
of broken beams and their spatial arrangement, i.e. crack structure, strongly
depend on the impact velocity. The cracking mechanism leading to the
formation of meridional and segmentation cracks of spherical bodies has
been analyzed in details in Ref. [85]. Now we focus on the time evolution of
damage which is quantified by the fraction of beams D(t) = Ny(t)/N that
has been broken up to time ¢. Here Ny(t) denotes the number of broken
beams at time ¢ and N is the total number of beams in the sample. Of course,
D(t) is a monotonically increasing function (0 < D(t) < 1) whose derivative
dD /dt provides the rate of beam breaking characterizing the instantaneous
breaking activity during the fragmentation process.

Breaking rate functions dD/dt are presented in the inset of Fig. 4.7 for
the largest system size R4 = 8.12 mm at four different impact velocities vg
in the damage phase vg < v.. It can be observed in the figure that the
increase of the impact velocity vg has a dramatic effect on the damage rate:
dD/dt has a maximum which becomes rapidly sharper and its position t,,
shifts towards lower time values with increasing vg. Simulations showed that
at the peak time t,, the deformation of the contact zone of the sphere with
the hard wall reaches its maximum value. It is important to emphasize that
the breaking rate functions obtained at different impact velocities can be
collapsed on a master curve by rescaling the two axis with some powers

of vg. In Figure 4.7 a high quality data collapse was obtained with the
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Figure 4.7: (left) Time evolution of the breaking rate dD/dt, for different values
of the impact velocity below v.. Rescaling the two axis with appropriate powers of
vg excellent data collapse is obtained. The inset presents the original curves before
rescaling.

exponents £ = 4.7 £ 0.2 and ng = 0.25 4+ 0.05. The result implies that
dD/dt has the scaling structure

dD(t, Uo)
dt
where W denotes the scaling function.

= 050 (to]]), (4.11)

Above the critical point vg > v, in the fragmented phase the damage
rate reaches much higher values, i.e. it can be observed in the inset of Fig.
4.7 (right) that the functional form of dD/dt is qualitatively the same as
in the damage phase, however, with an order of magnitude larger values
than in Fig. 4.7 (left). Simulations revealed that the peak time ¢,, marks
again the configuration where the compressive regime of the collision ends
and unloading of the contact sets on. Along the decreasing branch of dD/dt
an inflexion point emerges at the time when all fragments rebound from the
hard wall (see Fig. 4.7). It is demonstrated in Fig. 4.7 that the breaking
rate functions obtained at different impact velocities can be again collapsed
on a master curve by a rescaling transformation. Careful analysis of the
simulated data showed that the scaling structure of dD/dt is the same Eq.
(4.11) as in the damage phase, however, when fragmentation is achieved
the scaling variable is not simply the impact velocity vg, but the distance
from the critical point vg — v.. The scaling exponents providing the best

collapse in Fig. 4.7 were determined numerically as {y = 0.33 & 0.05 and
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ny = 0.11 £ 0.02.
A very important outcome of our scaling analysis is that the fragmenta-
tion process gets faster with increasing vg, i.e. the characteristic time scale

t. of the process has the behavior

te ~ vy ™, for vy < ve, (4.12)

te ~ (vo—wve) M, for vy> . (4.13)

It is interesting to note that the functional form Eqgs. (4.12, 4.13) is
similar to the behavior of the contact time of the elastic collision of spherical
bodies with a hard plate [118, 119]. In the damage phase 7, falls close to
the exponent of Hertz contacts ng = n, = 0.2, however, in the fragmented
regime the strong energy dissipation gives rise to a slower decrease of t,.
characterized by a lower exponent 7y < np,.

The total amount of damage Dy, accumulated until the end of the frag-
mentation process can be obtained by integrating the damage rate dD /dt(t, vy)

over time from 0 to infinity

*dD

Dyor(v0) = /O 9 (1 o). (4.14)

Substituting the scaling form Eq. (4.11) it follows
o0
Dot (v0) = 0§ / T (vlt)dt, (4.15)
0

where the integral can be performed by exchanging the variable ¢ to z = v(t.
The calculations yield that the total amount of damage Dy, has a power

law dependence on vy in the damage phase
Dyt ~ v, (4.16)
while in the fragmentation phase a critical behavior is obtained
Dyt ~ (vg — vc)?. (4.17)

The critical exponent « of the total damage is determined by the two scaling

exponents of the damage rate

a=¢—n, (4.18)
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which has different values ag = g —1g = 4.45 and ay = §f —ny = 0.22
in the damage and fragmented states, respectively. The behavior of Dy is
illustrated in Fig. 4.8, where we also fitted functions according to Eq. (4.16)
and Eq. (4.17) in the damage and fragmented regimes, respectively. Best
fits were obtained with the exponents 4.5 and 0.29 which agree very well
with the above predictions. The high quality of the results presented in Fig.

4.8 demonstrates the consistency of our scaling analysis [112].
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Figure 4.8: The total amount of damage D, as a function of the impact velocity.
The red (continuous) and blue (dotted-dashed) lines indicate the scaling laws Eq.
(4.12) and Eq. (4.13) of the damage and fragmented states, respectively. The
vertical arrow indicates the critical value of the impact velocity v.. Inset: Dy, as a
function of vg — v, where v, = 98.5 was used. A good quality power law behavior
is obtained. The slope of the straight line is p = 0.29.

4.5 Conclusions

We investigated the fragmentation of spherical bodies due to impact with
a hard wall focusing on the transition from the damaged to the fragmented
state. We performed molecular dynamics simulations of a three-dimensional
discrete element model at four different system sizes varying the impact
velocity in a broad range. In order to determine the critical exponents of the
transition, we carried out a finite size scaling analysis of the simulated data.
The critical point of the transition from the damage to the fragmentation

phase of finite size systems was identified with the impact velocity where
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the average fragment mass takes a maximum value. Assuming the scaling
structure characteristic for continuous phase transitions near the critical
point, high quality data collapse was obtained for the mass of the largest
fragment normalized by the total mass and for the average fragment mass.
The scaling analysis proved the validity of the phase transition picture of
impact fragmentation phenomena and yielded the critical exponents of the
damage-fragmentation transition with a good accuracy [112].

Recent simulations of a generic model of fragmentation questioned the
universality of the power law exponent of fragment mass distributions, pre-
dicting a logarithmic increase of the exponent with the imparted energy
[125, 129]. In order to resolve this problem, we carefully analyzed the scal-
ing behavior of fragment mass distributions obtained at different impact
velocities. Although single distributions might suggest an apparent increase
of the exponent, the high quality data collapse obtained by rescaling the
distributions with the average fragment mass reveals universality [112].

In order to characterize the time evolution of the breakup process, we
analyzed the scaling behavior of damage rate functions dD/dt obtained at
different impact velocities. Based on the scaling structure of dD/dt, we
showed that the total amount of damage increases as a power law of the
impact velocity in the damage phase, however, in the fragmented regime
power law is obtained as a function of the distance from the critical point. It
is important to emphasize that this functional behavior is the consequence
of the dimensionality of the system: in two dimensions DEM simulations
provided a logarithmic dependence of the total damage with the impact
velocity [91, 125, 129]. Our analysis revealed that in three dimensions the
evolution of damage is characterized by power laws due to the Hertz type
contact of the spherical body with the hard plate [112].

In the damaged and fragmented regimes the characteristic time scale of
the breakup process was found to decrease as a power law of the impact
velocity and of the distance from the critical point, respectively. When the
sample retains its integrity (damage) the scaling exponent falls close to the
exponent characterizing the velocity dependence of the duration of Hertz
contacts. However, when fragmentation is achieved the exponent becomes
significantly smaller, i.e. its value is nearly half of the Hertz exponent [112,
118, 119].



Chapter 5

Effect of plasticity on impact
fragmentation

The concept of universality and the notion of an analogy to second order
phase transitions in fragmentation phenomena have long been established
and strongly supported by experimental findings. It is widely accepted that
it is the effective dimensionality of the system that determines the value of
the power law exponent of fragment mass distributions according to which
universality classes of fragmentation can be distinguished. For heterogeneous
bulk solids with a high degree of brittleness it has been shown that the main
features of FSDs can be explained by the self-similar branching-merging
scenario of propagating unstable cracks governed by tensile stresses. It is
an interesting question how material properties such as plasticity affect the
fragmentation process and how robust fragmentation universality classes
are with regard to such properties. We present experimental results on the
impact fragmentation of particles made of polypropylene (PP) and propose
an extension of our previously used DEM approach to simulate the impact
of plastic materials. The details of this work are published in Ref. [56].

5.1 Experiments

In the framework of an international collaboration I had the opportunity
to participate in fragmentation experiments on plastic spheres. The exper-
iments were carried out by Jan Blomer in the Fraunhofer Institute UM-

SICHT, Oberhausen, Germany. I participated in the evaluation of the ex-
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perimental results. To perform impact fragmentation experiments a single
particle comminution device was used which accelerates small spherical par-
ticles one-by-one by centrifugal force in a rotor up to the desired velocity.
The device is built so that the particles hit the hard wall at a rectangular
angle in an evacuated environment eliminating the disturbing effect of in-
clined impact and of turbulent air flow. In the experiments we used particles
of diameter d = 4 mm made of isotactic polypropylene, which is a thermo-
plastic polymer with an intermediate level of crystallinity in its molecular
structure. The most important parameters of PP are: Young’s modulus
1300 M Pa (room temperature), glass transition temperature —10 °C', melt-
ing point 160 °C, and density 0.9 g/cm?. Besides tacticity, the mechanical
response and fracture characteristics of PP are also strongly affected both by
the temperature and by the rate of loading: increasing strain rate gives rise
to a more brittle response while raising the temperature enhances ductility
[130]. Figure 5.1 shows our impact device from the side (left) and from the
top (right).

Particle valve 1

Particle

Security lock valve 2 Feeder

PP particles

Pressure
sensor
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settings Rotor drive
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Figure 5.1: Side and top view of our single particle communition device, a specially
designed rotor that catapults small PP particles against hard steel walls to achieve
impact fragmentation.

We performed impact fragmentation experiments of spherical particles
at different impact velocities vy in the range 30 m/s-180 m/s. Figure 5.2(a)
shows that at low enough velocities, the collision does not result in a breakup,
instead the particles undergo a large plastic deformation at the impact

site. Above the completely flattened contact zone of permanent deformation
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meridional cracks form due to tensile stresses, however, the body does not

fall apart, the plastic zone retains its integrity.

Figure 5.2: Final states of impact at low impact velocities in the experiment (a)
and in the simulation (b). In the contact area with the hard wall large permanent
deformations occur due to compression, while above it vertical cracks are formed
due to tensile stresses. The simulations are in very good agreement with the mea-
surements.

Fragmentation occurs when the impact velocity vg exceeds a material de-
pendent critical value v., which is about 60m /s for our PP particles. At each
impact velocity 400 particles were fragmented accumulating the fragments
in the grinding chamber of the machine. In the data analysis, 99 — 99.5% of
the total mass of the samples was recovered. In order to evaluate the mass
distribution of the fragments, we scanned the pieces with an open scanner
obtaining digital images where fragments appear as white spots on the black
background [59, 61]. This way the identification of fragments is reduced to
cluster searching of white pixels. The very fine powder of extension smaller
then the pixel size of the scanner was left out of the data analysis. The
two-dimensional projected area w of fragments is determined as the number
of pixels of the clusters, from which the mass m of fragments can be esti-

3/2 since the three-dimensional fragment shape is close to

mated as m ~ w
isotropic. We checked the shape isotropy by calculating the square root of
the ratio of the larger I1 and smaller 5 eigenvalues of the tensor of inertia of
the 2D projections. The inset of Fig. 5.3 shows that the value of \/m is
close to 1.9 for almost all fragment masses indicating a high level of isotropy.
The mass distribution F'(m) of fragments obtained at three different impact

velocities is presented in Fig. 5.3.
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Figure 5.3: (left) Resulting fragments of our experiments of impact fragmenta-
tion of PP particles. The fragments are layed out on a scanner to analyze the
properties of their 2D projection. (right) Mass distribution of fragments obtained
from experiments at three different impact velocities. mg denotes the average mass
of PP spheres. At the highest impact velocity vg = 75 m/s, F'(m) shows a power
law behavior over 3 orders of magnitude followed by an exponential cutoff for the
very large pieces. Simulation results obtained with the parameters O, = 1 and
tn, = 0 (bending€healing) are in a very good agreement with the experimental find-
ings. Inset: the shape parameter /I /I of fragments as a function of mass for
the experiments of the main figure.

It can be observed in the figure that at the highest impact velocity
vo = 75 m/s, where the state of complete breakup is reached, a power

law functional form emerges

F(m) ~m™™! (5.1)

over more than 3 orders of magnitude in the regime of small fragments. At
lower impact velocities the power law regime of the distribution is followed
by a hump for the largest fragments which gradually disappears and the
cutoff becomes exponential as vg increases. The most astonishing feature
of the experimental results is that the value of the exponent 7,; = 1.2 &
0.06 of the power law regime is significantly lower than the values 7, ~
1.8 — 2.1 typically found in the fragmentation of three-dimensional bulk
objects consisting of disordered brittle materials [46, 62, 74, 75, 128]. The
anomalously low value of 7,; is the consequence of the breakup mechanism
of plastic materials which has not been considered by the usual theoretical
approaches [74, 128].
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5.2 Bending and tension dominated breaking

In order to reveal the underlying physical mechanisms of the fragmentation
of plastic materials, we used a DEM model to simulate the fragmentation of
polymeric particles of spherical shape when they impact on a hard wall. The
main ingredients of our model have already been discussed in the previous
chapter. To be able to capture the deformation behaviour and fracture of
plastic materials however, we need to add two novel features to the already
existing model construction.

Cracks leading to fragmentation in brittle materials normally propagate
as a result of tensile stresses and accordingly cracks tend to open up, i.e.
crack surfaces are pulled away from each other. Therefore the restriction
in our existing DEM model, that only elongated beams may break is valid
in brittle systems usually dealt with in experiments. However in the case
where material damage is a consequence of shear deformation, failure might
occur even if there is a slight local compression present, as can be expected
in an impact experiment. To take this into account we propose an extension

of the breaking criterion in the form

i;\ n max (|6;],0;]) >,
Eih O

(5.2)

where the deformation ¢ is not restricted to positive values. Since the first
term of Eq. (5.2) becomes negative when the beam is compressed, fail-
ure is dominated by the bending/shear mode in such a way that increasing
compression increases the shear resistance of the beam. It is important to
emphasize that in the beam dynamics shear and bending are strongly cou-
pled. It can be seen in Eq. 4.6 that shear deformation of a beam, i.e.
relative displacement of the two beam ends in the direction perpendicular
to the beam, imply torque which then results in bending angles. Simula-
tions showed that the local shear of the particle contacts provides the main
contribution to the bending angles 6;, 6;, so that bending dominated beam
breaking in Eq. 5.2 characterizes crack formation due to shear. Varying the
values of the breaking thresholds €;;, and Oy, the relative importance of
stretching and bending can be controlled: increasing the value of a breaking
parameter, the effect of the corresponding failure mode diminishes.

Another important feature in our approach in modeling plasticity is the
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concept of healing. In order to represent the plastic behavior of the material,
we assume that the beams have a linear elastic behavior up to fracture, but,
whenever two particles are pressed against one another for a time longer
than tp, a new, undeformed beam is inserted between them. This way
during the impact process, the particle contacts may undergo a sequence
of breaking-healing events which leads to plastic energy dissipation and to
the appearance of permanent deformation. Varying the healing time tp
the mechanical response of the model material can be controlled: t; = 0
corresponds to the case of perfect shear plasticity, while ¢, — oo implies no

healing at all, i.e. brittle behavior.

In order to investigate the effect of local failure modes of beams on the
fragmentation process, we carried out computer simulations by setting the
stretching threshold to a fixed value €4 = 0.02 and varying the bending
threshold within a broad range 1.0 < Oy < 200. In this way O, = 200
and Oy, = 1 imply total tension and bending dominance, respectively, while
intermediate ©;, values interpolate between the two limits. Simulations
were stopped when the system reached a relaxed state, i.e. no beam breaking
occurred during 1000 consecutive time steps. Figure 5.2(b) presents the final
state of an impact simulation obtained with a sample of N = 24000 particles
at low impact velocity. It can be observed that the model is able to reproduce
both the deformation and the crack structure of PP, with parameter values
where the beam breaking is dominated by bending ©;, = 1.0, furthermore,
compressed contacts easily heal t, = 0. The large permanent deformation of
the sphere in Fig. 5.2(b) arises due to breaking-healing sequences of particle
contacts in the compressed impact zone. Above this zone tensile stresses
arise resulting in opening cracks along the impact direction in agreement

with the experiments.

We see in our simulations that a low bending threshold, i.e. low shear
resistance will result in a lot of healing events simply due to the fact that
in a bending-induced beam breaking the particles stay close to each other
and have a high probability of meeting again, whereas in the high bending
threshold limit, beams will break as a result of local tension corresponding
to particles separating. Sequences of breaking-healing events in our impact
simulations can be considered to represent the slip mechanisms in plastic

materials resulting in permanent deformation [56].
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5.3 Damage-fragmentation transition
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Figure 5.4: (a) The average mass of the largest (My,q.) and second largest (M2 )

max
fragments as a function of the impact velocity vg normalized by the critical velocity

v, of fragmentation for two parameter sets. (b) Fragment mass distributions ob-
tained for the limiting cases of tension, bending, and bending&healing dominated
breakups giving the corresponding exponents 7y, Tsp, and Ts,—p1, respectively.

Figure 5.4(a) presents the average mass of the largest (Mq,) and sec-
ond largest (M2"%) fragments as a function of the impact velocity vo for the
tension O, = 200 dominated brittle breakup ¢, = oo (tension), and for the
bending dominated fragmentation Oy, = 1.0 with perfect shear plasticity
tr, = 0 (bending&healing). For low impact velocities the sample gets only
damaged, hence, the largest fragment comprises nearly the entire mass My
of the body (Mnaz) ~ My, while the second largest one is orders of mag-
nitude smaller <M%’}fi> & (Mnqz). Fragmentation occurs when the largest
and second largest pieces become comparable, i.e. at the critical velocity v,
where the <Mﬁ$§c> curve has a maximum coinciding with the inflexion point
of (Myaz). Figure 5.4(a) shows that for the breakup of brittle materials
dominated by tensile stresses, the damage-fragmentation transition is sharp
in agreement with experiments [44, 121], however, when shear breaking dom-
inates a broad critical regime emerges. The reason is that at v, the largest

fragment does not break up into large pieces as for the tension case, but
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instead gradually erodes with a cleavage mechanism giving rise to a slowly

decaying residue.

Representative examples for the mass distribution of fragments are pre-
sented in Fig. 5.4(b) for three parameter sets. For the mass distribution of
the tension dominated breakup of heterogeneous brittle materials obtained
at the parameter values Oy, = 200, t, = oo (tension) a power law behav-
ior is evidenced with the usual exponent 73, = 1.9 £ 0.1 [85]. Simulations
showed that decreasing the healing time ¢, — 0 in the tension limit practi-
cally does not affect the fragmentation process because fragments are only
generated by opening cracks which do not let healing play any role. It is im-
portant to emphasize that the breakup process substantially changes when
shear dominates the crack formation ©;, = 1 (bending). Even in the case
of perfectly brittle beam breaking t;, = oo the low shear resistance leads to
a significantly lower exponent than in the tensile limit 74, = 1.0 £ 0.05 (see
Fig. 5.4(b)). Increasing the strength of plasticity ¢, — 0 when shear domi-
nates the cracking O, = 1, the exponent of the fragment mass distribution
slightly increases: due to the healing of cracks fragments can merge which
decreases the relative frequency of large pieces leading to a faster decay of
the distribution. The highest value of the exponent 7,,_, = 1.25 & 0.06
is obtained in the plastic limit ¢, = 0 together with Oy = 1.0 (bendingéd
healing). Tt is important to emphasize that varying solely the velocity of
impact in Fig. 5.3, for the mass distribution of fragments an excellent agree-
ment is obtained between the shear-plastic simulations and the experiments.
The results show that the shear dominated cracking together with the heal-
ing mechanism of compressed crack surfaces are responsible for the unique
fragmentation of plastic materials. During the impact process of the ex-
periments a considerable fraction of the kinetic energy of the particle gets
transformed into heat which enhances the effect of healing and plasticity in
consistence with our theoretical results. Our extensive simulations indicate
that the exponent 7y, is universal, i.e. it does not depend on the impact
velocity or on materials’ microstructure characterizing a novel universality

class of fragmentation phenomena [56].

Due to low shear resistance, we find that the fragmentation of plastic
shows similarities to the breakup of liquid droplets colliding with a wall.

The spatial distribution of fragments and the crack structure in the final
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Figure 5.5: Probability distribution of the angle ® between the velocity vector of
fragments and the direction of impact for tension O, = 200 and shear ©;, = 1.0
dominated breakup. Insets: final states of fragmentation for tension (a) and shear
(b) dominance. The arrows indicate the direction of the velocity of a few fragments.

state of brittle and plastic fragmentation are compared in the insets of Fig.
5.5. Although meridional and segmentation cracks are clearly observed in the
brittle case in agreement with experiments, a lateral spreading of fragments
is obtained for plastic with shear dominated breaking. For the quantitative
characterization of the spatial spread of fragments, the distribution of the
angle ® of the velocity vector of fragments with the impact direction (verti-
cal) is presented in Fig. 5.5. It can be observed that most of the fragments
bounce back from the hard wall when tension dominates, however, in the
shear-plastic case the fragments escape laterally producing a “splash” of the

entire body similar to liquid droplets [54, 55].

5.4 Conclusions

Our experimental and theoretical study revealed that the breakup of plastic
materials falls into a novel universality class of fragmentation phenomena
characterized by the new mass distribution exponent [56]. Based on discrete
element simulations we showed that the plastic behavior of the material to-
gether with the dominance of shear in crack formation are responsible for
the substantial difference from brittle fragmentation. The low shear resis-

tance of the material gives rise to a splashing similar to the breakup of
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droplets of highly viscous liquids. Beyond the industrial importance of the
fragmentation of polymeric materials, our results might also be applied to
obtain a deeper understanding of the fragmentation of highly viscous magma
during pyroclastic activity at volcanic eruption [42, 43]. For theoretical in-
vestigations our results demonstrate that the breakup of solids cannot be
understood as a generic stochastic process since the precise mechanism of
crack initiation and growth, i.e. the dominance of tensile or shear stresses
govern the exponent of fragmentation. The challenge still remains to con-
struct a theoretical approach which explains the emergence of universality

based on crack dynamics.
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Summary

In the framework of my Ph.D. I studied the fracture and fragmentation
of heterogeneous materials by means of molecular dynamics simulations of
discrete element models. The first part of my thesis concentrated on the
analysis of crackling noise emerging during the jerky propagation of a crack
in three-point bending tests using a two-dimensional DEM. The fracture of
heterogeneous materials have been long known to produce scale-invariant
crackling noise due to the emergence of bursts/avalanches in crack propaga-
tion. My aim was to characterize various quantities related to such bursts
and to investigate their dependence on disorder, i.e. the degree of brittleness
of the sample. Also, I carried out a detailed study of the fracture process
zone developing in front of the crack tip. The second part of my thesis
was focused on the analysis of impact fragmentation of spherical bodies by
using a three-dimensional discrete element model. Fragmentation of brittle
materials are known to show universality in the form of power-law fragment
mass distributions, with a universal exponent. It has been suggested that
fragmentation phenomena can be considered analogous to continuous phase
transitions. The goal of my studies was to achieve a clearer understanding
of the fragmentation phase transition, to numerically obtain critical expo-
nents and to investigate the scaling behaviour of damage below and above
the transition point. I also addressed the important question of what effect
plasticity has on the fragmentation process.

For the analysis of crackling noise in single crack propagation I used a
two-dimensional discrete element model consisting of randomly shaped con-

vex polygons that represent the granular structure of heterogeneous mate-
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rials. The polygons are connected by elastic breakable beams with Weibull-
distributed breaking thresholds. By varying the disorder in the threshold
distributions (changing the Weibull exponent) I could control the degree
of brittleness of the sample, low disorder corresponding to a high degree
of brittleness. I carried out simulations of rectangular samples subject to
three-point bending conditions, where a single crack would propagate in a
stable manner. Before the onset of crack propagation the system accumu-
lates a certain amount of damage in the form of uncorrelated micro-cracks,
greatly depending on the degree of brittleness of the sample according to
the simulations. A simple power-law formula was found for the dependence
of the amount of damage on the Weibull exponent, for which I gave an
analytic explenation in a mean-field type approximation. Simulations re-
vealed that the crack propagates in a jerky manner as a result of a series
of bursts/avalanches of beam breakings. A numerical technique was pro-
posed to identify avalanches based on the temporal and spatial correlation
of micro-fractures. I found a scale-invariant structure of the distributions of
the size and duration of bursts and the waiting times in between them, i.e. a
power-law functional form with an exponential cutoff. The value of the ex-
ponents have a reasonable agreement with recent experiments. Simulations
revealed that ahead of the crack tip a process zone develops which is a sparse
region of broken and intact elements. The fracture process zone proved to
play an important role in the advancement of the crack: on the one hand
the crack progresses by shrinking and expanding steps of the zone, on the
other hand, micro- cracks can shield the stress field around the crack tip
which helps to stabilize the system. The shrinking and expanding steps, i.e.
the length of crack tip jumps and nucleation lengths also proved to follow
power-law distributions. In the simulations I found a power-law decay of
the damage profile with an exponential cutoff which is consistent with the
assumption that the stress decay near the crack tip has a power-law form,

as predicted by linear fracture mechanics.

For my studies on fragmentation, I used a three-dimensional DEM, in
which the disordered structure of the solid is represented by a random pack-
ing of spherical elements of a bimodal size distribution. The spherical ele-
ments are connected by elastic beams which can be deformed due to stretch-

ing, bending and torsion. My simulations of the impact of brittle spheres
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demonstrated that the exponent of the fragment mass distributions is in-
dependent of the impact velocity, strengthening the notion of universality.
I carried out a finite size scaling analysis doing impact simulations with
four different system sizes, and obtained a numerical approximation of the
values of the critical exponents v, 6 and - for three-dimensional brittle frag-
mentation. My results confirmed the validity of scaling relations regarding
the mass M4, of the largest fragment and the average fragment mass (m)
previously suggested in two-dimensional brittle fragmentation. Analyzing
the dependence of the characteristic time scale of the impact process on
the impact velocity, I was able to reproduce Hertzian scaling behaviour for
low velocities, i.e. in the damaged phase. For the fragmented phase how-
ever, simulations revealed a novel critical behaviour of the total accumulated
damage and the damage rate as functions of the impact velocity. Above v,
these quantities behave as powers of the distance from the critical velocity,
as opposed to the logarithmic behaviour seen in two dimensions.

I investigated the effect of plasticity on impact fragmentation both ex-
perimentally and theoretically by proposing an extension of the previously
used DEM to model plastic behaviour. Experiments of impact of small
polypropylene particles were performed and the exponent of fragment mass
distributions was found to be significantly smaller than that of brittle frag-
mentation. This striking result was confirmed by my simulations. I showed
that the main characteristics of the impact of plastic spheres can be re-
produced by molecular dynamics simulations by including some new model
features, i.e. healing of beams and bending dominated breaking, facilitated
by the new form of the breaking criterion. My results suggest that the
fragmentation of brittle and plastic materials belong to distinct universality

classes.
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Osszefoglalas

Doktori tanulményaim keretei kozt rendezetlen szerkezetli anyagok torését
és fragmentaciojat vizsgaltam diszkrét elem modellek molekularis dinami-
kai szimulaci6ja segitségével. Dolgozatom els§ részében a harom-pontos
hajlitdsos kisérletekben keletkezs repedési zaj elemzésére vonatkozéd ered-
ményeimet mutatom be. Vizsgalataimat egy két-dimenzios diszkrét elem
modell segitségével végeztem. Régota ismert, hogy a rendezetlen szerkezeti
anyagok torésében keletkezd repedési zaj skala-invarians szerkezett, a repe-
dés szakaszos, lavindkban térténg elérehaladasa miatt. Célom a kiilonféle,
lavinakkal kapcsolatos mennyiségek jellemzése, és rendezetlenségtdl valo fiig-
gésének megéllapitdsa volt. Emellett behatéan tanulményoztam a repedés
hegye el6tt kialakuld process zoéna viselkedését. Doktori dolgozatom masodik
harom-dimenzios diszkrét elem modell segitségével. A rideg anyagok frag-
mentaciojanak univerzalis jellege régota ismert tény, mely szerint a keletkezd
fragmens méret eloszlasok hatvanyfiiggvény viselkedést mutatnak, ahol az
exponens rendszerint csak a rendszer dimenziojatol fiigg. Szamos eredmény
utal arra, hogy a fragmentécié a folytonos fazisatalakulasokkal analdg je-
lenségnek tekinthets. Kutatésaim célja az volt, hogy tisztabb képet kapjak
a fragmentécios fazisatalakuldsrol és hogy numerikus modszerekkel megha-
tarozzam az atalakulés kritikus exponenseit, valamint, hogy megvizsgaljam
az anyagban keletkez§ sériilés skalaviselkedését a kritikus pont alatt és fe-
lett. Emellett behatoan foglalkoztam azzal a fontos kérdéssel, hogy hogyan
befolyasolja a képlékenység a fragmentacio jelenségét.

A repedési zaj tulajdonsigainak vizsgalatara egy két-dimenzids diszkrét
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elem modellt hasznaltam, melyben rendezetlen konvex poligonok reprezen-
taljak a heterogén anyagok szemcsés szerkezetét. A poligonokat rugalmas,
torhets rudak kotik Ossze, melyek torési kiiszobei Weibull-eloszlasiak. A
Weibull-exponens valtoztatasaval kényelmesen valtoztathatd a torési kiiszo-
bok rendezetlenségén keresztiil az anyag ridegsége. Téglalap alaki testek
hérom-pontos hajlitdsat szimulaltam, ahol egyetlen stabil repedés terjedé-
sét vizsgalhattam. A repedés meginduldsat megel6z6en a rendszerben mar
fel tud halmoz6dni mikro-repedések forméjéban bizonyos mennyiségd sérii-
lés. A szimulaciok szerint az ily modon akkumulalodott sériilés mennyisége
nagyban fiigg a rendszer ridegségétdl. KEgyszerti hatvanyfiiggvény alakot
talaltam a felhalmozott sériilés mennyiségének a Weibull-exponenstsl vald
fliggésére. A fiiggeés alakjara analitikus magyarazatot adtam egy atlagtér jel-
legii kozelitésben. A szimulaciéim kimutattak, hogy a repedés szakaszosan
terjed, rud-torések kisebb-nagyobb lavinainak készonhetGen. A lavindk azo-
nositasara kidolgoztam egy, a torések hely- és idébeli korrelaciojan alapuld
numerikus modszert. A szimuldcidékban ily médon azonositott lavindk mére-
tének, idétartamanak és a lavindk kozott eltelt varakozési idék eloszlasanak
szerkezete skala-invaridnsnak bizonyult, azaz hatvanyfiiggvény alakinak ex-
ponencidlis levagassal. A hatvanyfiiggvény exponensek jo egyezést mutat-
nak a kisérletekkel. A szimulaciok kimutatték, hogy a repedés hegye el6tt
kialakul egy torott és ép rudak valtakozasabol allo szakasz, az Gn. process
zéna. A process zona fontos szerepet jatszik a repedés el6rehaladasaban:
egyfelsl a repedés a process zona hirtelen, diszkrét lépésekben torténd zsu-
gorodésa és novekedése révén halad el6re, mésrészt a process zoénat alkotd
mikro-repedések learnyékoljdk a repedés hegye koriil kialakulo fesziiltség-
teret, mely segit a rendszer stabilizdlasdban. A process zéna zsugoroddsi
és novekedési lépéseinek nagyséigai, vagyis a repedés ugrasainak hossza, és
a nukleacios hosszak is hatvanyfiiggvény alaku eloszlassal rendelkeznek. A
szimulaciokban a sériilés-profil hatvanyfiiggvény alakinak addédott exponen-
cialis levagéassal, ami konzisztens a lineéaris torés-mechanika azon eredményé-
vel, hogy a fesziiltség lecsengése hatvanyfiiggvény alaku a repedés hegyének

kozelében.

Fragmentaci6é vizsgalatara egy harom-dimenziés diszkrét elem modellt
hasznaltam, melyben bimodéalis méreteloszlassal rendelkezs gomb alaku ré-

szecskék szoros illeszkedése alkotja a szilardtest rendezetlen szerkezetét. A
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részecskéket rugalmas rudak kotik 0ssze, melyek nydjthatéak, hajlithatéak
és csavarhatdak. Rideg gombok becsapddaséat szimuldlva azt tapasztaltam,
hogy a fragmens méret eloszlas exponense fiiggetlen a becsap6dasi sebesség-
t6l, ami erdsiti az univerzalitds fogalméanak érvényességét. Négy kiilonbozd
rendszermérettel végzett szimulacidk alapjan véges méret skalazas segitségé-
vel sikeriilt j6 pontossaggal meghataroznom a v, § és ~ kritikus exponensek
értékeit harom-dimenzios rideg fragmentaci6 esetére. Eredményeim megerd-
sitették a legnagyobb M., és az atlagos (m) fragmenstomegre vonatkozo
skalarelacidk érvényességét, melyeket eddig behatdan csak két dimenzioban
vizsgéltak. A becsapodasi folyamat karakterisztikus idéskalajanak a becsa-
podasi sebességtsl vald fliggését vizsgalva azt tapasztaltam, hogy a szimu-
lacioim visszaadjak a Hertz-féle skalaviselkedést alacsony sebességekre, azaz
a sériilt fazisban. A fragmentélt fazisban viszont a teljes felhalmozodott
sériilés és ennek id6 szerinti derivaltja is ajszertd, kritikus viselkedést mu-
tat a becsapoddéasi sebesség fiiggvényeként. A kritikus sebesség f6lott ezek a
mennyiségek a kritikus sebességtsl vald tavolsag hatvanyaként véaltoznak, a
két dimenzidban tapasztalt logaritmikus viselkedéstdl eltérGen.
Tanulmanyoztam a képlékenység hatasiat a becsapodasi fragmentaciora
kisérletileg és elméletileg, a mar meglévs diszkrét elem modell alkalmas ki-
egészitésével. Becsapodasi kisérleteket végeztiink kis polipropilén részecs-
kékkel és azt tapasztaltuk, hogy a fragmens méreteloszlas exponense lénye-
gesen kisebbnek adodott a rideg anyagokkal végzett kisérletekben mértekhez
képest. Ezt a meglepd eredményt sikeriilt a szimulaciéimmal is aldtamasz-
tani. Megmutattam, hogy a képlékeny anyagok becsapo6dasi fragmentéci-
6janak legfontosabb jellemz6i reprodukilhatéak a szimulacidkban, néhény
fontos modell kiegészitéssel: torott rudak ujraéledésével, és a modositott
torési kritérium altal elGsegitett hajlitas altal dominalt radtorésekkel. Ered-
ményeim szerint a rideg és képlékeny anyagok fragmentaciéja kiilon univer-

zalitasi osztalyba tartozik.
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