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the implementation of DR screening programs is challenging due to the 

scarcity of medical professionals able to screen a growing global 

diabetic population at risk for DR. Computer-aided disease diagnosis in 

retinal image analysis could provide a sustainable approach for such 

large-scale screening effort. The recent scientific advances in computing 

capacity and machine learning approaches provide an avenue for biomedical 

scientists to reach this goal. Aiming to advance the state-of-the-art in 

automatic DR diagnosis, the Grand Challenge on "Diabetic Retinopathy - 

Segmentation and Grading" was organized in conjunction with the IEEE 

International Symposium on Biomedical Imaging (ISBI - 2018). In this 

paper, we report the set-up and results of this challenge that is 

primarily based on Indian Diabetic Retinopathy Image Dataset (IDRiD). 

There were three principal sub-challenges: lesion segmentation, disease 

severity grading, and localization of retinal landmarks and segmentation. 

These multiple tasks in this challenge allow to test the generalizability 

of the algorithms, and this is what makes it different from the existing 

ones. It received a positive response from a scientific community with 

148 submissions from 495 registrations effectively entered in this 



challenge. This paper outlines the challenge, its organization, the 

dataset used, evaluation methods and results of top performing 

participating solutions. We observe that the top performing approaches 
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Abstract

Diabetic Retinopathy (DR) is the most common cause of avoidable vision loss, pre-

dominantly affecting the working age population across the globe. Screening for DR,

coupled with timely consultation and treatment, is a globally trusted policy to avoid

vision loss. However, the implementation of DR screening programs is challenging

due to the scarcity of medical professionals able to screen a growing global diabetic

population at risk for DR. Computer-aided disease diagnosis in retinal image analysis

could provide a sustainable approach for such large-scale screening effort. The recent

scientific advances in computing capacity and machine learning approaches provide

an avenue for biomedical scientists to reach this goal. Aiming to advance the state-

of the-art in automatic DR diagnosis, the Grand Challenge on “Diabetic Retinopathy

Segmentation and Grading” was organized in conjunction with the IEEE International

Symposium on Biomedical Imaging (ISBI - 2018). In this paper, we report the set-up

and results of this challenge that is primarily based on Indian Diabetic Retinopathy Im-

age Dataset (IDRiD). There were three principal sub-challenges: lesion segmentation,

disease severity grading, and localization of retinal landmarks and segmentation. These

multiple tasks in this challenge allow to test the generalizability of the algorithms, and

this is what makes it different from the existing ones. It received a positive response

from a scientific community with 148 submissions from 495 registrations effectively

entered in this challenge. This paper outlines the challenge, its organization, the dataset

used, evaluation methods and results of top performing participating solutions. We ob-

serve that the top performing approaches utilize a blend of clinical information, data

augmentation, and the ensemble of models. These findings have the potential to enable

new developments in retinal image analysis and image-based DR screening in particu-

lar.

Keywords: Diabetic Retinopathy; Retinal image analysis; Deep learning; Challenge
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1. Introduction1

Diabetic Retinopathy (DR) and Diabetic Macular Edema (DME) are the most com-2

mon sight-threatening medical conditions caused due to retinal microvascular changes3

triggered by diabetes (Reichel and Salz, 2015), predominantly affecting the working-4

age population in the world (Atlas, 2017). DR leads to gradual changes in the vascu-5

lature structure (including vascular tortuosity, branching angles and calibers) and re-6

sulting abnormalities (microaneurysms, haemorrhages and exudates), whereas, DME7

is characterized by the retention of fluid or swelling of macula that may occur at any8

stage of DR (Bandello et al., 2010; Ciulla et al., 2003). According to the International9

Diabetes Federation (Atlas, 2017) estimates, presently, the global number individuals10

affected with diabetes is 425 million, and it may rise to 693 million by 2045. Amongst11

them, 1 out of 3 individuals are estimated to have some form of DR and 1 in 10 is12

prone to vision-threatening DR (ICO, 2017; Bourne et al., 2013). DR is diagnosed13

by visually inspecting retinal fundus images for the presence of one or more retinal14

lesions like microaneurysms (MAs), hemorrhages (HEs), soft exudates (SEs) and hard15

exudates (EXs) (Wong et al., 2016) as shown in Fig. 1.16

Fig. 1. Illustration of retinal image (in center) by highlighting normal structures (blood vessels, optic disc
and fovea center) and abnormalities associated with DR: Enlarged regions (in left) MAs, and HEs and (in
right) SEs, and EXs.

Early diagnosis and treatment of DR can prevent vision loss. Hence, diabetic pa-17

tients are typically referred for retinal screening once or twice a year (Ferris, 1993;18
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Kollias and Ulbig, 2010; Ting et al., 2016). The diabetic eye care is mainly reliant19

on the number of ophthalmologists and necessary health care infrastructure (Jones and20

Edwards, 2010; Lin et al., 2016). In the Indian subcontinent, ophthalmologist to popu-21

lation ratio is 1:107,000, however, in urban regions this ratio is 1:9000 whereas in rural22

parts there is only one ophthalmologist for 608,000 inhabitants (Raman et al., 2016).23

By 2045, India alone is projected to have approximately 151 million people with dia-24

betes and one-third of them are expected to have DR (Atlas, 2017). Programs to screen25

such a large population for DR confront the issues related to the implementation, man-26

agement, availability of human graders, and long-term financial sustainability. Hence,27

computer aided diagnosis tools are required for screening such a large population that28

require continuous follow-up for DR and to effectively facilitate in reducing the bur-29

den on the ophthalmologists (Jelinek and Cree, 2009; Walter et al., 2002). Such a tool30

would help clinicians in the identification, interpretation, and measurements of retinal31

abnormalities, and ultimately in the screening and monitoring of the disease. The recent32

scientific advances in computing capacity and machine learning approaches provide an33

avenue to the biomedical scientists to meet the desideratum of clinical practice (Short-34

liffe and Blois, 2006; Patton et al., 2006). To meet this need raw images along with35

precise pixel or image level expert annotations (also known as ground truths) play an36

important role to facilitate the research community for the development, validation,37

and comparison of DR lesion segmentation techniques (Trucco et al., 2013). Precise38

pixel-level annotations of lesions associated with DR such as MAs, HEs, SEs and EXs39

are invaluable resource for evaluating accuracy of individual lesion segmentation tech-40

niques. These precisely segmented lesions help in determining the disease severity41

and further act as a road-map that can assist to tap the progression of disease during42

follow-up procedures. Similarly, on the other hand, image-level expert labels for dis-43

ease severity of DR, and DME are helpful in the development and evaluation of image44

analysis and retrieval algorithms. This necessity has led several research groups to45

develop and share retinal image datasets, namely Messidor (Decencière et al., 2014),46

Kaggle (Cuadros and Bresnick, 2009), ROC (Niemeijer et al., 2010), E-Ophtha (De-47

cencière et al., 2013), DiaretDB (Kauppi et al., 2012), DRIVE (Staal et al., 2004),48

STARE (Hoover, 1975), ARIA (Farnell et al., 2008) and HEI-MED (Giancardo et al.,49
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2012).50

Further, two challenges were organized in the context of DR, namely Retinopathy51

Online Challenge (ROC)2 and Kaggle DR detection challenge3. ROC was organized52

with the goal of detecting MAs. Whereas, the Kaggle challenge aimed to get solution53

for determining the severity level of DR. These challenges enabled advances in the field54

by promoting the participation of scientific research community from all over the globe55

on a competitive at the same time constructive setting for scientific advancement. Pre-56

vious efforts have made good progress using image classification, pattern recognition,57

and machine learning. The progress through last two decades has been systematically58

reviewed by several research groups (Patton et al., 2006; Winder et al., 2009; Abràmoff59

et al., 2010; Mookiah et al., 2013a; Jordan et al., 2017; Nørgaard and Grauslund, 2018).60

Although lots of efforts have been made in the field towards automating the DR61

screening process, lesion detection is still a challenging task due to the following as-62

pects: (a) Complex structures of the lesions (shape, size, intensity), (b) detection of63

lesions in tessellated images and in presence of noise (bright border reflections, im-64

pulsive noise, optical reflections), (c) high inter-class similarity (i.e. between MA-HE65

and EX-SE), (d) appearance of not so uncommon non-lesion structures (nerve fiber re-66

flections, vessel reflections, drusen) and (e) difference in images obtained by different67

imaging devices makes it difficult to build a flexible and robust model for lesion seg-68

mentation. To the best of our knowledge, prior to the challenge, there were no reports69

on the development of a single framework to segment all lesions (MA, HE, SE, and70

EX) simultaneously. Also, there was a lack of common platform to test the robustness71

of approaches that determine the normal and abnormal retinal structures on the same72

set of images. Furthermore, there was limited availability of the pixel level annotations73

and the simultaneous gradings for DR and DME (see Tables in Appendix A).74

In order to address these issues, we introduced a new dataset called Indian Diabetic75

Retinopathy Image Dataset (IDRiD) (Porwal et al., 2018a). Further, it was used as a76

base dataset for the organization of grand challenge on “Diabetic Retinopathy: Seg-77

2http://webeye.ophth.uiowa.edu/ROC/
3https://www.kaggle.com/c/diabetic-retinopathy-detection
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mentation and Grading” in conjunction with ISBI - 2018. The IDRiD dataset provides78

expert markups of typical DR lesions and normal retinal structures. It also provides79

disease severity level of DR, and DME for each image in the database. This challenge80

brought together the computer vision and biomedical researchers with an ultimate aim81

to further stimulate and promote research, as well as to provide a unique platform for82

the development of a practical software tool that will support efficient and accurate83

measurement and analysis of retinal images that could be useful in DR management.84

Initially, a training dataset along with the ground truth was provided to participants for85

the development of their algorithms. Later, the results were judged on the performance86

of these algorithms on test dataset. Success was measured by how closely the algo-87

rithmic outcome matched the ground truth. There were three principal sub-challenges:88

lesion segmentation, disease severity grading, and localization and segmentation of89

retinal landmarks. These multiple tasks in IDRiD challenge allow to test the general-90

izability of the algorithms, and this is what makes it different from the existing ones.91

Further, this challenge seeks an automated solution to predict the severity of DR and92

DME simultaneously. It was projected as an individual task to increase the difficulty93

level of this challenge as compared to the Kaggle DR challenge i.e. for a given image,94

the predicted severity for both DR and DME should be correct to count for scoring the95

task.96

The rest of the paper is structured as follows: Section 2 gives a short review of97

previous work done in the development of automated DR screening, section 3 provides98

details of reference dataset, section 4 describes the organization of the competition99

through various phases and section 5 details the top performing competing solutions.100

Section 6 presents performance evaluation measures used in this challenge. Then, sec-101

tion 7 presents the results, analysis and corresponding ranking of participating teams102

for all sub-challenges. Section 8 provides a brief discussion on the results, limitations,103

and lessons learned from this challenge and at last the conclusion. Along with this the104

paper, Appendix A is included that provides a comparison of different state-of-the-art105

publicly available databases with the IDRiD dataset.106
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2. Review of Retinal Image Analysis for the detection of DR107

Automatic image processing has proven to be a promising choice for the analysis108

of retinal fundus images and its application to future eye care. The introduction of109

automated techniques in DR screening programs and the interesting outcomes achieved110

by the rapidly growing deep learning technology are examples of success stories and111

potential future achievements. Particularly, after researcher’s (Krizhevsky et al., 2012)112

deep learning based model showed significant improvements over the state of the art in113

the ImageNet challenge, there was a surge of deep learning based models in medical114

image analysis. Hence, we decided to present the most recent relevant works with a115

classification based on whether or not they used deep learning in the context of DR.116

2.1. Non-deep learning methods117

The general framework for retinal image analysis through traditional handcrafted118

features based approaches involve several stages, typically: a preprocessing stage for119

contrast enhancement or non-uniformity equalization, image segmentation, feature ex-120

traction, and classification. The feature extraction strategy varies according to the ob-121

jective involved i.e. retinal lesion detection, disease screening or landmark localization.122

In 2006, one research group (Patton et al., 2006) outlined the principles upon which123

retinal image analysis is based and discussed the initial techniques used to detect the124

retinal landmarks and lesions associated with DR. Later, one another group (Winder125

et al., 2009) reported an analysis of the work in the automated analysis of DR dur-126

ing 1998–2008. They categorized the literature into a series of operations or steps as127

preprocessing, vasculature segmentation, localization, and segmentation of the optic128

disk (OD), localization of the macula and fovea, detection and segmentation of le-129

sions. Some of the review articles (Abràmoff et al., 2010; Jordan et al., 2017) provide130

a brief introduction to quantitative methods for the analysis of fundus images with131

a focus on identification of retinal lesions and automated techniques for large scale132

screening for retinal diseases. Majority of attempts in the literature are towards exclu-133

sive detection and/or segmentation of one type of lesions (either MAs, HEs, EXs or134

SEs) from an image. Some of the common approaches involved for lesion segmen-135

tation are mathematical morphology (Joshi and Karule, 2019; Hatanaka et al., 2008;136
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Zhang et al., 2014), region growing (Fleming et al., 2006; Li and Chutatape, 2004),137

and supervised (Wu et al., 2017; Zhou et al., 2017; Garcia et al., 2009; Tang et al.,138

2013). Apart from these approaches, in case of MAs, most initial studies shown the139

effectiveness of template matching (Quellec et al., 2008), entropy thresholding (Das140

et al., 2015), radon space (Giancardo et al., 2011), sparse representation (Zhang et al.,141

2012; Javidi et al., 2017), hessian based region descriptors Adal et al. (2014), dictio-142

nary learning (Rocha et al., 2012). On the other hand, for exclusive segmentation of143

HEs, super-pixel based features (Tang et al., 2013; Romero-Oraá et al., 2019) were144

found to be effective. These red lesions (both MAs and HEs) are also frequently145

detected together using dynamic shape features (Seoud et al., 2016), filter response146

and multiple kernel learning (Srivastava et al., 2017) and hybrid feature extraction ap-147

proach (Niemeijer et al., 2005). Similarly, for EXs researchers relied on approaches148

like clustering (Osareh et al., 2009), model-based (Sánchez et al., 2009; Harangi and149

Hajdu, 2014), ant colony optimization (ACO) (Pereira et al., 2015) and contextual in-150

formation (Sánchez et al., 2012). Whereas, for SEs researchers utilized Scale Invariant151

Feature Transform (SIFT) (Naqvi et al., 2018), adaptive thresholding and ACO (Sreng152

et al., 2019). Further, several approaches were devised for multiple lesion detection153

such as multiscale amplitude-modulation-frequency-modulation (Agurto et al., 2010),154

machine learning (Roychowdhury et al., 2014), a combination of Hessian multiscale155

analysis, variational segmentation and texture features (Figueiredo et al., 2015). These156

techniques are shown to usually involve interdependence on the detection of anatomi-157

cal structures (i.e. OD and fovea) with the lesion detection, and that in turn determines158

the automated DR screening outcome.159

Localization and segmentation of OD and fovea facilitate the detection of retinal160

lesions as well as in the assessment (based on the geometric location of these lesions)161

of the severity and monitoring the progression of DR and DME. Hence, several ap-162

proaches have been proposed for localization of OD, most of them utilized the OD163

properties like intensity, shape, color, texture, etc. and many others showed the ef-164

fectiveness of mathematical morphology (Morales et al., 2013; Marin et al., 2015),165

template matching (Giachetti et al., 2014), deformable models (Yu et al., 2012; Wu166

et al., 2016) and intensity profile analysis (Kamble et al., 2017; Uribe-Valencia and167
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Martı́nez-Carballido, 2019). Further, the approaches utilized for OD segmentation168

are based on level set (Yu et al., 2012), thresholding (Marin et al., 2015), active con-169

tour (Mary et al., 2015) and shape modeling (Cheng et al., 2015), clustering (Thakur170

and Juneja, 2017), and hybrid (Bai et al., 2014) approaches. Similarly, the fovea is de-171

tected mostly using the geometric relationship with OD and vessels through morpho-172

logical (Welfer et al., 2011), thresholding (Gegundez-Arias et al., 2013), template (Kao173

et al., 2014) and intensity profile analysis (Kamble et al., 2017) techniques. Poor per-174

formance on detection of the normal anatomical structures could adversely affect lesion175

detection and screening accuracy. For instance, consider the mathematical morphol-176

ogy based techniques presented in 2002 (Walter et al., 2002), 2008 (Sopharak et al.,177

2008) and 2014 (Zhang et al., 2014). These works demonstrate how the morphological178

processing-based approaches evolved by including multiple steps for the final objective179

of exudate detection. In the initial efforts, Walter et al. devised a technique for OD and180

EXs segmentation, later removed the OD to obtain the exudate candidates. Similarly,181

Sopharak et al. achieved the same objective with the detection, and removal of OD182

and vessels. Recently, the approach presented by Zhang et al. achieved much better183

result, but it involved (a) spatial calibration, (b) detection of dark and bright anatomical184

structures such as vessels and OD respectively, also (c) bright border regions detection185

before actual extraction of candidates. Also, there are other techniques based on textu-186

ral (Morales et al., 2017; Porwal et al., 2018c) and mid-level (Pires et al., 2017) features187

of retinal images that forgo the lesion segmentation step for DR screening. However,188

most of these techniques depend on the intermediate steps mentioned above. In the189

approach based on machine learning (Roychowdhury et al., 2014) detected bright and190

dark lesions as a first step and later performed the hierarchical lesion classification to191

generate a severity grade for DR. Similarly, Antal and Hajdu (2014) proposed a strat-192

egy involving image-level quality assessment, pre-screening followed by lesion and193

anatomical features extraction to finally decide about the presence of DR using ensem-194

ble of classifiers. Further, for identification of different stages of DR features from195

morphological region properties (Yun et al., 2008), texture parameters (Acharya et al.,196

2012; Mookiah et al., 2013b), non-linear features of the higher-order spectra Acharya197

et al. (2008), hybrid Dhara et al. (2015) and information fusion (Niemeijer et al., 2009)198
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approaches were found useful. As the DME is graded based on the location of the EXs199

from macula, many researchers (Giancardo et al., 2012; Medhi and Dandapat, 2014;200

Perdomo et al., 2016; Marin et al., 2018) proposed EXs based features to determine the201

severity of the DME. While several others (Deepak and Sivaswamy, 2012; Mookiah202

et al., 2015; Acharya et al., 2017) have proposed various feature extraction techniques203

to grade DME stages without segmenting EXs. Mainly for the approaches in this sec-204

tion, the features are based on the color, brightness, size, shape, edge strength, tex-205

ture, and contextual information of pixel clusters in spatial and/or transform domain.206

Whereas the classification is achieved through the classifiers such as K Nearest Neigh-207

bors (KNN), Naive Bayes, Support Vector Machine (SVM), Artificial Neural Network208

(ANN), Decision Trees, etc.209

These lesion detection or screening techniques are shown to usually involve in-210

terdependence with the other landmark detection. However, there is a lack of single211

platform to test their performance for each objective. For such handcrafted features212

based approaches this challenge provides a unique platform to compare and contrast213

the algorithm’s performance for the detection of anatomical structures, lesions as well214

as screening of DR and DME.215

2.2. Deep learning methods216

Deep Learning is a general term to define multi-layered neural networks able to217

concurrently learn a low-level data representation and higher-level parameters directly218

from the data. This representation learning capability drastically reduces the need for219

engineering ad-hoc features, however, the full end-to-end training of deep learning-220

based approaches typically require a significant number of samples. Its rapid develop-221

ment in recent times is mostly due to a massive influx of data, advances in computing222

power and developments in learning algorithms that enabled the construction of multi-223

layer (more than two) networks (Hinton, 2018; Voulodimos et al., 2018). This progress224

has induced interests in the creation of analytical, data-driven models based on ma-225

chine learning in health informatics (Ching et al., 2018; Ravı et al., 2017). Hence, it is226

emerging as an effective tool for machine learning, promising to reshape the future of227

automated medical image analysis (Greenspan et al., 2016; Litjens et al., 2017; Suzuki,228
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2017; Shen et al., 2017; Kim et al., 2018; Ker et al., 2018). Among various methodolog-229

ical variants of deep learning, Convolutional Neural Networks (CNNs or ConvNets) are230

the most popular within the field of medical image analysis (Hoo-Chang et al., 2016;231

Carin and Pencina, 2018). Several configurations and variants of CNN’s are available232

in the literature, some of the most popular are AlexNet (Krizhevsky et al., 2012), VGG233

(Simonyan and Zisserman, 2014), GoogLeNet (Szegedy et al., 2015) and ResNet (He234

et al., 2016).235

Deep learning has also been widely utilized in the retinal image analysis because236

of its unique characteristic of preserving local image relations. Majority of the ap-237

proaches in the literature employ deep learning to retinal images by utilizing “off-the-238

shelf CNN” features as complementary information channels to other handcrafted fea-239

tures or local saliency maps for detection of abnormalities associated with DR (Chudzik240

et al., 2018; Orlando et al., 2018; Dai et al., 2018), segmentation of OD (Zilly et al.,241

2017; Fu et al., 2018), and the detection of DR (Rangrej and Sivaswamy, 2017). The242

authors (Fu et al., 2016) employ fully connected conditional random fields along with243

CNN to integrate the discriminative vessel probability map and long-range interactions244

between pixels to obtain final binary vasculature. Whereas some approaches initial-245

ized the parameters with those of pre-trained models (on non-medical images), then246

“fine-tuned” (Tajbakhsh et al., 2016) the network parameters for DR screening (Gul-247

shan et al., 2016; Carson Lam et al., 2018). In another approach researchers used248

two-dimensional (2D) image patches as an input instead the full-sized images for le-249

sion detection (Tan et al., 2017b; van Grinsven et al., 2016; Lam et al., 2018; Chudzik250

et al., 2018; Khojasteh et al., 2018), and OD and fovea detection (Tan et al., 2017a). In251

(Garcı́a et al., 2017) trained the “CNN from scratch” and compared it with the fine-252

tuning results based on the other two existing architectures. Recently, Shah et al.253

(2018) demonstrated that the ensemble training of auto-encoders stimulates diversity254

in learning dictionary of visual kernels for detection of abnormalities. Whereas Gian-255

cardo et al. (2017) proposed a novel way to compute the vasculature embedding that256

leverages the internal representation of a new encoder-enhanced CNN, demonstrating257

improvement in the DR classification and retrieval task.258

There is a significant development in the automated identification of DR using CNN259
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models in recent time. A customized CNN (Gargeya and Leng, 2017) proposed for260

DR screening and trained using 75,137 obtained from EyePACS system (Cuadros and261

Bresnick, 2009), where an additional classifier was further employed on the CNN-262

derived features to determine if the image is with or without retinopathy. Similarly,263

Google Inc. (Gulshan et al., 2016) developed a network optimized (fine tuning) for im-264

age classification, in which a CNN is trained by utilizing a retrospective development265

database consisting of 128,175 images with the labels. There are some hybrid algo-266

rithms, in which multiple, semi-dependent CNN’s are trained based on the appearance267

of retinal lesions (Abràmoff et al., 2016; Quellec et al., 2016). A step further, the268

researchers (Quellec et al., 2017) demonstrated an ability of lesion segmentation based269

on the CNN trained for image level classification. However, Lynch et al. (2017) demon-270

strated that the hybrid algorithms based on multiple semi-dependent CNNs might offer271

a more robust option for DR referral screening, stressing the importance of lesion seg-272

mentation. For further details, readers are recommended to follow recent reviews for273

detection of exudates (Fraz et al., 2018), red lesions (Biyani and Patre, 2018) and a sys-274

tematic review with a focus on the computer-aided diagnosis of DR (Mookiah et al.,275

2013a; Nørgaard and Grauslund, 2018).276

This current progress in artificial intelligence provides an opportunity to the re-277

searchers for enhancing the performance of the DR referral system to more robust278

diagnosis system that can provide the quantitative information for multiple diseases279

matching the international standards of clinical relevance. Thus, this challenging de-280

sign offers an avenue to gauge precise DR severity status and opportunity to deliver281

accurate measures for lesions, that could even help in the follow-up studies to observe282

changes in the retinal atlas.283

3. Indian Diabetic Retinopathy Image Dataset284

3.1. Image Acquisition285

The IDRiD dataset (Porwal et al., 2018a) was created from real clinical exams ac-286

quired at an Eye Clinic located in Nanded, (M.S.), India. The fundus photographs of287

people affected by diabetes were captured with focus on macula using Kowa V X−10α288
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fundus camera. Prior to capturing of images, pupils of all subjects were dilated with289

one drop of tropicamide at 0.5% concentration. The captured images have 50◦ field of290

view and resolution of 4288 × 2848 pixels stored in jpg format. The final dataset is291

composed of 516 images divided into five DR (0− 4) and three DME (0− 2) classes292

with well-defined characteristics according to international standards of clinical rele-293

vance. It provides expert markups of typical diabetic retinopathy lesions and normal294

retinal structures. It also provides disease severity level of DR, and DME for each295

image in the database. Three types of ground-truths are available in the dataset:296

1. Pixel Level Annotations. This type of annotations are useful in the techniques to297

locate individual lesions within an image and to segment out regions of interest from298

the background. Eighty-one color fundus photographs with signs of DR are annotated299

at pixel level for developing ground truth of MAs, SEs, EXs and HEs. The binary300

masks (as shown in Fig. 2) for each type of lesion are provided in tif file format. Ad-301

ditionally, OD was also annotated at pixel level and binary masks for all 81 images are302

provided in the same format. These annotations play a vital role in the research for the303

computational analysis of segmenting lesions within the image.304

Fig. 2. Retinal photograph and different annotations: (a) sample fundus image from the IDRiD dataset;
sample ground truths of (b-f) MAs, HEs, SEs, EXs and OD respectively.
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2. Image Level Grading. It consist of information meant to describe overall risk factor305

associated with an entire image. Two medical experts graded the full set of 516 images306

with a variety of pathological conditions of DR and DME. Grading for all images is307

available in CSV file. The diabetic retinal images were classified into separate groups308

according to the International Clinical Diabetic Retinopathy Scale (Wu et al., 2013) as309

shown in Table 1. The DME severity was decided based on occurrences of EXs near

Table 1. DR Severity Grading.

DR Grade Findings

0: No apparent retinopathy No visible sign of abnormalities
1: Mild – NPDR Presence of MAs only

2: Moderate – NPDR
More than just MAs
but less than severe NPDR

3: Severe – NPDR

Any of the following:
>20 intraretinal HEs
Venous beading
Intraretinal microvascular abnormalities
no signs of PDR

4: PDR
Either or both of the following:
Neovascularization
Vitreous/pre-retinal HE

310

to macula center region (Decencière et al., 2014) as shown in Table 2.311

Table 2. Risk of DME.

DME Grade Findings

0 No Apparent EX(s)

1
Presence of EX(s) outside the radius of one disc diameter
from the macula center

2
Presence of EX(s) within the radius of one disc diameter
from the macula center

3. Optic Disc and Fovea center co-ordinates. The OD and fovea center locations are312

marked for all 516 images and the markup is available as separate CSV file.313
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The IDRiD dataset is available from the IEEE Dataport Repository4 under a Cre-314

ative Commons Attribution 4.0 License. The more detailed information about the data315

is available in the data descriptor (Porwal et al., 2018b). Tables A.1 and A.2 highlight316

a comparative strength of the presented dataset with respect to the existing datasets.317

IDRiD is the only dataset that provides all three types of annotations mentioned above.318

Streamlining the collection of annotations would allow it to be utilized in research and319

would lead to better generalizable models for image analysis to be developed, enabling320

further progress in the automated DR diagnosis.321

4. Challenge Organization322

The “Diabetic Retinopathy: Segmentation and Grading” challenge was composed323

into various stages, giving a well-organized work process to potentiate the success of324

the contest. Fig. 3 depicts the work-flow of the overall challenge organization. The325

challenge was officially announced at the ISBI - 2018 website5 on 15th October 2017.326

The challenge was subdivided into three sub-challenges as follows:327

1. Lesion Segmentation: Segmentation of retinal lesions associated with DR as328

MAs, HEs, EXs and SEs.329

2. Disease Grading: Classification of fundus images according to the severity level330

of DR and DME.331

3. OD detection and Segmentation, and Fovea Detection: Automatic localization332

of OD and fovea center coordinates, and segmentation of OD.333

The challenge involved 4 stages, as detailed below:334

Stage 1: Data Preparation and Distribution. The IDRiD dataset was adopted for this335

challenge, where experts verified that all images are of adequate quality, clinically rele-336

vant, that no image is duplicated and that a reasonable mixture of disease stratification337

representative of DR and DME is present. The dataset along with the ground truths338

were separated into training set and test set. For the images with pixel level annotations,339

4https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid
5https://biomedicalimaging.org/2018/challenges/
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Fig. 3. Workflow of the ISBI - 2018: Diabetic Retinopathy Segmentation and Grading Challenge

the data was separated as 2/3 for training (Set-A) and 1/3 for testing (Set-B) (See Table340

3). Similarly, data for the OD segmentation (part of sub-challenge – 3) was divided in

Table 3. Stratification of retinal images annotated at pixel level for different types of retinal lesions.

Lesion Type
Set - A
Images

Set - B
Images

MA 54 27

HE 53 27
SE 26 14
EX 54 27

341

same ratio into Set-A (54 images) and Set-B (27 images). The percentage of images342

that should be in each subset for lesion and OD segmentation tasks (sub-challenge – 1343

and part of sub-challenge – 3) were chosen based on the research outcome (Dobbin and344

Simon, 2011) which demonstrated that splitting data into 2/3 (training): 1/3 (testing)345

is an optimal choice for the sample sizes from 50 to 200. For the other sub-challenges346

(disease grading, and OD and fovea center locations), data was separated in 80 (train-347

ing set: Set-A): 20 (testing set: Set-B) ratio. The percentage of data split in this case is348
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done to provide an adequate amount of data divided into different severity levels. Note349

that the dataset was stratified according the DR and DME grades before splitting. A350

breakdown of the details of the dataset is shown in Table 4.351

Table 4. Stratification of retinal images graded for DR and DME.

DR
Grade

Set-A Set-B

0 134 34
1 20 5
2 136 32
3 74 19
4 49 13

DME
Grade

Set-A Set-B

0 177 45
1 41 10
2 195 48

The challenge was hosted on Grand Challenges in Biomedical Imaging Platform 6,352

one of the popular platform for biomedical imaging-related competitions. A challenge353

website was set up and launched on 25th October 2017 to disseminate challenge related354

information. It was also used for registration, data distribution, submission of results355

and paper, and communication between the organizers and participants.356

Stage 2: Registration and release of the training data. The registration of challenge357

for consideration to ISBI on-site contest was open from the launch of grand-challenge358

website (i.e. 25th October 2017) till deadline for the submission of results (i.e. 11th359

March 2018). Interested research teams could register through challenge website for360

one or all sub-challenges. The first part of data, Set-A (images and ground truths)361

was made available to participants of the challenge on 20th January 2018. Participants362

could download the dataset and start development or modification of their methods.363

Further, they were also allowed to use other datasets for the development of their meth-364

ods, with the condition that the external datasets be publicly available.365

Stage 3: Release of test data. The Set-B (only images) for sub-challenge – 1 was366

released on 20th February, 2018. For other two sub-challenges, the Set-B was released367

on 4th April which was part of “on-site” challenge. The organizers refrained from an368

6https://grand-challenge.org/
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on-site evaluation of sub-challenge – 1 considering the timing constrains in evaluation369

of the results for individual image segmentation results.370

Submissions were sought for either of the following 8 different tasks corresponding371

to the three sub-challenges (1 – Lesion Segmentation, 2 – Disease Grading, 3 – OD and372

Fovea Detection) as follows:373

1. Sub-challenge – 1: Lesion Segmentation374

Task - 1: MA Segmentation375

Task - 2: HE Segmentation376

Task - 3: SE Segmentation377

Task - 4: EX Segmentation378

2. Sub-challenge – 2: Disease Grading379

Task - 5: DR and DME Grading380

3. Sub-challenge – 3: Optic Disc and Fovea Detection381

Task - 6: OD Center Localization382

Task - 7: Fovea Center Localization383

Task - 8: OD Segmentation384

Challenge site was made open for submission from 12th February and participants385

could submit their results and paper describing their approach till March 11, 2018 to386

the organizers. Participants could submit up to three methods to be evaluated per team387

for each task, provided that there was a significant difference between the techniques,388

beyond a simple change or alteration of parameters. For Tasks 1 to 4 (i.e. sub-challenge389

– 1) and task-8, the teams were asked to submit output probability maps as grayscale390

images and for all other tasks it was accepted in CSV format. The submitted results391

were evaluated by the challenge organizers and their performance was displayed on392

leaderboard of the challenge website. For sub-challenge – 1, the teams were assessed393

based on the performance of results submitted on the test set, whereas, for other two394

sub-challenges assessment was based on the results on the training set obtained through395

leave one out cross-validation approach. In this phase, it received very good response396

from the research community with 148 submissions by 37 different teams, out of which397

16 teams were shortlisted for participation to the on-site challenge. Amongst invited,398
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13 teams confirmed their participation in the on-site challenge, whereas, two teams399

declined to participate due to other commitments and one team was not able arrange400

financial support in the limited time.401

Stage 4: ISBI Challenge Event. The main challenge event was held in conjunction402

with ISBI - 2018 on April 4th, 2018. The Set-B (only images) for sub-challenge – 2403

and 3 was made available to the participants via challenge website (on-line mode) as404

well as portable devices at the challenge site (off-line mode). Participants were asked405

to produce results for respective challenge task within one hour. The participating406

teams could bring their own system or run the test through the remote system. Also,407

there was no restriction on the number of machines that could be used to produce408

the results. However, considering the timing constraints for processing, some teams409

which had previously entered with more than one solution decided to use only their410

best performing solution.411

Further, the top three teams from sub-challenge – 1 were given opportunity to412

present their work. During that time, some of the organizing team members com-413

piled the results for sub-challenge – 2 and 3. The teams were given 7 minutes for414

presentation of their approach and 3 minutes were reserved for question-answers. The415

first presentation session lasted for about 30 minutes and at the end of presentations416

of sub-challenge – 1 the result for sub-challenge – 2 and 3 were declared. Similarly,417

the top three performing teams from these sub-challenges gave short presentations on418

their work. After the end of the on-site challenge event, on 6th April, the summary of419

challenge and analysis of results were presented, which included a final ranking of the420

competing solutions. This information is additionally accessible on the challenge web-421

site. It is important to note that many teams had participated in multiple sub-challenges422

as listed in the Table 5 and remainder of this paper deals only with the methods that423

were selected for the challenge.424

5. Competing Solutions425

Majority of participating teams proposed a CNN based approach for solving tasks426

in this challenge. This section details the basic terminologies and abbreviations related427
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Table 5. List of all participating teams shortlisted and which participated in the ‘on-site’ challenge. All teams
are color coded for easier reference in all further listings. The DL denotes whether the submitted algorithm is
based on deep learning. Where, sub-challenge – 1 (SC1) corresponds to lesion segmentation such as microa-
neurysms (MA), haemorrhages (HE), soft exudates (SE) and hard exudates (EX). Whereas, sub-challenge
– 2 (SC2) denotes disease severity grading corresponding to DR and DME. Similarly, sub-challenge – 3
(SC-3) deals with the optic disc detection (ODD), fovea detection (FD) and optic disc segmentation (ODS).
Harangi et al. participated with two methods HarangiM1 and HarangiM2, for simplicity it is jointly rep-
resented as HarangiM1-M2 with a single color code. Similarly, Li et al. participated with two methods
LzyUNCC (renamed in text as LzyUNCC-I) and LzyUNCC Fusion (renamed in text as LzyUNCC-II) that
are jointly represented as LzyUNCC with same color code. However, these different methods are mentioned
separately in the text wherever it was necessary. *Team could not participate in ‘on-site’ challenge but later
communicated the results to the organizers.

Team Name Authors DL SC1 SC2 SC3

MA HE SE EX ODD FD ODS

VRT Jaemin Son et al. X X X X X X X X X

iFLYTEK-MIG Fengyan Wang et al. X X X X X × × × ×

PATech Liu Lihong et al. X X X × X × × × ×

SOONER Yunzhi Wang et al. X X X X X × × × ×

SAIHST Yoon Ho Choi et al. X × × × X × × × ×

LzyUNCC Zhongyu Li et al. X × × X X X × × ×

SDNU Xiaodan Sui et al. X X X X X × X X X

Mammoth Junyan Wu et al. X × × × × X × × ×

HarangiM1-M2 Balazs Harangi et al, X × × × × X × × ×

AVSASVA Varghese Alex et al. X × × × × X × × ×

DeepDR Ling Dai et al. X × × × × × X X ×

ZJU-Bll-SGEX Xingzheng Lyu et al. X × × × × × X X X

IITkgpKLIV Oindrila Saha et al. X × × × × × × × X

*CBER Ana Mendonça et al. × × × × × × X X X

to CNN and its variants utilized by the participating teams. Further it summaries the428

solutions and related technical specifications. For the detailed description of a particu-429

lar approach please refer to the proceedings of the ISBI Grand Challenge Workshop at430

https://idrid.grand-challenge.org/Challenge_Proceedings/.431

For the input image, CNN transforms the raw image pixels on one end to generate a432

single differentiable score function at the other. It exploits three mechanisms — sparse433

connections (a.k.a. local receptive field), weight sharing and invariant (or equivariant)434

representation — that makes it computationally efficient (Shen et al., 2017). The CNN435

architecture typically consists of an input layer followed by sequence of convolutional436
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(CONV), subsampling (POOL), fully-connected (FC) layers and finally a Softmax or437

regression layer, to generate the desired output. Functions of all layers are detailed as438

follows:439

The CONV layer comprises of a set of independent filters (or kernels) that are uti-440

lized to perform 2D convolution with the input layer (I) to produce the feature (or441

activation) maps (A) that give the responses of kernels at every spatial position. Math-442

ematically, for the input patch (I`x,y) centered at location (x, y) of the `th layer, the443

feature value in the ith feature map, A`
x,y,i, is obtained as:444

A`
x,y,i = f((w`

i )
T I`x,y + b`i) = f(C`

x,y,i) (1)

Where the parameters w`
i and b`i are weight vector and bias term of the ith filter445

of the `th layer, and f(·) is a nonlinear activation function such as sigmoid, rectified446

linear unit (ReLU) or hyperbolic tangent (tanh). It is important to note that the kernel447

w`
i that generates the feature map C`

:,:,i is shared, reducing the model complexity and448

making the network easier to train.449

The POOL layer aims to achieve translation-invariance by reducing the resolution450

of the feature maps. Each unit in a feature map of the POOL layer is derived using a451

subset of units within sparse connections from the corresponding convolutional feature452

map. The most common pooling operations are average pooling and max pooling. It453

performs downsampling operation and is usually placed between two CONV layers to454

achieve a hierarchical set of image features. The kernels in the initial CONV layers455

detect low-level features such as edges and curves, while the kernels in the higher456

layers are learned to encode more abstract features. The sequence of several CONV457

and POOL layers gradually extract higher-level feature representation.458

FC layer aims to perform higher-level reasoning by computing the class scores.459

Each neuron in this layer is connected to all neurons in the previous layer to generate460

global semantic information.461

The last layer of CNN’s is an output layer (O), here the Softmax operator is com-462

monly used for the classification tasks. The optimum parameters (θ, common no-463

tation for both w and b) for a particular task can be determined by minimizing the464
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loss function (L) defined for the task. Mathematically, for N input-output relations465

{(In, On);n ∈ [1, · · · , N ]} and corresponding labels Gn the loss can be derived as:466

L =
1

N

N∑
n=1

ln(θ;Gn, On) (2)

Where N denotes the number of training images, In, On and Gn correspond to467

the nth training image. Here, a critical challenge in training CNN’s arises from the468

limited number of training samples as compared to the number of learnable parameters469

that need to be optimized for the task at hand. Recent studies have developed some470

key techniques to better train and optimize the deep models such as data augmenta-471

tion, weight initialization, Stochastic Gradient Descent (SGD), batch normalization,472

shortcut connections and regularization. For more understanding related to advances473

in CNN’s, reader is recommended to refer (Gu et al., 2018).474

The growing use of CNN’s as the backbone of many visual tasks, ready for different475

purposes (such as segmentation, classification or localization) and available data, has476

made architecture search a primary channel in solving the problem.477

In this challenge, mainly for disease severity grading problem, participants either478

directly utilized existing variants of CNN’s or ensembled them to demarcate the in-479

put image to one of the class mentioned above. Several configurations and variants of480

CNN’s are available in literature, some of the most popular are AlexNet (Krizhevsky481

et al., 2012), VGG (Simonyan and Zisserman, 2014), GoogLeNet (Szegedy et al.,482

2015) and ResNet (He et al., 2016) due to their superior performance on different483

benchmarks for object recognition tasks. A typical trend with the evolution of these484

architectures is that the networks have gotten deeper, e.g., ResNet is about 19, 8 and 7485

times deeper than AlexNet, VGGNet, and GoogLeNet respectively. While the increas-486

ing depth improves feature representation and prediction performance, it also increases487

complexity, making it difficult to optimize and even becomes prone to overfitting. Fur-488

ther, the increasing number of layers (i.e., network depth) leads to vanishing gradient489

problems as a result of a large number of multiplication operations. Hence, many490

teams chose the DenseNet (Iandola et al., 2014) which connects each layer to every491
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other layer in a feed-forward fashion, reducing the number of training parameters and492

alleviates the vanishing gradient problem. DenseNet exhibits `(` + 1)/2 connections493

in ` layer network, instead of only `, as in the networks mentioned above. This enables494

feature reuse throughout the network that leads to more compact internal representa-495

tions and in turn, enhances its prediction accuracy. Another opted approach, Deep496

Layer Aggregation (DLA) structures (Yu et al., 2017), extends the “shallow” skip con-497

nections in DenseNet to incorporate more depth and sharing of the features. DLA uses498

two structures – iterative deep aggregation (IDA) and hierarchical deep aggregation499

(HDA) that iteratively and hierarchically fuse the feature hierarchies (i.e. semantic and500

spatial) to make networks work with better accuracy and fewer parameters. Recent501

Fully Convolutional Network (FCN) (Long et al., 2015) adapt and extend deep clas-502

sification architectures (VGG and GoogLeNet) into fully convolutional networks and503

transfer their learned representations by fine-tuning to the segmentation task. It defines504

a skip architecture that combines semantic information from a deep, coarse layer with505

appearance information from a shallow, fine layer to produce accurate and detailed506

segmentations.507

For the lesion segmentation task, most of the participating teams exploit U-Net508

architecture (Ronneberger et al., 2015). The main idea in U-Net architecture is to sup-509

plement the usual contracting network through a symmetric expansive path by addition510

of successive layers, where upsampling (via deconvolution) is performed instead of511

pooling operation. The upsampling part consists of large number of feature channels,512

that allow the network to propagate context information to higher resolution layers.513

The high resolution features from the contracting path are merged with the upsampled514

output and fed to soft-max classifier for pixel-wise classification. This network works515

with very few training images and enables the seamless segmentation of high resolution516

images by means of an overlap-tile strategy. Other similar architecture SegNet (Badri-517

narayanan et al., 2015) was opted by a team, it consists of an encoder and decoder518

network, where the encoder network is topologically identical to the CONV layers in519

VGG16 and in which FC layer is replaced by a softmax layer. Whereas, the decoder520

network comprises a hierarchy of decoders, one corresponding to each encoder. The521

decoder uses max-pooling indices for upsampling its encoder input to produce a sparse522
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feature maps. Later, it convolves the sparse feature maps with a trainable filter bank to523

densify them. At last, the decoder output is fed to a soft-max classifier for generation524

of segmentation map. One team choose Mask R-CNN (He et al., 2017), a technique525

primarily based on a Region Proposal Network (RPN) that shares convolutional fea-526

tures of entire image with the detection network, thus enabling region proposals to527

localize and further segments normal and abnormal structures in the retina. RPN is a528

fully convolutional network that contributes in concurrently predicting object bounds529

and “objectness” scores at each position.530

Following subsections present the solutions designed by participating teams with531

respect to three sub-challenges. Table 6 summarizes the data augmentation, normaliza-532

tion and preprocessing tasks performed by each team.533

Table 6. Summary of data augmentation, normalization and pre-processing in the competing solutions.
Where, RF, RR, RS, RT, RC represent random flip, rotation, scaling, translation and crop respectively.

Task Team Name Data Augmentation Data
Normalization

Data
PreprocessingRF RR RS RT RC Other

VRT X X X X X shear X
FOV cropping,

division by 255 then
mean subtraction

Su
b-

ch
al

le
ng

e
-1 iFLYTEK X X X X X × X lesion patch extraction

PATech X X × X × color1 X
RGB to LUV,

contrast adjustment
SDNU X X × × × × - -

SOONER X X × × X × X
mean subtraction,

lesion patch extraction

LzyUNCC X × × × X
stochastic and
photo-metric 2 -

FOV cropping,
image enhancement

SAIHST X X × × × × X
CLAHE,

Gaussian smoothing

LzyUNCC X × × × X
color1, stochastic
and photo-metric2 -

FOV cropping,
image enhancement

Su
b-

ch
al

le
ng

e
-2 VRT × × × × × × X mean subtraction

Mammoth X X X X × color × morphological opening
and closing

AVASAVA X × × × X × X intensity scaling
HarangiM1 × × × × × × X FOV cropping
HarangiM2 × × × × × × X -

Su
b-

ch
al

le
ng

e
-3 DeepDR × × × × X OD, fovea region X

FOV cropping,
mean subtraction

VRT X X X X X
shear and

cropped OD X
FOV cropping,

contrast adjustment
ZJU-BII-SGEX × × × × × × X FOV cropping
SDNU X × X × × × - -
IITkgpKLIV X X × × × × X -
CBER × × × × × × - -

1 Reference: Krizhevsky et al. (2012)
2 Reference: Howard (2013)
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A. Sub-challenge – 1: Lesion Segmentation534

For a given image, this task seeks to get the probability of a pixel being a lesion (ei-535

ther MA, HE, EX or SE). Although different retinal lesions have distinct local features,536

for instance, MA, HE, EX, SE have different shape, color and distribution character-537

istics, these lesions share similar global features. Hence, majority of the participating538

teams built a general framework that would be suitable for segmentation of different539

lesions, summarized as follows:540

A.1. VRT (Jaemin Son et al.)541

Son et al. modified U-Net in such a way that the upsampling layers have the same542

number of feature maps with the layers concatenated, based on the motivation that fea-543

tures in initial layers and upsampled layers are equally important to the segmentation,544

thus should have the same number of feature maps. Additionally, they adjusted the545

number of max-pooling so that radius of the largest lesion spans a pixel in the most546

coarse layer. In case of EX and HE, max-pooling is done 6 times, whereas for SE and547

MA it is done 4 times and twice. Further, for dealing with MA’s, they used inverse pixel548

shuffling to convert a 1280×1280×3 pixels image to 640×640×12 for network input549

and pixel shuffling (Shi et al., 2016) to convert 640 × 640 × 4 segmentation map into550

1280 × 1280 × 1 pixels. Later, the pairs of a normalized fundus image and reference551

ground truths were fed to the network to generate segmentation result in range [0,1].552

They used weighted binary cross entropy (Murphy, 2012) as loss function given by553

L =
1

N

N∑
n=1

[
− αGn logOn − (1−Gn) log(1−On)

]
(3)

where N denotes the number of the pairs in a batch, Gn and On represent true seg-554

mentation and predicted segmentation for nth image. The value of α was determined555

as follows:556

α =
Bi

0

γF i
1

(4)

where Bn
0 and Fn

1 denote the number of background and foreground pixels in the557

nth image. Since background overwhelms foreground in the lesion segmentation, this558
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loss function was designed to penalize false negatives in order to boost sensitivity,559

an important factor in detecting lesions. Also, γ was left as a hyper-parameter and560

chosen out of {0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 256, 512} to yield the highest AU-PR on561

the validation set. The final selected γ values for different lesions are summarized in562

Table 7. They trained the network over 300 epochs using Adam optimizer (Kingma

Table 7. γ values in Eq. 4

EXs SEs HEs MAs

64 512 8 32

563

and Ba, 2014) with hyper-parameters of β1 = 0.5, β2 = 0.999 and learning rate564

of 2e−4 until 250 epochs and 2e−5 until the end. All implementation was done565

by Keras 2.0.8 with tensorflow backend 1.4.0 using a server with 8 TITAN X (pas-566

cal). The source code is available at https://bitbucket.org/woalsdnd/567

isbi-2018-fundus-challenge.568

A.2. iFLYTEK-MIG (Fengyan Wang et al.)569

Wang et al. proposed a novel cascaded CNN based approach for retinal lesion570

segmentation with U-Net as a base model. It consists of three stages, the first stage571

is a coarse segmentation model to get initial segmentation masks, then second stage572

is a cascade classifier which was designed for false positive reduction, at last a fine573

segmentation model was used to refine results from the previous stages. First stage574

model was trained using the patches of size 256× 256 pixels centered on the particular575

lesion amongst MA, HE or EX and 320 × 320 pixels for SE, resulting in the coarse576

segmentation outcome. Results of previous stage are coarse due to the fact that non-577

focus regions (non target lesions) were not utilized in the learning process leading to578

high false positive count. In the second stage, unlike the first segmentation model579

which used a lesion centered sample from input dataset pool, candidate regions were580

extracted using probability maps from the previous stage. Here, the input size fed to581

model for SE was 320 × 320 × 3 pixels, for HE and EX it was 256 × 256 × 3 pixels,582

and for MA it was modified to 80× 80× 3 pixels considering its small appearance. In583

this step, a candidate region was regarded as a positive sample if its intersection-over-584
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union with the ground truth was greater than the given threshold (i.e. 0.5). In this way,585

most trivial non-focus regions were effectively rejected. However, it was identified586

in the test that a small proportion of false positives still exist, so an additional model587

was introduced to refine the segmentation results. In the last stage, candidate regions588

survived from the second stage were utilized as the input patches resulting in more589

accurate segmentation results. For first and third stage, they used binary cross entropy590

or dice loss function (multi-model training), whereas, for second stage, they used only591

binary cross entropy as loss function. The first, second and third stage models were592

trained for 100, 300 and 100 epochs respectively with momentum of 0.9. In which,593

the initial learning rate for first and third stage was set 0.1 and is reduced by 10 times594

every 30 epochs, and for second stage it was set to 0.001 reduced by 10 times every 80595

epochs. MXNET platform was used for training the models.596

A.3. PATech (Liu Lihong et al.)597

Lihong et al. developed a novel patch-based CNN model (as shown in Fig. 4) in598

which they innovatively combined the DenseNets and dilation block with U-Net to599

capture more context information and multi-scale features. The model is composed of

Fig. 4. Proposed architecture for lesion segmentation
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a down-sampling path with 4 Transitions Down (TD), 4 Dilation Block (DL) and an600

up-sampling path with 4 Transitions Up (TU). To capture multi-scale features, DL (see601

Fig. 5) is used with dilation rate of 1, 3 and 5 are concatenated for the convolution. The602

dense block (DB) is constructed by four layers. The idea behind novel combination603

of dilation convolution is to better deal with the lesions appearing at different scales,604

where small dilation rate pay closer attention to the characteristics of the tiny lesions,605

larger dilation rate focus on large lesions. On the other hand, use of DB’s enabled a606

deeper and more efficient network.607

Fig. 5. Architecture for dilation block.

Initially, they extracted regions within FOV from the images and then normalized608

them to eliminate local contrast differences and uneven illumination. Later, they used609

small patches 256 × 256 pixels at stride of 64 (128 for MA) to generate the training610

samples (only patches that overlap with the lesion ground truth) followed by data aug-611

mentation before feeding to the model. To deal with highly imbalanced spread of data,612

they designed a loss function that is combination of dice function (Sudre et al., 2017)613

and 2D cross Entropy as follows:614

L = −mean(w10 ∗G ∗ log(O)

+w11 ∗ (1−G) ∗ log(1−O)

+w2 ∗ dice(G))

(5)

where w10 and w11 are the factor utilized to keep a balance between the positive and615

negative pixels, and w2 is the factor utilized to control the significance between dice616
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and cross entropy loss. The values of w10, w11 and w2 were empirically set to 0.7,617

0.3 and 0.4 respectively. The models were trained using Adam optimizer with default618

parameters, β1 = 0.9 and β2 = 0.999. The initial learning rate was set to 2×10−4, and619

then divided by 20 in every 20 epochs. This model was implemented with pytorch1.12620

and Tesla M60 platform was utilized for training on the centos 7.2 operating system.621

A.4. SOONER (Yunzhi Wang et. al.)622

Wang et. al. adopted the U-Net architecture for solving the retinal lesion segmenta-623

tion problem. The network takes a 380×380 pixels fundus image patch as an input and624

predict the binary mask of retinal lesion within the 196 × 196 pixels central region of625

the input patch. They pre-processed the fundus images by subtracting the local mean626

of each color channel and performed random flipping for data augmentation. Batch627

normalization was utilized to improve training efficiency and all convolution opera-628

tions adopted ‘valid’ paddings. For training, they followed a three-stage process for629

each type of lesions (i.e. MA, HE, EX and SE). For the first stage, they extracted630

positive image patches in the training set according to the given ground truth mask,631

and randomly extracted negative image patches from fundus images with and without632

apparent retinopathy. The objective function was the summation of cross entropy loss633

functions for MA, HE, EX and SE. Adam algorithm was employed to optimize the pa-634

rameters. In the second stage, they fine-tuned the U-Net using the extracted patches for635

each lesion type. Subsequently, they applied the optimized U-Net on the fundus images636

in the training set and extracted false positive patches generated by U-Net. They further637

fine-tuned the U-Net using the positive image patches together with the false-positive638

patches (hard negative patches) as a third stage. In the testing phase, they extracted639

overlapped image patches using a sliding window and fed the patches into the network640

to get the corresponding probability maps. The initial learning rate was set to 1× e−4
641

and fixed number of steps was used as a stopping criteria. They implemented the U-Net642

architecture based on TensorFlow library with a Nvidia GeForce GTX 1080Ti GPU.643
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A.5. LZYUNCC (Zhongyu Li et. al.)644

Li et al. developed method based on FCN by embedding DLA structure for the seg-645

mentation of HE’s and SE’s. As the lesions are located dispersively and irregularly, em-646

bedding of DLA structure with FCN enables better aggregation of semantic and spatial647

information from local and global level provides a boost in recognizing their presence.648

They used retinal images with pixel-level ground truth annotations from both IDRiD649

and E-Ophtha database. They first adopted a series of methods for data preprocessing650

and augmentation. Subsequently, considering the correlation between EX’s and SE’s,651

they first trained an initial model for the segmentation of EX. They chose a smaller652

model, i.e., DLA-34 to train the segmentation network with binary cross entropy as653

a loss function. At last, the trained deep model was fine-tuned for the segmentation654

of SE. While the model training of EX segmentation, a trade-off parameter (penalty)655

was assigned in the loss function to control the weights of foreground pixels, and tried656

different penalty value from 1 to 16 during the model training. At last, these segmen-657

tation results were fused to adaptively compute the best performance. They adopted658

the original DLA cityscapes segmentation experimental settings (Yu et al., 2017) and659

trained the model for 100 epochs with batch size 4, where the poly learning rate was660

(1− epoch−1
totalepoch )0.9 with momentum of 0.9. The initial learning rate was set to 0.01.661

A.6. SAIHST (Yoon Ho Choi et al.)662

Choi et al. proposed a model for segmentation of EX based on U-net, in which663

the convolution layers of the encoder path are replaced with dense blocks. Whereas,664

the decoder path of their model was kept identical to that of general U-net. They665

built the dense block with growth factor of 12 and 3 × 3 convolution layers, batch666

normalization, and ReLU activation. The last layer generates pixel level prediction map667

for EXs through the sigmoid activation function. For training, they utilized only green668

channel of fundus image and enhanced it using Contrast Limited Adaptive Histogram669

Equalization (CLAHE). Later, each image was padded to a size of 4352× 3072 pixels670

and cropped into 204 patches of 512×512 pixels. These patches are further augmented671

and used for training. The losses were calculated by the binary cross-entropy. The672

model was trained for 20 epochs with a mini-batch size of 10 and they used Adam673
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optimizer with an initial learning rate of 2e−4, β1 of 0.9 and β2 of 0.999. The model674

was programmed in Keras 2.1.4 served with Tensorflow 1.3.0 backend.675

A.7. SDNU (Xiaodan Sui et al.)676

Sui et al. proposed a method based on Mask R-CNN structure to segment lesions677

from the fundus image. They adopted implementation of Mask R-CNN from (Ab-678

dulla, 2017) for solving the problem. This method could detect different objects while679

simultaneously generating instance segmentation mask.680

Network training precedes the data augmentation process and binary cross entropy681

was used as a loss function. The initial learning rate was set to 0.02 with momentum of682

0.9. They chose ResNet-101 as a backbone. They implemented algorithm in Keras with683

Tensorflow as backend and processed on 8 NVIDIA TITAN Xp GPUs. The experiment684

environment was built under Ubuntu 16.06.685

B. Sub-challenge – 2: Disease Grading686

For a given image, this task seeks to get a solution to produce a severity grade687

of the diseases i.e. DR (5 class problem) and DME (3 class problem). Summary of688

participating solutions is as follows:689

B.1. LZYUNCC (Zhongyu Li et al.)690

Li et al. developed method based on the ResNet by embedding DLA structure for691

the automated grading of DR and DME. For this work they used IDRiD and Kaggle692

dataset. Initially, for the given training images, they perform data preprocessing and693

data augmentation. Subsequently, based on the designed ResNet with DLA structure,694

initial models are trained using 35,000 retinal images from the Kaggle dataset. Later,695

they fine-tuned the model using the IDRiD dataset through 5 fold cross validation tech-696

nique. Finally, the 5 outputs are ensembled together as the final grades for input im-697

ages. It is important to note that networks for the grading of DR and DME were trained698

separately. The training was performed by Stochastic Gradient Descent (SGD) with a699

mini-batch size of 64, while the learning rate starts from 0.001 and is then divided by700

10 every 20 epochs, for 30 epochs in total. The other hyper-parameters are fixed to the701

settings of original DLA ImageNet classification (Yu et al., 2017).702
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B.2. VRT (Jaemin Son et al.)703

Son et al. used network (Son et al., 2018) for DR grading. Kaggle dataset was ini-704

tially used to pre-train the network and then the model was fine-tuned with the IDRiD705

data. Penultimate layer was Global Average Pooled (GAP) and connected with FC706

layer. The entire output is a single value from which L2 loss was calculated against707

the true label. SGD was used with nesterov momentum of 0.9 as optimizer. Learn-708

ing rate was set to 10−3. The model was trained for 100 epochs. Fundus image was709

normalized in range [0, 1] and the mean was subtracted channel-wise. For grading of710

DME, the segmented EXs (using the segmentation network proposed in sub-challenge711

– 1), localized fovea and segmented OD (using the segmentation network proposed in712

sub-challenge – 3) were utilized for making final decision. With these information,713

semi-major axis of the segmented OD (r) was estimated. Further, the fundus image714

is divided into three regions as macular region: ‖x − c‖ < r, near macular region:715

r < ‖x− c‖ < 2r and remaining region: 2r < ‖x− c‖. where x denotes a point in the716

image.717

Furthermore, several features such as sum of intensity for segmented EX, the num-718

ber of pixels above the threshold (178 in the [0, 255] scale), the number of pixels719

for the smallest and largest blob, the mean pixel numbers of blobs are extracted for720

each area, and binary flag that indicates whether the OD is segmented. Now, features721

with high importance were selected among numerous features in the initial training722

due to gradient boosting (for instance, XGBoost) was likely to overfit when provided723

with overly redundant features. Messidor dataset was added to the given data and724

out of which 10% of images were left as validation set. Sets of hyper-parameters are725

searched by grid-search. The combination of hyper parameters that yielded the highest726

accuracy in validation set was min child eight: 2, subsample: 0.2, colsample by tree:727

0.2, λ: 9.0, α: 1.0, and depth: 6. Other hyper-parameters are set to default values. All728

implementations were done by pytorch v0.4.1 using a server with 8 TITAN X (pas-729

cal). The source code is available at https://bitbucket.org/woalsdnd/730

isbi-2018-fundus-challenge.731
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B.3. Mammoth (Junyan Wu et al.)732

Wu et al. proposed an unified framework that combines deep feature extractor and733

statistical feature blending to automatically predict the DR and DME severity scores.734

For DME, they used DenseNet to directly predict severity score. Whereas for DR,735

Kaggle training dataset was used to pre-train the DenseNet model through a dynamic736

sampling mechanism to balance the training instances and later fine tuned using the737

IDRiD dataset. Initially, the background of all images was cropped and resized to738

512 × 512 pixels. Later, morphological opening and closing are utilized to preserve739

bright and dark regions. For instance, the morphological opening can erase the EXs and740

highlight the MAs. Whereas, the closing operation can remove MAs and preserve EXs.741

These operations can be used to denoise specific levels of classifications, for example,742

the risk of DME only depends on the location of the EXs. Further, several standard743

data augmentation methods (as shown in Table 6) are also employed. Mean Squared744

Error (MSE) and cross-entropy with five classes were the loss functions employed to745

train the network and SGD for optimization. The initial learning rate was set to 0.0005746

with decrement of 0.1 after every 30 epochs. The initial training was done by 200747

epochs and fine tuning by 50 epochs. Afterwards, the last layer was removed before748

final prediction, and its statistical features were aggregated together into a boosting749

tree. Specifically, 50 pseudo random augmentations were performed to get 50 outputs750

from last second FC layer (size of 4096), then the mean and standard deviation of 50751

feature vectors for each image were computed, and both vectors were then concatenated752

together for training in LightGBM. The output from second last layer of fine-tuning753

experiments were used to train a blending model, strategy adopted from team o O’s754

solution of Kaggle DR challenge. Finally, for the disease grading prediction, gradient755

boosting tree model was built on combined second last layer from pre-trained network756

and fine-tuned network.757

B.4. HarangiM1 (Balazs Harangi et al.)758

Harangi et al. proposed an approach for the classification of retinal images via759

the fusion of two AlexNet, and GoogLeNet. For this aim, they removed a FC and760

classification layers and interconnect them by inserting a joint FC layer followed by the761
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classic softmax/ classification layers for the final prediction. In this way, single network762

architecture was created which allows to train the member CNNs simultaneously. For763

each I(n), let us denote the outputs of the final FC layers of the member CNNs by764

Ô1
(n)
, Ô2

(n)
. The FC layer of their ensemble aggregates them via765

Ó(n) = A1Ô1
(n)

+A2Ô2
(n)

(6)

where the weight matrices A1, A2 were of size 5× 5 and initialized as766

A1 = A2 =



1/5 0 0 0 0

0 1/5 0 0 0

0 0 1/5 0 0

0 0 0 1/5 0

0 0 0 0 1/5


(7)

The last two layers of the ensemble were a softmax and a classification one. Let767

O
(n)
SM be the output of the former layer, the MSE was used for optimization as a loss768

function:769

MSE =
1

2N
ΣN

n=1(Ó
(n)
SM −O

(n))2 (8)

During the training phase, back-propagation is applied to minimize the loss via770

adjusting all the parameters of the member CNNs and the weight matrices A1, A2.771

For the grading of DME, the final layers of the member CNNs consist of 3 neurons,772

and the weight matrices A1, A2 were 3× 3, initialized as773

A1 = A2 =


1/3 0 0

0 1/3 0

0 0 1/3

 (9)

For training they merged the IDRiD and Kaggle training set. The parameters of774

the architectures were found by the SGD algorithm in 189 and 50 epochs respectively775

for the DR and DME classification tasks. Learning rate was set to 0.0001. Training776
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times required on the datasets for DR and DME were 96.6 (189 epochs) and 23.4 (50777

epochs) hours respectively. Implementation of this work was done in Matlab 2017b.778

Training was performed using an NVIDIA TITAN X GPU card with 7 TFlops of single779

precision performance, 336.5 GB/s of memory bandwidth, 3,072 CUDA cores, and 12780

GB memory.781

B.5. AVSASVA (Varghese Alex et al.)782

Alex et al. used ensembles of pre-trained CNNs (on ImageNet dataset), namely,783

ResNets and DenseNets for the task of disease grading. For the task of grading of DR,784

two ensembles of CNNs namely “primary” and “expert” classifiers were used. The785

primary classifier was trained to classify a fundus image as one of the 4 classes viz;786

Normal, Mild NPDR, Moderate NPDR or S-(N)-PDR, a class formed by clubbing Se-787

vere NPDR and PDR. The expert classifier was trained exclusively on Severe NPDR788

or PDR images and was utilized to demarcate the input image as one of the aforemen-789

tioned classes. During inference, each fundus image was resized to a dimension of790

256× 256 pixels. For the task of grading of DR in fundus images, they used test time791

augmentation through the “Ten Crop” function defined in PyTorch. The images were792

first passed through the primary classifier and then through the expert classifier, only if793

the image was classified as S-(N)-PDR by primary classifier. The final prediction was794

achieved by using a majority voting scheme.795

For DME grading, two ensembles were trained in a one versus rest approach. En-796

semble 1 was trained to classify the input as either “image with no apparent EXs”797

(Grade 0) or “presence of EXs in image” (Grade 1 & Grade 2), while the Ensemble798

2 was trained to classify an image as “Grade 2” DME or not (Grade 0 & Grade 1).799

During inference, the resized images were fed to both ensembles and the final predic-800

tion was obtained by combining the two predictions by utilizing a set of user defined801

rules. Briefly, the user defined rules were: an image was classified as Grade 0 DME802

if ensemble 1 and ensemble 2 predict the absence of EXs and the absence of grade 2803

DME respectively. A scenario wherein ensemble 2 predicts the presence of grade 2804

DME, the images were classified under the category “Grade 2 DME” irrespective of805

the prediction from ensemble 1. Lastly, images were classified as Grade 1 DME if none806
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of the above conditions were satisfied.807

Both models for DR and DME were initialized with the pretrained weights and the808

parameters of networks were optimized by reducing the cross entropy loss with ADAM809

as the optimizer. The learning rate was initialized to 10−3 for DR and 10−4 for DME.810

For DR, the learning rate was reduced by a factor of 10% every instance when the811

validation loss failed to drop. Each network was trained for 30 epochs and the model812

parameters that yielded the lowest validation loss were used for inference. For DME,813

the learning rate was annealed step-wise with step size of 10 and the multiplicative814

factor of learning rate decay value of 0.9.815

B.6. HarangiM2 (Balazs Harangi et al.)816

Harangi et al. combined self-extracted, CNN-based features with traditional, hand-817

crafted ones for disease classification. They modified AlexNet to allow the embedding818

of handcrafted features via a FC layer. In this way, they created a network architec-819

ture that could be trained in the usual way and additionally uses domain knowledge.820

They extended the FC layer FCfuse originally containing 4096 neurons of AlexNet by821

adding 68-dimensional vector containing handcrafted features. Then, the 4164× 5 (or822

4164× 3 for DME) layer FCclass was considered for the DR (or DME) classification823

task. In this way, both the final weighing FCclass of the handcrafted features were824

obtained and the 4096 AlexNet features were trained by back propagation.825

To obtain the 68 handcrafted features used by the CNN, they employed one image826

level and two lesion specific methods. The amplitude-frequency modulation (AM-827

FM) method extracts information from an image by decomposing its green channel at828

different scales into AM-FM components (Havlicek, 1996). As a result, a 30-element829

feature vector was obtained, which reflects the intensity, geometry and texture of the830

structures contained in the image (Agurto et al., 2010). Whereas to extract features831

related to the lesions MA and EX, they employed two detector ensembles (Antal and832

Hajdu, 2012; Nagy et al., 2011), which consist of a set of<preprocessing method (PP),833

candidate extractor (CE)> pairs organized into a voting system. Such a<PP, CE> pair834

was formed by applying the PP to the retinal image and the CE to its output. This way,835

a <PP, CE> pair extracts a set of lesion candidates from the input image, acting like836
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a single detector algorithm. They used output of these ensembles to obtain 38 features837

related to the number and size of MA’s and EX’s. The parameters of the architectures838

were optimized by SGD algorithm in 85 and 50 epochs for DR and DME respectively.839

Training times were 83.1 (85 epochs) and 46.2 (50 epochs) hours on the datasets for DR840

and DME. Implementation of this work was done in Matlab 2017b. Training has been841

performed using an NVIDIA TITAN X GPU card with 7 TFlops of single precision,842

336.5 GB/s of memory bandwidth, 3,072 CUDA cores, and 12 GB memory.843

C. Sub-challenge – 3: Optic Disc and Fovea Detection844

For a given image, this task seeks to get a solution to localize the OD and Fovea.845

Further, it seeks to get the probability of pixel being OD (OD segmentation). Summary846

of approaches is detailed as follows:847

C.1. DeepDR (Ling Dai et al.)848

Dai et al. proposed a novel deep localization method, which allows coarse-to-fine849

feature encoding strategy for capturing the global and local structures in fundus images,850

to simultaneously model the two-task learning problem of the OD and fovea localiza-851

tion. They took advantage of the prior knowledge such as the number of landmarks and852

their geometric relationship to reliably detect the OD and fovea. Specifically, they first853

designed a global CNN encoder (with a backbone network of ResNet-50) to localize854

the OD and fovea centers as a whole by solving a regression task. All max pooling855

layers were replaced with average pooling layers as compared to the original ResNet856

architecture, due to the fact that the max pooling could lose some useful pixel-level857

information for the regression to predict the coordinates. This step was used to si-858

multaneously perform the two detection tasks, because of the geometric relationship859

between OD and fovea, the performance of multi-task learning is better than single860

task. The predicted output coordinates of this global CNN encoder component were861

used for detecting the bounding boxes of the target OD and fovea. Then the current862

center coordinates are refined through a local encoder (with a backbone network of863

VGG-16) which only localizes the OD center or fovea center of their related bounding864

boxes. During training stage, they designed the effective data augmentation scheme to865
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solve the problem of insufficient training data. In particular, to build the training set866

of the local encoder, the bounding boxes were randomly selected based on the ground867

truth, for each object several bounding boxes of different positions and scales were868

cropped. The local encoder can be reused multiple times to approximate the target co-869

ordinates. The local encoder was iterated twice for refining centers comprehensively.870

All three models were initialized from the pre-trained ImageNet network, and replaced871

the network’s last FC layer and softmax layer by the center coordinates regressor. The872

regression loss for the center location was the Euclidean loss. The modified loss func-873

tion for global and local encoders was 0.045(LOD +Lfovea) and 0.045(LOD/Lfovea)874

respectively. Where LOD and Lfovea are losses for OD and fovea, and scaling factor875

was introduced since the original Euclidean distance is too large in practice to con-876

verge. The proposed learning model was implemented in Caffe framework and trained877

using SGD with momentum. The FC layers for center regression were initialized from878

zero-mean Gaussian distributions with standard deviations 0.01 and 0.001. Biases were879

initialized to 0. The global encoder was trained for 200 epochs, local encoders (OD and880

fovea both) for 30 epochs respectively. The batch size for the global encoder was 16,881

and 64 for the other two local encoders. The learning rate was set as 0.01 and was882

divided by 10 when the error plateaus.883

C.2. VRT (Jaemin Son et al.)884

Son et al. proposed an OD segmentation model consisting of U-Net and CNN885

that takes a vessel image and outputs 20× 20 activation map whose penultimate layer886

is concatenated to bottleneck layer of the U-Net. Initially, the original images were887

cropped (3500 × 2848 pixels), padded (3500 × 3500 pixels) and then resized (640 ×888

640 pixels). Each image was standardized with its mean and standard deviation (std).889

When calculating the mean and std, values less than 10 (usually artifacts in the black890

background) are ignored. Vessel images were prepared with an external network Son891

et al. (2017). Pixel values in a vessel image range from 0 to 1. It uses external datasets892

DRIONS-DB (Carmona et al., 2008) and DRIVE (Staal et al., 2004) available with893

OD and vessel ground truths respectively. For augmentation, the fundus images were894

affine-transformed and additionally OD was cropped and randomly placed on the image895
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for random number of times (0 to 5). This augmentation was done to prevent the896

network from segmenting OD solely by brightness. Pairs of a fundus image and the897

vessel segmentation were provided as input and OD segmentations in the resolution of898

640×640 and 20×20 pixels are given as the ground truth. Binary cross entropy is used899

as loss function for both U-Net and vessel network with the loss of Ltotal = LU−Net+900

0.1∗Lvessel. Total 800 epochs are trained via Adam optimizer and decreasing learning901

rate with hyper-parameters of β1 = 0.5, β2 = 0.999. The learning rate was 2e−4 until902

400 epochs and 2e−5 until the end. Weights and biases were initialized with Glorot903

initialization method (Glorot and Bengio, 2010).904

They also proposed a four branch model in which two branches were dedicated905

to prediction of locations for OD and fovea from vessels (vessel branches) and906

other two branches aim to predict the locations from both fundus and vessels (main907

branches). Similar to OD segmentation, penultimate layers of vessel branches were908

depth-concatenated to the main branches. After deriving an activation map that repre-909

sents probability of containing the anatomical landmark, hard-coded matrix was mul-910

tiplied to yield co-ordinates. Original images were cropped as in the segmentation911

task and standardized with the identical method and later augmented by flip and rota-912

tion to ease the implementation efforts. Mean absolute error was used as loss function913

for both outputs with the loss of Ltotal = Lmain + 0.3 ∗ Lvessel. SGD was used914

with nestrov momentum of 0.9 as optimizer. Learning rate was set to 10−3 from 1st915

to 500th epochs and 10−4 from 501th to 1000th epochs. All implementation were916

done in Keras 2.0.8 with tensorflow backend 1.4.0 using a server with 8 TITAN X917

(pascal). Source code is available at https://bitbucket.org/woalsdnd/918

isbi-2018-fundus-challenge.919

C.3. ZJU-BII-SGEX (Xingzheng Lyu et al.)920

Lyu et al. utilized Mask R-CNN to localize and segment OD and fovea simultane-921

ously. It scans the image and generates region proposals by 2D bounding boxes. Then922

the proposals were classified into different classes and compute a binary mask for each923

object. They firstly preprocessed the original retinal image into fixed dimensions as924

network input. A feature extractor (ResNet-50) with feature pyramid networks (FPN)925
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generates feature maps at different scales, which could be used for regions of interest926

(ROI) extraction. Then a region proposal network (RPN) scans over the feature maps927

and locates regions that contain objects. Finally, a ROI head network (RHN) is em-928

ployed to obtain the label, mask, and refined bounding box for each ROI. They also929

incorporated prior knowledge of retinal image as a post-processing step to improve the930

model performance. They used IDRiD dataset and two subsets in RIGA dataset (Al-931

mazroa et al., 2018) (Messidor and BinRushed, 605 images) with OD mask provided.932

They applied transfer learning technique to train the model. They firstly trained the933

RHN network by freezing all the layers of FPN and RPN networks and then fine-tuned934

all layers. The model was implemented on Tensorflow 1.3 and python 3.4 (source code935

was modified from Abdulla (2017)). The learning rate started from 0.001 and a mo-936

mentum of 0.9 was used. The network was trained on one GPU (Tesla K80) with 20937

epochs.938

C.4. IITkgpKLIV (Oindrila Saha et al.)939

Saha et al. used SegNet for segmentation of lesions and OD. OD was added as an940

additional class in the same problem as lesion segmentation, so that the model could941

better differentiate EXs and OD which have similar brightness levels. However, in942

contrast to original SegNet, the final decoder output is fed to a sigmoid layer to produce943

class probabilities for each pixel independently in 7 channels. Each channel has the944

same size as input image : 536×356 pixels and consists of activations in the range [0,1]945

where 0 corresponds to background and 1 to the presence of corresponding class. Apart946

from 5 classes i.e. MA, HE, SE, EX and OD, two additional classes: (i) retinal disk947

excluding the lesions and OD, and (ii) black background form the 7 channels. Images948

were downsampled to 536 × 356 pixels, preserving the aspect ratio. Additionally,949

Drishti-GS (Sivaswamy et al., 2014) dataset was used for data augmentation to account950

for case of absence of lesions. Further, horizontal, vertical and 180 degree flipped951

versions of the original images were taken. The network was trained using binary cross952

entropy loss function and Adam optimizer with learning rate 10−3 and β = 0.9. Early953

stopping of the training based on the validation loss is adopted to prevent overfitting.954

It was observed that the validation loss started to increase after 200 epochs. One more955
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softmax layer is introduced after the Sigmoid layer for normalizing the value of a pixel956

for each class across channels. Segmented output is finally upsampled for each class to957

4288 × 2848 pixels. All implementations were done in PyTorch using 2x Intel Xeon958

E5 2620 v3 processor with GTX TitanX GPU 12 GB RAM and 64 GB System RAM.959

C.5. SDNU (Xiaodan Sui et al.)960

Sui et al. used Mask R-CNN for solving all tasks in this sub-challenge. Mask R-961

CNN could realize accurate target detection based on proposed candidate object bound-962

ing boxes of a RPN to achieve the objective of OD and Fovea localization. At the same963

time, it could also get the OD segment at the mask predicting branch. The head archi-964

tecture of Mask R-CNN (ResNet-101 as a backbone) consists of three parallel branches965

for classification, bounding-box regression, and predicting mask. By this method, the966

localization of OD and fovea, and segment the mask of OD could be obtained directly.967

They retrained the network to get the new weight parameter of the framework. During968

the training phase, the dataset of this challenge was augmented by flipping, resizing969

and trained by 10-fold cross-validation. After training 2000 epochs, the last trained970

model is obtained. They implemented this algorithm in Tensorflow and it is processed971

on 8 NVIDIA TITAN Xp GPUs. The experiment environment is built under Ubuntu972

16.06.973

C.6. CBER (Ana Mendonça et al.)974

Mendonça et al. proposed handcrafted features based approach for the localization975

and segmentation tasks in this sub-challenge. Distinct methodologies have been devel-976

oped for detecting and segmenting these structures, mainly based on color and vascular977

information. The methodology proposed in the context of this challenge includes three978

inter-dependent modules. Each module performs a single task: OD localization, OD979

segmentation or fovea localization. While the modules responsible for the OD localiza-980

tion and segmentation were an improved version of two methods previously published981

(Mendonca et al., 2013; Dashtbozorg et al., 2015), the method proposed for fovea local-982

ization was completely new. Initially, the module associated with the OD localization983

receives a fundus image and segments the retinal vasculature. Afterwards, the entropy984
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of the vessel directions is computed and combined with the image intensities in order985

to find the OD center coordinates. For OD segmentation, the module responsible for986

this task uses the position of the OD center for defining the region where the sliding987

band filter (Pereira et al., 2007; Esteves et al., 2012) is applied. The positions of the988

support points which give rise to the maximum filter response were found and used989

for delineating the OD boundary. Since a relation between the fovea-OD distance and990

the OD diameter was known (Jonas et al., 2015), the module responsible for the fovea991

localization begins by defining a search region from the OD position and diameter. The992

fovea center is then assigned to the darkest point inside that region.993

6. Evaluation Measures994

The performance of each sub-challenge was evaluated based on different evaluation995

metrics. Following evaluation measures were used for different sub-challenges:996

A. Sub-challenge – 1997

This sub-challenge evaluates the performance of the algorithms for different lesion998

segmentation tasks, from the submitted grayscale images, using the available binary999

masks. As in the lesion segmentation task(s) background overwhelms foreground, a1000

highly imbalanced scenario, the performance of this task was measured using area1001

under precision (a.k.a. Positive Predictive Value (PPV)) recall (a.k.a. Sensitivity (SN))1002

curve (AUPR) (Saito and Rehmsmeier, 2015).1003

SN =
True Positives

True Positives + False Negatives
(10)

PPV =
True Positives

True Positives + False Positives
(11)

The curve was obtained by thresholding the results at 33 equally spaced instances1004

i.e. [0, 8, 16, · · · , 256] in gray levels or [0, 0.03125, 0.0625 · · · , 1] in probabilities. The1005

AUPR provides a single-figure measure (a.k.a. mean average precision (mAP)), com-1006

puted over the Set-B, was used to rank the participating methods. This performance1007
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metric was used for object detection in The PASCAL Visual Object Classes (VOC)1008

Challenge (Everingham et al., 2010). The AUPR measure is more realistic (Boyd et al.,1009

2013; Saito and Rehmsmeier, 2015) for the lesion segmentation performance over the1010

Area under Receiver Operating Characteristics (ROC).1011

B. Sub-challenge – 21012

Let the expert labels for DR and DME be represented byDRG(n) andDMEG(n).1013

Whereas, DRO(n) and DMEO(n) are the predicted results, then correct instance is1014

the case when the expert label for DR and DME matches with the predicted outcomes1015

for both DR and DME. This was done since, even with presence of some exudation that1016

may be categorized as mild DR, its location on the retina is also important governing1017

factor (to check DME) to decide overall grade of disease. For instance, EXs presence in1018

the macular region can affect vision of the patient to greater extent and hence, it should1019

be dealt with priority for referral (that may otherwise be missed or cause delay in1020

treatment with the present convention of only DR grading) in the automated screening1021

systems. Hence, disease grading performance accuracy for this sub-challenge, from1022

the results submitted in CSV format for test images (i.e. N = 103), is obtained by1023

algorithm 1 as follows:

Algorithm 1: Computation of disease grading accuracy
Data: Method Results and Labels with DR and DME Grading
Result: Average disease grading accuracy for DR and DME

1 for n = 1, 2, · · · , N do
2 Correct = 0;
3 if (DRO(n) == DRG(n)) and (DMEO(n) == DMEG(n)) then
4 Correct = Correct + 1;
5 end
6 end
7 Average Accuracy = Correct

N

1024

C. Sub-challenge – 31025

For the given retinal image, the objective of sub-challenge – 3 (task - 6 and 7) was1026

to predict the OD and fovea center co-ordinates. The performance of results submitted1027
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in CSV format was evaluated by computing the Euclidean distance (ED) (in pixels)1028

between manual (ground truth) and automatically predicted center location. Lower ED1029

indicates better localization. After determining Euclidean distance for each image in1030

the Set-B, i.e. for 103 images, the average distance representing the whole dataset was1031

computed and used to rank the participating methods.1032

The optic disc segmentation (task - 8) performance is evaluated using Jaccard in-1033

dex (J) (Jaccard, 1908). It represents the proportion of overlapping area between the1034

segmented OD (O) and the ground truth (G).1035

J =
|O ∩G|
|O ∪G|

(12)

Higher J indicates better segmentation. For the segmented results, images in range1036

[0, 255], it was computed at 10 different equally spaced thresholds [0, 0.1, · · · , 0.9]1037

and averaged to obtain final score.1038

7. Results1039

This section reports and discusses the results of all sub-challenges. Performance1040

of all competing solutions on the Set-B for all eight subtasks are divided into three1041

sub-challenge categories and discussed including their leaderboard rank.1042

A. Sub-challenge – 11043

In this section, we present the performance of all competing solutions for the lesion1044

segmentation task. All results received from the participating teams were analyzed1045

using the validation measure given in section 6.A. This measure generated a set of1046

precision-recall curves for each of the different techniques. A total of 22 solutions were1047

evaluated for this sub-challenge (a complete list is available on the challenge website)1048

and ranked using the area under precision-recall curve values. Amongst them, only1049

top-4 teams per lesion segmentation task were invited for the challenge workshop and1050

top-3 teams having overall better performance, the solutions developed by the teams1051

that ranked amongst top three for at least three different lesion segmentation tasks,1052

presented their work at ISBI.1053
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Table 8. Sub-challenge – 1 “Off-site” leaderboard highlighting top 4 teams from each lesion (MAs, HEs,
SEs and EXs) segmentation task on the testing dataset. It details the approach followed by respective team
and external dataset used for training their model (if any).

Lesion Team Name AUPR Approach Ensemble Input Size
(Pixels)

External
Dataset

M
ic

ro
an

eu
ry

s iFLYTEK 0.5017 Cascaded CNN X 320× 320 ×
VRT 0.4951 U-Net × 1280× 1280 ×
PATech 0.4740 DenseNet+U-Net X 256× 256 ×
SDNU 0.4111 Mask R-CNN × 3584× 2380 ×

H
em

or
rh

ag
es VRT 0.6804 U-Net × 640× 640 ×

PATech 0.6490 DenseNet+U-Net X 256× 256 ×
iFLYTEK 0.5588 Cascaded CNN X 320× 320 ×
SOONER 0.5395 U-Net × 380× 380 ×

So
ft

E
xu

da
te

s VRT 0.6995 U-Net × 640× 640 ×
LzyUNCC-I 0.6607 FCN+DLA × 1024× 1024 E-ophtha
iFLYTEK 0.6588 Cascaded CNN X 320× 320 ×
LzyUNCC-II 0.6259 FCN+DLA × 1024× 1024 E-ophtha

H
ar

d
E

xu
da

te
s PATech 0.8850 DenseNet+U-Net X 256× 256 ×

iFLYTEK 0.8741 Cascaded CNN X 320× 320 ×
SAIHST 0.8582 U-Net × 512× 512 ×
LzyUNCC-I 0.8202 FCN+DLA × 1024× 1024 E-ophtha

Table 8 summarizes the individual performance (Off-site evaluation) of each solu-1054

tion listed in order of their final placement for each subtask. It also contains the various1055

approaches followed and external dataset (if any) used for training the models. The1056

higher the rank for individual task, the more favorable the performance. The top-3 en-1057

tries according to the individual lesion segmentation task are VRT, iFLYTEK-MIG and1058

PATech. Some sample lesion segmentation results illustrated in Fig. 6 and their corre-1059

sponding overall evaluation score from Table 8 give a better idea of how the evaluation1060

scores correlate with the quality of the segmentation.1061

Fig. 7 summarizes the performance of top-4 teams per lesion segmentation task.1062

The different curves represent the performance of the participating methods for various1063

lesions (MAs, HEs, SEs and EXs). Team VRT achieved highest AUPR score for HE1064

and SE segmentation task. Whereas, team PATech and iFLYTEK-MIG obtained best1065

score for EX and MA segmentation task respectively.1066
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(a)

(b)

Fig. 6. Illustration of lesion segmentation results: (a) sample image and (b) segmentation outcome of top-
4 teams (from left to right) (i) MAs, (ii) HEs, (iii) SEs, and (iv) EXs in retinal fundus images. Top row
corresponds to ground truths, second row to entry from top performing team, similarly, third, fourth and fifth
rows correspond to entries from other three teams respectively. The lesion segmentation entries are colored
for better illustration and separation from each type of lesion.
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Fig. 7. The AUPR curves for the four top performing individual methods on the test dataset. These curves
plot the sensitivity versus the positive predictive values for the different lesions, namely, (a) MAs, (b) HEs,
(c) SEs, and (d) EXs

B. Sub-challenge – 21067

This section presents the results achieved (On-site evaluation) by the participating1068

teams for the DR and DME grading task. It is important to note that this task was1069

evaluated for simultaneous grading of DR and DME using the validation algorithm1070

outlined in section 6.B on the test set (Set-B). This algorithm produced an average1071

grading accuracy of joint DR and DME on all images. Table 9 summarizes the result1072

47



DR DME DR and DME
0

0.2

0.4

0.6

0.8

1

0.75

0.81

0.63
0.59

0.82

0.550.54

0.84

0.51
0.55

0.75

0.48

0.55

0.81

0.480.48

0.73

0.41

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

LzyUNCC VRT Mammonth HarangiM1 AVSASVA HarangiM2

Fig. 8. Barplots showing separate and simultaneous classification accuracy of solutions developed by top - 6
teams for grading of DR and DME.

of teams for on-site challenge along with the approach followed and the external dataset1073

used for training the model by respective team.1074

Table 9. Sub-challenge – 2 “On-site” leaderboard highlighting top 6 teams performance in DR and DME
grading on the testing dataset. It details the approach followed by respective team and external dataset used
for training their model

Team Name Accuracy Approach Ensemble Input Size
(Pixels)

External
Dataset

LzyUNCC 0.6311 Resnet + DLA 5 896× 896 Kaggle
VRT 0.5534 CNN 10 640× 640 Kaggle, Messidor
Mammoth 0.5146 DenseNet X 512× 512 Kaggle
HarangiM1 0.4757 AlexNet + GoogLeNet 2 224× 224 Kaggle
AVSASVA 0.4757 ResNet + DenseNet DR-8, DME-5 224× 224 DiaretDB1
HarangiM2 0.4078 AlexNet + Handcrafted features 2 224× 224 Kaggle

The top performing solution at the “on-site” challenge was proposed by team1075

LzyUNCC followed by team VRT and team Mammoth. Fig. 8 shows the average1076

accuracy of the competing solutions for individual as well as simultaneous for DR and1077

DME grading task. Teams are observed to perform poorly in the DR grading task that1078

reduced the overall accuracy for simultaneous grading of DR and DME. Major reason1079

seems to be the difficult test set, difficulty in accurately discriminating the DR severity1080

grades.1081
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C. Sub-challenge – 31082

This section presents the evaluation of “On-site” results for the participating teams1083

in the sub-challenge – 3, for all three subtasks. The results for subtasks of OD and1084

Fovea center localization were evaluated by euclidean distance, whereas for OD seg-1085

mentation results were evaluated and ranked using Jaccard similarity score as outlined1086

in section 6.C. Results from the on-site evaluations are reported in Table 10 and Table1087

11 that summarize the results of all participating algorithms for all three subtasks.1088

Table 10. “On-site” leaderboard highlighting performance of top 5 teams in OD and fovea localization. It
highlights the approach followed by respective team and external dataset used for training their model (if
any). ED: Euclidean Distance.

Localize Team Name ED Rank Approach Input Size
(Pixels)

External
Dataset

DeepDR 21.072 1 ResNet + VGG
224× 224,
950× 950

-

O
pt

ic
D

is
c VRT 33.538 2 U-Net 640× 640 DRIVE

ZJU-BII-SGEX 33.875 3 Mask R-CNN 1024× 1024 RIGA
SDNU 36.220 4 Mask R-CNN 1984× 1318 -
CBER 29.183 - Handcrafted Features 536× 356 -

DeepDR 64.492 1 ResNet + VGG
224× 224,
950× 950

-

Fo
ve

a

VRT 68.466 2 U-Net 640× 640 DRIVE
SDNU 85.400 3 Mask R-CNN 1984× 1318

ZJU-BII-SGEX 570.133 4 Mask R-CNN 1024× 1024 RIGA
CBER 59.751 - Handcrafted Features 536× 356 -

The winning methods for the detection task were developed by team DeepDR and1089

team VRT, with DeepDR performing best in both OD and Fovea detection tasks. But1090

the winning entries for OD segmentation task were from teams ZJU-BII-SGEX, VRT1091

and IITKgpKLIV. Some sample OD segmentation results from these teams are illus-1092

trated in Fig. 9.1093

Fig. 10 shows box-plots (McGill et al., 1978) illustrating the range of Euclidean1094

distances from the center of (a) optic disc and (b) fovea as well as (c) spread of Jaccard1095

index for optic disc segmentation.1096
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Table 11. “On-site” leaderboard highlighting performance of top 5 teams in OD segmentation. It details the
approach followed by respective team and external dataset used for training their model (if any). J: Jaccard
Index.

Team Name J Rank Approach Input Size
(Pixels)

External
Dataset

ZJU-BII-SGEX 0.9338 1 Mask R-CNN 1024× 1024 RIGA

VRT 0.9305 2 U-Net 640× 640
DRIVE,

DRIONS-DB
IITKgpKLIV 0.8572 3 SegNet 536× 356 Drishti-GS
SDNU 0.7892 4 Mask R-CNN 1984× 1318 -
CBER 0.8912 - Handcrafted Features 536× 356 -

(a) (b)

(c)

Fig. 9. Illustration of OD segmentation results: (a) sample image, (b) optic disc ground truth and (c) seg-
mentation outcome of top-4 teams (from left to right)

8. Discussion and Conclusion1097

In this paper, we have presented the details of IDRiD challenge with detail infor-1098

mation about the data, evaluation metrics, an organization of the challenge, competing1099

solutions and final results for all sub-tasks, i.e., lesion segmentation, disease grading1100

and detection and segmentation of other normal retinal structures. Given the signifi-1101

cant number of participating teams (37) and results obtained, we believe this challenge1102

was a success. To the organizational end, efforts have been made in creating a rele-1103

vant, stimulating and fair competition, capable of advancing the collective knowledge1104
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Fig. 10. Boxplots (a,b) showing dispersion of Euclidean distance for individual methods for OD and fovea
and (c) showing the dispersion of Jaccard index for OD segmentation task. Boxplots show quartile ranges of
the scores on the test dataset; plus sign indicate outliers (full range of data is not shown).

in the research community. This section presents a discussion, limitations, and lessons1105

learned from this challenge.1106

The first sub-challenge was conducted in an off-site mode in which 22 teams par-1107

ticipated with their lesion segmentation methods. The results of these methods on the1108

Set-B were evaluated by the organizers and amongst them, top-4 performing methods1109

per lesion segmentation task are included in this paper. The computed AUPR values1110

ranged between 0.4111 (for MAs) and 0.885 (for EXs). The best approach for lesion1111

segmentation used U-net, with data augmentation and the addition of dense block ex-1112

tract the features efficiently, boosting the results significantly. Fig. 11 highlights the1113

performance of top solution for EX that performs significantly well in presence of1114
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normal retinal structures and different challenging circumstances. From the top per-

Fig. 11. Illustration of (a-d) different challenging circumstances for segmentation of EXs, (e-f) segmentation
results (probability map) of top-performing team for EXs, (i) enlarged part of Fig. (d), and (j) depicts its
performance to be better than (k) the human annotator (The annotator tool had limitation of the markup
capability when there is an overlap of multiple types of lesion. In this case, EXs and HE).

1115

forming approaches, it is evident that solving the data imbalance problem improves1116

the model performance significantly. Since background overwhelms foreground, the1117

loss during training is more effectively back-propagated than that of foreground that1118

penalizes false negatives, boosting the sensitivity of lesion segmentation. Architectural1119

modifications to U-Net-based networks provided widely varying results for the differ-1120

ent types of lesion. For instance, the cascaded CNN approach yielded the best score1121

for MAs segmentation, as it add modules to reduce false positives. This approach dra-1122

matically impacts MA segmentation performance due the class imbalance of the task.1123

Further, Fig. 12 shows that some false positives detected by the participating solutions1124

are due to noise, predominantly for MA and HE. This indicates that there is still room1125

for improvement for lesion segmentation tasks with current fundus cameras.1126

In the on-site disease-grading task six methods were compared and contrasted.1127

When assessed using the test data set hidden from the participants, the grading ac-1128

curacy ranged between 0.4078 and 0.6311 as shown in Table 9. Notably, all teams1129

except AVASAVA used the external Kaggle DR dataset for pre-training their models.1130
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Fig. 12. Illustration of results by top performing solutions for (a-c) different images with noise causing most
common false positives in the segmentation of (d-f) MAs, and (g-i) HEs respectively.

This dataset contains a large amount of retina images annotated with the disease level,1131

in contrast, team AVASAVA pre-trained their model on ImageNet, a dataset containing1132

natural images and object annotations, effectively showing the network a much smaller1133

number of retina images at training stage, approximately 1% compared to the other1134

teams. This indicates that in the presence of a limited number of labeled data, transfer1135

learning approaches along with the good model pruning could yield comparable and1136

competitive results. However, while the models do determine the variability of the per-1137

formance, the number, type and quality of training data is a crucial factor for a fair1138

comparison of competing solutions. There is still work needed on simultaneous grad-1139

ing of DR and DME as the reported results do not yet reach the performance needed1140

for a clinically viable automatic screening. Considering the misclassified instances in1141

the confusion matrices in Table 12, along with the lesion information, it is essential1142

to give attention towards characterization of intra-retinal micro-vascular abnormalities1143

(IRMA’s) and venous beading for improvement in the overall grading results.1144

In the sub-challenge – 3, another on-site challenge, four teams were evaluated for1145

the task of OD/fovea localization and OD segmentation. For the task of OD localiza-1146

tion, the Euclidean Distance varied between 21.072 and 36.22 (lower values indicate1147

better performance). However, for Fovea localization task the same performance met-1148

ric ranged between 64.492 and 570.133. This massive variation is due to outliers, e.g.1149
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Table 12. Confusion matrix of retinal images predicted by top performing solution for DR (5 class) and
DME (3 class).

Predicted
0 1 2 3 4

A
ct

ua
l

0 30 0 2 1 1
1 3 1 1 0 0
2 3 2 22 4 1
3 2 0 1 13 3
4 1 0 1 0 11

Predicted
0 1 2

A
ct

ua
l 0 40 2 3

1 5 2 3
2 5 2 41

team ZJU-BII-SGEX had 23 outliers whose Euclidean Distance exceeded 700. In the1150

OD segmentation task, the average Jaccard similarity index score amongst the partic-1151

ipants ranged between 0.7892 and 0.9338. The top-performing solutions developed1152

by DeepDR and VRT leveraged prior clinical knowledge, such as the number of land-1153

marks and their geometric relationship to detect another retinal landmark. It is also1154

observed that data augmentation and ensemble of models yield substantial improve-1155

ments in terms of accuracy. Considering the clinical significance of OD diameter while1156

DME severity grading, we further compute the average OD diameter (in pixels) for1157

each image of test set. Fig. 13 illustrates the performance of each participating team

2 4 6 8 10 12 14 16 18 20 22 24 26

400

500

600

Image Number from Set-B of OD segmentation

A
ve

ra
ge

O
D

D
ia

m
et

er
(i

n
Pi

xe
ls

) G ZJU V RT IITkgp SDNU CBER

Fig. 13. Illustration of average OD diameter result of all 5 teams for each image of the testing dataset.[Here
the legends G, ZJU and IITkgp represent Groundtruth, ZJU-BII-SGEX and IITKgpKLIV respectively (com-
pressed to appear clearly in single column format, appears full in double column format.)]

1158

with respect to the ground truth, most methods show a similar pattern. The average di-1159
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ameter of OD ground truth is 516.61 pixels whereas, this corresponding values for for1160

the results of solutions developed by the teams ZJU-BII-SGEX, VRT, IITKgpKLIV,1161

CBER and SDNU are 514.25, 519.21, 513.48, 508.04 and 460.19 pixels respectively.1162

Team CBER submitted their after the competition and they were not included in the1163

leaderboard.1164

As expected, we found that image resolution is a vital factor for the model perfor-1165

mance, especially for the task of segmentation of small objects such as MAs or EXs.1166

In fact, the top performing approaches process the images patch-wise, which allow1167

models to have a local high resolution image view or directly with the high resolu-1168

tion image as a whole. This is essential as MAs or small EXs lesions span very few1169

pixels in some cases, and reducing the original image size would prevent an accurate1170

segmentation. Similarly, image resolution plays a very important role for the disease1171

classification task (see Table 9), the most likely reason is that the presence of the dis-1172

ease is determined by the presence of lesions in the image, including the small ones1173

that might be invisible at low resolution. This is corroborated by the confusion matri-1174

ces in Table 12 which show misclassified instances in DR (particularly, grade 1 and 2)1175

as well as DME (5 images each belonging to grade 1 and 2 are predicted as grade 0).1176

For the localization tasks, all participants were asked to identify retinal structures with1177

coordinates at full image resolution. Most of them performed these tasks by scaling the1178

image to smaller size and then converted their predictions in the original image space.1179

The results indicate that the input image resolution has limited effect on the results of1180

the localization problem. For instance, in case of OD localization, the top performing1181

team utilized two image resolutions, one (224 × 224 pixels) for approximate location1182

prediction and other (cropped ROIs 950 × 950 pixels) for refining that estimate. Sim-1183

ilarly, teams CBER and VRT resized the image to 536 × 356 pixels and 640 × 6401184

pixels respectively to get an approximate center location whereas, the team SDNU uti-1185

lized the input size of 1984 × 1318 pixels. Considering the OD average diameter of1186

approximately 516 pixels, the deflection of result for about 10 to 15 pixels by other1187

approaches, utilizing different input resolutions, as compared to the top performing so-1188

lution is very less. This is because the retinal structures to be identified, OD and fovea,1189

are very unlikely to disappear due to a reduction of image resolution and they have1190
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clear geometrical constraints.1191

This challenge provides data collected in the routine clinical practice and the ac-1192

quisition protocol was consistent for all images. The data was acquired after pupil di-1193

lation with the same camera at the same resolution, ensuring a consistent quality. This1194

dataset did not include non-gradable images and images with substantial disagreement1195

amongst the expert annotators. Even after these efforts to provide the best possible1196

data, the annotation process is still inherently subjective and the annotator judgement is1197

a limiting factor for the method performance which are mostly trained and evaluated in1198

a supervised manner. While we believe that data challenges like ours foster “methodol-1199

ogy diversity”, the majority of competing solutions used deep convolutional networks.1200

These approaches are comparably easier to implement than approaches based on fea-1201

ture engineering and do generalize well to multiple medical imaging domains dramat-1202

ically reduces the need for specialized task knowledge. Notably, amongst the com-1203

peting solutions in this challenge that utilized deep learning approach along with the1204

task-relevant subject knowledge have demonstrated superior performance. However,1205

it seems there might be some impact of challenge duration, apart from the number of1206

submissions, on the quality of developed solutions. Considering the time span from1207

data availability to deadline of results submission, about one and a half month, was1208

considerably tight for managing all tasks at the same time. For the team VRT who1209

had been working on analyzing fundus images for more than a year when participated1210

in the competition that attempting all tasks were possible, still it was challenging for1211

them to commit all the tasks. However, it would be highly challenging for a newcomer1212

to succeed in multiple tasks. In that sense, the competition period was not sufficient1213

for perfecting all tasks. However, it would be enough for a competent participant, e.g.1214

new entrants in the field as team SAIHST, to finish one task if the participant can fo-1215

cus on the competition completely. Also, in this challenge, the results were evaluated1216

all at once after the result submission deadline. A continuous on-line assessment of1217

participating solutions would have facilitated the submission procedure by providing1218

real-time feedback to the team’s performance. This would have enabled a maximum1219

number of submissions during the challenge period, probably boosting the final count1220

of submissions. However, this would have introduced a risk of overfitting the test data1221
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by continuous submissions based on the system’s performance on the test set.1222

This challenge led to the development of a variety of new robust solutions for le-1223

sion segmentation, detection, and segmentation of retinal landmarks and disease sever-1224

ity grading. Despite the complexity of the tasks, less than one-and-a-half month time1225

for development, it received a very positive response, and the top performing solutions1226

were able to achieve results close to the human annotators. Still, there is room for1227

improvement, especially in the lesion segmentation and disease-grading tasks. Though1228

the competition is now completed, the dataset has been made publicly available for re-1229

search purposes to attract newcomers to the problem and to encourage the development1230

of novel solutions to meet current and future clinical standards.1231
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Table A.1. Summary of technical specifications and hardware used in different databases

Name
of Database

Number
of Images

Technical Details

Image Size(s) FOV Camera NMY Format

ARIA 212 768×576 50 Zeiss FF450+ X TIFF

DIARETDB 130+89 1500×1152 50 Zeiss FF450+ X PNG

DRIVE 40 768×584 45 Canon CR5 X JPEG

E-Ophtha
47EX+35H

148MA+233H
1440×960 -

2048×1360 (4) 45
Canon CR−DGI &
Topcon TRC −NW6

X JPEG

HEIMED 169 2196×1958 45 Zeiss Visucam PRO X JPEG

Kaggle 88,702 433×289 -
3888×2592 Varying

Any camera
(EyePACS Platform) - TIFF

MESSIDOR
800 MY+

400 NMY+
1756

1440×960,
2240×1488,
2304×1536

45
3CCD/
Topcon

TRC NW6
Both TIFF

ROC 100
768×576,

1058×1061,
1389×1383

45
Topcon NW100

& NW200
Canon CR5− 45NM

X JPEG

STARE 397 605×700 35 Topcon TRV − 50 × PPM

IDRiD 516 (81 with LA) 4288×2848 50 Kowa V X − 10α X JPG

EX - Hard Exudate, MA - Microaneurysms, H - Healthy, MY - Mydriatic, NMY - Non-Mydriatic,
FOV - Field of View, LA - Lesion Annotation.

Table A.2. Comparison of different databases with the IDRiD database

Name
of

Database

Normal Fundus
Structures Abnormalities Multiple

Experts Disease
Grading

Diabetic
Macular
EdemaOD VS FA MA HE EX SE Yes/No #

ARIA X X X × × × × X 2 × ×
DIARETDB1 × × × X X X X X 4 × ×
DRIVE × X × × × × × X 3 × ×
E-Optha × × × X × X × X 2 × ×
HEIMED × × × × × X × 1 × X

Kaggle × × × × × × × X 2 X ×
MESSIDOR × × × × × × × × 1 X X

ROC × × × X × × × X 4 × ×
STARE X X × × × × × X 2 × ×
IDRiD X × X X X X X X 2 X X

OD - Optic Disc, MC - Macula, VS - Vessels, FA - Fovea, MA - Microaneurysms, HE - Hemorrhage,
EX - Hard Exudate, SE - Soft Exudate, # - Number of Experts
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Garcı́a, G., Gallardo, J., Mauricio, A., López, J., Del Carpio, C., 2017. Detection of1399

diabetic retinopathy based on a convolutional neural network using retinal fundus1400

images. In: International Conference on Artificial Neural Networks. Springer, pp.1401

635–642.1402
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Highlights 

 

• Outlines the setup of challenge on “Diabetic Retinopathy – Segmentation and Grading” held at ISBI-

2018. 

• Describes the dataset used, evaluation criteria and results of top performing participating solutions. 

• Presents the details of various handcrafted feature and deep learning based participating approaches. 

 Discusses the lessons learnt from the analysis of the methods submitted to this challenge. 
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Response to Reviewers Comments 

Manuscript Reference: #MEDIA-D-19-00049 

========================================== 

Manuscript title: IDRiD: Diabetic Retinopathy – Segmentation and Grading Challenge 

========================================== 

We would like to thank all the reviewers and editor-in-chief for their careful reading of the manuscript 

and thoughtful comments which resulted in improving overall quality of the manuscript. The paper has 

now been duly revised in accordance with these comments. A point by point response to the reviewers 

follows. 

Comments to the Author   

-------------------------------------------------------------------------------------------------------------------------------------- 

Reviewer #1:  

----------------- 

Comments: 

Reviewer #1: 

Manuscript Rating Question(s):  Scale   [1-5] 

The paper is of enough importance to warrant publication in MedIA  4 

The paper is technically sound  2 

The paper describes original work  4 

The work is of interest to the MedIA audience  4 

The paper contains material which might well be omitted  5 

The paper makes adequate references?  3 

The abstract is an adequate digest of the work reported  3 

The introduction gives the background of the work  2 

The summary and conclusions adequate  2 

The authors explain clearly what they have done  2 

The authors explain clearly why what they did was worth doing  2 

The order of presentation is satisfactory  3 

The English is satisfactory  1 

If there are color figures included, are they helpful/necessary?  3 

If there is a video, is it helpful/necessary?  N/A 

Comments 

The paper deals with the important topic of Diabetic Retinopathy (DR) early diagnosis. It presents the 

results of an international challenge hosted within the IEEE International Symposium on Biomedical 

Imaging in 2018. This challenge was organized in three subchallenges, each with a significant relevance: 

detection of DR lesions (microaneurysms, hemorrhages, hard exudates and cotton wool spots), location 

of retinal landmarks (fovea and optic disc, OD) and DR and diabetic macular edema (DME) severity 

grading. The methods proposed by the different teams were tested on the publicly available Indian 

*Response to Reviewers



Diabetic Retinopathy Image Dataset (IDRiD). The best performing approaches for these three 

subchallenges and their results are presented in the paper. 

The paper shows an interesting challenge in the context of DR diagnosis and grading. However, this 

Reviewer has some major issues regarding the manuscript. 

1. Although the idea of the paper is relevant, the paper itself is very difficult to understand. First of 

all, authors need to thoroughly review the English and the style of the paper. I strongly 

recommend that authors have their paper reviewed by a native speaker. 

2. Authors need to carefully review the style of the paper, especially if they want it to be published 

in a high impact journal like Medical Image Analysis. For example, they should use past simple 

whenever this is possible. Acronyms should be defined the first time they are used in the Abstract 

and manuscript text, and then they should always use the acronym. The style is not homogeneous 

throughout the text (this is especially notable in Appendix B, which I mention below). There is a 

general lack of references throughout the text, specially before equations. In some places, units 

that should accompany numbers are missing (for example, always use "pixels" or the adequate 

unit when referring to image sizes and "images" when referring to the number of images). 

Punctuation and the use of the article "the" should also be revised. 
 

Response: The paper has been carefully reviewed concerning these comments and revised 

thoroughly for the same. 

 

3. In the Introduction section, authors need to better explain the challenge and the advantages of 

this challenge over previous existing ones. In my view, Table 1 should not be included here and 

would be better in Section 4. 

Response:  We have incorporated this comment in the introduction section as per the following 

flow : Initially, mentioned the existing datasets → previous challenges in DR → cited the reviews 

that describe work done in the development of DR screening systems in the last two decades → 

Limitations of existing works → Finally, introduction of IDRiD dataset, the challenge and its 

advantage over existing ones.  

➢ The following text (in blue) is included in the manuscript to address this comment: 

“This necessity has led several research groups to develop and share retinal image datasets, 

namely Messidor (Decenciere et al., 2014), Kaggle (Cuadros and Bresnick, 2009), ROC (Niemeijer 

et al., 2010), E-Ophtha (Decenciere et al., 2013), DiaretDB (Kauppi et al., 2012), STARE (Hoover, 

1975), ARIA (Farnell et al., 2008) and HEI-MED (Giancardo et al., 2012). Further, two challenges 

were organized in the context of DR, namely Retinopathy Online Challenge (ROC)2 and Kaggle DR 

detection challenge3. ROC was organized with the goal of detecting MAs. Whereas, the Kaggle 

challenge aimed to get solution for determining the severity level of DR. These challenges enabled 

advances in the field by promoting the participation of scientific research community from all over 

the globe on a competitive at the same time constructive setting for scientific advancement. 

Previous efforts have made good progress using image classification, pattern recognition, and 

machine learning. The progress through last two decades has been systematically reviewed by 

several research groups (Patton et al., 2006; Winder et al., 2009; Abramoff et al., 2010; Mookiah 

et al., 2013a; Jordan et al., 2017; Nørgaard and Grauslund, 2018).  



Although lots of efforts have been made in the field towards automating the DR screening 

process, lesion detection is still a challenging task due to the following aspects: (a) Complex 

structures of the lesions (shape, size, intensity), (b) detection of lesions in tessellated images and 

in presence of noise (bright border reflections, impulsive noise, optical reflections), (c) high inter-

class similarity (i.e. between MA-HE and EX-SE), (d) appearance of not so uncommon non-lesion 

structures (nerve fiber reflections, vessel reflections, drusens) and (e) difference in images 

obtained by different imaging devices makes it difficult to build a flexible and robust model for 

lesion segmentation. To the best of our knowledge, prior to the challenge, there were no reports 

on the development of a single framework to segment all lesions (MA, HE, SE, and EX) 

simultaneously. Also, there was a lack of common platform to test the robustness of approaches 

that determine the normal and abnormal retinal structures on the same set of images. 

Furthermore, there was limited availability of the pixel level annotations and the simultaneous 

gradings for DR and DME (see Tables in Appendix A). 

In order to address these issues, we introduced a new dataset called Indian Diabetic Retinopathy 

Image Dataset (IDRiD) (Porwal et al., 2018a). Further, it was used as a base dataset for the 

organization of grand challenge on “Diabetic Retinopathy: Segmentation and Grading” in 

conjunction with ISBI - 2018. The IDRiD dataset provides expert markups of typical DR lesions and 

normal retinal structures. It also provides disease severity level of DR, and DME for each image in 

the database. This challenge brought together the computer vision and biomedical researchers 

with an ultimate aim to further stimulate and promote research, as well as to provide a unique 

platform for the development of a practical software tool that will support efficient and accurate 

measurement and analysis of retinal images that could be useful in DR management. Initially, a 

training dataset along with the ground truth was provided to participants for the development of 

their algorithms. Later, the results were judged on the performance of these algorithms on test 

dataset. Success was measured by how closely the algorithmic outcome matched the ground 

truth. There were three principal sub-challenges: lesion segmentation, disease severity grading, 

and localization and segmentation of retinal landmarks. These multiple tasks in IDRiD challenge 

allow to test the generalizability of the algorithms, and this is what makes it different from the 

existing ones. Further, this challenge seeks an automated solution to predict the severity of DR 

and DME simultaneously. It was projected as an individual task to increase the difficulty level of 

this challenge as compared to the Kaggle DR challenge i.e. for a given image, the predicted severity 

for both DR and DME should be correct to count for scoring the task.” (page no. 4 – 6 (line no 45 

– 95)) 

➢ Further, we have moved Table 1 in section 4 (Now it appears as Table 5). This change could 

be observed at page no. 20. 

4. Figure 1 is also in the reference Porwal et al. 2018b. Authors should make sure there is not a 

copyright problem. 
 

Response: We have replaced Figure.1 with another image from the IDRiD dataset. This change 

could be observed at page no. 3. 

 

 

 



5. In my opinion, the "Previous work" section should only mention the information that is relevant 

for the paper. In this sense, I think it could be combined with the "Introduction" section. In any 

case, authors should mention previous work related to the three sub-challenges (whether it is a 

deep learning-based approach or not), focusing on their advantages and disadvantages and how 

the proposed challenge can address some of the difficulties that arised in previous studies. Only 

the information relevant in this context should be mentioned in order to maintain focus. 
 

Response: We have removed some theory detailing the retinal image analysis or ophthalmology 

(in general) and kept only the text specific to diabetic retinopathy. Even though we tried to 

compress the theory as much as it could be, however, considering the huge work done in the field 

(considering – three sub-challenges spread into eight subtasks of the challenge) it was not possible 

to mention previous work and combine it with the introduction section. Hence, we have 

mentioned the previous work related to the three sub-challenges in the separate section.  

 

➢ The section related to previous work is titled “Review of Retinal Image Analysis for the 

detection of DR”. The following text (in blue) is included in the manuscript to address this 

comment. The underlined text represents the content that partly addresses this comment:  

 

“Automatic image processing has proven to be a promising choice for the analysis of 

retinal fundus images and its application to future eye care. The introduction of automated 

techniques in DR screening programs and the interesting outcomes achieved by the rapidly 

growing deep learning technology are examples of success stories and potential future 

achievements. Particularly, after researcher’s (Krizhevsky et al., 2012) deep learning based model 

showed significant improvements over the state of the art in the ImageNet challenge, there was 

a surge of deep learning based models in medical image analysis. Hence, we decided to present 

the most recent relevant works with a classification based on whether or not they used deep 

learning in the context of DR.  

 

2.1. Non-deep learning methods 

The general framework for retinal image analysis through traditional handcrafted 

features based approaches involve several stages, typically: a preprocessing stage for contrast 

enhancement or non-uniformity equalization, image segmentation, feature extraction, and 

classification. The feature extraction strategy varies according to the objective involved i.e. retinal 

lesion detection, disease screening or landmark localization. In 2006, one research group (Patton 

et al., 2006) outlined the principles upon which retinal image analysis is based and discussed the 

initial techniques used to detect the retinal landmarks and lesions associated with DR. Later, one 

another group (Winder et al., 2009) reported an analysis of the work in the automated analysis of 

DR during 1998–2008. They categorized the literature into a series of operations or steps as 

preprocessing, vasculature segmentation, localization, and segmentation of the optic disk (OD), 

localization of the macula and fovea, detection and segmentation of lesions. Some of the review 

articles (Abramoff et al., 2010; Jordan et al., 2017) provide a brief introduction to quantitative 

methods for the analysis of fundus images with a focus on identification of retinal lesions and 

automated techniques for large scale screening for retinal diseases. Majority of attempts in the 

literature are towards exclusive detection and/or segmentation of one type of lesions (either 

MAs, HEs, EXs or SEs) from an image. Some of the common approaches involved for lesion 



segmentation are mathematical morphology (Joshi and Karule, 2019; Hatanaka et al., 2008; Zhang 

et al., 2014), region growing (Fleming et al., 2006; Li and Chutatape, 2004), and supervised (Wu 

et al., 2017; Zhou et al., 2017; Garcia et al., 2009; Tang et al., 2013). Apart from these approaches, 

in case of MAs, most initial studies shown the effectiveness of template matching (Quellec et al., 

2008), entropy thresholding (Das et al., 2015), radon space (Giancardo et al., 2011), sparse 

representation (Zhang et al., 2012; Javidi et al., 2017), hessian based region descriptors Adal et al. 

(2014), dictionary learning (Rocha et al., 2012). On the other hand, for exclusive segmentation of 

HEs, super-pixel based features (Tang et al., 2013; Romero-Oraa et al., 2019) were found to be 

effective. These red lesions (both MAs and HEs) are also frequently detected together using 

dynamic shape features (Seoud et al., 2016), filter response and multiple kernel learning 

(Srivastava et al., 2017) and hybrid feature extraction approach (Niemeijer et al., 2005). Similarly, 

for EXs researchers relied on approaches like clustering (Osareh et al., 2009), model-based 

(Sanchez et al., 2009; Harangi and Hajdu, 2014), ant colony optimization (ACO) (Pereira et al., 

2015) and contextual information (Sanchez et al., 2012). Whereas, for SEs researchers utilized 

Scale Invariant Feature Transform (SIFT) (Naqvi et al., 2018), adaptive thresholding and ACO 

(Sreng et al., 2019). Further, several approaches were devised for multiple lesion detection such 

as multiscale amplitude-modulation-frequency-modulation (Agurto et al., 2010), machine 

learning (Roychowdhury et al., 2014), a combination of Hessian multiscale analysis, variational 

segmentation and texture features (Figueiredo et al., 2015). These techniques are shown to 

usually involve interdependence on the detection of anatomical structures (i.e. OD and fovea) 

with the lesion detection, and that in turn determines the automated DR screening outcome. 

 

Localization and segmentation of OD and fovea facilitate the detection of retinal lesions 

as well as in the assessment (based on the geometric location of these lesions) of the severity and 

monitoring the progression of DR and DME. Hence, several approaches have been proposed for 

localization of OD, most of them utilized the OD properties like intensity, shape, color, texture, 

etc. and many others showed the effectiveness of mathematical morphology (Morales et al., 

2013; Marin et al., 2015), template matching (Giachetti et al., 2014), deformable models (Yu et 

al., 2012; Wu et al., 2016) and intensity profile analysis (Kamble et al., 2017; Uribe-Valencia and 

Martınez- Carballido, 2019). Further, the approaches utilized for OD segmentation are based on 

level set (Yu et al., 2012), thresholding (Marin et al., 2015), active contour (Mary et al., 2015) and 

shape modeling (Cheng et al., 2015), clustering (Thakur and Juneja, 2017), and hybrid (Bai et al., 

2014) approaches. Similarly, the fovea is detected mostly using the geometric relationship with 

OD and vessels through morphological (Welfer et al., 2011), thresholding (Gegundez-Arias et al., 

2013), template (Kao et al., 2014) and intensity profile analysis (Kamble et al., 2017) techniques. 

Poor performance on the detection of normal anatomical structures could adversely affect lesion 

detection and screening accuracy. For instance, consider the mathematical morphology based 

techniques presented in 2002 (Walter et al., 2002), 2008 (Sopharak et al., 2008) and 2014 (Zhang 

et al., 2014). These works demonstrate how the morphological processing-based approaches 

evolved by including multiple steps for the final objective of exudate detection. In the initial 

efforts, Walter et al. devised a technique for OD and EXs segmentation, later removed the OD to 

obtain the exudate candidates. Similarly, Sopharak et al. achieved the same objective with the 

detection, and removal of OD and vessels. Recently, the approach presented by Zhang et al. 

achieved much better result, but it involved (a) spatial calibration, (b) detection of dark and bright 



anatomical structures such as vessels and OD respectively, also (c) bright border regions detection 

before actual extraction of candidates. Also, there are other techniques based on textural 

(Morales et al., 2017; Porwal et al., 2018c) and mid-level (Pires et al., 2017) features of retinal 

images that forgo the lesion segmentation step for DR screening. However, most of these 

techniques depend on the intermediate steps mentioned above. In the approach based on 

machine learning (Roychowdhury et al., 2014) detected bright and dark lesions as a first step and 

later performed the hierarchical lesion classification to generate a severity grade for DR. Similarly, 

Antal and Hajdu (2014) proposed a strategy involving image-level quality assessment, pre-

screening followed by lesion and anatomical features extraction to finally decide about the 

presence of DR using ensemble of classifiers. Further, for identification of different stages of DR 

features from morphological region properties (Yun et al., 2008), texture parameters (Acharya et 

al., 2012; Mookiah et al., 2013b), non-linear features of the higher-order spectra Acharya et al. 

(2008), hybrid Dhara et al. (2015) and information fusion (Niemeijer et al., 2009) approaches were 

found useful. As the DME is graded based on the location of the EXs from macula, many 

researchers (Giancardo et al., 2012; Medhi and Dandapat, 2014; Perdomo et al., 2016; Marin et 

al., 2018) proposed EXs based features to determine the severity of the DME. While several others 

(Deepak and Sivaswamy, 2012; Mookiah et al., 2015; Acharya et al., 2017) have proposed various 

feature extraction techniques to grade DME stages without segmenting EXs. Mainly for the 

approaches in this section, the features are based on the color, brightness, size, shape, edge 

strength, texture, and contextual information of pixel clusters in spatial and/or transform domain. 

Whereas the classification is achieved through the classifiers such as K Nearest Neighbors (KNN), 

Naive Bayes, Support Vector Machine (SVM), Artificial Neural Network (ANN), Decision Trees, etc.  

 

These lesion detection or screening techniques are shown to usually involve 

interdependence with the other landmark detection. However, there is a lack of single platform 

to test their performance for each objective. For such handcrafted features based approaches this 

challenge provides a unique platform to compare and contrast the algorithm's performance for 

the detection of anatomical structures, lesions as well as screening of DR and DME. 

 

2.2. Deep learning methods 

Deep Learning is a general term to define multi-layered neural networks able to 

concurrently learn a low-level data representation and higher-level parameters directly from the 

data. This representation learning capability drastically reduces the need for engineering ad-hoc 

features, however, the full end-to-end training of deep learning based approaches typically 

require a significant number of samples. Its rapid development in recent times is mostly due to a 

massive influx of data, advances in computing power and developments in learning algorithms 

that enabled the construction of multilayer (more than two) networks (Hinton, 2018; Voulodimos 

et al., 2018). This progress has induced interests in the creation of analytical, data-driven models 

based on machine learning in health informatics (Ching et al., 2018; Ravı et al., 2017). Hence, it is 

emerging as an effective tool for machine learning, promising to reshape the future of automated 

medical image analysis (Greenspan et al., 2016; Litjens et al., 2017; Suzuki, 2017; Shen et al., 2017; 

Kim et al., 2018; Ker et al., 2018). Among various methodological variants of deep learning, 

Convolutional Neural Networks (CNNs or ConvNets) are the most popular within the field of 

medical image analysis (Hoo-Chang et al., 2016; Carin and Pencina, 2018). Several configurations 



and variants of CNN’s are available in the literature, some of the most popular are AlexNet 

(Krizhevsky et al., 2012), VGG (Simonyan and Zisserman, 2014), GoogLeNet (Szegedy et al., 2015) 

and ResNet (He et al., 2016). 

Deep learning has also been widely utilized in the retinal image analysis because of its 

unique characteristic of preserving local image relations. Majority of the approaches in the 

literature employ deep learning to retinal images by utilizing “off-the-shelf CNN” features as 

complementary information channels to other handcrafted features or local saliency maps for 

detection of abnormalities associated with DR (Chudzik et al., 2018; Orlando et al., 2018; Dai et 

al., 2018), segmentation of OD (Zilly et al., 2017; Fu et al., 2018), and the detection of DR (Rangrej 

and Sivaswamy, 2017). The authors (Fu et al., 2016) employ fully connected conditional random 

fields along with CNN to integrate the discriminative vessel probability map and long-range 

interactions between pixels to obtain final binary vasculature. Whereas some approaches 

initialized the parameters with those of pre-trained models (on non-medical images), then “fine-

tuned” (Tajbakhsh et al., 2016) the network parameters for DR screening (Gulshan et al., 2016; 

Carson Lam et al., 2018). In another approach researchers used two-dimensional (2D) image 

patches as an input instead the full-sized images for lesion detection (Tan et al., 2017b; van 

Grinsven et al., 2016; Lam et al., 2018; Chudzik et al., 2018; Khojasteh et al., 2018), and OD and 

fovea detection (Tan et al., 2017a). In (Garcia et al., 2017) trained the “CNN from scratch” and 

compared it with the finetuning results based on the other two existing architectures. Recently, 

Shah et al. (2018) demonstrated that the ensemble training of auto-encoders stimulates diversity 

in learning dictionary of visual kernels for detection of abnormalities. Whereas Giancardo et al. 

(2017) proposed a novel way to compute the vasculature embedding that leverages the internal 

representation of a new encoder-enhanced CNN, demonstrating improvement in the DR 

classification and retrieval task. 

 

There is a significant development in the automated identification of DR using CNN 

models in recent time. A customized CNN (Gargeya and Leng, 2017) proposed for DR screening 

and trained using 75,137 obtained from EyePACS system (Cuadros and Bresnick, 2009), where an 

additional classifier was further employed on the CNN-derived features to determine if the image 

is with or without retinopathy. Similarly, Google Inc. (Gulshan et al., 2016) developed a network 

optimized (fine tuning) for image classification, in which a CNN is trained by utilizing a 

retrospective development database consisting of 128,175 images with the labels. There are some 

hybrid algorithms, in which multiple, semi-dependent CNN’s are trained based on the appearance 

of retinal lesions (Abramoff et al., 2016; Quellec et al., 2016). A step further, the researchers 

(Quellec et al., 2017) demonstrated an ability of lesion segmentation based on the CNN trained 

for image level classification. However, Lynch et al. (2017) demonstrated that the hybrid 

algorithms based on multiple semi-dependent CNNs might offer a more robust option for DR 

referral screening, stressing the importance of lesion segmentation. For further details, readers 

are recommended to follow recent reviews for detection of exudates (Fraz et al., 2018), red 

lesions (Biyani and Patre, 2018) and a systematic review with a focus on the computer-aided 

diagnosis of DR (Mookiah et al., 2013a; Nørgaard and Grauslund, 2018).  

This current progress in artificial intelligence provides an opportunity to the researchers 

for enhancing the performance of the DR referral system to more robust diagnosis system that 

can provide the quantitative information for multiple diseases matching the international 



standards of clinical relevance. Thus, this challenging design offers an avenue to gauge precise DR 

severity status and opportunity to deliver accurate measures for lesions, that could even help in 

the follow-up studies to observe changes in the retinal atlas.” (page no. 7 – 12 (line no 106 – 282)) 

 

➢ This comment has also been partly taken care while incorporating with the comment no 3 by 

mentioning the limitation of existing works and state how the proposed challenge can address 

some of the difficulties as follows:  

“Although lots of efforts have been made in the field towards automating the DR screening 

process, lesion detection is still a challenging task due to the following aspects: (a) Complex 

structures of the lesions (shape, size, intensity), (b) detection of lesions in tessellated images and 

in presence of noise (bright border reflections, impulsive noise, optical reflections), (c) high inter-

class similarity (i.e. between MA-HE and EX-SE), (d) appearance of not so uncommon non-lesion 

structures (nerve fiber reflections, vessel reflections, drusen) and (e) difference in images 

obtained by different imaging devices makes it difficult to build a flexible and robust model for 

lesion segmentation. To the best of our knowledge, prior to the challenge, there were no reports 

on the development of a single framework to segment all lesions (MA, HE, SE, and EX) 

simultaneously. Also, there was a lack of common platform to test the robustness of approaches 

that determine the normal and abnormal retinal structures on the same set of images. 

Furthermore, there was limited availability of the pixel level annotations and the simultaneous 

gradings for DR and DME (see Tables in Appendix A). 

In order to address these issues, we introduced a new dataset called Indian Diabetic Retinopathy 

Image Dataset (IDRiD) (Porwal et al., 2018a). Further, it was used as a base dataset for the 

organization of the grand challenge on “Diabetic Retinopathy: Segmentation and Grading” in 

conjunction with ISBI - 2018. The IDRiD dataset provides expert markups of typical DR lesions and 

normal retinal structures. It also provides disease severity level of DR, and DME for each image in 

the database. This challenge brought together the computer vision and biomedical researchers 

with an ultimate aim to further stimulate and promote research, as well as to provide a unique 

platform for the development of a practical software tool that will support efficient and accurate 

measurement and analysis of retinal images that could be useful in DR management. Initially, a 

training dataset along with the ground truth was provided to participants for the development of 

their algorithms. Later, the results were judged on the performance of these algorithms on the 

test dataset. Success was measured by how closely the algorithmic outcome matched the ground 

truth. There were three principal sub-challenges: lesion segmentation, disease severity grading, 

and localization and segmentation of retinal landmarks. These multiple tasks in IDRiD challenge 

allow to test the generalizability of the algorithms, and this is what makes it different from the 

existing ones. Further, this challenge seeks an automated solution to predict the severity of DR 

and DME simultaneously. It was projected as an individual task to increase the difficulty level of 

this challenge as compared to the Kaggle DR challenge i.e. for a given image, the predicted severity 

for both DR and DME should be correct to count for scoring the task.” (Page no. 5-6 (line no: 60 – 

95)) 

 

 



6. Although IDRiD database has some advantages over previously published public databases, there 

is no need to deeply describe those databases in order to highlight the benefits of IDRiD. In my 

opinion, Appendix A should be removed and only the relevant references included in the paper, 

embedded in the manuscript text. In this sense, Tables 2 and 3 could be much simplified, and 

maybe authors could refer readers to Porwal et al. 2018a for some of the details. Please note that 

the aim of this study was to use only the IDRiD database. 
 

Response: We have removed Appendix A detailing previous datasets and relevant references are 

included in the introduction section of this paper. Also, we moved Table 2 and 3 to the appendix 

(Now appear as Table A1 and A2 as shown below) so the interested readers could refer them for 

more details. This change could be observed on page no. 59. 

 

 
  



 
 

7. When describing the IDRiD database, please include the image capture protocol (how many 

images per eye were captured, where were they centerd…). Please briefly describe the 

"International Clinical Diabetic Retinopathy Scale" used for DR and DME grading (and provide a 

relevant reference). It is also unclear how the OD boundary was delineated (authors only mention 

that OD and fovea centers were marked, but a subtask regarding the complete OD segmentation 

is also included in the challenge). Please explain how the image set was divided into training and 

test subsets (randomly?) and how the percentages of the images that should be in each subset 

were chosen. Does the database include images without any lesion? 
 

Response: As per the recommendations, we have included the details regarding image capture 

protocol, severity grading for DR and DME (Table 1 and 2 on page no. 14), and division of training 

and test set (Table no. 3 and 4 on page no. 16-17). Further, the information about OD delineation 

is presented in subsection – ‘Pixel level annotations’ and the same is illustrated in Figure 2(f) (page 

no. 13). Further, the explanation regarding the data division and percentages is included on page 

no. 15-17 (line no. 338-351). The database includes 168 images without lesion as shown in Table 

4 under “Grade – 0” (set A + set B).  

➢ The following text (in blue) is included in the manuscript to address this comment: 

 

“The fundus photographs of people affected by diabetes were captured with focus on macula 

using Kowa V X−10α fundus camera. Prior to capturing of images, pupils of all subjects were 

dilated with one drop of tropicamide at 0.5% concentration. The captured images have 50◦ field 

of view and resolution of 4288 × 2848 pixels stored in jpg format.” (page no. 12-13 (line no. 287 – 

291)) 

 



“The diabetic retinal images were classified into separate groups according to the International 

Clinical Diabetic Retinopathy Scale (Wu et al., 2013) as shown in Table 1. The DME severity was 

decided based on occurrences of EXs near to macula center region (Decenciere et al., 2014) as 

shown in Table 2.” (page no. 14 (line no. 307 – 311)) 

 

“1. Pixel Level Annotations. This type of annotations are useful in the techniques to locate 

individual lesions within an image and to segment out regions of interest from the background. 

Eighty-one color fundus photographs with signs of DR are annotated at pixel level for developing 

ground truth of MAs, SEs, EXs and HEs. The binary masks (as shown in Fig. 2) for each type of 

lesion are provided in tif file format. Additionally, OD was also annotated at pixel level and binary 

masks for all 81 images are provided in the same format. “(page no. 13 (line no. 299-303)) 

 

“The dataset along with the groundtruths were separated into training set and test set. For the 

images with pixel level annotations the data was separated as 2/3 for training (Set-A) and 1/3 for 

testing (Set-B) (See Table 3). Similarly, data for the OD segmentation (part of sub-challenge – 3) 

was divided in same ratio into Set-A (54 images) and Set-B (27 images). The percentage of images 

that should be in each subset for lesion and OD segmentation tasks (sub-challenge – 1 and part 

of sub-challenge – 3) were chosen based on the research outcome (Dobbin and Simon, 2011) 

which demonstrated that splitting data into 2/3 (training): 1/3 (testing) is an optimal choice for 

the sample sizes from 50 to 200. For the other sub-challenges (disease grading, and OD and fovea 

center locations), data was separated in 80 (training set: Set-A): 20 (testing set: Set-B) ratio. The 

percentage of data split in this case is done to provide an adequate amount of data divided into 

different severity levels. Note that the dataset was stratified according the DR and DME grades 

before splitting. A breakdown of the details of the dataset is shown in Table 4.” (page no. 15-17 

(line no. 338 – 351)) 

 

8. In section 4, "Challenge organization", please make sure that the different stages described match 

Figure 3. 

Response: We have modified the challenge organization section and made sure that the different 

stages described match Figure 3 (page no. 15-19). 

 

9. I still have some doubts regarding the challenge organization. First of all, authors claim that 

participants could submit "up to three methods"; but I don´t know if that means that they could 

only, for example, detect three of the four types of lesions in subchallenge 1 (lesion 

segmentation). I believe that is not the case because team iFLYTEK detect the four lesion types, 

but please clarify this issue. Regarding subchallenges 1 and 3, teams could decide to participate 

only in some of the Tasks, is that correct? Why was that not allowed in subchallenge 2 (i.e. to 

detect only DR or DME severity)? 

Response: We have incorporated this comment in the manuscript while detailing the challenge 

organization.  Here we initially introduced three challenges divided into eight tasks and then 

mentioned that participants could submit up to three methods to be evaluated per team for each 

task. 

 



➢ The following text (in blue) is included in the manuscript to address this comment: 

“Participants could submit up to three methods to be evaluated per team for each task, provided 

that there was a significant difference between the techniques, beyond a simple change or 

alteration of parameters.” (page no. 15-17 (line no. 387 – 389)) 

➢ In case of sub-challenge-2, the choice to detect DR and DME simultaneously is explained in 

section 1 on page no. 6 (line no. 92-96) and its reason is explained in section 6 while detailing 

the performance evaluation measures for subchallenge-2 on page no. 43 (line no. 1007-1013). 

“Further, this challenge seeks an automated solution to predict the severity of DR and DME 

simultaneously. It was projected as an individual task to increase the difficulty level of this 

challenge as compared to the Kaggle DR challenge i.e. for a given image, the predicted severity 

for both DR and DME should be correct to count for scoring the task.” (page no. 6 (line no. 92-96)) 

“This was done since, even with presence of some exudation that may be categorized as mild DR, 

its location on the retina is also important governing factor (to check DME) to decide overall grade 

of disease. For instance, EXs presence in the macular region can affect vision of the patient to 

greater extent and hence, it should be dealt with priority for referral (that may otherwise be 

missed or cause delay in treatment with the present convention of only DR grading) in the 

automated screening systems.” (page no. 43 (line no. 1016-1022)) 

10. In sub-challenge 1, since the evaluation on the test set was done off-line. How did organizers 

ensure that results were measured in the same way by all teams? 

Response: Participants were asked to submit all output images/csv files along with the short 

paper describing the technical details and then all results were evaluated by the organizers. We 

have addressed this comment in section 4. 

➢ The following text (in blue) is included in the manuscript to address this comment: 

“For Tasks 1 to 4 (i.e. subchallenge – 1) and task-8, the teams were asked to submit output 

probability maps as grayscale images and for all other tasks it was accepted in CSV format. The 

submitted results were evaluated by the challenge organizers and their performance was 

displayed on leaderboard of the challenge website.” (page no. 18 (line no 389-393)) 

11.  In sub-challenge 3, task 8. What was the ground truth for teams?  

Response: To address this comment we have included text detailing it in the section 4.  Binary 

images (as shown in Fig. 2(f)) in tif forrmat was ground truth for the teams. 

➢ The following text (in blue) is included in the manuscript to address this comment: 

 “Additionally, OD was also annotated at pixel level and binary masks for all 81 images are 

provided in the same format.” (page no. 16 (line no. 301-303))  

“For the images with pixel level annotations the data was separated as two third for training (Set-

A) and one third for testing (Set-B) (See Table 3). Similarly, data for the OD segmentation (part of 

sub-challenge – 3) was divided in same ratio into Set-A (54 images) and Set-B (27 images).” (page 

no. 15-16 (line no. 339-341)) 



12. Authors need to better organize the information regarding the participating methods and to 

better explain the different approaches. In the text, authors should give only the relevant details 

regarding the methods proposed by the different teams. However, the explanations need to be 

sufficient for a non-expert reader to follow the ideas of the paper (for example, all the relevant 

terminology should be described). For readers who would like a more comprehensive description 

of one particular method, relevant references should be provided. This way, the paper is 

understandable and, at the same time, the focus on the topic of the paper is maintained. 

However, the explanations need to be sufficient for a non-expert reader to follow the ideas of the 

paper (for example, all the relevant terminology should be described). 

13. In this sense, I believe Appendix B is not adequate in this paper. In Appendix B the methods are 

not thoroughly described (it would be implausible), so readers do not really get a comprehensive 

view of the methods and there are a lot of terms and concepts that are not understandable for a 

reader not familiarized with the method. Thus, it would be much better if readers could refer to 

a relevant reference if they are interested in a particular method. Besides, the description of the 

methods in Appendix B is quite variable. It appears as if each team had written something on their 

method separately and that was just copy-pasted in Appendix B, without giving it any kind of 

uniformity (references, acronyms, …).  Thus, in my view, both Appendix A and Appendix B should 

be removed and only the relevant information on these Appendices included within the 

manuscript text. Please note that this makes 24 pages of the manuscript that, in my opinion, 

distract the attention of readers from the relevant topic of the manuscript: the DR diagnosis 

challenge. 

Response (for comments 12 and 13): We have initially described the required theory to give a 

comprehensive view of methods and built upon that theory to summarize the participating 

solutions. We have removed both Appendix A and Appendix B. Further, for the readers who are 

interested to know the complete details of a particular solution, the link to full papers of all 

participating teams is provided on the challenge website at  https://idrid.grand-

challenge.org/Challenge_Proceedings/ . 

➢ The following text (in blue) is added in the manuscript to describe the theory required to give 

a comprehensive view of methods: 

“Majority of participating teams proposed a CNN based approach for solving tasks in this 

challenge. This section details the basic terminologies and abbreviations related to CNN and its 

variants utilized by the participating teams. Further it summaries the solutions and related 

technical specifications. For the detailed description of a particular approach please refer to the 

proceedings of the ISBI Grand Challenge Workshop at https://idrid.grand-

challenge.org/Challenge_Proceedings/. 

For the input image, CNN transforms the raw image pixels on one end to generate a single 

differentiable score function at the other. It exploits three mechanisms — sparse connections 

(a.k.a. local receptive field), weight sharing and invariant (or equivariant) representation — that 

makes it computationally efficient (Shen et al., 2017). The CNN architecture typically consists of 

an input layer followed by sequence of convolutional (CONV), subsampling (POOL), fully-

connected (FC) layers and finally a SoftMax or regression layer, to generate the desired output. 

Functions of all layers are detailed as follows: 

https://idrid.grand-challenge.org/Challenge_Proceedings/
https://idrid.grand-challenge.org/Challenge_Proceedings/
https://idrid.grand-challenge.org/Challenge_Proceedings/
https://idrid.grand-challenge.org/Challenge_Proceedings/


The CONV layer comprises of a set of independent filters (or kernels) that are utilized to perform 

2D convolution with the input layer (𝐼) to produce the feature (or activation) maps (𝐴) that give 

the responses of kernels at every spatial position. Mathematically, for the input patch (𝐼𝑥,𝑦
 ℓ ) 

centered at location (x,y) of the ℓ𝑡ℎ layer, the feature value in the 𝑖𝑡ℎ feature map, 𝐴𝑥,𝑦,𝑖
 ℓ , is 

obtained as: 

𝐴𝑥,𝑦,𝑖
 ℓ = 𝑓((𝑤𝑖

ℓ)𝑇 𝐼𝑥,𝑦
 ℓ  + 𝑏𝑖

 ℓ) = 𝑓(𝐶𝑥,𝑦,𝑖
 ℓ ) 

Where the parameters 𝑤𝑖
 ℓand 𝑏𝑖

 ℓ are weight vector and bias term of the 𝑖𝑡ℎ filter of the ℓ𝑡ℎ layer, 

and 𝑓(·) is a nonlinear activation function such as sigmoid, rectified linear unit (ReLU) or hyperbolic 

tangent (tanh). It is important to note that the kernel 𝑤𝑖
ℓthat generates the feature map 𝐶:,:,𝑖

 ℓ  is 

shared, reducing the model complexity and making the network easier to train. 

The POOL layer aims to achieve translation-invariance by reducing the resolution of the feature 

maps. Each unit in a feature map of the POOL layer is derived using a subset of units within sparse 

connections from the corresponding convolutional feature map. The most common pooling 

operations are average pooling and max pooling. It performs downsampling operation and is 

usually placed between two CONV layers to achieve a hierarchical set of image features. The 

kernels in the initial CONV layers detect low-level features such as edges and curves, while the 

kernels in the higher layers are learned to encode more abstract features. The sequence of several 

CONV and POOL layers gradually extract higher-level feature representation. 

FC layer aims to perform higher-level reasoning by computing the class scores. Each neuron in this 

layer is connected to all neurons in the previous layer to generate global semantic information. 

The last layer of CNN’s is an output layer (O), here the Soft-Max operator is commonly used for 

the classification tasks. The optimum parameters (Θ, common notation for both w and b) for a 

particular task can be determined by minimizing the loss function (𝐿) defined for the task. 

Mathematically, for N input-output relations {(𝐼𝑛, 𝑂𝑛);  𝑛 𝜖 [1, . . . , 𝑁]} and corresponding labels 

𝐺𝑛 the loss can be derived as:    

 𝐿 =
1

𝑁
∑ 𝑙𝑛(𝛩; 𝐺𝑛, 𝑂𝑛)𝑁

𝑛=1 )   

Where N denotes the number of training images, 𝐼𝑛, 𝑂𝑛 𝑎𝑛𝑑 𝐺𝑛 correspond to the nth training 

image. Here, a critical challenge in training CNN’s arises from the limited number of training 

samples as compared to the number of learnable parameters that need to be optimized for the 

task at hand. Recent studies have developed some key techniques to better train and optimize 

the deep models such as data augmentation, weight initialization, Stochastic Gradient Descent 

(SGD), batch normalization, shortcut connections and regularization. For more understanding 

related to advances in CNN’s, reader is recommended to refer (Gu et al., 2018). 

The growing use of CNN’s as the backbone of many visual tasks, ready for different purposes (such 

as segmentation, classification or localization) and available data, has made architecture search a 

primary channel in solving the problem. 

In this challenge, mainly for disease severity grading problem, participants either directly utilized 

existing variants of CNN’s or ensembled them to demarcate the input image to one of the class 



mentioned above. Several configurations and variants of CNN’s are available in literature, some 

of the most popular are AlexNet (Krizhevsky et al., 2012), VGG (Simonyan and Zisserman, 2014), 

GoogLeNet (Szegedy et al., 2015) and ResNet (He et al., 2016) due to their superior performance 

on different benchmarks for object recognition tasks. A typical trend with the evolution of these 

architectures is that the networks have gotten deeper, e.g., ResNet is about 19, 8 and 7 times 

deeper than AlexNet, VGGNet, and GoogLeNet respectively. While the increasing depth improves 

feature representation and prediction performance, it also increases complexity, making it 

difficult to optimize and even becomes prone to overfitting. Further, the increasing number of 

layers (i.e., network depth) leads to vanishing gradient problems as a result of a large number of 

multiplication operations. Hence, many teams chose the DenseNet (Iandola et al., 2014) which 

connects each layer to every other layer in a feed-forward fashion, reducing the number of 

training parameters and alleviates the vanishing gradient problem. DenseNet exhibits ℓ ( ℓ + 1)/2 

connections in ℓ layer network, instead of only ℓ, as in the networks mentioned above. This 

enables feature reuse throughout the network that leads to more compact internal 

representations and in turn, enhances its prediction accuracy. Another opted approach, Deep 

Layer Aggregation (DLA) structures (Yu et al., 2017), extends the “shallow” skip connections in 

DenseNet to incorporate more depth and sharing of the features. DLA uses two structures – 

iterative deep aggregation (IDA) and hierarchical deep aggregation (HDA) that iteratively and 

hierarchically fuse the feature hierarchies (i.e. semantic and spatial) to make networks work with 

better accuracy and fewer parameters. Recent Fully Convolutional Network (FCN) (Long et al., 

2015) adapt and extend deep classification architectures (VGG and GoogLeNet) into fully 

convolutional networks and transfer their learned representations by fine-tuning to the 

segmentation task. It defines a skip architecture that combines semantic information from a deep, 

coarse layer with appearance information from a shallow, fine layer to produce accurate and 

detailed segmentations. 

For the lesion segmentation task, most of the participating teams exploit U-Net architecture 

(Ronneberger et al., 2015). The main idea in U-Net architecture is to supplement the usual 

contracting network through a symmetric expansive path by addition of successive layers, where 

upsampling (via deconvolution) is performed instead of pooling operation. The upsampling part 

consists of large number of feature channels, that allow the network to propagate context 

information to higher resolution layers. The high-resolution features from the contracting path 

are merged with the upsampled output and fed to soft-max classifier for pixel-wise classification. 

This network works with very few training images and enables the seamless segmentation of high-

resolution images by means of an overlap-tile strategy. Other similar architecture SegNet 

(Badrinarayanan et al., 2015) was opted by a team, it consists of an encoder and decoder network, 

where the encoder network is topologically identical to the CONV layers in VGG16 and in which 

FC layer is replaced by a SoftMax layer. Whereas, the decoder network comprises a hierarchy of 

decoders, one corresponding to each encoder. The decoder uses max-pooling indices for 

upsampling its encoder input to produce a sparse feature map. Later, it convolves the sparse 

feature maps with a trainable filter bank to densify them. At last, the decoder output is fed to a 

soft-max classifier for generation of segmentation map. One team choose Mask R-CNN (He et al., 

2017), a technique primarily based on a Region Proposal Network (RPN) that shares convolutional 

features of entire image with the detection network, thus enabling region proposals to localize 

and further segments normal and abnormal structures in the retina. RPN is a fully convolutional 



network that contributes in concurrently predicting object bounds and “objectness” scores at 

each position.  

Following subsections present the solutions designed by participating teams with respect to three 

sub-challenges. Table 6 summarizes the data augmentation, normalization and preprocessing 

tasks performed by each team.” (page no. 15-24 (line no. 426-533)) 

➢ After this text all approaches that were in the appendix B are revised and included in this 

section (page no. 25-42) (it is divided into three subsections respectively for the three sub-

challenges). 

14. Regarding evaluation measures, please justify better the choices for each subchallenge. Please 

provide references for the different measures used. I also find that authors need to explain what 

each of the participating teams had to send for evaluation in each subchallenge (binary images? 

Images with a probability map? Csv files? Other?). 

Response: We have detailed the choices of performance measures used for each sub-challenge 

and provided references for the same. We have explained result formats in the section. 4 (page 

no.18, line no. 389-391) and also mentioned them in Section 6 while detailing performance 

measures. This change could be observed on page nos. 42 and 44. 

➢ The following text (in blue) is included in the manuscript to address these comments: 

 “A. Sub-challenge − 1 

This sub-challenge evaluates the performance of the algorithms for different lesion segmentation 

tasks, from the submitted grayscale images, using the available binary masks. As in the lesion 

segmentation task(s) background overwhelms foreground, a highly imbalanced scenario, the 

performance of this task was measured using area under precision (a.k.a. Positive Predictive Value 

(PPV)) recall (a.k.a. Sensitivity (SN)) curve (AUPR) (Saito and Rehmsmeier, 2015). 

The AUPR provides a single-figure measure (a.k.a. mean average precision (mAP)), computed over 

the set-B, was used to rank the participating methods. This performance metric was used for 

object detection in The PASCAL Visual Object Classes (VOC) Challenge (Everingham et al., 2010). 

The AUPR measure is more realistic (Boyd et al., 2013; Saito and Rehmsmeier, 2015) for the lesion 

segmentation performance over the Area under Receiver Operating Characteristics.” 

“B. Sub-challenge – 2  

Let the expert labels for DR and DME be represented by DR_G(n) and DME_G(n). Whereas, 

DR_O(n) and DME_O(n) are the predicted results, then correct instance is the case when the 

expert label for DR and DME matches with the predicted outcomes for both DR and DME. This 

was done since, even with presence of some exudation that may be categorized as mild DR, its 

location on the retina is also important governing factor (to check DME) to decide overall grade 

of disease. For instance, EXs presence in the macular region can affect vision of the patient to 

greater extent and hence, it should be dealt with priority for referral (that may otherwise be 

missed or cause delay in treatment with the present convention of only DR grading) in the 

automated screening systems. Hence, disease grading performance accuracy for this sub-



challenge, from the results submitted in CSV format for test images (i.e. N = 103), is obtained by 

algorithm 1 as follows:” 

“C. Sub-challenge – 3  

For the given retinal image, the objective of sub-challenge-3 (task − 6 and 7) was to predict the 

OD and fovea center co-ordinates. The performance of results submitted in CSV format was 

evaluated by estimating the Euclidean distance (ED) (in pixels) between manual (ground truth) 

and automatically predicted center location. Lower ED indicates better localization. After 

determining Euclidean distance for each image in the set-B, i.e. for 103 images, the average 

distance representing the whole dataset was computed and used to rank the participating 

methods. The optic disc segmentation (task − 8) performance is evaluated using Jaccard index (J) 

(Jaccard, 1908). It represents the proportion of overlapping area between the segmented OD (A) 

and the ground truth (B). Higher J indicates better segmentation. For the segmented results, 

images in range [0, 255], it was computed at 10 different equally spaced thresholds [0, 0.1, · · · , 

0.9] and averaged to obtain final score.” 

15. In the results of Subchallenge 1 authors claim that the teams were ranked according to their 

performance on each type of lesion and to their "overall performance". How was the latter 

measured? 

Response: All four tasks in Subchallenge-1 are considered individually and hence ranked 

independently. The term “overall performance” could be clear from the Table given below. Here 

it means the solutions developed by the teams that ranked amongst the top three for at least 

three different lesion segmentation tasks, presented their work in the ISBI workshop. We have 

addressed this comment in the paper for more clarity. 

 

➢ The following text (in blue) is included in the manuscript to address these comments: 

 “Amongst them, only top-4 teams per lesion segmentation task were invited for the challenge 

workshop and top-3 teams having overall better performance, the solutions developed by the 

teams that ranked amongst top three for at least three different lesion segmentation tasks, 

presented their work at ISBI.” (page no. 44 (line no. 1049-1053)) 



16. In Figure 4 I would recommend authors to include the results of the 4 top-teams on each type of 

lesion (not only 3…). 

Response: We have included the results of 4 top-teams on each type of lesion (Now Figure 6). To 

maintain uniformity, we have also included results of the 4 top-teams for OD segmentation 

(Figure 9). This change could be observed on page no. 46 and 50. 

17. In figure 5, please include figure legends in a bigger font size. Please include the different 

approaches in the same order in the different sub-figures. In my view, authors do not need to 

include AUC in the legend, since this information is already in Table 7. 

Response: We have modified Figure 5 (Now Figure 7) to appear clearer, removed AUC in the 

legend, and included different approaches in the same order. This change could be observed on 

page no. 47. 

18. Please discuss further the results of subchallenge 3. In my view, the performance of the methods 

is very related to the image resolution employed by each team (i.e., the same Euclidean distance, 

in pixels, between the detected OD or fovea center and the ground truth does not mean the same 

in a "bigger" image than in a "smaller" image). Please discuss this issue. I would find it very useful 

to include the average OD diameter for each team (or image resolution) since it may give readers 

a better understanding of the performance of the different methods. Indeed, in many studies, the 

detection of the OD or fovea center is considered correct if it is less than an OD radius apart from 

the center annotated by experts. 

Response: We have discussed the results of all sub-challenges in relation to the image resolution 

employed by each team. The content added in response to this comment also partly incorporates 

the comment no. 20. The following text (in blue) is added in the manuscript to address this 

comment: 

“As expected, we found that image resolution is a vital factor for the model performance, 

especially for the task of segmentation of small objects such as MAs or EXs. In fact, the top 

performing approaches process the images patch-wise, which allow models to have a local high-

resolution image view or directly with the high-resolution image as a whole. This is essential as 

MAs or small EXs lesions span very few pixels in some cases and reducing the original image size 

would prevent an accurate segmentation. Similarly, image resolution plays a very important role 

for the disease classification task (see Table 9), the most likely reason is that the presence of the 

disease is determined by the presence of lesions in the image, including the small ones that might 

be invisible at low resolution. This is corroborated by the confusion matrices in Table 12 which 

show misclassified instances in DR (particularly, grade 1 and 2) as well as DME (5 images each 

belonging to grade 1 and 2 are predicted as grade 0). For the localization tasks, all participants 

were asked to identify retinal structures with coordinates at full image resolution. Most of them 

performed these tasks by scaling the image to smaller size and then converted their predictions 

in the original image space. The results indicate that the input image resolution has limited effect 

on the results of the localization problem. For instance, in case of OD localization, the top 

performing team utilized two image resolutions, one (224 × 224 pixels) for approximate location 

prediction and other (cropped ROIs 950 × 950 pixels) for refining that estimate. Similarly, teams 

CBER and VRT resized the image to 536 × 356 pixels and 640 × 640 pixels respectively to get an 



approximate center location whereas, the team SDNU utilized the input size of 1984 × 1318 pixels. 

Considering the OD average diameter of approximately 516 pixels, the deflection of result for 

about 10 to 15 pixels by other approaches, utilizing different input resolutions, as compared to 

the top performing solution is very less. This is because the retinal structures to be identified, OD 

and fovea, are very unlikely to disappear due to a reduction of image resolution and they have 

clear geometrical constraints.” (page no. 54 and 56 (line no. 1165-1191)) 

➢ Further, we have computed the average OD diameter of all images in the test set for all 

competing teams. A figure illustrating the performance of each team with respect to ground 

truth is presented in the discussion section.  

The following text in blue is added in the manuscript to address this comment: 

“Considering the clinical significance of OD diameter while DME severity grading, we further 

compute the average OD diameter (in pixels) for each image of test set. Figure 13 illustrates the 

performance of each participating team with respect to the groundtruth, most methods show a 

similar pattern. The average diameter of OD groundtruth is 516.61 pixels whereas, this 

corresponding values for the results of solution developed by the teams ZJU-BII-SGEX, VRT, 

IITKgpKLIV, CBER and SDNU are 514.25, 519.21, 513.48, 508.04 and 460.19 pixels respectively.” 

(page no. 54 - 55 (line no. 1156-1162)) 

 

19. Authors do not need to explain what a boxplot is (and definitely not in a footnote). Please 

substitute that for a relevant reference. 

Response: We have substituted the explanation of boxplot with a relevant reference. This change 

could be observed on page no. 49 (line no 1094). 



20. I would recommend authors to extend their discussion. It may be relevant to explain (for the 3 

subchallenges) the cases where the proposed methods tended to fail or those where they 

normally performed well. I would also recommend authors to discuss the clinical relevance of this 

challenge.  

Response: We have extended the discussion to present the successful and failure cases. We have 

also presented the clinical relevance of this challenge in the introduction section of thoroughly 

revised manuscript. This change could be observed on page no. 52 (inclusion of Figures 11 and 12 

highlighting successful and failure cases respectively), 53 (inclusion of confusion matrices (Table 

12)).  

➢ The following text (in blue) is added in the manuscript to address this comment: 

“Fig. 11 highlights the performance of top solution for EX that performs significantly well in 

presence of normal retinal structures and different challenging circumstances.” (line no. 1113-

1115) 

 

“Further, Fig. 12 shows that some false positives detected by the participating solutions are due 

to noise, predominantly for MA and HE. This indicates that there is still room for improvement for 

lesion segmentation tasks with current fundus cameras.” (line no. 1113-1115) 



 

“Considering the misclassified instances in the confusion matrices in Table 12, along with the 

lesion information, it is essential to give attention towards characterization of intra-retinal micro-

vascular abnormalities (IRMA’s) and venous beading for improvement in the overall grading 

results.” (line no. 1141-1144) 

 

➢ Apart from this content we have also discussed the reasoning behind the success and failure 

of solutions with respect to the input image resolution as presented in response to comment 

no. 18.  

➢ Further the tasks included in this challenge are supported by relevant explanations in 

introduction, literature review and performance evaluation sections with the text as follows: 

“Programs to screen such a large population for DR confront the issues related to the 

implementation, management, availability of human graders, and long-term financial 

sustainability. Hence, computer aided diagnosis tools are required for screening such a large 

population that require continuous follow-up for DR and to effectively facilitate in reducing the 

burden on the ophthalmologists (Jelinek and Cree, 2009; Walter et al., 2002). Such a tool would 

help clinicians in the identification, interpretation, and measurements of retinal abnormalities, 

and ultimately in the screening and monitoring of the disease.” (page no. 4 (line no. 25-32)) 



“Precise pixel-level annotations of lesions associated with DR such as MAs, HEs, SEs and EXs are 

invaluable resource for evaluating accuracy of individual lesion segmentation techniques. These 

precisely segmented lesions help in determining the disease severity and further act as a road-

map that can assist to tap the progression of disease during follow-up procedures. Similarly, on 

the other hand, image-level expert labels for disease severity of DR, and DME are helpful in the 

development and evaluation of image analysis and retrieval algorithms.” (page no. 4 (line no. 38-

45)) 

➢ Recent study highlighting importance of lesion segmentation is presented in the literature 

review: 

“However, Lynch et al., 2017 demonstrated that the hybrid algorithms based on multiple semi-

dependent CNNs might offer a more robust option for DR referral screening, stressing the 

importance of lesion segmentation.” (page no. 12 (line no. 270-273)) 

➢ Content highlighting importance of simultaneous DR and DME grading: 

“Whereas, DR(n) and DME(n) are the predicted results, then correct instance is the case when the 

expert label for DR and DME matches with the predicted outcomes for both DR and DME. This 

was done since, even with presence of some exudation that may be categorized as mild DR, its 

location on the retina is also important governing factor (to check DME) to decide overall grade 

of disease. For instance, EXs presence in the macular region can affect vision of the patient to 

greater extent and hence, it should be dealt with priority for referral (that may otherwise be 

missed or cause delay in treatment with the present convention of only DR grading) in the 

automated screening.” (page no. 43 (line no. 1014-1022)) 

➢ Content presenting importance of OD and fovea detection: 

“These techniques are shown to usually involve interdependence on the detection of anatomical 

structures (i.e. OD and fovea) with the lesion detection, and that in turn determines the 

automated DR screening outcome.” (page no. 8 (line no. 156-159)) 

“Localization and segmentation of OD and fovea facilitate the detection of retinal lesions as well 

as in the assessment (based on the geometric location of these lesions) of the severity and 

monitoring the progression of DR and DME.” (page no. 8 (line no. 160-162)) 

“There were three principal sub-challenges: lesion segmentation, disease severity grading, and 

localization and segmentation of retinal landmarks. These multiple tasks in IDRiD challenge allow 

to test the generalizability of the algorithms, and this is what makes it different from the existing 

ones.” (page no. 6 (line no. 88-91)) 

“This current progress in artificial intelligence provides an opportunity to the researchers for 

enhancing the performance of the DR referral system to more robust diagnosis system that can 

provide the quantitative information for multiple diseases matching the international standards 

of clinical relevance. Thus, this challenging design offers an avenue to gauge precise DR severity 

status and opportunity to deliver accurate measures for lesions, that could even help in the 

follow-up studies to observe changes in the retinal atlas.” (page no. 12 (line no. 277-283)) 

Hence, as the clinical relevance of this challenge is highlighted in the existing text, to avoid 

redundancy, we refrained from adding discussion about the same. 



21. I believe it would be interesting to include some discussion regarding challenge organization. 

Since the different teams did not have much time to submit their methods and results, I strongly 

believe this had an influence on the results (and not only in the number of teams involved) 

Response: We incorporated the opinion of participating teams for addressing this comment and 

have included discussion for the same in the manuscript. 

➢ The following content (in blue) is added in the manuscript to address this comment: 

“However, it seems there might be some impact of challenge duration, apart from the number of 

submissions, on the quality of developed solutions. Considering the time span from data 

availability to deadline of results submission, about one and a half month, was considerably tight 

for managing all tasks at the same time. For the team VRT who had been working on analyzing 

fundus images for more than a year when participated in the competition that attempting all tasks 

were possible, still it was challenging for them to commit all the tasks. However, it would be highly 

challenging for a newcomer to succeed in multiple tasks. In that sense, the competition period 

was not sufficient for perfecting all tasks. However, it would be enough for a competent 

participant, e.g. new entrants in the field as team SAIHST, to finish one task if the participant can 

focus on the competition completely.” (page no. 56 (line no. 1205-1216)) 

 

Reviewer #3: 

Manuscript Rating Question(s):  Scale   [1-5] 

The paper is of enough importance to warrant publication in MedIA  3 

The paper is technically sound  4 

The paper describes original work  3 

The work is of interest to the MedIA audience  4 

The paper contains material which might well be omitted  1 

The paper makes adequate references?  3 

The abstract is an adequate digest of the work reported  5 

The introduction gives the background of the work  5 

The summary and conclusions adequate  5 

The authors explain clearly what they have done  5 

The authors explain clearly why what they did was worth doing  5 

The order of presentation is satisfactory  5 

The English is satisfactory  5 

If there are color figures included, are they helpful/necessary?  5 

If there is a video, is it helpful/necessary?  N/A 

 

Comments 

This paper describes the new IDRiD dataset and the challenge that was organized using it. Its contents are 

very clear and conveniently illustrated. 



Public annotated datasets are a valuable scientific resource. Therefore, the presented work is 

commendable from this point of view. The quality of the annotations is an important point. As far as I 

have seen (without exhaustively reviewing the data) quality criteria are here met. The size of the dataset 

is another important criterion. In my opinion, this criterion is barely met for sub-challenges 1 and 3, that 

involve pixel-level segmentations. I am aware that manually producing segmentations - especially for 

lesions - is extremely time-consuming, but by current standards 81 images is really a small number. In the 

case of subchallenge 2, the lack of images seems evident, especially if you compare with a recent dataset 

as Kaggle's, of even an older one, as Messidor's. Moreover, from a real-world practical point of view, the 

fact that all images come from a single retinograph model, and are limited to good quality images, is a 

pity. In spite of these shortcomings, I believe that the dataset is a useful contribution to this domain. 

Organizing challenges is also a useful contribution to the domain. However, the results seem similar to 

those of the state-of-the-art. In any case, they are not compared in any way with previous work. It would 

be interesting to at least recall the current state-of-the-art, even if it corresponds to other databases. In 

any case, no apparent break-through has been introduced by the winning solutions and as such are not 

very interesting from a scientific point of view. 

Some minor remarks 

------------------ 

1. p. 3: citing (Abramoff et al., 2010) for sustaining the claim that "Early diagnosis and treatment of 

DR can prevent vision loss" is inadequate. Earlier reference would be more appropriate. I have 

the impression that other citations should also be checked from this point of view (like (Ting et 

al., 2016)). 

Response: We have thoroughly checked the manuscript and corrected these and other identified 

instances. 

2. p. 11:  1,28,175 images? 

Response: We have corrected it to 128,175 in the manuscript. 

3. section 5.2: "as follows:" - the algorithm has moved away. 

Response: We have corrected this in the modified manuscript. The change could be observed on 

page no. 43. 

4. Fig. 5(a): the ROC curves should not go under the diagonal. this is not really a minor remark, by 

the way.  

Response: We would like to humbly bring into notice that the evaluation measure used for 

determining the lesion segmentation accuracy was AUPR curves, where the area under the curve 

may go below 50%. 

5. It would be interesting to comment on the late participation of the CBER team. Why have their 

results been included? Is if because they obtain interesting scores, without using deep learning? 

Response: We have addressed this comment in section 4. Challenge organization, just before the 

start of details regarding phase 4.  

➢ The following content is added in the manuscript to address this comment: 

“Amongst invited, 13 teams confirmed their participation in the on-site challenge, whereas, two 

teams declined to participate due to other commitments and one team was not able arrange 

financial support in the limited time.” (page no. 18-19. (line no. 398-401)) 
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