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Part I

Introduction
My work during my PhD studies is made up of several parts: The main topic
investigated is the distance-constrained labeling. This problem is motivated
by radio communication, the goal is to assign the radio channels to the trans-
mitters in a way that none of the channels interfere with each other and the
frequency band is the lowest possible. I will give a brief summary of the
theory, the research guidelines and the main results in Chapter 1.

During my theoretical work I dealt with a special vertex labeling of two
graph classes, namely the L(j, j−1, ..., 2, 1)−labeling of trees and unit interval
graphs. The studied values were known for L(2, 1)− and L(3, 2, 1)–labelings,
I generalized them for arbitrary natural number j. I present my results so
far in detail in Chapters 2 and 3, respectively.

In addition to the theoretical studies I examined the problem in practi-
cal terms. I chose the linear programming for these studies. I formalized
the distance-constrained labeling problem in terms of integer programming.
This allowed me to make some comparisons between the graph model and a
bit more precise model of the frequency assignment problem that was intro-
duced by me. Chapter 4 describes the formalization, the new model and the
computational results of the comparisons.

The last section (Chapter 6) of this thesis is about another kind of parti-
tioning. In this case, not the vertices have to be partitioned according to a
specific rule, but the edges of the graph. The main result here is the solution
of a quite recently defined problem.
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Part II

Theory of distance-constrained
labeling
Before presenting my work I would like to make them more transparent
and easier to understand. In this section I summarize the theory and the
basic results of the topic. Since the most studied theoretical question in the
area is how good the distance-constrained labeling numbers of graphs can
be estimated, I devote subsections 1.1 and 1.2 to a small collection of such
results. Subsection 1.3 describes some other interesting questions that have
been raised so far by scientists.

1 Earlier results and background

Problems involving distance 2 In the highly influential paper [1], Hale
introduced graph coloring problems with motivation from frequency assign-
ment. This is the following: The radio channels are represented by nonnega-
tive integers and have to be assigned to transmitters efficiently, such that the
channels would not interfere with each other. It means that close transmit-
ters receive different channels, and very close transmitters receive channels
greater apart.

Since then, several coloring models have been proposed for this kind of
problems, perhaps the most intensively studied one is L(2, 1)–labeling. First
investigated by Griggs and Yeh in [2], it requires to assign nonnegative integer
labels to the vertices of a given graph G in such a way that vertices having a
common neighbor must get distinct labels, and the labels of adjacent vertices
must differ at least by 2. The graph invariant λ2,1(G) is defined as the smallest
possible value of the largest label in such a labeling of G.
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Analogously, an L(j1, j2)–labeling of G is an assignment of nonnegative
integer labels to the vertices of G in such a way that the labels of adjacent
vertices differ by j1 or more, and those of vertices at distance 2 apart differ
at least by j2. A comprehensive survey of L(j1, j2)−labeling and bounds on
the minimum λj1,j2(G) of the largest label, with nearly 200 references, was
given by Calamoneri in [3].

Higher levels of separation As regards vertices at larger distances apart,
L(3, 2, 1)−labeling (first studied by Shao and Liu in [4]) and more generally
L(j1, j2, j3)–labeling (introduced by Shao in [5]) put three conditions, de-
pending on the distances between vertices. Here the parameter ji describes
that the difference between the labels of vertices at distance i apart must be
at least ji.

In connection with our results on trees, an interesting unpublished theo-
rem of Clipperton, Gehrtz, Szaniszló and Tokorno [6] states that the λ3,2,1–
number of trees with maximum degree of ∆ is at most 2∆ + 5, and that
this upper bound is tight. The properties of L(3, 2, 1)–labelings have been
analyzed further in [7].

These notions extend in a natural way to larger distances, too. Let
j1, j2, ..., js ∈ N be any integers. It is traditionally assumed that j1 ≥ j2 ≥
... ≥ js, due to motivation and practical considerations from frequency as-
signment, although one would get nontrivial theoretical problems without
this restriction, too. An L(j1, j2, ..., js)–labeling of a graph G = (V,E) is an
assignment ϕ : V → {0, 1, 2, ...} such that |ϕ(u)− ϕ(v)| ≥ ji for all pairs of
vertices u, v whose distance in G is equal to i (i = 1, 2, ..., s). The span of an
L(j1, j2, ..., js)−labeling ϕ is the largest label assigned by ϕ to the vertices.
In analogy to λ2,1, λj1,j2,...,js = minϕ maxv∈V (ϕ(v)) is defined as the smallest
possible span taken over all L(j1, j2, ..., js)–labelings of G.

Since components can be labeled independently of each other, it is imme-
diately seen that if G is a disconnected graph with components G1, G2, ..., Gk,
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then for any positive integers j1, j2, ..., js we have
λj1,j2,...,js(G) = max1≤i≤k(λj1,j2,...,js(Gi)).

For this reason I restrict my attention to connected graphs in this work.

General properties with two levels of constraints Here I present
some results from [5] and [8].

Definition An induced subgraph H of a graph G is a subgraph of it that
contains all of the edges whose endpoints are both in H.

• For an induced subgraph H of the graph G the inequality λj1,j2(H) ≤
λj1,j2(G) holds with each j1 and j2. If H is a subgraph of G, but not
induced, then the inequality holds only with the restriction that j1 ≥ j2.

Definition The smallest number of colors needed to color the vertex set of
a graph G so that no two adjacent vertices get the same color, is called
the chromatic number of G and it is denoted by χ(G).

• χ(G)− 1 ≤ λj1,1(G) ≤ j1 · (χ(G)− 1) (χ(G) denotes the chromatic
number of G, λ1(G) in the present terminology.)

• λj1,1(G) ≥ ∆ + j1 − 1, where ∆ denotes the maximum degree of G.
Moreover, if λj1,1(G) = ∆ + j1 − 1 and j1 ≥ 2, then f(v) = 0 or
∆+j1−1 for any L(j1, 1)−labeling f of G and any major vertex v. We
call a vertex v major if deg(v) = ∆. Consequently, the graph cannot
contain a set of 3 major vertices such that any two of them are distance
at most 2 apart.

• The graph Sn = {v}+Kn is called a star. For the star λ2,1(Sn) = n+1

and λ3,2,1(Sn) = 2n + 1 hold. If f2 is an (n + 1) − L(2, 1)−labeling
of Sn, then either f2(v) = 0 or f2(v) = n + 1 holds; similarly, if f3

is a (2n + 1) − L(3, 2, 1)−labeling of Sn, then either f3(v) = 0 or
f3(v) = 2n+ 1 holds.
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Some consequences are the following statements: λ2,1(G) ≥ ∆ + 1 for any
graph G, and if λ2,1(G) = ∆ + 1 and f2 is a (∆ + 1)−L(2, 1)−labeling of G,
then every vertex v ∈ V (G) of maximum degree gets label either 0 or ∆ + 1.
Similarly, λ3,2,1(G) ≥ 2∆ + 1 for any graph G, and if λ3,2,1(G) = 2∆ + 1 and
f3 is a (2∆ + 1) − L(3, 2, 1)−labeling of G, then every vertex v ∈ V (G) of
maximum degree gets label either 0 or 2∆+1. From this statement it follows
that if there are three vertices v1, v2, v3 ∈ V (G), each of maximum degree,
and dist(vi, vk) ≤ 2 for each i and k (respectively, dist(vi, vk) ≤ 3 for each
i and k), then λ2,1(G) ≥ ∆ + 2 (λ3,2,1(G) ≥ 2∆ + 2, respectively). These
values and statements can be easily generalized for the L(j1, j2)− and for the
L(j1, j2, j3)−labeling numbers.

• For any graph G and any positive integers j1, j2, j3 and c the following
statements hold:
λc·j1,c·j2(G) = c · λj1,j2 and λcj1,cj2,cj3(G) = c · λj1,j2,j3(G).

• limj1→∞
λj1+1,1(G)

λj1,1(G)
= 1.

• For an induced subgraph H of the graph G the inequality
λj1,j2,j2(H) ≤ λj1,j2,j3(G) holds.

• For any graph G and integers j1 ≥ j2 ≥ j3 the inequality
λj1,j2(G) ≤ λj1,j2,j3(G) holds.

• If li ≤ ji, (i = 1, 2, 3), then λl1,l2,l3(G) ≤ λj1,j2,j3(G) holds.

• If f is a k − L(j1, j2, j3)−labeling of G, then f ′ : V (G) → {0, ..., k},
f ′(v) = k − f(v) is also a proper k − L(j1, j2, j3)−labeling of G.

• If the diameter of a graph G is d, where 1 ≤ d ≤ 3, then
λ3,2,1(G) ≥ (4− d) · (|V (G)| − 1).

5



1.1 Some known bounds and exact values for

λ2,1, λj1,j2, λ3,2,1 and λj1,j2,j3

1.1.1 Trees

Definition A cycle is a closed walk with no repetitions of vertices and edges,
other than the repetition of the starting and ending vertex.

Definition A graph is called a tree if it containes no cycles.

In a tree any two of its vertices are connected by exactly one simple path.

• ∆ + 1 ≤ λ2,1(T ) ≤ ∆ + 2 [2]

In [9] Chang and Kuo present an algorithm for the decision between ∆ + 1

and ∆ + 2. This algorithm is applicable for λj1,1(T ), whose value is between
∆ + j1 − 1 and min{2∆ + j1 − 2,∆ + 2j1 − 2} [10]. But to extend it to
determine λj1,j2(T ) with general j1 and j2 is NP-hard.

However, Georges and Mauro [11] gave the following bounds:

• j1 + (∆− 1)j2 ≤ λj1,j2(T ) ≤ j1 + (2∆− 2)j2, if j1
j2
≥ ∆

In another paper [12] they determined the values for j1
j2
< ∆:

• λj1,1,1(T ) =

{
(∆ + j1 − 2) + ∆, if ∆ ≥ j1

(∆ + j1 − 2) + j1, if ∆ < j1
.

• If T is an n−ary tree and its height is at least 3, then λ3,2,1(T ) = 2n+5.

• 2∆ + 1 ≤ λ3,2,1(T ) ≤ 2∆ + 3.

Lemma If T is a rooted tree with root v, then there is an f , (2∆ + 3) −
L(3, 2, 1)−labeling of T , in which f(u) ≡ d(u, v) (mod 2) for every
u ∈ V (T ).

6



1.1.2 Paths

Definition A walk is a sequence v1, {v1, v2}, v2, {v2, v3}, v3, ..., {vn−1, vn}, vn
of vertices and edges between consecutive vertices.

Definition A path is an open walk with no repetitions of vertices and edges.
Pn denotes the path on n vertices.

Here the most important values [6]:

• λ2,1(Pn) =



0

2

3

4

if n = 1

if n = 2

if n = 3 or 4

if n ≥ 5

.

• λj1,j2(Pn) =



0

j1

j1 + j2

j1 + 2j2

2j1

if n = 1

if n = 2

if n = 3 or 4

if n ≥ 5 and j1 ≥ 2j2

if n ≥ 5 and j1 ≤ 2j2

.

• λj1,1,1(Pn) =


j1

j1 + 1

j1 + 2

if n = 2

if n = 3 or 4

otherwise

.

• λ3,2,1(Pn) =


3, if n = 2

5, if n = 3 or 4

6, if n = 5, 6 or 7

7, if n ≥ 8

.
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1.1.3 Cyles of order n ≥ 3

Cn denotes the cycle on n vertices.

• [2] λ2,1(Cn) = 4.

• [11] If j1
j2
> 2, then

λj1,j2(Cn) =



2j1

j1 + 2j2

2j1

j1 + 3j2

if n odd, n ≥ 3

if n ≡ 0 (mod 4)

if n ≡ 2 (mod 4) and j1
j2
≤ 3

if n ≡ 2 (mod 4) and j1
j2
> 3

.

• [11] If j1
j2
≤ 2, then

λj1,j2(Cn) =


2j1

4j2

j1 + 2j2

if n ≡ 0 (mod 3)

if n = 5

otherwise

.

• [6] λj1,1,1(Cn) =


j1 + 2, if n ≡ 0 (mod 4)

j1 + 3, if n ≡ 2 (mod 4), or n = 11 and j1 = 2

6, if n = 7 and j1 = 2

2j1 otherwise

.

• [6] λ3,2,1(Cn) =



6, if n = 3

7, if n even

8, if n odd and n 6= 3; 7

9, if n = 7

.

1.1.4 Wheels

Definition The wheel Wn is obtained from Cn by adding a new vertex ad-
jacent to all vertices in Cn.

8



• λ2,1(Wn) =

 6

n+ 1

if n = 3 or 4

if n ≥ 5
.

1.1.5 Planar graphs

Definition A graph is called planar if it can be drawn in the plane in such
a way that no edges cross each other.

Definition A graph is called outerplanar if it is planar and it can be drawn
in such a way that all of its vertices belong to the unbounded face of
the drawing.

• [13] If G is outerplanar, then λ2,1(G) ≤ ∆ + 8.

• [14] The above bound was improved to ∆ + 2 for ∆ ≥ 8 and to 10
otherwise.

• [13] If G is outerplanar and chordal (see definition in the subsection
“Chordal graphs”), then λ2,1(G) ≤ ∆ + 6.

• [13] If G is planar, then λ2,1(G) ≤ 3∆ + 28.

• [15] λ2,1(G) ≤ 8∆− 13, if ∆ ≥ 5.
(If ∆ ≤ 8, then 8∆− 13 < 3∆ + 28 holds.)

• [13] If G is planar and chordal, then λ2,1(G) ≤ 3∆ + 22.

• [16] General j1 and j2:

λj1,j2(G) ≤


(2j2 − 1)∆ + 4j1 + 4j2 − 4, if g(G) ≥ 7

(2j2 − 1)∆ + 6j1 + 12j2 − 9, if g(G) ≥ 6

(2j2 − 1)∆ + 6j1 + 24j2 − 15, if g(G) ≥ 5

,

where g(G) denotes the girth of G, the length of a shortest cycle con-
tained in it.

9



1.1.6 Chordal graphs

Definition A graph is called chordal if each induced cycle, contained in it,
has at most three vertices.

• [10] If G is a chordal graph with maximum degree ∆, then
λj1,1(G) ≤ (2j1+∆−1)2

4
.

Definition A clique is a set of pairwise adjacent vertices in the graph.

A famous property of chordal graphs [17] is that their vertex set has an
ordering V (G) = {v1, ..., vn} such that for any i, the neighbors of vi in
{vi+1, ..., vn} form a clique, Bi. And conversely, graphs with this property
are proved to be chordal. The mentioned ordering is called simplicial order
or perfect elimination order.

It is easy to see that the following graph class is a subset of that of the
chordal graphs.

Definition Given a positive integer t, t−trees are the graphs that arise from
a t−clique (i.e. Kt) by 0 or more iterations of adding a new vertex
joined to a t−clique in the graph. [18] (A tree is a 1-tree.)

• [10] If G is a t−tree with maximum degree ∆, then
λj1,1(G) ≤ (2j1 − 1 + ∆− t) · t.

Definition A graph is a partial t−tree if it is a subgraph of a t−tree. The
treewidth of a graph is the minimum value t for which the graph is a
partial t−tree. Another definition of treewidth can be introduced as
follows. The two definitions are proved to be equivalent.

Definition tree decomposition of a graph G = (V,E) is a tree T with ver-
tices X1, ..., Xn, where each Xi is a subset of V , satisfying the following
properties:

10



• The union of all sets Xi equals V . That is, each graph vertex is con-
tained in at least one tree vertex.

• If Xi and Xl both contain a vertex v, then all vertices Xk of the tree in
the (unique) path between Xi and Xl contain v as well. Equivalently,
the tree vertices containing vertex v form a connected subtree of T .

• For every edge (vw) in the graph, there is a subset Xi that contains
both v and w. That is, vertices are adjacent in the graph only when
the corresponding subtrees have a vertex in common.

The width of a tree decomposition is the size of its largest set Xi minus
1. The treewidth tw(G) of a graph G is the minimum width among all
possible tree decompositions of G. In this definition, the size of the largest
set is diminished by 1 in order to make the treewidth of a tree equals 1.
Equivalently, the treewidth of G is 1 less than the size of the largest clique in
the chordal graph containing G with the smallest clique number. A chordal
graph with this clique size may be obtained by adding to G an edge between
every two vertices that both belong to at least one of the sets Xi.

• [13] For a graph of treewidth t, we have λ2,1 ≤ (∆ + 2) · t.

Definition A vertex set is called independent if no two of them are adjacent.

Definition split graph is a graph G whose vertex set can be split into two
sets K and S, such that K induces a clique and S induces an indepen-
dent set in G. (Split graphs are chordal.)

• [13] If G is a split graph, then λ2,1(G) ≤ ∆1,5 + 2∆ + 2, and for any ∆

there is a split graph with λ2,1 ≥ 1
3
·
√

2
3
·∆1,5. (The essential point of

this result is that it gives a nonlinear lower bound.)

Definition An n−sun is a chordal graph that contains a Hamiltonian cy-
cle (x1, y1, x2, y2, ..., xn, yn, x1) in which each xi has degree 2 and the
vertices yi form an n−clique.
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A sun − free (SF)/ odd − sun − free (OSF)/ 3 − sun − free (3SF) chordal
graph is a chordal graph containing no n−sun with n ≥ 3/ odd n ≥ 3/ n = 3

as an induced subgraph.

• [10] If G is an OSF-chordal graph, then λj1,1 ≤ j1 ·∆.

• If G is an SF-chordal graph, then λj1,1 ≤ ∆ + (2j1 − 2)(χ(G)− 1).

Definition A graph is called interval graph if its vertices can be represented
by an interval of the real line such that two vertices are adjacent if and
only if the two corresponding intervals intersect.

A unit interval graph is an interval graph whose interval representation con-
tains only intervals of the same length. The following bounds are known for
unit interval graphs:

• [19] λ2,1(G) ≤ 2χ(G).

• [20] λj1,j2(G) ≤ j1(χ(G)− 1) + j2 if j1 > 2j2, and 2j2 ·χ(G), if j1 ≤ 2j2.

• [20]λj1,j2(G) ≥ max{j1(χ(G)− 1), j2 · λ1,1(G)} A linear-time algorithm
is proposed that can L(j1, j2)−label a given unit interval graph using
the largest label no more than the bound above.

1.1.7 Cartesian product of graphs

The Cartesian product (G�H) of the graphs G and H is the graph with
vertex set V (G�H) = V (G)× V (H) and edge set

E(G�H) = {((v, w), (v′, w′))|

((v = v′) ∧ ((w,w′) ∈ E(H))) ∨ (((v, v′) ∈ E(G)) ∧ (w = w′))}

From [11] and [21] we have the following statements:
Let Pi be a path of order pi, for i = 1, 2, ..., n, n ≥ 2. P := P1�P2�...�Pn.

Then
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• If pi ≥ 3 for every i, and pi ≥ 4 for at least two distinct i-s, then
λ2,1(P ) = 2n+ 2.

• Suppose pn = 2 and pi ≥ 3, 1 ≤ i ≤ n− 1 and if pi ≥ 4 for at least two
distinct i-s, then λ2,1(P ) = 2n+ 1.

• Suppose pi ≥ 5 for each i. Then λj1,j2(P ) = j1 + (4n− 2)j2 if j1
j2
≥ 2n,

and 2j1 + 2(n− 1)j2 ≤ λj1,j2(P ) ≤ 2j1 + (2n− 1)j2 if j1
j2
< 2n.

P is called an n−cube Qn, if pi = 2 for all i. We have the following bounds
for the L(2, 1)−labeling number of Qn:

• [2] λ2,1(Qn) ≤ 2n+ 1.

• [15] λ2,1(Qn) ≥ n+ 3.

• Exactly: λ2,1(Q3) = 6, λ2,1(Q4) = 7, λ2,1(Q5) = 8. So the lower bound
is tight for n = 3, 4 and 5.

• [21] λ2,1(Qn) ≤ 2k − 1 for n ≤ 2k − k − 1.

• [21]λ2,1(Qn) ≤ 2k + 2k−q+1 − 2 for 1 ≤ q ≤ k and n ≤ 2k − q.

• [21] lim inf λ2,1(Qn)

n
= 1.

• [21] In general λ2,1(Qn) ≤ 2n for all n ≥ 2. (Notice that this is an
improvement of the result from the first one from [2].)

• [2] 2n+ 3 ≤ λ3,2,1(Qn) ≤ 4n+ 3 if n ≥ 3.

1.1.8 The cross-product of paths and cycles

Definition The cross-product of the graphs G1, G2, ..., Gk is the graph, de-
noted by G1 ×G2 × ...×Gk, with vertex set

V (G1 ×G2 × ...×Gk) = V (G1)× V (G2)× ...× V (Gk)
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and edge set

E(G1 ×G2 × ...×Gk) = {(u1, u2, ..., uk)(v1, v2, ..., vk) |

ul, vl ∈ V (Gl), (∀l : 1 ≤ l ≤ k),

(∃i : (uivi ∈ E(Gi)),

(uj = vj, if (j 6= i)))}.

Since the structure of cross-products of most graphs, in general they are not
easy to deal with, the labeling problem has been studied especially for paths
and cycles, but these of general length. A lot of values have been determined
exactly, here the most general ones are presented:

• [22] λ3,2,1(P2 × Pn) =


7 if n = 2

8 if n = 3; 4

9 if n ≥ 5

.

• [22] λ3,2,1(Pm × Pn) ≤ 11 if n ≥ m ≥ 3,
and λ3,2,1(P3 × Pn) ≤ 10 if n = 4 or 5.

• [22] λ3,2,1(P3 × Pn) =


9 if n = 3

10 if n = 4; 5

11 if n ≥ 6

.

• [22] If n ≥ m ≥ 4 then λ3,2,1(Pm × Pn) = 11.

• [23] λ3,2,1(Cm × Pn) = 11 if m ≡ 0 (mod 4) and n ≥ 3.

• [23] λ3,2,1(Cm × Cn) = 11 if m ≡ 0 (mod 4) and n ≡ 0 (mod 12).

1.1.9 Generalized Petersen graphs

The generalized Petersen graph of order n is the 3-regular graph with 2n

(n ≥ 3) vertices consisting of two disjoint n−cycles, called inner and outer
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cycles, such that each vertex on the outer cycle is adjacent to a (necessarily
unique) vertex on the inner cycle. This definition was introduced by Georges
and Mauro. They gave the following bounds in [24]:

• λ2,1(G) ≤ 9, if G is a generalized Petersen graph.

• λ2,1(G) ≤ 8, if G is a generalized Petersen graph of order greater than
12.

• λ2,1(G) ≤ 7, if G is a generalized Petersen graph of order 3 ≤ n ≤ 12

but 6= 5.

1.2 Bounds on other parameters

1.2.1 Bounds from the chromatic number

• [2] If G is a graph with n vertices, then λ2,1(G) ≤ n+ χ(G)− 2.

• [2] For any graph G, λ2,1(G) ≤ ∆2 + 2∆.

• [2] If G is a graph with diameter 2, then λ2,1(G) ≤ ∆2.

Later on some reductions were made on the second bound. These are the
following in order:

∆2 + ∆ in [9], ∆2 + ∆− 1 in [25] and ∆2 + ∆− 2 in [26].
A generalization of the same bound was given in [10], and this is the

following: λj1,1(G) ≤ ∆2 + (j1 − 1)∆.

1.2.2 Bounds on the path covering number

A path covering of G, denoted by C(G), is a collection of vertex-disjoint paths
in G such that each vertex in V (G) is incident to a path in C(G). A minimum
path covering of G is a path covering of G with minimum cardinality, and
the path covering number c(G) of G is the cardinality of a minimum path
covering of G. We observe that there exists a Hamiltonian path in G if and
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only if c(G) = 1. (A Hamiltonian path is a path that visits all vertices in the
graph exactly once.) We know the following from [8]:

Definition The complement of a graph G is the graph with the same vertex
set in which two vertices are adjacent if and only if they are non-
adjacent in G.

• λ2,1(G) ≤ n−1 if and only if c(G) = 1 where G denotes the complement
of G.

• Let r be an integer, r ≥ 2. Then λ2,1(G) = n + r − 2 if and only if
c(G) = r.

1.3 Related problems

1.3.1 The size

Let G(n, k) be the collection of all graphs with order n (the number of its
vertices) and L(2, 1)−labeling number λ2,1 = k. The following results [27]
show the exact values of the minimum and maximum sizes (the number of
the edges) of graphs in G(n, k). These are denoted by sm(n, k) and sM(n, k),
respectively.

• sm(n, k) =



0

(k−3n+2)(n−k−1)
2

(k−3n+2)(n−k−1)
2

k(k+2)
8

(k−1)(k+5)
8

k − 1

if k = 0,

if k is even and n < k < 6n−4
5
,

if k is odd and n < k < 6n−1
5
,

if k is even, n < k, and k > 6n−4
5
,

if k is odd, n < k, and k > 6n−1
5
,

if 2 ≤ k ≤ n.
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• Let n = a(k + 1) + r, a > 0, 0 ≤ r < k + 1. Then sM(n, k) =

0⌊
n
2

⌋
a
((
k+1

2

)
− k
)

+
(
r
2

)
a
((
k+1

2

)
− k
)

+
(
r
2

)
− 2r + k + 2(

n
2

)
− 2n+ k + 2

if k = 0,

if k = 2 and n ≥ 2,

if 2r − 2 < k and 2 < k ≤ n− 1,

if 2r − 2 ≥ k and 2 < k ≤ n− 1,

if n− 1 ≤ k ≤ 2n− 2, k ≥ 3.

1.3.2 The edge span

Definition [28] The edge span of a labeling f is defined as max{|f(u) −
f(v)| : {u, v} ∈ E(G)}. The L(j1, j2, ..., js)−edge span ofG, βj1,j2,...,js(G),
is the minimum edge span over all L(j1, j2, ..., js)−labelings on G.

Yeh calculated the following edge span values in [28]:

• βj1,j2,j3(Pn) = j1,where n ≥ 2.

• β2,1(C3) = 4 and β2,1(Cn) = 3 for n ≥ 4.

• βj1,j2,1(Cn) = j1 + j2, if j2 ≤ j1 ≤ 3j2 where n ≥ 4.

• Let T be a tree with maximum degree ∆. Then β2,1(T ) =
⌈

∆
2

⌉
+ 1.

• βj1,j2,j3(Kn) = (n− 1) · j1 = λj1,j2,j3(Kn).

• Let K = Kn1,n2,...,nk
be a complete k−partite graph, where n1 ≥ n2 ≥

... ≥ nk. Then β2,1(K) =
⌈
n1

2

⌉
+ n2 + ...+ nk + k − 2.

The βj1,j2,...,js(G) corresponds not necessarily to an optimal L(j1, j2, ..., js)–
labeling. Let β∗j1,j2,...,js(G) denote the edge span over all L(j1, j2, ..., js)–
labelings ofG with optimal labeling numbers. (Clearly, βj1,...,js(G)≤ β∗j1,...,js(G)

for any graph.)
Pn × Pm gives an example for the above statement:
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β2,1(Pn × Pm) = 3 and β∗2,1(Pn × Pm) = 5 for n ≥ m ≥ 2.
An interesting question is, whether one can characterize those graphs for

which equality holds.
Examples: β2,1(Γ�) = β∗2,1(Γ�) = 5 and β2,1(ΓM) = β∗2,1(ΓM) = 7, where

Γ� and ΓM are the square and the triangular lattices. More about them is in
Chapter 5.

1.3.3 Critical graphs

We call a graph G λj1,j2,...,js−critical if λj1,j2,...,js(G) > λj1,j2,...,js(H) for every
proper subgraph H of G.

This topic has not been studied well so far. Some results are in [29].

1.3.4 (p, q)−total labeling

The notion of (p, q)−total labeling is introduced by Havet and Yu [30].

Definition The (p, q)−total labeling of the graph G is an assignment f from
the vertex set and the edge set to the set of nonnegative integers such
that |f(x) − f(y)| ≥ p if x is a vertex and y is an edge incident to x,
and |f(x)−f(y)| ≥ q if x and y are a pair of adjacent vertices or a pair
of adjacent edges for all x and y in V (G) ∪ E(G).

The (p, q)−total labeling problem asks the minimum k among all possible as-
signments V (G)∪E(G)→ {0, ..., k}. This minimum value is the (p, q)−total
labeling number and is denoted by λTp,q(G).

It is a special case of L(p, q)−labeling, because a (p, q)−total labeling of
G corresponds to an L(p, q)−labeling of the incidence graph of G where the
incidence graph of G is the graph obtained from G by replacing each edge
(vi, vj) with two edges (vi, vij) and (vij, vj) after introducing one new vertex
vij.
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Some bounds for (p, 1)-total labeling numbers

• [30] λTp,1(G) ≥ ∆ + p− 1

• [30] λTp,1(G) ≥ ∆ + 1 if p ≥ ∆

Definition The smallest number of colors needed to color each edge of a
graph G such that no two edges incident on the same vertex get the
same color, is called the chromatic index of G.

• [30] λTp,1(G) ≤ min{2∆ + p− 1, χ(G) + χ′(G) + p− 2} for any graph G
where χ(G) and χ′(G) denote the chromatic number and the chromatic
index of G, respectively. A consequence of this is that λTp,1(G) ≤ ∆ +

p+ 3 for any planar graph G (by the Four-Color Theorem).

• [30] λTp,1(Kn) ≤ n+ 2p− 2

• [31] λTp,1(G) ≤ ∆ + p+ s for any s−degenerate graph (by χ(G) ≤ s+ 1

and χ′(G) ≤ ∆ + 1), where an s−degenerate graph G is a graph which
can be reduced to a trivial graph by successive removal of vertices with
degree at most s.

• [32] λTp,1(G) ≤ ∆ + p+ 1 for any outerplanar graph other than an odd
cycle.

(p, q)-total labeling of trees The next upper and lower bounds are from
[33]:

Upper bounds If p = q+r for r ∈ {0, 1, ..., q−1} and ∆ > 1 (respectively,
∆ = 1) then λTp,q(T ) ≤ p + (∆ − 1)q + r holds and this bound is tight
(respectively, λTp,q(T ) = p + q). If p ≥ 2q then λTp,q(T ) ≤ p + ∆q holds and
this bound is tight. If p ≥ ∆q then λTp,q(T ) = p+ ∆q.
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Lower bounds If q ≤ p < (∆ − 1)q then λTp,q(T ) ≥ p + (∆ − 1)q holds
and this bound is tight. If p = (∆ − 1)q + r for r ∈ {0, 1, ..., q − 1} then
λTp,q(T ) ≥ p + (∆ − 1)q + r holds and this bound is tight. If p ≥ ∆q then
λTp,q(T ) = p+ ∆q.

• The (p, q)−total labeling problem with p ≤ 3q
2
for trees can be solved in

linear time. If ∆ ≥ 2, we have λTp,q(T ) ∈ {p+(∆−1)q, p+(∆−1)q+r}.
If 3q

2
> p > q and ∆ ≥ 4 then λTp,q(T ) = p+ (∆− 1)q holds if and only

if no two vertices with degree ∆ are adjacent.

• In the case of p = 2q, the condition that no two vertices with degree ∆

are adjacent, is sufficient for λTp,q(T ) = p + (∆− 1)q, while in the case
of p > 3q

2
and p 6= 2q, this condition is not sufficient.

• For any two nonnegative integers p and q the L(p, q)−labeling problem
for trees can be solved in polynomial time if ∆ = O(log

1
3 |I|) where

|I| = max{|V (T )|, log(p)}. Particularly, if ∆ is a fixed constant, it is
solvable in linear time.

1.3.5 Algorithmic complexity

It was already known from [2] that the decision version of L(2, 1) – that is,
the input consists of a graph G and an integer k, and the question is whether
λ2,1(G) ≤ k holds – on unrestricted input graphs is NP-complete (This is
obtained by a double reduction from the HAMILTONIAN PATH problem.
This problem asks whether a graph has a Hamiltonian path or not.). But
the algorithmic complexity of distance-constrained labeling with two levels of
conditions is an interesting issue even for trees. Restricting the input graphs
to trees, the L(2, 1)−labeling problem becomes solvable in polynomial time
using an algorithm of Chang and Kuo [9]. With some modifications, this
algorithm can handle L(j1, 1)−labelings [10], too, and not only on trees but
also on the slightly wider class of graphs which can be transformed to a tree
by removing at most p edges for some fixed p.
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In contrast to this, Fiala, Golovach and Kratochvíl proved that the deci-
sion version of the L(j1, j2)−labeling problem is NP-complete on trees when-
ever j1 is not a multiple of j2. (Otherwise it is reducible to L( j1

j2
, 1), which is

solvable efficiently as mentioned above.)
The L(2, 1)−labeling problem still remains NP-hard for planar graphs,

bipartite graphs, split graphs and chordal graphs [34], even for graphs of
treewidth 2 [35]. In the case of planar graphs, determining the existence of a
k−L(2, 1)−labeling is NP-hard for k ≥ 4, while it can be done in polynomial
time for k ≤ 3 [36].

We know that the L(2, 1)−labeling number of a star K1,p is p + 1. In a
labeling of this span the central vertex gets either 0 or p+ 1, and exactly one
of its neighbors gets the other label. Hence the L(2, 1)−labeling number of
a p−regular graph (p ≥ 3) is bigger than p + 1. But the decision question,
whether a p−regular graph admits an L(2, 1)−labeling of span at most p+2,
is NP-complete for any integer p ≥ 3 [37].

1.3.6 Radio number

An interesting particular case of L(j1, j2, ..., js)−labeling is called radio labeling ,
defined with the condition j1 = diam(G), j2 = diam(G)− 1,..., jdiam(G) = 1,
where diam(G) stands for the diameter of G. In other words, denoting the
distance of two vertices u and v by dist(u, v), the assignment ϕ : V →
{0, 1, 2, ...} is required to satisfy the inequality

|ϕ(u)− ϕ(v)| ≥ diam(G) + 1− dist(u, v)

for all vertex pairs u, v. The radio number of G, denoted by rn(G), is the
minimum span of a radio labeling of G. That is, rn(G) = λd,d−1,...,1(G),
where d = diam(G).

The notion of radio number was introduced by Chartrand, Erwin, Harary
and Zhang in [38], and has been studied for many kinds of graphs, including
paths and cycles [39], powers of paths and cycles [40, 41, 42], spider graphs
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[43] and some Cartesian product of some graphs [44, 45, 46, 47, 48, 49]. A
brief summary of the known results with the related references is given by
the subsection 7.4 of the survey [50].

In the present context the most important citations are Liu’s paper [43]
for a general lower bound on the radio number of trees, and the work of
Li, Mak ang Zhou [51] who determined the radio number of complete m-ary
(rooted) trees.
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Part III

New theoretical results in
distance-constrained labeling
One structure I dealt with is the level-wise regular tree. I focused on the
radio labeling of trees. The structure of level-wise regular trees is favorable
to study since it helps getting sharp upper bounds. I used exactly this feature
in order to determine the values that I present with the associated proofs in
Section 2. I used a similar trick for an other graph class as well, namely, for
the unit interval graphs. Section 3 is about my results according to them.

2 Radio labeling of level-wise regular trees

Level-wise regular trees As mentioned above, Li, Mak and Zhou deter-
mined the radio number of complete m-ary rooteed trees. Every such tree
has even diameter, moreover the degree of its root is smaller (by 1) than that
of all the other non-leaf vertices. Therefore one of our goals was to prove a
result, analogous to the one of [51], for trees in which all internal vertices
have the same degree and the diameter is unrestricted. We establish this
by considering a more general class of trees. In this way our theorem also
includes that of for m ≥ 3 as a particular case.

It is well known that every tree T = (V,E) has a central vertex r or a
central edge r′r′′, depending on the parity of the diameter diam(T ). Setting
L0 = {r} if diam(T )=2h is even, and L0 = {r′r′′} if diam(T )=2h+ 1 is odd,
every vertex of T is at distance at most h =

⌊
1
2
diam(T )

⌋
apart from L0.

Define the level sets of T as Li = {v ∈ V | dist(v, L0) = i, for 1 ≤ i ≤ h.
The vertices v ∈ Li will be referred to as i − vertices for i = 0, 1, 2, ..., h.

The value h represents the height of the structure with respect to the central
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level L0. This h is either the radius of T (if diam(T ) is even) or the radius
minus 1 (if diam(T ) is odd).

We say that T is level-wise regular if all i−vertices have the same degree,
say mi, for every i = 0, 1, 2, ..., h. In particular, a complete m-ary tree is
represented with the values m0 = m, m1 = m2 = ... = mh−1 = m + 1

and mh = 1, while internally m−regular complete trees are represented with
m0 = m1 = ... = mh−1 = m and mh = 1. Note that all leaves are at the
same distance from L0 in every level-wise regular tree.

We always have mh = 1 by definition, hence a level-wise regular tree of
height h is characterized by an ordered h−tuple (m0,m1, ...,mh−1). We use
the notation T 1

m0,m1,...,mh−1
for the tree uniquely identified by (m0,m1, ...,mh−1)

with |L0| = 1 (having even diameter 2h), and T 2
m0,m1,...,mh−1

for the tree iden-
tified by (m0,m1, ...,mh−1) with |L0| = 2 (having odd diameter 2h + 1). In
either case, the superscript indicates the cardinality of L0.

We determined the exact value of λd,d−1,...,1(T pm0,m1,...,mh−1
) with p = 1, 2

for every d ≥ 1 and for all level-wise regular trees in which mi ≥ 3 holds
for all 0 ≤ i ≤ h − 1 where d = diam(T ) and h =

⌊
d
2

⌋
. In particular, for

internally regular complete trees we have:

Theorem 1 Let d ≥ 3 and m ≥ 3 be integers, and let h =
⌊
d
2

⌋
. Then for the

internally (m+ 1)-regular complete trees with diameter d and height h
we have:

(a) If d = 2h then the complete tree T with a central vertex and pa-
rametersm0 = m+1 andm1 = ... = mh−1 = m has λd,d−1,...,1(T ) =

1 +
∑ d

2
−1

i=0 ((m+ 1) ·mi · (d− 1− 2i)) = mh + 4mh+1−2hm2−4m+2h
(m−1)2

.

(b) If d = 2h + 1 then the complete tree T with a central edge and
parameters m0 = m1 = ... = mh−1 = m has λd,d−1,...,1(T ) =∑ d−1

2
i=0 (2 ·mi · (d− 2i))− d = 2mh + 6mh+1−2mh−(2h+1)m2−4m+2h+1

(m−1)2
.

It is interesting to compare these formulas with the one derived in [51]; I
shall put some comments of this kind in the concluding section.
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The cited results on paths and complete binary trees indicate that allowing
mi = 2 changes the problem in a substantial way and leads to different for-
mulas. Nevertheless, we stated and proved the lower bound under the weaker
restrictionmi ≥ 2 (that is written in a later paragraph), because some combi-
nations of larger degrees may still allow the formula to be tight. It remains an
open problem for future research to analyze which h-tuples (m0,m1, ...,mh−1)
correspond to cases of equality.

2.1 Lower bounds from weighted powers of graphs

The aim of the first part of this section is to indicate a way how lower bounds
on rn(G) and more generally on λj1,j2,...,jd(G) can be obtained. The second
part applies the idea for level-wise regular trees. In a later section it is proved
that the derived bounds are tight in many cases.

Let the ordered d−tuple j=(j1, j2, ..., jd) of integers be given, and let
G = (V,E) be a graph. The dth power of graph G, denoted by Gd, is
traditionally defined as the graph whose vertex set is V and two vertices are
adjacent in Gd if and only if their distance in G is at most d. Denoting by Ed

the edge set of Gd, we define the weight function wj : Ed → {j1, j2, ..., jd} as
wj(u, v) = ji ⇐⇒ dist(u, v) = i for each edge (uv) ∈ Ed. Hence, the edge
weights precisely express the lower bounds on the differences between vertex
labels, as prescribed by j.

Once the values of j1, j2, ..., jd are understood, we shall simplify the no-
tation from wj to w by writing Gd

w = (V,Ed, w), and call Gd
w the weighted

power graph of G. In fact the precise term would be “weighted dth power
graph with respect to j1, j2, ..., jd” but the parameters are assumed to be
given throughout.

Lower bounds for radio labeling The relevance of Gd
w in the context of

radio labeling is shown by the following assertion.

Proposition 2 For every graph G, the value of rn(G) is at least as large as
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the minimum weighted length of a Hamiltonian path in Gd
w, where d is

the diameter of G.

Proof Observe that in a radio labeling no two vertices can get the same
label. For this reason, the weighted power graph for radio labeling is a
complete graph equipped with positive edge weights. Every radio labeling of
G defines a total order on the vertex set by increasing labels, and hence we
obtain a Hamiltonian path of G in a natural way by this order. Moreover,
consecutive vertices differ in their labels by at least as much as the weight of
the edge joining them.

It is important to note that equality does not always hold. For instance, if
P = v1v2v3v4v5 is the path of length 4, then rn(P ) = 10 holds as a particular
case of the formula rn(P2k+1) = 2k2 + 2 from [39] . On the other hand, since
the weight of an edge (vivj) is equal to n − |i − j|, the Hamiltonian path
v3v5v1v4v2 in P 4

w has weight 3+1+2+3=9. The point is that Hamiltonian
paths take only the consecutive vertex pairs into account, while in a radio
labeling on all pairs. Indeed, the subpath v5v1v4 has length 3, but v5 and v4

should differ by at least 4 in label.
We next observe that the lower bound in Proposition 2 can be refined to

a tight estimate.

Proposition 3 For every graph G, the value of rn(G) is equal to the small-
est possible weighted length of a longest directed path taken over all
transitive orientations of Gd

w, where d is the diameter of G.

Proof Let ϕ : V → {0, 1, ..., rn(G)} be a minimum-span radio labeling of
graph G = (V,E). Since no two vertices can get the same label, ϕ defines
a natural ordering on V . We index the vertices in the increasing order of
labels, that is 0 = ϕ(v1) < ϕ(v2) < ... < ϕ(vn) = rn(G). Orienting each edge
of Gd

w from smaller index to larger one, the weighted length of any oriented
path is at most the difference of labels of its two ends, therefore no path
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longer than rn(G) can occur.
Conversely, let v1, v2, ..., vn be the vertex order generated by a transitive

orientation of Gd
w, and suppose that the maximum weighted length of a

directed path in this orientation is `. Define ϕ(v1) = 0 and compute the
vertex labels recursively by the rule

ϕ(vi) = d+ 1 + max
1≤j≤i−1

(ϕ(vj)− dist(vi, vj)) (3)

for i = 2, 3, ..., n. This is a radio labeling of G because the separation con-
straint is respected between any two vertices. Moreover, a path of weighted
length ϕ(vn) exists; it can be identified by backtracking. Indeed, each vi with
i > 1 attains equality in (3) for some j = ji < i, and therefore making one
such edge (vj, vi) for each i, there exists a monotone decreasing path from vn

to v1. Consequently, we have rn(G) ≤ ϕ(vn) ≤ `.

2.2 Lower bound for level-wise regular trees

Given an h-tuple (m0,m1, ...,mh−1), let us use the simplified notation T 1 and
T 2 for the level-wise regular trees T 1 = T 1

m0,m1,...,mh−1
, T 2 = T 2

m0,m1,...,mh−1
.

Under the stricter assumption mi ≥ 3 for all 0 ≤ i < h, Propositions
2 and 3 will turn out to be equivalent for each T 1 and T 2. Using those
propositions, we derive the following general lower bound:

Theorem 4 If h ≥ 1 and m0,m1, ...,mh−1 ≥ 2, then

λd,d−1,...,1(T 1) ≥ (d+1)(n−1)+1−2·
h∑
i=1

(m0·i·
∏

0<j<i

(mj−1)) (4)

and

λd,d−1,...,1(T 2) ≥ d(n−1)−4·
h∑
i=1

(i·
∏

0≤j<i

(mj−1)) (5)
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for d = 2h and d = 2h+ 1, respectively.

Proof Although the ideas are very similar in the arguments for d even and
odd, there are some differences and it is convenient to split the proof into
two parts according to the parity of d. In either case, we denote

n =
h∑
i=0

|Li|,

the number of vertices.
Case 1: d = 2h

We have |L0| = 1 and

|Li| = m0 ·
∏

0<j<i

(mj − 1)

for i = 1, ..., h. Moreover, the distance between an i′-vertex v′ and an i′′-
vertex v′′ has the upper bound

dist(v′, v′′) ≤ i′+i′′, (6)

therefore the edge v′v′′ in (T 1)dw has weight at least d+1−(i′+ i′′). We define

`(v) = `i =
d+ 1

2
− i = h+

1

2
− i

for every i−vertex v, for any i = 0, 1, ..., h.
Let P = v1v2...vn be any Hamiltonian path of (T 1)d. Due to inequality

(6), the weight of any edge (vjvj+1) for two consecutive vertices in P is at
least `(vj) + `(vj+1). Internal vertices of P occur in two such pairs, while the
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two ends occur in just one pair each. Consequently,

λd,d−1,...,1(T 1) ≥ min
v1v2...vn

(
n∑
j=1

2`(vj))− `(v1)− `(vn)

= (
h∑
i=1

(d+ 1− 2i) · |Li|)− `0 − `1)

= (d+ 1)n− d− 2 ·
h∑
i=1

(m0 · i ·
∏

0<j<i

(mj − 1)

where minimum in the first line is taken over all permutations (v1, v2, ..., vn)
of the vertices. This completes the proof of (4).

Case 2: d = 2h+ 1

In this case |Lo| = 2 and

|Li| = 2 ·
i−1∏
j=0

(mj − 1)

for i = 1, ..., h. Moreover, since the deepest level is L d−1
2

instead of L d
2
, also

the upper bound on the distance between an i′-vertex v′ and an i′′-vertex v′′

is slightly different:

dist(v′, v”) ≤ i′+i”+1, (7)

the ”+1” term being due to the central edge. For this reason, the edge (v′v′′)

in (T2)dw now has weight at least d− (i′ + i′′). We therefore define

`(v) = `i =
d

2
− i = h+

1

2
− i

for every i-vertex v, for any i = 0, 1, ..., h. Notice that the formula is un-
changed as a function of h, but it is somewhat different when viewed as a
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function of d.
The next observations are analogous to those for T 1 above. Let P =

v1v2...vn be any Hamiltonian path of (T 2)d. Due to inequality (7), the weight
of any edge (vjvj+1) for two consecutive vertices in P is at least `(vj)+`(vj+1).
Internal vertices of P occur in two such pairs, while the two ends occur in
just one pair each. Note that we now have two 0-vertices. Consequently,

λd,d−1,...,1(T 2) = min
v1v2...vn

(
n∑
j=1

2`(vj))− `(v1)− `(vn)

≥

(
h∑
i=0

(d− 2i) · |Li|

)
− 2`0

= dn− d− 2 ·
h∑
i=1

(
2i ·

i−1∏
j=0

(mj − 1)

)

where minimum in the first line is taken over all permutations (v1, v2, ..., vn)
of the vertices.

This proves (5) and also completes the proof of the theorem.

2.3 Tightness of the lower bound

This subsection is about the proof that the lower bounds presented in the
previous subsection can be attained with equality with a suitable permutation
of the vertices, whenever a complete tree does not contain vertices of degree
2.

Proof of tightness

Theorem 5 If mi ≥ 3 for all 0 ≤ i < h, then equality holds in the inequali-
ties (4) and (5) of Theorem 4.

Proof We construct suitable vertex orders attaining equality for both d

even and odd. In fact the case of even d will be crucial, from which we can
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build a permutation for odd d, too.
With standard terminology, for an i-vertex v ∈ Li the unique neighbor of

v in Li−1 is its parent (if 1 ≤ i ≤ h) and its neighbors in Li+1 are its children
(if 0 ≤ i ≤ h− 1). We say that a vertex u is an ancestor of v if u is on the
path from v to the root. In particular, by this definition, v is considered to
be an ancestor of itself, too.

We recall that `i = h+ 1
2
− i has been defined in the proof of Theorem 4;

it is d+1
2
− i if d is even, and d

2
− i if d is odd.

Case 1: d = 2h

We prove that there exists an order of the vertices v1, v2, ..., vn such that
the labeling ϕ defined with the rules

ϕ(v1) = 0, ϕ(vi) = ϕ(vi−1) + `(vi−1) + `(vi) for i = 2, ..., n (8)

is an L(d, d− 1, ..., 1)−labeling of T = T 1
m0,m1,...,mh−1

. The general scheme of
the order is

L0 − Lh − Lh−1 − ... − L2 − L1.

The crucial point is how to permute the vertices inside each level Li in a
way that the distance constraints are respected by all vertex pairs.

Viewing T as a rooted tree with root L0, let us mark the edges joining each
v ∈ Li (1 ≤ i ≤ h− 1) to its children in Li+1 with the integers 0, 1, ...,mi− 2;
from the root to L1 the marking ranges from 0 to m0 − 1. Then each v ∈ Li
(1 ≤ i ≤ h) is represented by the sequence

a(v) = (ai−1, ai−2, ..., a1, a0) = (ai−1(v), ai−2(v), ..., a1(v), a0(v))

of marks along the path from v to L0. From this, we denote m′0 = m0 and
m′i = mi − 1 for i = 1, ..., h− 1, and associate v with the number

31



s(v) = a0 + a1m0 + a2m0(m1 − 1) + ...+ ai−1m0(m1 − 1) · · · (mi−1 − 1)

=
i−1∑
k=0

(ak ·
∏

0≤j≤k−1

m′j)

which establishes a bijection between the elements of Li and the nonnegative
integers ranging from 0 to m′0 ·m′1 · · ·m′i−1 − 1. We then list each level i in
increasing order of s(v).

The vertex order obtained in this way satisfies the following important
separation properties:

• any m0 non-root vertices are mutually separated by the root in T ;

• any m0(m1 − 1) consecutive vertices of L2 ∪ ... ∪ Lh have mutually
distinct ancestors in L2;

• in general, if two vertices vp and vq in ∪i≤j≤hLj have the same ancestor
in Li, then |p− q| ≥

∏i−1
k=0m

′
k.

In other words, in the vertex order defined above, any |Li| consecutive vertices
of Li ∪ Li+1 ∪ ... ∪ Lh have mutually distinct ancestors in Li.

The vertices are then labeled recursively by the rule (8). Between two
consecutive i-vertices it means difference d + 1 − 2i, and between the last
vertex of Li+1 and the first vertex of Li it means difference d− 2i.

Consider any two vertices, say an i′-vertex v′ and an i′′-vertex v′′. Assume
that their lowest common ancestor z is an i-vertex; that is, the ancestors of
v′ and v′′ in Li+1 are distinct. (In particular, it is allowed that z ∈ {v′, v′′}
and i ∈ {i′, i′′}.) Due to the separation property above and the assumption
mi ≥ 3, the difference of labels of v′ and v′′ is at least

`i′ + `i” + |Li| − 1 ≥ d+ 1− i′ − i′′ + (3 · 2i−1 − 1) ≥ d+ 1− i′ − i′′ + 2i,

32



while the distance of v′ and v′′ in T is precisely i′+ i′′−2i. Thus, ϕ is a radio
labeling indeed. Since the span of ϕ is equal to the lower bound in (4), the
labeling is optimal. This completes the proof for d even.

Case 2: d = 2h+ 1

Removing the central edge from T 2
m0,m1,...,mh−1

we obtain two isomorphic
complete trees, say T ′ and T ′′, of even diameter d − 1 = 2h. Compared to
the case of T 1, the difference is that now the roots of T ′ and T ′′ have degree
m0 − 1, which is allowed to be as small as 2. We construct the vertex order
of T 2

m0,m1,...,mh−1
as follows:

• the sequence begins with the root of T ′ and ends with the root of T ′′;

• the vertices of T ′ and T ′′ alternate;

• the subsequence consisting of the vertices of T ′ is in the order

L0 − Lh − Lh−1 − ... − L2 − L1

with the separation property that any
∏i−1

j=0(mj−1) consecutive vertices
in Li ∪ Li+1 ∪ ... ∪ Lh from T ′ have mutually distinct ancestors in Li;

• the subsequence consisting of the vertices of T ′′ is in the inverse order

L1 − L2 − ... − Lh−1 − Lh − L0

satisfying the same separation property as prescribed for T ′.

By the explicit construction for even diameter, such an order exists. We
index the vertices as v1, v2, ..., vn along this order. Also here we apply the
rule (8) to define the labeling ϕ.

To show that ϕ is a radio labeling, observe first that if v′∈ T ′ is an i′-vertex
and v”∈ T ′′ is an i′′-vertex, then their distance is precisely i′ + i′′ + 1, just
because they are on different sides of the central edge of L0. So they have to
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satisfy the inequality

|ϕ(v′)− ϕ(v′′)| ≥ (d+ 1)− (i′ + i′′ + 1) = `(v′) + `(v′′).

This requirement obviously holds by (8).
Suppose that the i′-vertex v′ and the i′′-vertex v′′ belong to the same

branch of T , say without loss of generality that both of them are in T ′.
Assume that their lowest common ancestor is an i-vertex. Then their distance
is i′ + i′′ − 2i and hence they should satisfy

|ϕ(v′)− ϕ(v′′)| ≥ (d+ 1)− (i′ + i′′ − 2i) = `(v′) + `(v′′) + 2i+ 1.

Now again, the terms `(v′) + `(v′′) are ensured by (8), thus it will suffice to
show that there are at least 2i + 1 vertices between v′ and v′′ in the vertex
order. Since the vertices alternate between T ′ and T ′′, we need i intermediate
vertices from T ′. The requirement holds indeed, as implied by the separation
property: (

∏i−1
j=0(mj − 1))− 1 ≥ 2i − 1 ≥ i for any integer i. This completes

the proof of the theorem.

2.4 A further open problem

It remains an interesting open problem to extend the study to labelings
in which the constraints involve only a range of distances smaller than the
diameter:

Problem Let m ≥ 3, d ≥ 3 and h > d
2
be given integers. Determine

λd,d−1,...,1(T ) for the trees T = T 1
m,...,m and T = T 2

m,...,m of height h.

In the following an approach is sketched which yields only a suboptimal
solution for the radio number but may be useful in attacking the problem
above.
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Alternative vertex orders and larger diameter

The following construction is for the internally regular complete trees T =

T 1
m,...,m with even diameter d = 2h. This arrangement of vertices is based

on an approach totally different from the one given in the previous section.
It yields a span d

2
larger than optimal, but seems to offer a higher degree of

flexibility and may turn out to be useful in handling related questions like
the above problem.

Here the general principle of ordering the vertices is inserting them level
by level. The numerical basis of the insertion procedure is the following
observation. Independently of the actual height, the number of leaves equals
m− 2 times the number of internal vertices, plus 2; that is,

|Li| = 2 + (m− 2) ·
i−1∑
j=0

|Lj|

for any 1 ≤ i ≤ h. Then the first few steps of the insertions are as follows:

• First, list the m + 1 vertices from the levels 0 and 1, L0 ∪ L1, so that
the root vertex from L0 is placed at the beginning.

• Between any two 1-vertices insert exactly m − 2 vertices of L2 which
are pairwise separated by the root from each other and from the two
1-vertices.

• Between the root and the first 1-vertex, as well as after the last 1-vertex,
insert m − 1 vertices of L2 which are pairwise separated by the root
from each other and from the 1-vertex.

• To describe the general step, it is convenient to introduce the following
terminology: In a linear arrangement of the vertices, which begins with
L0, an i-interval means a segment starting and also ending with a
vertex from ∪1≤j≤iLj and containing no vertices from ∪1≤j≤iLj other
than the first and the last one in the segment; and we also use the term
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i-interval for the closing segment which starts with the last vertex of
∪1≤j≤iLj in the given vertex order. So the number of i-intervals is
precisely

∑
1≤j≤i |Lj| for every i = 1, 2, ..., h. When inserting the next

level Li+1 into the sequence, the quantitative condition is:

• The first and the last i−intervals contain m−1 vertices from Li+1, and
each of the other i−intervals contains m− 2 vertices from Li+1.

We prescribe the following general separation property, which has to hold for
all pairs k, l of the parameters (1 ≤ l ≤ k ≤ h).

• If two vertices are on levels at most k and their lowest common ancestor
is on level l, then they are in different (k − l)−intervals.

It can be verified by an argument along the lines of Subsection 2.3 that this
requirement is sufficient to ensure that the rule (8) defines a radio labeling
from such a vertex order, whenever m ≥ 3.

2.5 Internally regular trees vs. complete m−ary trees

It is interesting to make a comparison between the radio numbers of internally
regular trees and complete m−ary trees. Li, Mak and Zhou proved that the
complete m−ary tree of height h – that is, the complete tree with a central
vertex and with m0 = m and m1 = ... = mh−1 = m+ 1 has radio number

λd,d−1,...,1(Tm,...,m) = mh+
3mh+1 −mh − 2hm2 + (2h− 3)m+ 1

(m− 1)2
. (9)

This graph has m branches originating from the central vertex, while the
internally (m+ 1)−regular tree in (1) has m+ 1 branches of the same shape.
Multiplying the radio number of (9) by m + 1 and the one of (1) by m, the
difference is just 1 (the latter is smaller). On the other hand, the internally
regular complete tree in (2) with odd diameter consists of two disjoint copies
of the complete m−ary tree of the same height, plus an edge joining the
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roots of those subtrees. Here, instead of saving, the span in (2) requires an
additive term 2h− 1 exceeding the double of (9).

The analogous question is of interest more generally for non-constant
sequences (m0,m1, ...,mh−1) of vertex degrees, too.

2.6 Algorithm

In this subsection I present an algorithm for a decision problem. The in-
put is a tree T and an integer λ. The question is whether the tree can be
L(j, j − 1, ..., 1)–labeled with integers not bigger than λ.

First, set up a postorder sequence of the vertices. Record a list for every
vertex. We call the subtree induced by a vertex and its descendants the
subtree of this vertex. And we call the subtree induced by a vertex and
its descendants not deeper than j − 1 from it the (j − 1)−subtree of the
vertex. In a list there should be stored all proper L(j, j − 1, ..., 1)−labelings
of the (j − 1)−subtree of the actual vertex which can be extended for its
whole subtree. All information needed can be derived from the descendants,
because they were visited in postorder.

• Test every combination of the proper labelings of the (j − 1)−subtrees
of the children and every label (0, 1, ..., λ) for the actual vertex. Save
the combinations which label the complete subtree properly, into the
list of the actual vertex j − 1 depth.

• If a list of any vertex is left empty, stop the algorithm and the answer is
NO. Namely if there is a subtree that cannot be labeled by the integers
0, 1, ..., λ then the whole tree cannot be labeled either. But if no such
a vertex exists, the algorithm does not stop before the testing of the
root and also its list becomes non-empty and then the tree has a proper
L(j, j − 1, ..., 1)−labeling. Therefore the answer is YES.

In the case of answer YES the proper labeling (labelings) can be given based
on the lists. If we consider the maximum degree ∆ as a parameter then
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the size of a (j − 1)−subtree is bounded. Thus, the number of steps in the
algorithm is at most C · λ(∆j) with an appropriate constant C.

3 L(j, j−1, ..., 2, 1)–labeling of unit interval graphs

Interval graphs and specially unit interval graphs have been introduced in
1.1.6. Based on the proof for their L(2, 1)−labeling number I gave an upper
bound for their L(j, j−1, ..., 2, 1)−labeling number. In this chapter I present
this result.

3.1 Circular L(j, j − 1, ..., 2, 1)−labeling of paths

For determining the bound for unit interval graphs an upper bound for the
circular L(j, j − 1, ..., 2, 1)−labeling number of paths is also needed. Cir-
cular labeling means that the possible labels are the natural numbers on a
circle from 0 to k − 1 (actually, the value of k corresponds to 0), and the
length of both sections on the circle between two vertices v and u have to
be at least jdist(u,v). A proper circular labeling of the graph G on the cir-
cle of circumference k is called a k−circular L(j, j − 1, ..., 2, 1)−labeling of
G. λCj,j−1,...,2,1(G) is the smallest k, for which G has a k−circular L(j,j − 1,

..., 2, 1)–labeling.

Proposition 1 If j is odd then λCj,j−1,...,2,1(P ) ≤ (j+1)2

2
and if j is even then

λCj,j−1,...,2,1(P ) ≤ j·(j+3)
2

, where P is a path of arbitrary length.

Proof We get a proper k−circular labeling of G (k = (j+1)2

2
or j·(j+3)

2
) when

giving labels to the vertices in sequence in such a way that

c(v) = c(left neighbor of v) + j (mod λ)

for every vertex v.
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For showing the correctness of the above method we must see that the
difference of labels of any two vertices at distance x is at least j + 1 − x.
There are several cases:

1. c(v2) = c(v1)+xj (no reduction between v1 and v2):x ≥ 1=⇒ x(j+1) ≥
j + 1 =⇒ xj ≥ j + 1− x.

2. c(v2) = c(v1) + xj − k and xj < k: c(v2) < c(v1) =⇒ |c(v2)− c(v1)| =
c(v1) − c(v2) = k − xj. If j is odd then k = (j+1)2

2
holds: j+1

2
≥ 1 =⇒

j+1
2
·(j+1−2x) ≥ j+1−2x =⇒ (j+1)2

2
−(j+1)x ≥ j+1−2x =⇒ k−jx ≥

j+ 1− x. If j is even then k = j·(j+3)
2

= j2+3j
2

> j2+2j+1
2

= (j+1)2

2
holds.

Because of the inequality for odd j also the inequality for even j will be
correct, namely in the last inequality k− jx > (j+1)2

2
− jx ≥ j + 1− x.

3. k ≤ xj < 2k: c(v2) = c(v1) + xj − k holds also in this case, but
c(v2) ≥ c(v1) =⇒ |(c(v2) − c(v1)| = c(v2) − c(v1) = xj − k: If j is

odd then xj ≥ (j+1)2

2
= j2+2j+1

2
=⇒ x ≥

⌈
j+2+ 1

j

2

⌉
holds, because

x ∈ N =⇒ x ≥ j+3
2

=⇒ x− j+1
2
≥ 2

2
= 1 =⇒ x(j+1)− (j+1)2

2
≥ j+1 =⇒

xj− (j+1)2

2
≥ j+1−x. If j is even then xj ≥ j·(j+3)

2
=⇒ x ≥ j+3

2
holds.

We use the inequality for odd j again, and the statement is proved.

4. xj ≥ 2k =⇒ xj ≥ (j + 1)2 and xj ≥ j(j + 3) =⇒ x > j. In this case
there is no restriction.

So the difference of the labels of each pair of vertices meets the requirements.

3.2 An upper bound for the L(j, j − 1, ..., 2, 1)−labeling

number of unit interval graphs

Unit interval graphs are perfect, so χ = ω. I am going to give a lower and
an upper bound as a function of χ.

The lower bound is the L(j, j−1, ..., 2, 1)−labeling number of the complete
graph Kχ since each unit interval graph with clique number ω = χ contains
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it as a subgraph, and Kχ is a unit interval graph itself (this is important
because of the tightness). In this graph any two vertices are adjacent, hence
the difference is at least j between any two labels, so the labeling number is
j · (χ− 1).

For giving an upper bound one might examine a graph that contains
each unit interval graph with clique number χ as a subgraph. There exists
such a graph, namely the unit interval graph in which each χ vertices in the
simplicial order form a clique. In this graph an arbitrary vertex is adjacent
to those that are at least 1 and at most (χ− 1) away in the simplicial order,
its second neighbors are the vertices at least χ and at most (2χ − 2) away,
and in general its ith neighbors are at least (i − 1)(χ − 1) + 1 and at most
i · (χ− 1) away from it.

A proper L(j, j − 1, ..., 2, 1)−labeling procedure

• Since unit interval graphs are chordal, there exists a simplicial order of
the vertices of all such graphs. First, divide the simplicial order into
sections which cover it overlap-free and completely. Each section is
formed by χ or χ + 1 vertices. I discuss below how many vertices a
particular section contains. In each section the labels are in decreasing
order, the last label is at most j2

2
− 1 or (j−1)(j+2)

2
− 1 depending on

the parity of j. The difference of two consecutive labels is exactly
j2

2
or (j−1)(j+2)

2
. So, each section corresponds to a residue class of the

L(j−1, j−2, ..., 2, 1)−circular labeling number of the path of arbitrary
length. For simplicity, let the representative element of a residue class
be the smallest one.

• A residue class is assigned to each section as follows: The first one
shall belong to 0, the next one to (j − 1), and in general a section
belonging to x is followed by one belonging to (x + j − 1) mod j2

2
or

(x+ j − 1)mod (j−1)(j+2)
2

.
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• The length of a section: If the representative (the minimum) element
of a residue class belonging to a section is greater than the one of that
belonging to the previous (say the mod operation does not results in
reduction), then let this section contain χ vertices, otherwise (when the
mod operation results in reduction) χ+ 1 vertices.

The biggest label used It is easy to see that the biggest label used is
about j2

2
· χ or (j−1)(j+2)

2
· χ, respectively. The deviation depends on two

things: On the one hand, what residue classes occur, in other words which
is the greatest representative element at all. On the other hand, what is the
greatest element representing a section of length χ + 1, since the greatest
label in this section is the greatest at all. This is true, because the greatest
label of any section of length χ + 1 is greater than the greatest element of
any section of length χ. If the corresponding representative element is x,
then the greatest label is j2

2
· χ + x or (j−1)(j+2)

2
· χ + x. Reduction occurs

between two sections if and only if the representative element of the second
one is smaller than j − 1. Depending on the parity of j this is the following:

If j is odd: In this case 2 | (j− 1), so gcd(j− 1, (j−1)(j+2)
2

) = j−1
2
, because

j+2
2

is not an integer, while j−1
2

is. Hence, the representative elements of the
occurring residue classes are the integer multiplies of j−1

2
. j−1

2
itself is the

largest one of them, which is smaller than j − 1. Consequently, the largest
label used is (j−1)(j+2)

2
· χ+ j−1

2
.

If j is even: In this case 2 - (j − 1), so gcd(j − 1, j
2

2
) = 1, hence each

integer between 0 and j2

2
− 1 occurs as a representative element. j − 2 is the

largest one of them, which is smaller than j− 1. So, the largest label used is
j2

2
· χ+ j − 2.

An example: L(3, 2, 1)−labeling Our bound for the circular labeling
number of a path is (3−1)(3+2)

2
= 5. The labels of a unit interval graph with
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ω = χ are the following in the simplicial order:

5χ− 5 5χ− 10 ... 0 5χ− 3 5χ− 8 ... 2 5χ− 1 5χ− 6 ... 4

χ pcs Rc :0 χ pcs Rc :2 χ pcs Rc :4

5χ+ 1 5χ− 4 ... 1 5χ− 2 5χ− 7 ... 3 5χ 5χ− 5 ... 0

χ+ 1 pcs Rc :1 χ pcs Rc :3 χ+ 1 pcs Rc :0

It has to be shown that the above labeling procedure results in a proper
labeling, so the constraint is met for each pair of vertices. This can be done
as follows: Let an arbitrary vertex be given, it has a label assigned to it. We
check how far the vertices are that have labels differring by at most j − 1

from the label of the given vertex. Because of the symmetry it is enough to
examine only those vertices, which come later in the order. If a vertex is the
xth one in its section then in any other section the vertex closest in label is
the xth or the (x+1)th one. This smallest difference is equal to the difference
of the representative elements of the sections. If the two sections are the ath

and the bth one, then there are at least (b − a) · χ − 1 vertices between the
two examined vertices in the simplicial order. The exact value is depending
on the number of reductions between them. In other words, it means that
the second vertex is the (b− a) ·χth following one from the first vertex in the
simplicial order. Since (b − a) · χ > (b − a) · (χ − 1), the graph distance of
the vertices is greater than b− a.

The representative elements of their sections have been selected so that
their difference is at least (j− 1) + 1− (b−a) = j− (b−a). So the difference
is big enough. This argument is generally valid for all vertex pairs, hence
the constraint is met for any two vertices. This verifies the property of the
labeling scheme.
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Part IV

Application of Combinatorial
Optimization Methods
The distance-constrained labeling problem introduced so far is an interesting
graph theoretical problem. However, it cannot model a practical frequency
assignment problem properly because the discrete graph distances do not
reflect the real distances between transmitters. Hence it can only serve as
a coarse approximation. This fact was my motivation to study the topic
from the application point of view. In the following chapter I describe my
experiences.

4 New model for the frequency assignment prob-

lem

4.1 Linear programming and integer programming

The following introduction of the two combinatorial optimization methods
are based on the presentation in [52]. The goal of a linear programming
problem is to find a vector x ∈ Rn that fulfills all given inequalities in the
system Ax ≤ b and maximizes a certain objective function cTx, where A is
anm×n matrix and b ∈ Rm and c ∈ Rn are vectors. This problem is denoted
as linear program (LP), its standard form is

min cTx

s.t. Ax ≤ b

x ∈ Rn

.
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A vector x ∈ Rn that satisfies Ax ≤ b, is called a feasible solution. A feasible
solution that is maximal, is called an optimal solution.

The difference between a linear programming problem and an integer
programming problem is small but significant. Namely, the entries of the
solution vector x have to take integer values instead of reals. Formally, an
integer programming problem (IP) consists of finding a vector x ∈ Zn that
fulfills all given inequalities in the system Ax ≤ b and maximizes a certain
objective function cTx, that is

min cTx

s.t. Ax ≤ b

x ∈ Zn
.

The third condition is the integrality constraint. This makes the problem
much harder. The linear programming variant is namely solvable in poly-
nomial time, while an integer programming problem is in general NP-hard
[53]. Anyway, there are a few exact and heuristic algorithms that handle the
problem quite well, making some calculations possible.

4.2 Models for computing distance-constrained label-

ings

Here I start with an integer programming model for the classical problem.
Let the label of vertex v be represented by the integer variable c(v).

4.2.1 Integer programming formulation of the L(j1, j2, ..., js)–problem

The problem of finding an optimum L(j1, j2, ..., js)−labeling can be stated
as follows.

min L

1. L− c(v) ≥ 0 ∀ v ∈ V (G)
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2. |c(v)− c(u)| ≥ jdist(u,v) ∀u, v ∈ V (G) with dist(u, v) ≤ s

3. c(v) ≥ 0 ∀ v ∈ V (G)

4. c(v) ∈ Z ∀ v ∈ V (G)

Inequalities (1) model the min-max objective function and sominλj1,j2,...,js(G)

is computed. The distance constraints (2) for vertex pairs u and v can be
linearized in the standard way with additional binary variables zuv as

c(v)− c(u) +M · zuv ≥ jdist(u,v) ∀u, v ∈ V (G) with dist(u, v) ≤ s

c(u)− c(v) +M · (1− zuv) ≥ jdist(u,v) ∀u, v ∈ V (G) with dist(u, v) ≤ s

zuv ∈ {0, 1} ∀u, v ∈ V (G)

The number M has to be chosen big enough. Obviously M ≥ j1 +

λj1,j2,...,js(G) has to hold. If no good upper bound on λj1,j2,...,js(G) is known,
we just set M = n · j1.

4.3 New model

A possibility for making the model more practical would be to insert artificial
vertices to increase the distance between vertices closer to reality. This way
we preserve the discrete nature of the model, but the graph size is increased.

One could also allow real values as labels (leaving the graph and the dis-
tance unchanged). Since proper integer solutions remain feasible, the mini-
mum span is not bigger than in the classical model. Actually, this is the LP
relaxation of the model above.

It would be most precise to consider the complete graph on the transmit-
ters and to take the Euclidean distance between transmitters as edge weights.
Since the graph is finite, there is also only a finite number of occurring dis-
tances, and constraints can be formulated as above relative to a sequence
L(jdist1 , jdist2 , ..., jdistt).
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For the Euclidean model we can basically adopt the integer model with
two little changes. First, the variables c(v) are now continuous. Second, the
Euclidean distances have to be transformed to suitable right hand side values
for the inequalities (2). This will be accomplished by a function `(dist(u, v)).
The formulation of the Euclidean approach is the following.

minL

1. L− c(v) ≥ 0 ∀ v ∈ V (G)

2. c(v)− c(u) +M · zuv ≥ `(dist(u, v)) ∀u, v ∈ V (G) with dist(u, v) ≤ s

3. c(u)−c(v)+M ·(1−zuv) ≥ `(dist(u, v))∀u, v ∈ V (G)withdist(u, v) ≤ s

4. c(v) ≥ 0 ∀ v ∈ V (G)

5. zuv ∈ {0, 1} ∀u, v ∈ V (G).

4.4 Test instances

I am not aware of any research on solving distance-constrained labeling prob-
lems to optimality, so I took own generated benchmark problems. The goal
was to test the graph and the Euclidean model on instances which somehow
resemble the practical situation for real frequency assignment problems.

In radio and mobile networks large areas are usually covered by polygons
which together form lattices. In practice three lattices play a prominent role:
hexagonal, triangular and square lattices. Experiments have shown that the
covering by hexagons is the most economical one. In this case the trans-
mitters are assumed to at the centers of the hexagons and two transmitters
are adjacent in the graph if and only if the corresponding hexagons share a
common edge. The graph constructed this way is a triangular lattice.

In our experiments we performed computations with the Euclidean model
and with the graph model for three problem types arising from lattice graphs.
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The three lattice types shown in the figure were considered. For the graph
version the classical graph distance was taken, (e.g., the distance between
0 and 21 in the triangular lattice is 5). For the Euclidean version co-
ordinates were given to the vertices such that every edge shown in the
figure has length 1. So the coordinates for the vertices 0, 1 and 2 are
(−
√

3
2
,+3

2
), (+

√
3

2
,+3

2
), (−
√

3,+1) in the hexagonal lattice, (−2,+2), (−1,+2),

(0,+2) in the square lattice and (−2,+2), (−1,+2), (0,+2) in the triangular
lattice. (E.g., the distance between 0 and 1 in the hexagonal lattice is

√
3.)

The difference of the distance between two vertices in the Euclidean and
in the graph model can be small or 0, but also relatively high. Two vertices
with graph distance 4 could, for example, have Euclidean distance 4,

√
10 or√

8.
With the help of the transformation function ` we tried to have a sim-

ilar range of spans for the graph and the corresponding Euclidean model.
Of course, ` has to be monotonically decreasing. We experimented with
two variants for ` which in addition have the property that the values for
integer distances are preserved. i.e. `(dist(u, v)) = jdist(u,v) for dist(u, v)

integer. E.g., this is satisfied by defining `(dist(u, v)) = j + 1 − dist(u, v)

for L(j, j− 1, ..., 1)-labelings. Since the graph distances are not smaller than
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the Euclidean distances, the spans for the graph problems will be higher in
general.

4.5 First computational experiments

For our computation we considered the square lattice on 25 vertices, the
hexagonal lattice on 24 vertices and the triangular lattice on 23 vertices (as
depicted in the figure). The minimum spans have been computed with ILOG
CPLEX Version 12.4.

Linear transformation We first considered L(2, 1)- and L(3, 2, 1)-labelings
for the classical model and used `2(dist(u, v)) = 3−dist(u, v) and `3(dist(u, v)) =

4 − dist(u, v) in the respective Euclidean model. The distance of adjacent
vertices is 1 in both cases, the distance between non-adjacent vertices can
be the same as their graph distance, but also considerably smaller. Because
of this, the constraints for most vertex pairs are stronger in the Euclidean
model.

Table 1 gives the spans and running times (in min:sec or sec(s)) as ob-
tained with CPLEX. The spans between the models differ as expected. Sur-
prisingly, the running times for the Euclidean model are considerably higher.

Lattice `2(dist) = 3− dist L(2, 1) `3(dist) = 4− dist L(3, 2, 1)

Hexagonal 6.42 (1.69 s) 5 (0.08 s) 16.62 (30:38.7) 9 (0.29 s)
Triangular 9.78 (10.96 s) 8 (0.34 s) 21.91 (1731:23.0) 18 (2:47.3)
Square 8.64 (4.92 s) 6 (0.2 s) 19.91 (463:13.8) 11 (0.68 s)

Table 1 Spans and running times for the linear function
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Stepwise transformation With this type of function we want to map
the Euclidean distances to integer values, again preserving the value if the
distance is integer already.

Table 2 shows the possible Euclidean distances for the three lattices and
the corresponding graph distances.

For the hexagonal lattice here are some vertex pairs with Euclidean dis-
tance 3

√
3 and graph distance 6, and some with Euclidean distance 5 and

graph distance 7. For these pairs the graph distance is longer although the
Euclidean is shorter. For the square lattice there are for example pairs with
Euclidean distance 2

√
2 and graph distance 4, and some with Euclidean dis-

tance 3 and graph distance 3. For the triangular lattice there are no such
exceptions.

Hexagonal Triangular Square

Euclidean Graph Euclidean Graph Euclidean Graph

1√
3

2,
√

7

3, 2
√

3

4,
√

13,
√

19√
21, 3
√

3

5, 2
√

7

1

2

3

4

5

6

7

1

2,
√

3

3,
√

7

4,
√

13, 2
√

3√
19,
√

21

2
√

7

1

2

3

4

5

6

1

2,
√

2

3,
√

5

4,
√

10, 2
√

2√
13,
√

17

2
√

5, 3
√

2

5

4
√

2

1

2

3

4

5

6

7

8

Table 2 Euclidean and graph distances for the three lattices

Let f(x) denote the graph distance corresponding to the Euclidean dis-
tance (in the respective lattice). For L(2, 1)- and L(3, 2, 1)-labelings only the
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graph distances 1,2 and 3 have to be taken into account. For the respec-
tive pairs we set `2(dist(u, v)) = 3 − f(dist(u, v)) for L(2, 1)-labelings and
`3(dist(u, v)) = 4− f(dist(u, v)) for L(3, 2, 1)-labelings.

Table 3 shows spans and running times for these step functions. Although
the constraints are the same for each vertex pair in this case, the calculations
are still much slower in the Euclidean model. However, compared with the
previous function they have improved a lot.

Lattice `2(dist) = 3− dist L(2, 1) `3(dist) = 4− dist L(3, 2, 1)

Hexagonal 5 (0.6 s) 5 (0.08 s) 9 (1.6) 9 (0.29 s)
Triangular 8 (7.9 s) 8 (0.34 s) 18 (19:30.4) 18 (2:47.3)
Square 6 (6.5 s) 6 (0.2 s) 11 (1:08.9) 11 (0.68 s)

Table 3 Spans and running times for the step function

4.6 Model improvements

The computation times are not really satisfactory, so we examined several
possibilities for improving the model. They will be discussed in this sub-
section. All computation have been performed for the linear transformation
function.

4.6.1 Reducing the value of M

It is well-known that whenever a linear model contains a so-called big M , it
is usually advantageous to find the smallest possible value forM . A speed-up
of the computations can be expected. However, this is not guaranteed and
the effect can also be converse.
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Since the optimum values from the classical model are available, it is easy
to get goodM values for the Euclidean model. In the case `2(dist) = 3−dist
we set M∗

2 = 2 · λ2,1, while M∗
3 = 3 · λ3,2,1 in the case `3(dist) = 4− dist.

Table 4 gives the running times and comparisons with those of the com-
putations using the previous M value.

One can see that the modification works fairly well for the triangular
lattice, but rather poorly for the hexagonal lattice. For the square lattice we
have mixed results.

Lattice `2(dist) `3(dist)

Hexagonal 1.82 (107.7%) 110:51.9 (361.8%)
Triangular 8.88 (81.0%) 984:24.0 (56.9%)
Square 7.25 (147.4%) 353:42.8 (76.4%)

Table 4 Effect of new setting of M

Changing the order of the vertices In the optimum search algorithm
of the CPLEX also the order of the vertices plays a role. Therefore one
may want to try whether a new order would cause any improvement. We
considered reasonable to set up an order in which the successive vertices are
not close to each other in the lattices. For this we changed the numbering
according to the following table.
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Square: Triangular: Hexagonal:
1 → 1

2 → 23

3 → 20

4 → 12

5 → 9

6 → 6

7 → 3

8 → 25

9 → 17

10 → 14

11 → 11

12 → 8

13 → 5

14 → 22

15 → 19

16 → 16

17 → 13

18 → 10

19 → 2

20 → 24

21 → 21

22 → 18

23 → 15

24 → 7

25 → 4

1 → 1

2 → 6

3 → 11

4 → 16

5 → 21

6 → 13

7 → 18

8 → 3

9 → 8

10 → 5

11 → 10

12 → 15

13 → 20

14 → 23

15 → 17

16 → 2

17 → 7

18 → 12

19 → 9

20 → 14

21 → 19

22 → 22

23 → 4

1 → 1

2 → 4

3 → 16

4 → 20

5 → 24

6 → 22

7 → 14

8 → 18

9 → 9

10 → 11

11 → 8

12 → 12

13 → 3

14 → 5

15 → 2

16 → 6

17 → 19

18 → 23

19 → 15

20 → 13

21 → 17

22 → 21

23 → 7

24 → 10

In practice, we only had to shuffle the rows and columns of the distance
matrix properly. Unfortunately, in the end no improvement was observed.
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4.6.2 Strengthening the model

Valid inequalities The structure of valid inequalities is the same as
that of the other inequalities in the formulation. So, in a linear programming
formulation the left side is a linear combination of the variables, while the
right side is an integer/real number. In opposite to the defining inequalities
however, the formulation is right also without them. But every solution of
the input problem satisfies them. So, the inequalities in the above models
are straightforward and we are interested in strengthening them. Let G′ be
a node induced subgraph of G. If we consider feasible labelings for G′ then
any constraint on the labels for G′ is valid for all subgraphs of G isomorphic
to G′. In the following we have chosen the smallest possible sum of the labels
for G′ as constraint, i.e., if S is the smallest sum of feasible labels for G′ then
the inequality

∑
v∈V (H) c(v) ≥ S is valid for all subgraphs H of G isomorphic

to G′. We have experimented with several types of subgraphs.

Stars as subgraphs A star is a graph G = (V,E) such that E =

{vw|w ∈ V \ {v}} for some v ∈ V (center vertex of the star) and suppose
|V | = m. The sum of labels for a star is a lower bound for the sum of labels
of every subgraph containing a star. Consider an L(j1, j2, ...)-labeling. For
the star m labels have to be chosen such that the gap between the labels of
any two non-central vertices is at least j2. We distinguish three cases.

1. The label of the center is the smallest one. Then the labels are 0, j1,
j1 + j2, j1 + 2j2, j1 + 3j2,..., j1 + (m − 2)j2 summing up to (m − 1) ·
j1 +

∑m−2
i=1 i · j2.

2. The label of the center is the greatest one. Then the labels are 0, j2,
2j2,..., (m−2)j2, (m−2)j2 + j1 with sum (

∑m−2
i=1 i · j2)+(m−2)j2 + j1.

3. The central label is the (k + 1)st greatest label for somek ≥ 1. In this
case the labels are 0, j2, 2j2,..., (k− 1)j2, (k− 1)j2 + j1, (k− 1)j2 + 2j1,
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k · j2 + 2j1,..., (m− 3)j2 + 2j1 and their sum is
(
∑m−3

i=1 i · j2) + 2(k − 1)j2 + (2(m− k − 1) + 1) · j1.

Since j1 ≥ j2, an easy calculation shows that the smallest sum is obtained in
case 2 and is equal to 1

2
(m + 1)(m − 2) · j2 + j1. So for every vertex u ∈ V

we can add its associated star inequality

c(u) +
∑
i∈N(u)

c(i) ≥ (deg(u) + 2)(deg(u)− 1)

2
· j2 + j1

to the models (where N(u) denotes the set of neighbors of u and deg(u) is
the degree of u.)

Sublattices A second possibility is to associate inequalities with small
sublattices of the lattices we considered in our computational experiments.
We considered the triangles with side length 1, 2 and 3, the hexagons with
side length 1 and 2, trapezes as half of a hexagon, squares with side length
1, 2 and 3, and small square lattices with 4 and 9 vertices. Table 5 gives
the smallest sums of labels for these subgraphs for the labelings L(2, 1) and
L(3, 2, 1).

We examined the effect of the addition of these small subgraph inequal-
ities. The results are presented in Table 6 for the hexagonal, in Table 7 for
the triangular, and in Table 8 for the square lattice. For the square lattice we
only added non-overlapping squares which is only a small subset of possible
squares.

For the hexagonal lattice we observe a running time improvement of about
10-20%. In the triangular case, time reduces to about 50% in two cases for
the L(3, 2, 1)-labeling. Also in one case for the square lattice a considerable
improvement is achieved.
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Sublattice `2(dist) = 3− dist `3(dist) = 4− dist

Hexagon with side length 1 16.6077 31.6077
Hexagon with side length 2 3 10.8231
Trapeze with side length 1 7.0718 13.0718
Triangle with side length 1 6 9
Triangle with side length 2 3 6
Triangle with side length 3 0 3

Square 1×1 (4 nodes) 10.3431 16.3431
Square 2×2 (4 nodes) 2.68629 8.68629
Square 3×3 (4 nodes) 0 2

Square lattice 2×2 (9 nodes) 29.1922 59.4033
Square lattice 1×2 (6 nodes) 16.2273 30.283

Table 5 Minimum label sums for sublattices

Hexagonal lattice `2(dist) = 3− dist `3(dist) = 4− dist

Without any subgraph-inequality 1.69 30:38.7
With the subgraph-inequalities
Hexagons with side length 1 1.37 26:28.7

Hexagons with side length 1 and 2 1.75 27:21.7
Trapezes 1.77 25:29.2

Table 6 Effect of subgraph inequalities for the hexagonal lattice
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Triangular lattice `2(dist) = 3− dist `3(dist) = 4− dist

Without any subgraph-inequality 10.96 1731:23.0
With the subgraph-inequalities
Triangels with side length 1 12.59 782:13.0

Triangels with side length 1,2 and 3 10.02 1537:08.1
Hexagons with side length 1 11.9 706:52.0

Table 7 Effect of subgraph inequalities for the triangular lattice

Square lattice `2(dist) = 3− dist `3(dist) = 4− dist

Without any subgraph-inequality 4.92 463:13.8
With the subgraph-inequalities
Squares with side length 1 12.76 632:25.5

Squares with side length 1,2 and 3 * 7.11 326:59.4
Rectangle with side length 1×2 6.22 476:52.8

* inequalities added only for non-overlapping squares (substantially fewer
than existing)

Table 8 Effect of subgraph inequalities for the square lattice
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Part V

Another type of graph partition

5 Edge decompositions

So far I dealt with the labeling of the vertices. The labeling gives a partition
on the vertex set of the graph. In the case of radio labeling this partition is
trivial, but in general not necessarily. This section deals with a problem, in
which the edge set of the graph is partitioned in a specified way.

In general, an edge decomposition of a graph G = (V,E) is a collection
of graphs Gi = (Vi, Ei) such that each Gi is a subgraph of G, any two Gi, Gj

(i 6= j) are edge-disjoint, and their union contains all edges of G.
The study of edge decompositions (as well as the theory of balanced

incomplete block designs and related areas, see [54] with more than 2200
references) started with the famous paper [55] of Kirkman in 1847.

Still, after more than one and a half centuries, quite recently Bondy
and Szwarcfiter [56] introduced a natural side condition which has led to an
interesting new direction.

Among several results, we solve one of the open problems stated in [56].

5.1 The problems

Given a graph F , determine the maximum number ex∗(n, F ) of edges in a
graph G of order n such that the edge set of G can be decomposed into
edge-disjoint induced subgraphs isomorphic to F .

As mentioned above this issue was addressed in a paper of Bondy and
Szwarcfiter [56]. On the other hand, nearly three decades earlier, with a
very different approach, Frankl and Füredi [57] considered a closely related
problem on hypergraph packing. They introduced a function f(n, F ) whose
definition is more technical but always satisfies the inequality f(n, F ) ≤

57



ex∗(n, F ). Hence, lower bounds on their problem are also lower bounds on
ex∗(n, F ), while upper bounds on ex∗(n, F ) are also upper bounds of the
problem of [57] .

For some good reasons, to be explained below, we studied the comple-
mentary function

ex∗(n, F ) :=

(
n

2

)
− ex∗(n, F ).

5.2 Earlier results

The fundamental result of Wilson [58] states that every sufficiently large
complete graph admits an edge decomposition into complete subgraphs of
given order whenever two obvious necessary divisibility conditions hold. Since
every complete subgraph necessarily is induced, ex∗(n,Kp) = O(n) holds for
every fixed p ≥ 3, and ex∗(n,Kp) oscillates between 0 and cn+O(1) for some
c = c(p). (Of course, ex∗(n,K2) = 0 holds for all n.)

It is also easily observed (as noted first in [53]) that if F ′ is obtained from
F by adding an isolated vertex, then ex∗(n, F ′) ≤ ex∗(n− 1, F ) +n− 1, thus
we lose at most a linear additive term if any fixed number of isolates are
added to F . For this reason we may assume that F does not have isolated
vertices.

In general, Cohen and Tuza [59] proved that

ex∗(n, F ) = o(n2) (1)

holds for all non-edgeless graphs F as n gets large. Due to the connection
between the problems [56] and [57], the same asymptotic upper bound can be
deduced from the results of Frankl and Füredi, too. In comparison, the meth-
ods in [57] are probabilistic, whilst the results of [59] are partly constructive,
applying the properties of various classes of Kneser graphs.

Because of (1), the main problem is to determine the order of magnitude
of ex∗(n, F ) for a given F as a function of n. Several estimates have been
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proved in [56] and [59]:

• ex∗(n, F ) = Θ(n) if F is a complete equipartite non-complete graph
(and in particular if F = C4) or F is a star or F = K4 − e ([56]);

• ex∗(n, F ) = Θ(n
3
2 ) if F = 2K2 or F = C6 (lower bounds in [56],

constructive upper bounds in [59]).

In some cases, more precise or even exact results are known, but here we
prefer to emphasize growth order.

5.3 The new results

We gave a general lower bound, namely,

Theorem 1 There exists a constant c > 0 with the following property: If F
is a graph without isolated vertices, and F is not a complete multipar-
tite graph, then

ex∗(n, F ) ≥ (c− o(1))n
3
2 as n→∞.

Proof Let F be any isolate-free graph satisfying the assumptions of the
theorem. Denote by p the number of vertices and by q the number of edges
in F . Since F is not complete murtipartite, it contains some vertex w and an
edge (yz) such that (wy) and (wz) are non-edges. Indeed, the complement
of F contains some connected component of order at least 3 which is not a
complete graph, and then this component contains an induced path ywz ∼=
P3, a proper choice for the three vertices named above in F.

Let G = (V,E) be a graph of order n, which is extremal for ex∗(n, F );
and let H = G its complement. By the theorem of Cohen and Tuza [59], for
every ε > 0 there exists n0 = n0(ε, F ) such that, for every n > n0, G has more
than (1

2
− ε)n2 edges. As a consequence, the edge set of G is decomposed

into more than 1−2ε
2q
n2 copies of F . In each copy, vertex w is mapped to some
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vertex of G. Let kv denote the number of copies of F in which w is mapped
to vertex v ∈ V . Then we have∑

v∈V

kv >
1− 2ε

2q
n2.

Choosing now ε = 1
10
, it follows that at least n

5q
among the n terms on the

left side are not smaller than n
5q
. This specifies a set X ⊂ V such that

|X| ≥ n

5q
and kx ≥

n

5q
for all x ∈ X.

The copies of the edge (yz) appear in the non-neighborhoods of the copies of
w. This requires at least kx distinct edges in the complementary neighbor-
hood NH(x), implying (

dH(x)

2

)
≥ kx;

dH(x) >
√

2kx ≥
√

0.4
n

q

for every x ∈ X. Consequently,

ex∗(n, F ) = |E(H)| = 1

2

∑
v∈V

dH(v) ≥ 1

2

∑
x∈X

dH(x) >
1√
10q

n
3
2 .

This inequality proves the theorem.

Corollary 2 Every graph F containing the path P4 or the matching 2K2 or
the paw K4 − P3 as an induced subgraph, satisfies ex∗(n, F ) ≥ cn

3
2 for

some constant c > 0.

Combining these lower bounds with the constructions of [59], the following
cases solve the problem of Bondy and Szwarzfiter [56].

Corollary 3 We have ex∗(n, P4) = Θ(n
3
2 ) and ex∗(n,K4 − P3) = Θ(n

3
2 ).
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For graphs containing an induced K4−P3, the lower bound cn
3
2 for a slightly

different problem was proved in [57, Proposition 2.4]. For paths, until now
only a linear lower bound was known in general, and Θ(n

3
2 ) was proved only

for regular graphs decomposable into induced copies of F (see [56]).
We conjecture that no other growth function occurs as ex∗(n, F ) which

would lie strictly between Θ(n) and Θ(n
3
2 ).

Conjecture 4 If F is a complete multipartite graph, then ex∗(n, F ) = O(n).

As mentioned above, linear upper bound was known previously for complete
equipartite graphs, for stars and for K2,1,1. We prove the following further
cases. The first one is very simple, while the other one is our second main
result in this chapter.

Proposition 5 If F = Ka,b with a ≥ 2 and b ≥ 1, then ex∗(n, F ) = O(n).

Proof It is easy to decompose Kab,ab into induced copies of Ka,b, as follows.
We partition the first vertex class into b disjoint sets of size a, and the second
vertex class into a disjoint sets of size b. The combinations of those sets yield
ab copies of Ka,b, which together partition the edge set of Kab,ab.

Suppose next that n is of the form n = kab for some integer k ≥ 2.
We replace each edge of K n

ab
with an independent set of cardinality ab, and

substitute the above decomposition of Kab,ab into the image of each edge of
K n

ab
. In this way a graph of order n is obtained, which admits a decomposition

into induced copies of Ka,b, and its complement has as few as ab−1
2
· n edges.

Finally, if n ≡ r (mod ab), then we make the same construction on n′ :=

n− r vertices and insert r isolates. This graph is decomposable into induced
copies of Ka,b, and its complement has fewer than 3

2
abn edges.

Theorem 6 If F = Ka,b,c is a complete tripartite graph, but F is not comp-
lete, then ex∗(n, F ) = O(n).
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Proof Let F = Ka,b,c. We carry out a construction in several steps which
will yield the complete tripartite graph Ka2bc,ab2c,abc2 . Not alone this graph,
but also the steps leading to it, will be essential in the sense that they si-
multaneously maintain two edge partitions: one into copies of Ka,b,c and the
other into copies of Kabc,abc, with a strong interrelation between the two.

We start with three disjoint sets A,B,C of equal cardinality |A| = |B| =
|C| = abc, partitioned into sets of cardinalities a, b and c, respectively:

A = ∪bj=1 ∪ck=1 Aj,k, B = ∪ai=1 ∪ck=1 Bi,k, C = ∪ai=1 ∪bj=1 Ci,j.

Our approach is to start with an initial construction and extend it incremen-
tally, making it denser in each step.

• Packing of Ka,b,c into Kabc,abc,abc.

For every triplet (i, j, k) with 1 ≤ i ≤ a, 1 ≤ j ≤ b, 1 ≤ k ≤ c, define the
vertex set

Vi,j,k = Aj,k ∪Bi,k ∪ Ci,j.

We use each Vi,j,k to insert a copy of Ka,b,c with vertex classes Aj,k, Bi,k, Ci,j
inside A∪B∪C. It is immediate to verify that the copies determined by Vi,j,k
and Vi′,j′,k′ are edge-disjoint for any two ordered triplets (i, j, k) 6= (i′, j′, k′),
because they share vertices in at most one vertex class. (For example, chang-
ing the value of i modifies Vi,j,k in both B and C.)

If we fix the first subscript i for the moment, and let j run from 1 to b
and also let k run from 1 to c, the corresponding c−element sets have a union
of cardinality bc in C. Consequently, the subgraph between B and C, whose
edges are covered with the copies of Ka,b,c, is the vertex-disjoint union of a
copies of Kbc,bc.

Analogously, fixing the second subscript j, and letting i, k run over their
range, we see that the subgraph composed from the copies of Ka,b,c between
A and C is the vertex-disjoint union of b copies of Kac,ac. In the same way,
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the edges, which are covered between A and B, form the union of c vertex-
disjoint copies of Kab,ab.

For reference in the next step, we denote this construction by G[A,B,C].

• Saturation of edges between A and B in a star-like extension.

We use copies of G[A,B,C] as building blocks in the following way: We take
c graphs isomorphic to G[A,B,C], denoted as

G[A,B,Ck′ ] (1 ≤ k′ ≤ c),

where the sets C1, ..., Cc are mutually disjoint, but A and B are common in
all those copies of G[A,B,C]. Moreover, the vertices of A occur in a different
order in each G[A,B,Ck′ ], in such a way that the corresponding vertex sets
determining the copies of Ka,b,c are

V k′

i,j,k = Aj+k′−1,k ∪Bi,k ∪ Ck′

j,k,

where j + k′ − 1 in the subscript of A is meant cyclically modulo c. This
yields the complete bipartite graph Kabc,abc between A and B. The edges
from A to each Ck′ form b disjoint copies of Kac,ac ; and similarly, from B to
each Ck′ we have a disjoint copies of Kbc,bc.

It should be emphasized that the second subscripts in the sets Aj,k have
not been permuted. As a consequence, the copies of Kac,ac between A and
any Ck′ define the same vertex partition of A into b sets of cardinality ac.
This property is essential for later use.

For reference in the next step, we denote this construction by G[A,B,C∗].

• Saturation of edges between A and C∗.

Here we use copies of G[A,B,C∗] as building blocks. We stick them together
on the set A ∪ C∗, creating b copies B1, ..., Bb of B, so that the next graph
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is built from the subgraphs

G[A,Bj′ , C∗] (1 ≤ j′ ≤ b),

where the sets B1, ..., Bb are mutually disjoint. We again take different vertex
orders inside A for the different values of j′, to make each (A,Ck′) comp-
lete bipartite, namely isomorphic to Ka,b,c. This can be done, because the
(ac)−element vertex classes of the copies of Kac,ac define the same partition
of Ck′ for all j′.

For reference in the next step, we denote this construction byG[A,B∗, C∗].

• Saturation of edges between B∗ and C∗.

Here we use copies of G[A,B∗, C∗] as building blocks. We take a graphs
isomorphic to G[A,B∗, C∗], denoted as

G[Ai
′
, B∗, C∗] (1 ≤ i′ ≤ a),

where the sets A1, ..., Aa are mutually disjoint, but B∗ and C∗ are common
in all those copies. Now the vertex order in the set B∗ is fixed to be the same
in all the a copies of G[A,B∗, C∗]; but the order inside C∗ is chosen to be
different in each copy, so that the union of the resulting graphs G[Ai

′
, B∗, C∗]

creates Kabc,abc between each Bj′ and Ck′ . This can be done similarly to the
preceding steps, by choosing a vertex orders so that any one of them takes
the same order inside all Ck′ .

In this way we obtain a graph, which we denote by G[A∗, B∗, C∗]. As we
indicated at the very beginning of the proof already, this graph is isomor-
phic to Ka2bc,ab2c,abc2 ; but in fact it is more than that. The procedure above
describes edge decompositions of G[A∗, B∗, C∗] into induced subgraphs iso-
morphic to Kabc,abc, as well as into induced subgraphs isomorphic to Ka,b,c.
Moreover, each copy of Ka,b,c is embedded into a copy of some Kabc,abc,abc in
G[A∗, B∗, C∗].
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• Construction of dense induced packing.

Let us denote by G∗ ∼= Ka,b,c the graph obtained from G[A∗, B∗, C∗] by
contracting each of the sets Ai′ , Bj′ and Ck′ to a distinct single vertex and
joining two of the new vertices by an edge if their preimages induce Kabc,abc

in G[A∗, B∗, C∗].
Let n be arbitrarily given, and define n′ :=

⌊
n
abc

⌋
. We now apply Wilson’s

theorem to G∗ and n′. If n′ is sufficiently large and satisfies some simple con-
ditions, which only depend on G∗(more explicitly on divisibility conditions
expressed in terms of the fixed integers a, b, c), then Kn′ has an edge decom-
position into subgraphs G∗1, G∗2, ... isomorphic to G∗. Replace each vertex of
Kn′ with an independent set of abc vertices, and add further (n− abcn′) iso-
lates. In this way we obtain a graph G of order n. Then each G∗` becomes an
induced subgraph G` of G, isomorphic to G[A∗, B∗, C∗]. Based on the pro-
cedure of constructing G[A∗, B∗, C∗], every G∗` is decomposable into induced
copies of Ka,b,c, and this is an induced decomposition of G, too, because the
”induced subgraph” relation is transitive.

Disregarding small values of n, the number of isolated vertices in G is less
than abc times the gap occuring between two consecutive values of n′, which
are feasible for G∗−decomposition. Moreover, omitting the isolates from G,
the complementary degree of each vertex becomes precisely abc − 1. Thus,
the overall number of non-edges in G is at most K · n for some constant
K = K(a, b, c). This completes the proof of the theorem.

Proposition 7 If F is a complete multipartite graph, but not complete, then
ex∗(n, F ) = Ω(n). (This means that one can replace O(n) with Θ(n)

in the previous results, ex∗(n, F ) has a linear lower bound.)

Proof Let F be a complete multipartite graph, say with q edges. If F =

K1,q is a star, then the exact value of ex∗(n, F ) is known by [56, Theorem 3];
the complement of the extremal graph is the union of complete graphs Kq,
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with one additional Kr if n is not a multiple of q and n ≡ r (mod q). In this
case we have ex∗(n, F ) = q−1

2
n+ O(1).

If F is not a star, then either it has more than two vertex classes or it
is bipartite with at least two vertices in each class. Thus, in either case, F
contains a vertex pair, say {v0, w0}, such that (v0w0) is a non-edge, moreover
v0 and w0 have at least two common neighbors in F . Also q ≥ 4 holds.

Let G = (V,E) be a graph of order n, which is extremal for ex∗(n, F );
and let H = G be its complement. Then H has ex∗(n, F ) edges; let us denote
m := ex∗(n, F ) = |E(G)| and m := ex∗(n, F ) = |E(H)| =

(
n
2

)
− m. Each

of the m edges in H is the image of {v0, w0} in at most n−2
2

copies of F .
Consequently, using also the fact that q > 2, we obtain:

m ≤ q · n− 2

2
·m,

(
n

2

)
= m+m < q · n− 1

2
·m,

m >
n

q
.

This completes the proof.
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6 Summary

During my Ph.D. work I studied different graph partitions. The largest part
of my studies is made up by the so-called distance-constrained labeling, where
graphs have to be labeled under some restrictions on the distance between the
vertices. Depending on the constraint this problem can be quite simple, but
also very complicated. Simplicity means here that we can label general and
relatively big graphs optimally or nearly optimally. Conversely, there are
several constraints, under which giving even a near optimal labeling takes
exponential time. Therefore, it is appropriate to start the studies under such
restrictions on simple graph classes.

The constraint that I have studied the most, the L(j, j − 1, ..., 2, 1)–
labeling is special in the sense that the required differences form an arithmetic
sequence, but it is also general, due to the arbitrary length of the sequence.
Therefore, it is a constraint, under which the optimal labeling is difficult for
general graphs. Our theoretical investigations were carried out on trees. In
our paper, accepted for publication in February 2015, a strict upper bound
for the L(j, j − 1, ..., 2, 1)−labeling number of trees of diameter at most j
is given. Also a procedure is presented, which labels the given trees within
this bound. Although we conjecture that the bound is only slightly larger
for trees of larger diameter, this remains an open problem. As well as to es-
timate how much this bound deviates from the optimum in the case of trees,
significantly different from those, for which the bound is strict. However, our
procedure is a good base also for these ones.

Under the same constraint I also studied the labeling of unit interval
graphs. I report the results also on these issues in this thesis.

Chapter 4 examines the problem in perspectives of practice and appli-
cation. The content can be divided into two parts. Firstly, the need arises
naturally to estimate the labeling number of arbitrary graphs under arbi-
trary constraints. This can be done by various combinatorial optimization
methods. I chose linear programming, since the problem is pretty easily to
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formalize as a linear programming task and with an appropriate software
good estimates or even exact values can be obtained. The other question re-
lates to the practical use. The graph theoretical problem is a good model of
the channel assignment, but it is not precize. However, in the precize model
even good estimates can be given in much slower time. According to the
practice, the comparisons were performed on the three lattice graphs, that
are most characteristic of the radio transmitter location. Finally, it had to be
concluded that the price of the precision is too high, namely the calculations
were much slower even after all modifications for improvement, than in the
original model.

In the last unit of the thesis an other kind of partition comes into focus.
The labeling is a partition, since transmitters using the same frequences have
to be chosen, according to the specified constraint. However, in this chapter
not the vertices, but the edges are partioned. The way, how it has to be
done, is that each set containes edges forming a subgraph isomorphic to a
predefined graph. The matter is the maximum number of edges a graph can
have, if there exist this partition on its edge set.

Chapters 2-6 contain apart from the references only new results obtained
partially or wholly by me. The content of Chapters 2 and Chapter 6 have
been already published/accepted and that of Chapter 4 is under preparation.

As a final conclusion, I can say that the initial goals have been successfully
achieved, an extensive analysis of the graph partitions, especially labelings,
in several aspects has been presented in this Thesis.
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Összegzés

A doktoranduszi munkám során különböző gráfpartíciókkal foglalkoztam.
Kutatásaim legnagyobb részét az úgynevezett távolság szerint korlátozott
címkézések tették ki, ahol a gráfokat a csúcspárok távolságából adódó meg-
szorítások mellett kell megcímkézni. A korlátozó feltételtől függően a prob-
léma lehet viszonylag egyszerű, de akár nagyon bonyolult is. Itt az egyszerű-
ség azt jelenti, hogy viszonylag nagy méretű általános gráfokat meg tudunk
címkézni optimálisan vagy közel az optimumhoz. Ugyanakkor vannak olyan
feltételek, amelyek mellett még egy közel optimális címkézés megadásához is
exponenciálisan hosszú időre van szükségünk. Ennek megfelelően érdemes az
ilyen feltételek vizsgálatát egyszerű gráfosztályokra vonatkozóan kezdeni.

Az általam leginkább vizsgált feltétel, az L(j, j−1, ..., 2, 1)−címkézés spe-
ciális atekintetben, hogy a megkövetelt különbségek egy számtani sorozatot
alkotnak, ugyanakkor általános is a sorozat tetszőleges hossza miatt. Így
ez egy olyan feltétel, amely mellett bonyolult az általános gráfok optimális
címkézése. Az elméleti vizsgálatainkat fákra vonatkozóan végeztük. A cik-
künkben, melyet 2015 februárjában fogadtak el publikálásra, megadunk egy
éles felső korlátot a legfeljebb j átmérőjű fák L(j, j − 1, ..., 2, 1)−címkézési
számára. Szintén szerepel benne egy eljárás, amely mentén meg is címkézhe-
tőek a fák ezen korláton belül. Ugyan az a sejtésünk, hogy a korlát csupán
egy kicsivel nagyobb a nagyobb átmérőjű fák esetén, ez a probléma egyelőre
nyitott maradt. Mint ahogyan az is, hogy mekkora eltérés van egy-egy olyan
fa valós paramétere és a korlát között, amely nagyban különbözik azoktól,
amelyekre a korlát éles. Mindenesetre az eljárásunk ezen fák esetére is jó
kiindulási alapot ad.

Azonos korlátozó feltétel mellett az egységintervallum-gráfok címkézését
is vizsgáltam. Az ezekre vonatkozó eredményeimet is részletezem ebben az
értekezésben.

A 4. fejezet a gyakorlat és az alkalmazás szempontjából vizsgálja a prob-
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lémát. Tartalmilag két részre osztható a fejezet. Egyrészt, természetesen
adódik az igény tetszőleges gráfok tetszőleges korlátozó feltétel melletti cím-
kézésére. Ehhez különböző kombinatorikus optimalizálási módszereket hasz-
nálhatunk. Én a lineáris programozást választottam, mivel a probléma meg-
lehetősen egyszerűen formalizálható lineáris programozási feladatként, illetve
megfelelő szoftverrel jó becsléseket, sőt akár pontos értékeket is kaphatunk.
A másik kérdés a gyakorlati alkalmazáshoz kapcsolódik. A gráfelméleti prob-
léma jól modellezi a frekvenciakiosztást, de nem precíz. Ugyanakkor a precíz
modellben csupán jó becsléseket is sokkal lassabban kaphatunk. A valósághoz
igazodva, az összehasonlítások azon a 3 hálógráfon lettek elvégezve, amelyek
a rádióadók elhelyezkedését tekintve a leginkább relevánsak. Végül azt a
következtetést kellett levonni, hogy a precizitás ára túl nagy, ugyanis a szá-
molások még a javítást célzó módosítások után is sokkal lassabban futottak
le, mint az eredeti modell esetén.

Az értekezés utolsó egységében egy másik fajta partíció kerül a középpont-
ba. A címkézés egy partíció abban az értelemben, hogy egyes frekvenciákon
(azonos) sugárzó adókat válogatunk össze egy bizonyos korlátozó feltételnek
megfelelően. Ez a fejezet azonban nem a csúcsok, hanem az élek partícioná-
lásáról szól. A végeredménynek úgy kell kinéznie, hogy minden halmaz egy
előre meghatározott gráffal izomorf részgráf éleit tartalmazza. A kérdés pe-
dig az, hogy legfeljebb hány éle lehet egy gráfnak ahhoz, hogy azokat lehessen
ilyen módon partícionálni.

A 2-6. fejezetek a hivatkozások kivételével csak új eredményeket tartal-
maznak, amelyek teljesen vagy részben az én munkámból születtek. A 2. és
a 6. fejezet tartalma már el van fogadva publikálásra/publikálva van, a 4.
fejezetének közlése pedig kidolgozás alatt áll.

Végső következtetésként azt mondhatom, hogy a kitűzött célokat sikerült
elérni, főként a címkézések tekintetében, a gráfpartíciók egy több szemszögből
történő, átfogó vizsgálatát tudom bemutatni ebben az értekezésben.
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A
algorithmic complexity, 20
ancestor, 31

lowest common ancestor, 32
asymptotic upper bound, 58

B
balanced incomplete block designs, 57
binary variables, 45

C
Cartesian product, 12
central edge, 23
central vertex, 21
child, 31
chordal graph, 10
chromatic index, 19
chromatic number, 4
classical model, 45
clique, 10

t−clique, 10
coloring models, 2
combinatorial optimization, 67
complement, 16
complementary neighborhood, 60
complete bipartite, 63
complete equipartite, 59
complete graph, 24, 26
complete m -ary tree, 22

complete multipartite, 59
complete tripartite, 61
component, 3
connected graph, 4
critical graph, 18
cube

n–cube, 13
cycle, 6

D
degenerate graph

s–degenerate graph, 19
dense induced packing, 65
descendants, 37
diameter, 5
disconnected graph, 3
distance matrix, 52

E
edge decompositions, 57
edge span, 17
edge-disjoint, 57
Euclidean distance, 45
Euclidean model, 46
extremal, 59

F
feasible solution, 44
frequency assignment, 1
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G
generalized Petersen graph, 14
girth, 9
graph model, 46

H
Hamiltonian path, 15
Hamiltonian path problem, 20
hypergraph packing, 57

I
independent vertex set, 11
induced copy, 61
integer programming, 43
integrality constraint, 44
internally m–regular complete tree, 24
interval graph, 12

unit interval graph, 12
isolated vertex, 58

K
Kneser graph, 58

L
labeling, 1

(p,q)–total labeling, 18
circular labeling, 38
L(2, 1)–labelings, 2
L(3, 2, 1)–labelings, 3
L(j1, j2)–labeling, 3
L(j1, j2, ..., js)–labeling, 3
L(j1, j2, j3)–labeling, 3

lattice, 18, 46
hexagonal, 46
square, 18, 46
triangular, 18, 46

level-wise regular tree, 23
linear combination, 53
linear programming, 43

M
major vertex, 4
maximum degree, 3

N
non-edgeless graphs, 58
non-edges, 59
non-neighborhoods, 60

O
objective function, 43
optimal solution, 44
outerplanar graph, 9

P
partition, 57
path, 6
path covering, 15
perfect graph, 39
permutation, 29
planar graph, 9
polygon, 46
postorder, 37
power, 21
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weighted power, 25
probabilistic method, 58

R
radio number, 21
radius, 24
residue class, 40

S
saturation, 63
simplicial order, 10
size, 11
span, 3
spider graph, 21
split graph, 11
standard form, 43
star, 4, 53
star inequality, 54
star-like extension, 63
stepwise transformation, 49
subgraph, 4

induced subgraph, 4
sublattice, 54
sun

3-sun-free, 12
n−sun, 11
odd-sun-free, 12
sun-free, 12

T
transitive orientation, 26
tree, 3, 6

tree decomposition, 10
treewidth, 10
t−trees, 10

V
valid inequality, 53
vertex-disjoint, 15

W
walk, 7
wheel, 8
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