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Introduction

Our PhD dissertation consists of three chapters each containing new
results. These results have been published in our papers [2], [3] and [4],
respectively. In this introduction we shall give an overview of the con-
tents of the chapters, but before doing so we make some introductory
notes on the subject of our thesis.

Each of the three chapters is devoted to the study of the solutions
of various important classes of diophantine equations, namely Fermat-
type ternary equations, binomial Thue equations and norm form equa-
tions, respectively. The proofs of the new results in Chapters 2 and 3
use the results and techniques presented in the �rst chapter. This is
the reason for dealing �rst with ternary equations of the form

(1) Axn +Byn = Czm with m ∈ {2, 3, n} ,

where A,B,C are given nonzero integers, n ≥ 3 and x, y, z are un-
known integers. Equation (1) has a famous special case, namely the
Fermat-equation

xn + yn = zn

which has been widely studied for centuries due to Fermat's Last The-
orem (FLT) which was �nally proved in 1995 by Wiles [53]. The so-
called modular approach that arose from the proof of Wiles for FLT,
has many applications in the theory of diophantine equations, since it
can be used for proving the unsolvability of (1) for several concrete
values of A,B,C, n and m. For the details of the modular approach
we refer to the papers of Bennett [6], Siksek [47] and the book of Stein
[49]. Further central objects of our thesis are binomial Thue equations,
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i.e. diophantine equations of the form

(2) Axn −Byn = C,

where A,B,C, n are nonzero integers and n ≥ 3 is either �xed or
also unknown. Thue equations and among them binomial Thue equa-
tions have a rich literature. Thue's classical ine�ective result [51] on
diophantine approximation of algebraic numbers implied that Thue
equations have only �nitely many solutions. Baker [1] was the �rst who
gave e�ective upper bounds for the size of the solutions of Thue equa-
tions. Both of these results imply that equation (2) has only �nitely
many solutions if n is �xed. Tijdeman [52] considered the case when, in
(2), the exponent n is also unknown, and gave e�ective upper bounds
for max {|x|, |y|, n}, where (x, y, n) are integer solutions of (2) with
|xy| > 1. For other related results on binomial Thue equations and
their applications we refer to [39], [46], [5], [34], [7], [9], [28], [10], [15],
[2], [31] and the references given there.

We note that an integer solution (x, y, n) to (2) induces a solution
to (1) of the type (x, y, 1, n,m). So if, for some values of A,B,C, n,m,
the corresponding ternary equation (1) proves to be unsolvable in in-
tegers (x, y, z) with Ax,By and Cz pairwise coprime, |xy| > 1, then
it follows that with those values of A,B, n (2) also has no solutions
(x, y).

In what follows, we brie�y summarize the main results of our thesis.

In the �rst chapter ternary diophantine equations of the form (1)
are investigated. The modular approach to these equations including
Frey-curves [24] and modular forms which has many applications in the
literature, is one of the main tools in the proofs of our results in all the
three chapters. An outline of this method is therefore given in Section
1.1 based on the survey paper of Bennett [6], which summarizes some
deep results of Bennett and Skinner [11], Kraus [35], and Bennett,
Vatsal and Yazdani [12]. We note that the applicability of the above
modular approach depends only on the prime factors of the coe�cients
A,B,C in (1). In Sections 1.2 - 1.5, we restrict our attention to the
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equation

(3) Axn −Byn = zm

in the cases when m = n and m = 3. In both cases we survey the
results known on the solutions of (3).

First let m = n and let α, β be nonnegative integers. For AB = pα

with a prime p ≤ 29 or p = 53, 59, the resolution of (3) follows from
the results of Serre [45], Wiles [53], Darmon and Merel [23], and Ribet
[43]. In [35], Kraus considered the case when AB = 2αqβ with q being
a prime and with n su�ciently large compared to q. Bennett, Gy®ry,
Mignotte and Pintér [10] solved (3) when AB = 2αqβ with primes
3 ≤ q ≤ 13. Gy®ry and Pintér [31] recently generalized this result
to the case 3 ≤ q ≤ 29 in the sense that if n is a prime, then apart
from 8 explicitly given possible exceptions (q, α), for every integer
solution (x, y, z, A,B, n) of equation (3) with |xy| > 1 and Ax,By
and z pairwise coprime we have n ≤ 11. Our Theorem 1.1 extends
these results in the following way.

Theorem 1.1. Let AB = 2αqβ with a prime 3 ≤ q ≤ 151, q 6= 31, 127
and with nonnegative integers α, β. If n is a prime, then for every
integer solution (x, y, z, A,B, n) of the equation (3) with |xy| > 1 and
with Ax,By and z pairwise coprime we have n ≤ 53.
Moreover, apart from 31 possible exceptions (q, n, α) given in Table
1.1, for every integer solution (x, y, z, A,B, n) of equation (3) with
|xy| > 1 and Ax,By and z pairwise coprime we have n ≤ 13.

The case AB = pαqβ with primes 5 ≤ p < q ≤ 29 was consid-
ered by Gy®ry and Pintér [31], who proved in this case that if n is a
prime, then apart from 10 explicitly given possible exceptions (p, q),
for every solution (x, y, z, A,B, n) of (3) with |xy| > 1 and Ax,By
and z pairwise coprime we have n ≤ 11. We generalize this result in
our Theorem 1.2 as follows.

Theorem 1.2. Let AB = pαqβ with primes 5 ≤ p, q ≤ 71 and
nonnegative integers α, β. If n is a prime, then apart from 28 pos-
sible exceptions (p, q, n) given in Table 1.2, for every integer solution
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(x, y, z, A,B, n) of (3) with |xy| > 1 and Ax,By and z pairwise co-
prime we have n ≤ 13.

Consider now equation (3) with m = 3 and AB = pαqβ where p, q
are primes and α, β are nonnegative integers. This case was studied
for 3 ≤ p, q ≤ 13 by Bennett, Gy®ry, Mignotte and Pintér [10]; and
for 3 ≤ p < q ≤ 29 by Gy®ry and Pintér [31]. Their results can be
summarized in the following way: if n is a prime and AB = pαqβ

with primes 3 ≤ p < q ≤ 29 such that either p ≤ 7 or (p, q) ∈
{(11, 13), (11, 17), (11, 19), (13, 17), (13, 19), (17, 23)}, then apart from
14 possible exceptions (p, q, n), for every integer solution (x, y, z,
A,B, n) of equation (3) with |xy| > 1, xy even and Ax,By and z
pairwise coprime we have n ≤ 11. Our third theorem in Section 1.3
extends the above results to much larger primes p, q.

Theorem 1.3. Let AB = pαqβ with nonnegative integers α, β and
primes 3 ≤ p < q ≤ 71 such that pq ≤ 583. If n is a prime, then
apart from 29 possible exceptions (p, q, n) given in Table 1.3, for every
integer solution (x, y, z, A,B, n) of equation (3) with |xy| > 1, xy even
and Ax,By and z pairwise coprime we have n ≤ 13.

The results of this chapter will be published in our paper [3].

In the second chapter we deal with (generalized) binomial Thue
equations of the form (2) which have many important applications in
number theory (see the above references). After surveying the pre-
viously mentioned ine�ective and e�ective results on binomial Thue
equations with �xed or unknown exponent, we turn to the resolution
of such equations. It is important to note that even the best known
e�ective upper bounds for the solutions are too large to determine
the solutions of a concrete binomial Thue equation. For this purpose
several other methods are needed. In this direction, the �rst general re-
sult is due to Bennett [5] who showed by means of the hypergeometric
method that for B = A+ 1, the equation

(4) Axn −Byn = ±1
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has no solutions with |xy| > 1. The case when, in (2), the coe�cients
are bounded positive integers was �rst studied by Gy®ry and Pintér
in [29]. Using a local approach (described in Section 2.4), they derived
a relatively sharp upper bound for n for concrete values of A,B,C
provided that (2) has no solutions with |xy| ≤ 1. Further, they deter-
mined all solutions of (2) with |xy| > 1 under some natural conditions
in case of various upper bounds on the coe�cients. The next new re-
sults are shortened versions of our theorems from Section 2.3, which
are considerable extensions of the ones in [29] to much larger upper
bounds on the coe�cients.

Theorem 2.1'. If 1 < B ≤ 400, then all integer solutions (x, y, n) of
the equation

(5) xn −Byn = ±1

with |xy| > 1, n ≥ 3 and with (B, n) /∈ {(235, 23) , (282, 23) , (295, 29),
(329, 23), (354, 29)} are with n ∈ {3, 4, 5, 6, 7, 8}.

Theorem 2.2'. (i) If 400 < B < 800 is odd, then all integer solutions
(x, y, n) of equation (5) with |xy| > 1, n ≥ 3 and with the possible
exceptions (B, n) listed in Table 2.1 are with n = 3, 9.
(ii) Let 800 < B < 2000 be odd. If n < 13, then all integer solutions
(x, y, n) of equation (5) with |xy| > 1, n ≥ 3 are with n ∈ {3, 5, 10}.
If n > 100 is a prime, then equation (5) has no solutions in integers
(x, y, n) with |xy| > 1, n ≥ 3 and with the possible exceptions (B, n)
listed in Table 2.2.

Theorem 2.3'. If 1 ≤ A < B ≤ 50 and gcd(A,B) = 1, then all
integer solutions (x, y, n) to equation (4) with |xy| > 1, n ≥ 3 and
with (A,B, n) /∈ {(21, 38, 17) , (26, 41, 17) , (22, 43, 17) , (17, 46, 17) ,
(31, 46, 17) , (21, 38, 19)} are with n = 3, 4.

In the original versions all the integer solutions are given instead
of the statements ". . . are with n ∈ {. . .}".

In Chapter 2, we present two further results on the solutions of the
binomial Thue equations (2) and (4) with bounded coe�cients. Both
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of them states that there are no solutions (with |xy| > 1) if n > 19,
apart from some possible exceptions which are explicitly given in our
Theorems 2.4 and 2.5, respectively. We note that in our Theorems
2.1 to 2.5 we arrived at the limit of the applicability of the currently
available methods.

In our proofs, almost all techniques of the modern diophantine
analysis are involved. We adopt some of the methods of [29], such
as local methods, a Baker-type e�ective result of Pintér [42] on the
solutions of (2), and the modular approach. Beside these, a main in-
gredient of our proofs is the following new result of ours concerning
the solvability of equation (5).

Theorem 2.6. Suppose that in equation (5) n is a prime and that
each of the following conditions holds:

(i) n ≥ 17,

(ii) B ≤ exp {3000},

(iii) n - Bφ(B),

(iv) Bn−1 6≡ 2n−1 (mod n2),

(v) rn−1 6≡ 1 (mod n2) for some divisor r of B.

Then equation (5) has no solutions in integers (x, y, n) with |xy| > 1.

The proof of this result requires the above-mentioned e�ective
bound of Pintér [42], some results concerning cyclotomic �elds, a re-
cent theorem of Mih ilescu [38], and computational results of Buhler,
Crandall, Ernvall, Metsänkylä and Shokrollahi [22].

In Section 2.7, another aspect of the resolution of binomial Thue
equations of the form (4) is considered: the case when the coe�cients
A,B are allowed to be arbitrary large but they can have only �xed
prime divisors. In other words, when the coe�cients are unknown S-
units for some set of primes S of small cardinality. For S = {p} with
p ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 53, 59}, it follows from the work of
Wiles [53], Darmon and Merel [23] and Ribet [43] on ternary equations
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that (4) has no solutions with |xy| > 1 and n ≥ 3. Bennett [7] solved
(4) for S = {2, 3}. Bennett, Gy®ry, Mignotte and Pintér [10] solved (4)
in the case when S = {p, q} with primes 2 ≤ p, q ≤ 13. Independently,
Bugeaud, Mignotte and Siksek [21] solved (4) when A = 2α, B = qβ

with a prime 3 ≤ q < 100, or A = pα, B = qβ with primes 3 ≤ p < q ≤
31, and in both cases α, β are nonnegative integers. Recently, Gy®ry
and Pintér [31] generalized the above results of [10] to the case when
S = {p, q} with primes 2 ≤ p, q ≤ 29. Applying our Theorem 2.6 and
the results of Chapter 1 combined with other methods, in our Theorem
2.7, we give reasonable upper bounds on the exponent n in (4) in the
case when S = {p, q} with primes 2 ≤ p, q ≤ 71. This result may be a
useful tool in solving concrete binomial Thue equations of such type.

The results presented in Section 2.3 are joint with A. Bérczes, K.
Gy®ry and Á. Pintér, and are published in our joint paper [4]. Theorem
2.7 will be published in our paper [3].

In the third chapter, we present an application of binomial Thue
equations to norm form equations having solutions whose coordinates
form an arithmetic progression. A norm form is a form of the type

F := a0NK/Q(α1X1 + . . .+ αmXm),

where α1 = 1, α2, . . . , αm are Q-linearly independent elements of a
number �eld K of degree n over Q, and a0 ∈ Z \ {0} is chosen so
that F has integer coe�cients. By a norm form equation we mean a
diophantine equation of the form

(6) a0NK/Q(α1x1 + . . .+ αmxm) = b,

where b ∈ Z \ {0}. Norm form equations may have in�nitely many
solutions. Schmidt [44] proved, in an ine�ective way, a criterion for
(6) to have only �nitely many solutions. Later, Gy®ry and Papp [26]
derived e�ective �niteness results and explicit bounds for the solutions
of a large class of norm form equations.

The idea of searching for arithmetic progressions among the so-
lutions of norm form equations is due to Attila Peth®. Bérczes and
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Peth® considered the equation

(7) NK/Q
(
x0 + x1α + . . .+ xn−1α

n−1
)

= m.

where α is an algebraic number of degree n, K = Q (α), m ∈ Z and
(x0, . . . , xn−1) ∈ Zn. In [14], among others they proved a nearly com-
plete �niteness result on those solutions of (7) whose coordinates form
an arithmetic progression. They also considered the corresponding so-
lutions of the equation

(8) NK/Q
(
x0 + x1α + . . .+ xn−1α

n−1
)

= 1,

and they determined all solutions in question when, in (8), α is a zero
of either xn − 2 or xn − 3 (n ≥ 3). Further, in [15], they proved the
lack of such solutions of (8) when α is a zero of the polynomial xn−a,
with n ≥ 3 and 4 ≤ a ≤ 100. For further results in this topic, see
the papers of Bérczes, Peth® and Ziegler [16] and Bérczes, Hajdu and
Peth® [13], respectively.

Our goal in Chapter 3 is to extend the result of [15] on the norm
form equation (8). More precisely, we �nd all solutions of (8) forming
an arithmetic progression when α is a zero of the polynomial xn − a
for −100 ≤ a ≤ −2. Our Theorem 3.1 states that the only solutions
(x0, . . . , xn−1) ∈ Zn where the coordinates xi are consecutive terms
in an arithmetic progression are (2, 1, 0) when (n, a) = (3,−7), and
(−2,−1, 0) when (n, a) = (3,−9). In the case when (n, a) = (11,−67)
our result depends on the generalized Riemann Hypothesis (GRH).
The proof of this theorem is based in one hand on the idea of reduc-
ing the solutions of (8) under consideration to the solutions of the
(generalized) binomial thue equation

(9) Xn − aY n = (a− 1)2.

On the other hand the proof depends on our Theorem 3.2, in which
all integer solutions of (9) are given, in the case (n, a) = (11,−67),
assuming GRH. This latter theorem is proved by �rst giving a Baker-
type bound for the degree, then solving all equations under consider-
ation up to this bound by means of either the local or the modular
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approach. For solving some equations with small exponents we used
the computer packages PARI [40] and MAGMA [18]. In some cases,
PARI is able to give only conditional result assuming GRH. This is
the reason for the condition in our theorems.

The results of the third chapter are published in [2].





Chapter 1

Ternary equations

In this chapter we consider ternary Diophantine eqiations of the form

Axn +Byn = Czm

where A,B,C are nonzero integers, m ∈ {2, 3, n} and x, y, z are un-
known integers. The triple of integers (n, n,m) is usually referred to
as the signature of the equation. The investigation of such ternary
equations gained a high level of interest since Wiles [53] published his
proof of Fermat's Last Theorem.

In Sections 1.1 and 1.2, starting from Wiles' result, we survey re-
sults on the resolution of ternary equations. Then in the rest of this
chapter we present our new results on ternary equations, which will
be applied, in Section 2.7, to binomial Thue equations with S-unit
coe�cients.

1.1 On the modular approach to ternary

equations

Frey [24] observed the connection between a putative nonzero integer
solution x, y, z of the equation

(1.1) xn + yn = zn

11
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and an elliptic equation of the form

(1.2) X(X − xn)(X + yn) = Y 2 in unknown integers X, Y .

The Taniyama-Weil conjecture (TW) states that every rational elliptic
curve is modular. In other words, every rational elliptic curve can be
associated to a special Fourier series, a modular form. Wiles proved
the TW conjecture for semistable elliptic curves, which implied that
if there exists a semistable elliptic curve of the form (1.2), then there
exists a modular form with level 2. However, since such modular forms
do not exist, this means that for all integer solutions of (1.1) we have
xyz = 0.

Equation (1.1) is a special case of the equation

(1.3) Axn +Byn = Czm with m ∈ {2, 3, n} ,

where A,B,C are given nonzero integers, n ≥ 3 and x, y, z are un-
known integers. Approaches to solve such equations, analogous to that
employed by Wiles [53], can be found in numerous papers. For a sur-
vey on this topic, see papers of Bennett [6], Siksek [47] or the book of
Stein [49].

The so-called modular approach will be used in almost all of our
proofs so here we give its outline in virtue of the paper of Bennett [6].
We also adopt his notation.

For a given prime q and non-zero integer u, set

Radq (u) :=
∏
p|u
p6=q

p,

where the product is taken over all positive primes p di�erent from q
and dividing u, and write ordq (u) for the largest integer k with qk|u.
Suppose that for given A,B,C and n ≥ 3, we have a solution (x, y, z)
to (1.3) in nonzero integers.

If m = 2, following the method of Bennett and Skinner [11] we
�rst associate elliptic curves to solutions (x, y, z) of (1.3) as follows.
We assume that Ax, By and Cz are pairwise coprime, and that C is
squarefree. Without loss of generality, we may suppose we are in one
of the following situations:
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(i) xyABC ≡ 1 (mod 2) and y ≡ −BC (mod 4),

(ii) xy ≡ 1 (mod 2) and either ord2(B) = 1 or ord2(C) = 1,

(iii) xy ≡ 1 (mod 2) , ord2(B) = 2 and z ≡ −By/4 (mod 4),

(iv) xy ≡ 1 (mod 2) , ord2(B) ∈ 3, 4, 5 and z ≡ C (mod 4),

(v) ord2(By
n) ≥ 6 and z ≡ C (mod 4).

In cases (i) and (ii), we will consider the curve

E1(x, y, z) : Y 2 = X3 + 2CzX2 +BCynX .

In cases (iii) and (iv), we will consider

E2(x, y, z) : Y 2 = X3 + CzX2 +
BCyn

4
X ,

and in (v),

E3(x, y, z) : Y 2 +XY = X3 +
Cz − 1

4
X2 +

BCyn

64
X .

After this via Galois representations, we can associate modular
forms to these elliptic curves, so in this way in fact we associate mod-
ular forms to the solutions (x, y, z) of equation 1.3.

Put
N2 = Rad2 (AB)Rad2 (C)2 ε2,

where

ε2 :=



1 if ord2 (Byn) = 6

2 if ord2 (Byn) ≥ 7

4 if ord2 (B) = 2 and y ≡ −BC/4 (mod 4)

8 if ord2 (B) = 2 and y ≡ BC/4 (mod 4)

or if ord2 (B) ∈ {4, 5}
32 if ord2 (B) = 3 or if BCy is odd

128 if ord2 (B) = 1

256 if C is even.
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Ifm = 3 (see Bennett, Vatsal and Yazdani [12]) we assume, without
loss of generality, that 3 - Ax and Byn 6≡ 2 (mod 3). Further, suppose
that C is cube-free, A and B are nth-power free and that equation
(1.3) does not correspond to one of the following identities:

1 · 25 + 27 · (−1)5 = 5 · 13 or 1 · 27 + 3 · (−1)7 = 1 · 53.

We consider the elliptic curve

E : Y 2 + 3CzXY +BynY = X3,

and set
N3 = Rad3(AB)Rad3(C)2ε3,

where

ε3 :=



32 if 9 | (2 + C2Byn − 3Cz),

33 if 3 ‖ (2 + C2Byn − 3Cz),

34 if ord3 (Byn) = 1,

33 if ord3 (Byn) = 2,

1 if ord3 (B) = 3,

3 if ord3 (Byn) > 3 and ord3 (B) 6= 3,

35 if 3 | C.
If m = n (see Kraus [35]), then we may assume without loss of

generality that Axn ≡ −1 (mod 4) and Byn ≡ 0 (mod 2). The corre-
sponding Frey curve is

E : Y 2 = X(X − Axn)(X +Byn).

Put
Nn = Rad2(ABC)εn,

where

εn :=



1 if ord2 (ABC) = 4,

2 if ord2 (ABC) = 0 or ord2 (ABC) ≥ 5,

2 if 1 ≤ ord2 (ABC) ≤ 3 and xyz even,

8 if ord2 (ABC) = 2 or 3 and xyz odd,

32 if ord2 (ABC) = 1 and xyz odd.
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We note that for each of the three signatures, the numbers Nm are
closely related to the conductors of the above curves.

The following Proposition 1.1 summarizes some results obtained by
Kraus [35] (m = n), Bennett and Skinner [11] (m = 2), and Bennett,
Vatsal and Yazdani [12] (m = 3).

Proposition 1.1. Suppose that A,B,C, x, y and z are nonzero inte-
gers with Ax,By and Cz pairwise coprime, xy 6= ±1, satisfying equa-
tion (1.3) with a prime n ≥ 5 (for m ∈ {3, n}) or n ≥ 7 (if m = 2).

Then there exists a cuspidal newform f =
∞∑
r=1

crq
r (q := e2πiz) of weight

2, trivial Nebentypus character and level Nm for Nm (m ∈ {2, 3, n})
given as above. Moreover, if we write Kf for the �eld of de�nition of
the Fourier coe�cients cr of the form f and suppose that p is a prime
coprime to nNm, then

NormKf/Q (cp − ap) ≡ 0 (mod n)

with ap = ± (p+ 1) (if p | xy) or ap ∈ Sp,m (if p - xy), where

Sp,2 = {u : |u| < 2
√
p, u ≡ 0 (mod 2)} ,

Sp,3 = {u : |u| < 2
√
p, u ≡ p+ 1 (mod 3)}

and

Sp,n = {u : |u| < 2
√
p, u ≡ p+ 1 (mod 4)} .

Further, if m = 2 and the solution (x, y, z) arises from a rational
cuspidal newform corresponding to an elliptic curve E/Q then if p - xy
we have ap = ap(E) = p + 1−#E(Fp), where #E(Fp) is the number
of points on E over the �nite �eld Fp.

Proof. This deep result was proved in [35] (form = n), [11] (form = 2)
and [12] (for m = 3).

We note that the applicability of the above modular approach de-
pends only on the prime factors of the coe�cients A,B,C.
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1.2 On the resolution of ternary equations

For our purposes, we restrict our attention to the equation

(1.4) Axn −Byn = zm

in the cases when m = n and m = 3.

1.2.1 The case m = n

The resolution of equation (1.4) for AB = pα with a prime p ∈
{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 53, 59} and nonnegative integer α fol-
lows from the papers of Serre [45], Wiles [53], Darmon and Merel [23],
and Ribet [43].

The �rst results on the resolution of (1.4) when AB has two prime
factors are due to Kraus [35]. Bennett, Gy®ry, Mignotte and Pintér [10]
considered the case when AB = 2αqβ with primes 3 ≤ q ≤ 13. Their
result was recently extended by Gy®ry and Pintér [31] who proved that
if AB = 2αqβ with primes 3 ≤ q ≤ 29, α /∈ {1, 2, 3, 4} and n is a prime,
then for every integer solutions (x, y, z, A,B, n) of equation (1.4) with
|xy| > 1 and Ax,By and z pairwise coprime we have n ≤ 11. Actually,
they proved a more precise statement (Cf. Lemma 1.1).

In [31], Gy®ry and Pintér also considered the case when AB has
two odd prime factors. They proved that if AB = pαqβ with primes
5 ≤ p < q ≤ 29 and n is a prime, then apart from 10 explicitly given
possible exceptions (p, q), for every solution (x, y, z, A,B, n) of (1.4)
with |xy| > 1 and Ax,By and z pairwise coprime we have n ≤ 11. For
the exact statement see Lemma 1.2.

1.2.2 The case m = 3

In this direction we �rst refer to the result of Bennett, Gy®ry, Mignotte
and Pintér [10]. They proved that if AB = pαqβ with primes 3 ≤
p, q ≤ 13 and n > 7 is a prime coprime to pq, then equation (1.4) has
no solutions in integers (x, y, z) with |xy| > 1, xy even, and Ax,By
and z pairwise coprime.
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The above result was generalized by Gy®ry and Pintér [31] to the
situation when n is a prime and AB = pαqβ with primes 3 ≤ p < q ≤
29 such that either p ≤ 7 or

(p, q) ∈ {(11, 13), (11, 17), (11, 19), (13, 17), (13, 19), (17, 23)} .

Their result implies that in this case for every solution (x, y, z, A,B, n)
of (1.4) with |xy| > 1, xy even and Ax,By and z pairwise coprime we
have n ≤ 29 (Cf. Lemma 1.3).

1.3 New results on ternary equations

By means of the modular method we establish new results on the
solutions of equation (1.4) both for m = n and for m = 3. These
results will be crucial in the proof of Theorem 2.7.

Theorem 1.1. Let AB = 2αqβ with a prime 3 ≤ q ≤ 151, q 6= 31, 127
and with nonnegative integers α, β. If n is a prime, then for every
integer solution (x, y, z, A,B, n) of the equation

(1.5) Axn −Byn = zn

with |xy| > 1 and with Ax,By and z pairwise coprime we have n ≤ 53.
Moreover, apart from 31 possible exceptions (q, n, α) given in Table

1.1 below, for every integer solution (x, y, z, A,B, n) of equation (1.5)
with |xy| > 1 and Ax,By and z pairwise coprime we have n ≤ 13.

Table 1.1

(q, n, α) (q, n, α) (q, n, α) (q, n, α) (q, n, α)
(3, n, 1) (17, n, 4) (73, 17, 1) (109, 29, 1) (149, 37, 4)
(3, n, 2) (37, 19, α) (73, 37, α) (113, 19, α) (149, 41, 1)
(3, n, 3) (47, 23, 4) (83, 41, 4) (137, 17, 4) (151, 19, α)
(5, n, 2) (53, 17, 1) (97, 29, 1) (137, 23, α)
(5, n, 3) (59, 29, 4) (101, 17, α) (137, 29, 1)
(7, n, 2) (61, 31, α) (103, 17, 4) (139, 23, 4)
(7, n, 3) (67, 17, α) (107, 53, 4) (149, 17, 1)



18 CHAPTER 1. TERNARY EQUATIONS

For q ≤ 13 and n > 13, this gives Theorem 2.2 of [10]; and for
q ≤ 29, n > 13, this implies Theorem 3 of [31] (cf. Lemma 1.1).
Further, our Theorem 1.1 can be compared with the corresponding
results of [45], [53], [43] and [7].

Theorem 1.2. Let AB = pαqβ with primes 5 ≤ p, q ≤ 71 and non-
negative integers α, β. If n is a prime, then apart from 28 possible
exceptions (p, q, n) given in Table 1.2 below, for every integer solution
(x, y, z, A,B, n) of (1.5) with |xy| > 1 and Ax,By and z pairwise
coprime we have n ≤ 13.

Table 1.2

(p, q, n) (p, q, n) (p, q, n) (p, q, n) (p, q, n)
(5, 7, n) (17, 23, n) (p, 47, 23) (17, 61, 31) (61, 67, n)
(7, 11, n) (5, 37, n) (17, 47, n) (29, 61, n) (7, 71, n)
(5, 13, n) (5, 41, n) (11, 53, n) (31, 61, 17) (17, 71, n)
(7, 13, n) (13, 41, n) (5, 59, n) (43, 61, 31) (43, 71, 17)
(7, 17, n) (23, 41, n) (p, 59, 29) (5, 67, 17)
(13, 19, n) (11, 43, n) (5, 61, n) (53, 67, 17)

This is a generalization of Theorem 4 of [31] (cf. Lemma 1.2). For
max {p, q} ≤ 29, n > 13 our result possesses two exceptions (p, q, n)
fewer.

Theorem 1.3. Let AB = pαqβ with nonnegative integers α, β and
primes 3 ≤ p < q ≤ 71 such that pq ≤ 583. If n is a prime, then apart
from 29 possible exceptions (p, q, n) given in Table 1.3 below, for every
integer solution (x, y, z, A,B, n) of the equation

(1.6) Axn −Byn = z3

with |xy| > 1, xy even and Ax,By and z pairwise coprime we have
n ≤ 13.
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Table 1.3

(p, q, n) (p, q, n) (p, q, n) (p, q, n) (p, q, n)
(11, 23, 17) (11, 31, 19) (7, 43, 19) (11, 47, 23) (5, 61, 31)
(13, 23, 17) (3, 37, 19) (13, 43, 17) (3, 59, 29) (7, 61, 31)
(11, 29, 17) (5, 37, 19) (3, 47, 23) (5, 59, 29) (3, 67, 17)
(11, 29, 23) (7, 37, 19) (5, 47, 23) (7, 59, 19) (5, 67, 17)
(13, 29, 19) (11, 37, 19) (7, 47, 23) (7, 59, 29) (7, 67, 17)
(19, 29, 23) (13, 37, 19) (11, 47, 17) (3, 61, 31)

For q ≤ 13 and n > 13, this gives Theorem 2.1 of [10]. Further, The-
orem 1.3 is a considerable extension of Theorem 5 of [31] (cf. Lemma
1.3). Under the assumptions of Theorem 5 of [31] on p, q our result
implies that if n > 13 is a prime, then (1.6) has no solutions with xy
even and |xy| > 1, without any exception (p, q, n).

1.4 Auxiliary results I.

In this section we formulate three results of Gy®ry and Pintér [31] in
order to apply them in our proofs in the next section.

Lemma 1.1. Suppose that AB = 2αqβ, where q is a prime with 3 ≤
q ≤ 29 and α, β are nonnegative integers. If n > 11 is a prime, then
equation (1.5) has no solutions in integers (x, y, z) with |xy| > 1 and
Ax,By and z pairwise coprime, unless, possibly,

(q, α) ∈ {(3, 1), (3, 2), (3, 3), (5, 2), (5, 3), (7, 2), (7, 3), (17, 4)}

and xy is odd.

Proof. See Theorem 3 in [31].

Lemma 1.2. Suppose that AB = pαqβ, where p, q are primes with
5 ≤ p < q ≤ 29 and α, β are nonnegative integers. If n > 11
is a prime, then equation (1.5) has no solutions in integers (x, y, z)
with |xy| > 1 and Ax,By and z pairwise coprime, unless, possibly
(p, q, n) = (19, 29, 13) or
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(p, q) ∈ {(5, 7), (5, 13), (7, 11), (7, 13), (7, 17), (7, 23), (13, 17), (13, 19),
(17, 23)}.

Proof. See Theorem 4 in [31].

Lemma 1.3. Suppose that AB = pαqβ, where α, β are nonnegative
integers and p, q are primes with 3 ≤ p < q ≤ 29 such that either
p ≤ 7 or

(p, q) ∈ {(11, 13), (11, 17), (11, 19), (13, 17), (13, 19), (17, 23)} .

If n > 11 is a prime, then equation (1.6) has no solutions in integers
(x, y, z) with |xy| > 1, xy even, and Ax,By and z pairwise coprime,
unless, possibly
(p, q, n) ∈ {(3, 23, 13) , (5, 19, 13) , (5, 23, 23) , (5, 29, 13) , (5, 29, 23) ,
(7, 17, 17), (7, 17, 19), (7, 19, 13), (11, 13, 13), (11, 17, 23), (11, 19, 13),
(11, 19, 31), (13, 17, 17), (13, 19, 13)}.

Proof. This is Theorem 5 in [31].

1.5 Proofs

In our proofs, we apply the results of the preceding section and some
of Section 1.1.

Proof of Theorem 1.1. Suppose that for some prime n > 13 and for
some A,B under consideration, equation (1.5) has a nontrivial solution
(x, y, z, A,
B, n) with Ax,By, and z coprime. By Lemma 1.1 we may assume that
31 ≤ q ≤ 151. Further, we may assume that α > 0 and β > 0, since
otherwise the assertion of Theorem 1.1 follows from the results of [53],
[43] and [23].

By Proposition 1.1, there exists a cuspidal newform f of level N =
2γq with γ ∈ {0, 1, 3, 5}. Using the notation of Proposition 1.1 with
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m = n, set

Ar,n := NormKf/Q(cr − (r + 1)) ·NormKf/Q(cr + (r + 1))

·
∏

ar∈Sr,n

NormKf/Q(cr − ar),

where r is a prime, coprime to 2nq. In fact, in Ar,n, the index n is used
only to indicate that we are dealing with the case m = n. In view of
Proposition 1.1, n must be a divisor of Ar,n for every prime r with
r - 2nq. In the following Table 1.4 we give the common prime divisors
of the nonzero values of A3,n, A5,n, . . . , A47,n for every level N under
consideration. There is ��� in those cells for which all corresponding
values of Ar,n are equal to 0. One can see that in these cases x = y = 1
is a solution to (1.5) for every n ≥ 3.

Table 1.4

q\N q 2q 8q 32q
31 5 � 2, 3 2, 3, 7
37 3 3, 19 2, 3, 5 2, 3, 5
41 2, 5 2, 3, 7 2, 3, 5 2, 3, 7, 13
43 3, 7 3, 5, 11 2, 3, 5 2, 3, 5, 11
47 3, 23 2, 3 2, 5 2, 3, 5
53 3, 13 3 2, 7 2, 3, 5, 17
59 29 3, 5 2, 3, 5, 7 2, 3, 5, 7
61 3, 5 3, 31 2, 5, 7 2, 3, 5, 13
67 3, 5, 11 3, 17 2, 3, 5 2, 3, 5, 17
71 3, 5, 7 2, 3, 5 2, 3, 5, 7 2, 3, 7
73 2, 3, 5 2, 3, 37 2 2, 3, 5, 13, 17
79 3, 5, 13 2, 3, 5 2, 3, 5 2, 3, 5
83 3, 41 3, 5, 7 2, 3, 5 2, 3, 5, 7
89 2, 3, 5, 11 2, 3, 5 2, 3, 5 2, 3, 5, 7
97 2 2, 3, 5, 7 2, 3, 5 2, 3, 5, 7, 29
101 3, 5 3, 7, 17 2, 3 2, 3, 5, 13
103 5, 17 2, 3, 5, 7, 13 2, 3, 5 2, 3, 5, 13
107 5, 53 3, 5 2, 3 2, 3, 5
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Table 1.4 (continued)

q\N q 2q 8q 32q
109 3 3, 5, 11 2, 3 2, 3, 5, 13, 29
113 2, 3, 7 2, 3, 19 2, 3, 5 2, 3, 5
127 3, 7 � 2, 3, 5 2, 3, 5
131 3, 5, 13 3, 5, 7, 11 2, 3, 5 2, 3, 5, 11
137 2, 7, 17 2, 3, 5, 23 2, 3, 5 2, 3, 5, 29
139 3, 7, 23 3, 5, 7 2, 3, 7 2, 3, 5, 7
149 3, 37 3, 5 2, 5 2, 3, 5, 17, 41
151 3, 5 2, 3, 5, 19 2, 3 2, 3, 5, 7, 19

Now Table 1.4 shows that n ≤ 53 for all (q, α) under consideration,
and that nontrivial solutions with n > 13 may occur only in the cases
(q, n, α) which are listed in Table 1.1. This completes the proof of
Theorem 1.1.

Proof of Theorem 1.2. Suppose that for some prime n > 13 and for
some A,B having the required properties, equation (1.5) has a non-
trivial solution (x, y, z, A,B, n) with Ax,By, and z coprime. Again we
may assume that, in AB = pαqβ, both α and β are positive. In view of
Lemma 1.2 we may further assume that 31 ≤ max {p, q} ≤ 71 or that
(p, q) ∈ {(5, 7) , (5, 13) , (7, 11), (7, 13), (7, 17), (7, 23), (13, 17), (13, 19),
(17, 23)} . As in the proof of Theorem 1.1, we apply Proposition 1.1
with m = n. Under the assumptions of Theorem 1.2 the level N of
the corresponding modular forms is 2pq. In Table 1.5, for all the 134
pairs (p, q) under consideration, we list the common prime divisors
(brie�y CPD 's) of Ar,n (de�ned in the proof of Theorem 1.1) for primes
r ∈ {3, 5, 7, . . . , 47} which are coprime to pq. Again ��� indicates the
case that all corresponding values of Ar,n are equal to 0.
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Table 1.5

(p, q) CPD's (p, q) CPD's (p, q) CPD's

(5, 7) � (37, 43) 2, 3, 5, 7 (17, 61) 2, 3, 5, 7, 31
(7, 11) � (41, 43) 2, 3, 5, 7 (19, 61) 2, 3, 5, 7, 11
(5, 13) � (5, 47) 2, 3, 5, 23 (23, 61) 2, 3, 5, 7, 11
(7, 13) � (7, 47) 2, 3, 5, 23 (29, 61) �
(7, 17) � (11, 47) 2, 3, 5, 7, 23 (31, 61) 2, 3, 5, 7, 17
(13, 17) 2, 3, 5 (13, 47) 2, 3, 5, 7, 23 (37, 61) 2, 3, 5, 7
(13, 19) � (17, 47) � (41, 61) 2, 3, 5, 7, 11
(7, 23) 2, 3, 5, 11 (19, 47) 2, 3, 5, 23 (43, 61) 2, 3, 5, 7, 13, 31
(17, 23) � (23, 47) 2, 3, 5, 11, 23 (47, 61) 2, 3, 5, 7, 23
(5, 31) 2, 3, 5 (29, 47) 2, 3, 5, 7, 23 (53, 61) 2, 3, 5, 7, 13
(7, 31) 2, 3, 5, 7 (31, 47) 2, 3, 5, 7, 23 (59, 61) 2, 3, 5, 7, 11, 29
(11, 31) 2, 3, 5, 7, 11 (37, 47) 2, 3, 5, 7, 11, 23 (5, 67) 2, 3, 5, 7, 11, 17
(13, 31) 2, 3, 5, 7 (41, 47) 2, 3, 5, 7, 23 (7, 67) 2, 3, 5, 11
(17, 31) 2, 3, 5 (43, 47) 2, 3, 5, 7, 23 (11, 67) 2, 3, 5, 7, 11
(19, 31) 2, 3, 5 (5, 53) 2, 3, 5, 7, 11, 13 (13, 67) 2, 3, 5, 11
(23, 31) 2, 3, 5, 7, 11 (7, 53) 2, 3, 5, 7, 13 (17, 67) 2, 3, 5, 7, 11
(29, 31) 2, 3, 5, 7 (11, 53) � (19, 67) 2, 3, 5, 7, 11
(5, 37) � (13, 53) 2, 3, 5, 13 (23, 67) 2, 3, 5, 7, 11
(7, 37) 2, 3, 5, 7 (17, 53) 2, 3, 5, 13 (29, 67) 2, 3, 5, 7, 11
(11, 37) 2, 3, 5, 7 (19, 53) 2, 3, 5, 7, 13 (31, 67) 2, 3, 5, 7, 11
(13, 37) 2, 3, 5 (23, 53) 2, 3, 5, 11, 13 (37, 67) 2, 3, 5, 7, 11
(17, 37) 2, 3, 5, 7 (29, 53) 2, 3, 5, 7, 13 (41, 67) 2, 3, 5, 7, 11, 13
(19, 37) 2, 3, 5, 7 (31, 53) 2, 3, 5, 7, 13 (43, 67) 2, 3, 5, 7, 11
(23, 37) 2, 3, 5, 11 (37, 53) 2, 3, 5, 11, 13 (47, 67) 2, 3, 5, 11, 23
(29, 37) 2, 3, 5, 7 (41, 53) 2, 3, 5, 7, 13 (53, 67) 2, 3, 5, 11, 13, 17
(31, 37) 2, 3, 5, 7, 13 (43, 53) 2, 3, 5, 7, 13 (59, 67) 2, 3, 5, 11, 29
(5, 41) � (47, 53) 2, 3, 5, 7, 13, 23 (61, 67) �
(7, 41) 2, 3, 5, 7 (5, 59) � (5, 71) 2, 3, 5, 7
(11, 41) 2, 3, 5, 7 (7, 59) 2, 3, 5, 7, 29 (7, 71) �
(13, 41) � (11, 59) 2, 3, 5, 13, 29 (11, 71) 2, 3, 5, 7
(17, 41) 2, 3, 5, 7 (13, 59) 2, 3, 5, 7, 29 (13, 71) 2, 3, 5, 7
(19, 41) 2, 3, 5, 7 (17, 59) 2, 3, 5, 7, 29 (17, 71) �
(23, 41) � (19, 59) 2, 3, 5, 29 (19, 71) 2, 3, 5, 7
(29, 41) 2, 3, 5, 7 (23, 59) 2, 3, 5, 11, 29 (23, 71) 2, 3, 5, 7, 11
(31, 41) 2, 3, 5 (29, 59) 2, 3, 5, 7, 29 (29, 71) 2, 3, 5, 7
(37, 41) 2, 3, 5, 7 (31, 59) 2, 3, 5, 7, 29 (31, 71) 2, 3, 5, 7, 11
(5, 43) 2, 3, 5, 7, 11 (37, 59) 2, 3, 5, 7, 29 (37, 71) 2, 3, 5, 7
(7, 43) 2, 3, 5, 7 (41, 59) 2, 3, 5, 7, 29 (41, 71) 2, 3, 5, 7
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Table 1.5 (continued)

(p, q) CPD's (p, q) CPD's (p, q) CPD's

(11, 43) � (43, 59) 2, 3, 5, 7, 29 (43, 71) 2, 3, 5, 7, 17
(13, 43) 2, 3, 5, 7, 11 (47, 59) 2, 3, 5, 7, 23, 29 (47, 71) 2, 3, 5, 7, 11, 23
(17, 43) 2, 3, 5, 7 (53, 59) 2, 3, 5, 13, 29 (53, 71) 2, 3, 5, 7, 11, 13
(19, 43) 2, 3, 5, 7, 11 (5, 61) � (59, 71) 2, 3, 5, 7, 29
(23, 43) 2, 3, 5, 7, 11 (7, 61) 2, 3, 5 (61, 71) 2, 3, 5, 7
(29, 43) 2, 3, 5, 7, 11 (11, 61) 2, 3, 5 (67, 71) 2, 3, 5, 7, 11
(31, 43) 2, 3, 5, 7, 13 (13, 61) 2, 3, 5, 11

By Proposition 1.1, n must divide Ar,n for each r in question.
However, as is seen from Table 1.5, apart from the exceptions listed
in Table 1.2, we get a contradiction since n > 13. Thus Theorem 1.2
is proved.

Proof of Theorem 1.3. Suppose that for some A,B under considera-
tion, equation (1.6) has a nontrivial solution (x, y, z, A,B, n) with xy
even, Ax,By and z coprime, and with n > 13. Lemma 1.3 proves the
assertion for those primes p, q for which either p ≤ 7 and q ≤ 29 or
(p, q) ∈ {(11, 13) , (11, 17), (11, 19), (13, 17), (13, 19), (17, 23)}, unless

(p, q) ∈ {(5, 23), (5, 29), (7, 17), (11, 17), (11, 19), (13, 17)} .

We use again Proposition 1.1 but now with m = 3. First we study the
case when, in AB = pαqβ, either p = 3, α > 0, q ∈ {31, 37, 41, 43, 47,
53, 59, 61, 67, 71} or αβ = 0. Then we have to consider modular forms
f of level N = 3γq with γ ∈ {0, 1, 2, 3, 4}. With the notation of Propo-
sition 1.1, put

Br,3 := NormKf/Q(cr − (r + 1)) ·NormKf/Q(cr + (r + 1)).

Since xy is even, in the case r = 2, it is enough to consider B2,3 instead
of the product

A2,3 := NormKf/Q(c2 − 3) ·NormKf/Q(c2) ·NormKf/Q(c2 + 3).
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Moreover, the Hasse-Weil (HW ) bound yields n ≤ 2
√

2 + 3 for all
rational newforms f , so we deal only with the non-rational ones. We
note that all the newforms of level N = 37 are one dimensional. The
following Table 1.6 contains the common prime divisors of B2,3 and
Ar,3 for primes r ∈ {5, 7, . . . , 47} di�erent from q.

Table 1.6

q\N 1q 3q 9q 27q 81q
31 5 2, 7 2, 3, 5, 7 2, 3, 5 2, 3, 5, 7
37 HW 2, 19 2, 3, 5, 19 2, 3, 7 2, 3, 5
41 2, 5 2, 7 2, 5, 7 2, 3, 7 2, 3, 7, 11
43 7 2, 7, 11 2, 3, 7, 11 2, 3, 5 2, 3, 5, 7
47 23 2 2, 23 2, 3, 13 2, 3, 7
53 2, 5, 13 2, 3 2, 3, 5, 13 2, 3, 5 2, 3, 5, 13
59 2, 29 2, 5, 7 2, 5, 7, 29 2, 3, 5, 11 2, 3, 5, 7
61 2, 5 2, 5, 31 2, 3, 5, 31 2, 3, 5 3, 7
67 5, 11 2, 17 2, 3, 5, 11, 17 3, 5, 7, 11 2, 3, 7, 13
71 5, 7 2, 3, 5 2, 3, 5, 7 2, 3, 5, 7 2, 3, 5, 7

In view of Proposition 1.1 Table 1.6 shows that we get a contra-
diction with n > 13 unless

(p, q, n) ∈ {(3, 37, 19), (3, 47, 23), (3, 59, 29), (3, 61, 31), (3, 67, 17)} .

In the remaining cases we have in AB = pαqβ that p ≥ 5 and
α, β > 0. By virtue of Lemma 1.3, it su�ces to deal with the pairs
(p, q) which are not considered there and with

(p, q) ∈ {(5, 23) , (5, 29) , (7, 17) , (11, 17) , (11, 19) , (13, 17)} .

For each of the remaining pairs (p, q) we use again Proposition 1.1
with m = 3, and collect the common prime divisors of B2,3 and Ar,n
with primes r ∈ {5, 7, 11, . . . , 47} for each occuring newform of level
N = 3pq, 9pq, 27pq. To these computations we used MAGMA and
its results are listed in the following Table 1.7.
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Table 1.7

(p, q) 3pq 9pq 27pq
(5, 23) 2, 3, 7, 11 2, 3, 7, 11 2, 3, 5, 7
(5, 29) 2, 5, 7 2, 3, 5, 7 2, 3, 5, 7
(5, 31) 2, 5, 7 2, 3, 5, 7 2, 3, 5
(5, 37) 2, 5, 11, 19 2, 3, 5, 7, 11, 19 2, 3, 5, 7, 11
(5, 41) 2, 3, 5 2, 3, 5, 7, 11 2, 3, 5, 7
(5, 43) 2, 5, 7 2, 3, 5, 7, 11 2, 3, 5, 7
(5, 47) 2, 5, 23 2, 3, 5, 7, 23 2, 3, 5, 13
(5, 53) 2, 5, 7, 13 2, 3, 5, 7, 13 2, 3, 5
(5, 59) 2, 3, 5, 29 2, 3, 5, 29 2, 3, 5, 7, 11
(5, 61) 2, 3, 5, 7 2, 3, 5, 7, 31 2, 3, 5, 7
(5, 67) 2, 5, 7, 11 2, 3, 5, 7, 11, 13, 17 2, 3, 5, 7, 11
(5, 71) 2, 3, 5, 7, 13 2, 3, 5, 7, 13 2, 3, 5, 7
(7, 17) 2, 7 2, 3, 5, 7 2, 3, 5
(7, 31) 2, 5, 7 2, 3, 5, 7 2, 3, 5, 7
(7, 37) 2, 3, 7 2, 3, 5, 7, 19 2, 3, 5
(7, 41) 2, 5, 7 2, 3, 5, 7, 11 2, 3, 5, 7
(7, 43) 2, 5, 7, 11 2, 3, 5, 7, 11 2, 3, 5, 11, 19
(7, 47) 2, 5, 7, 13, 23 2, 3, 5, 7, 13, 23 2, 3, 5
(7, 53) 2, 5, 7, 13 2, 3, 5, 7, 13 2, 3, 5, 7
(7, 59) 2, 5, 7, 11, 19, 29 2, 3, 5, 7, 11, 19, 29 2, 3, 5, 7, 11, 13
(7, 61) 2, 3, 5, 7 2, 3, 5, 7, 13, 31 2, 3, 5, 13
(7, 67) 2, 3, 11 2, 3, 5, 11, 17 2, 3, 5, 7
(7, 71) 2, 3, 5, 7 2, 3, 5, 7 2, 3, 5, 7, 11
(11, 17) 2, 3, 5 2, 3, 5 2, 3, 5
(11, 23) 2, 3, 5, 7, 11 2, 3, 5, 7, 11, 17 2, 3, 5, 7
(11, 29) 2, 3, 5, 7, 13, 17 2, 3, 5, 7, 13, 17 2, 3, 23
(11, 31) 2, 5, 7 2, 3, 5, 7, 19 2, 3, 5, 13
(11, 37) 2, 3, 5, 7, 13 2, 3, 5, 7, 11, 13, 19 2, 3, 5, 7
(11, 41) 2, 3, 5, 7 2, 3, 5, 7 2, 3, 5, 7
(11, 43) 2, 5, 7, 11 2, 3, 5, 7, 11 2, 3, 5
(11, 47) 2, 3, 5, 7, 17, 23 2, 3, 5, 7, 17, 23 2, 3, 5, 7, 13
(11, 53) 2, 3, 5, 7, 13 2, 3, 5, 7, 13 2, 3, 5, 7
(13, 17) 2, 5 2, 3, 5, 7 3, 5, 7
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Table 1.7 (continued)

(p, q) 3pq 9pq 27pq
(13, 23) 2, 5, 11, 13 2, 3, 5, 7, 11, 13 2, 3, 5, 11, 17
(13, 29) 2, 5, 7 2, 3, 5, 7 2, 3, 5, 7, 19
(13, 31) 2, 3, 5, 7 2, 3, 5, 7 2, 3, 5, 7
(13, 37) 2, 3, 5, 7, 19 2, 3, 5, 7, 19 2, 3, 5, 7
(13, 41) 2, 5, 7 2, 3, 5, 7 2, 3, 5, 7, 11, 13
(13, 43) 2, 3, 5, 7 2, 3, 5, 7, 11, 17 2, 3, 5, 7, 13
(17, 19) 2, 3, 5, 7 2, 3, 5, 7 2, 3, 5, 7, 13
(17, 29) 2, 3, 5, 7, 11 2, 3, 5, 7, 11 2, 3, 5, 7
(17, 31) 2, 5, 11 2, 3, 5, 11 2, 3, 5, 7, 11, 13
(19, 23) 2, 3, 5, 11 2, 3, 5, 7, 11 2, 3, 5
(19, 29) 2, 3, 5, 7 2, 3, 5, 7 2, 3, 5, 7, 11, 23

Proposition 1.1 now implies that equation (1.6) has no solutions
for those triples (p, q, n) for which n does not occur in Table 1.7 as a
common prime divisor. It is seen from Tables 1.6 and 1.7 that there are
29 triples (p, q, n) with n > 13 which are those listed in our Theorem
1.3 as possible exceptions. This proves Theorem 1.3.





Chapter 2

Binomial Thue equations

In this chapter we deal with binomial Thue equations. We �rst summa-
rize the corresponding ine�ective and e�ective �niteness results then
we turn our attention to results on the resolution of such equations.
Finally, we present our new theorems with their proofs.

2.1 Introduction and �niteness results

Let us consider the Diophantine equation

(2.1) Axn −Byn = C,

where A,B,C, n are nonzero integers and n ≥ 3 is either �xed or
also unknown. Equation (2.1) with �xed n is called a binomial Thue
equation. We use the same terminology also for the case of unknown
n. We may assume that

(2.2) 1 ≤ A < B and gcd(A,B) = 1.

Thue equations and generalized Thue equations have many applica-
tions in number theory, see e.g. [39], [46], [5], [34], [7], [9], [28], [10],
[15], [2], [31] and the references given there. By a classical theorem

29
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of Thue [51], for �xed n, equation (2.1) has at most �nitely many
solutions in integers x, y. This result is ine�ective in the sense that
it does not provide any algorithm for �nding the solutions. The �rst
e�ective upper bounds for the size of the solutions of (2.1) are due
to Baker [1] for n �xed. For n also unknown, Tijdeman [52] proved
that max {|x|, |y|, n} can be still e�ectively bounded for every integer
solution (x, y, n) of (2.1) with |xy| > 1. This e�ective �niteness results
is extended in [27] by Gy®ry, Pink and Pintér to the case when the
numbers A,B,C are taken to be unknown S-units (i.e. all their prime
factors lie in S, where S is a �nite set of primes).

Using Baker's theory of linear forms in logarithms, the results of [1]
and [52] have been improved several times, but even the best known
upper bounds are too large for �nding the solutions of (2.1) in concrete
cases.

2.2 The resolution of binomial Thue equa-

tions

The �rst results on the complete resolution of equation (2.1) with
unknown n ≥ 3 were obtained with C = ±1. In [5], Bennett showed
by means of the hypergeometric method that for B = A + 1, the
equation

(2.3) Axn −Byn = ±1

has no solutions with |xy| > 1. In [7], [9] and [42], (2.1) has been
resolved for some choices of the coe�cients (A,B). For certain sets
S of primes all solutions of (2.3) with S-unit coe�cients A,B have
been determined by Bennett [7], Bennett, Gy®ry, Mignotte and Pintér
[10], Bugeaud, Mignotte and Siksek [21], and Gy®ry and Pintér [31].
These results, together with our related result, will be discussed in
detail in Section 2.7. Now we turn to the case when, in (2.1), the
coe�cients A,B and C are bounded positive integers. This situation
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was �rst considered by Gy®ry and Pintér in [29]. They �rst derived
for concrete values of A,B,C a relatively sharp upper bound for n,
provided that (2.1) has no solutions with |xy| ≤ 1. Then they explicitly
solved equation (2.1) in integers x, y and n with |xy| > 1, n ≥ 3 for
a collection of coe�cients A,B,C. Under the assumptions (2.2) and
max {A,B, |C|} ≤ 10 they gave all integer solutions (x, y, n) to (2.1)
with |xy| > 1, n ≥ 3 and with

(2.4) B ± A 6= C if C ≥ 2.

For C = ±1, assuming (2.2) and max {A,B} ≤ 20, they deter-
mined all solutions (x, y, n) to equation (2.3) with |xy| > 1 and n ≥ 3.
Finally, in the case A = |C| = 1, B ≤ 70, they gave all solutions to
the equation

(2.5) xn −Byn = ±1

in integers x, y, n with |xy| > 1 and n ≥ 3. Their proofs require a
wide variety of powerful techniques including local arguments, some
classical results in cyclotomic �elds, lower bounds for linear forms in
logarithms of algebraic numbers, computational methods for �nding
the solutions of Thue equations of small degree, the hypergeometric
method and results on ternary equations based on Galois representa-
tions and modular forms. We note that these statements of [29] cannot
be deduced from the results of [5], [7], [10], [21] and [31].

2.3 New results

In this section, our purpose is to extend the above-mentioned results
of [29] to much larger values of A,B,C. The theorems of this section
are joint results of Bérczes, Gy®ry, Pintér and the author, and were
published in [4]. The main novelty in our proofs is a new result of ours
(Theorem 2.6) concerning the solvability of binomial Thue equations
of the form (2.5). The use of our Theorem 2.6 is crucial in proving
Theorems 2.1 and 2.2. It is important to note that in our Theorems
2.1 to 2.5 we arrived at the limit of the applicability of the currently
available methods.
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For equation (2.5) we prove the following results.

Theorem 2.1. If 1 < B ≤ 400, then all integer solutions (x, y, n) of
equation (2.5) with |xy| > 1, n ≥ 3 and with (B, n) /∈ {(235, 23) , (282,
23) , (295, 29), (329, 23), (354, 29)} are given by

n = 3, (B, x, y) = (7,±(2, 1)), (9,±(2, 1)), (17,±(18, 7)), (19,±(8, 3)),

(20,±(19, 7)) , (26,±(3, 1)), (63,±(4, 1)), (91,±(9, 2)), (124,±(5, 1)),

(126,±(5, 1)) , (182,±(17, 3)) , (215,±(6, 1)) , (217,±(6, 1)) ,

(254,±(19, 3)) , (342,±(7, 1)) , (344,±(7, 1)) ,

n = 4, (B, x, y) = (5,±3,±2), (15,±2,±1), (17,±2,±1), (39,±5,±2),

(80,±3,±1) , (150,±7,±2) , (255,±4,±1) ,

n = 5, (B, x, y) = (31,±(2, 1)) , (242,±(3, 1)) , (244,±(3, 1)) ,

n = 6, (B, x, y) = (63,±2,±1) ,

n = 7, (B, x, y) = (127,±(2, 1)) , (129,±(2, 1)) ,

n = 8, (B, x, y) = (255,±2,±1) .

This is a considerable extension of Theorem 4 of [29]. In the proofs
of our Theorems 2.1 and 2.2 the method of modular forms and Theo-
rem 2.6 play very important roles. In Theorem 2.1, and in Theorems
2.2 to 2.5 below, there are some exceptions (B, n) resp. (A,B, n) for
which our methods do not work. This is partly due to the fact that
the necessary data concerning the arising modular forms of too high
levels are not at our disposal.

In the next theorem we restrict ourselves to the case when B is odd.
Then xy is even, which fact considerably extends the applicability of
our method of proof.

Theorem 2.2. (i) If 400 < B < 800 is odd, then all integer solutions
(x, y, n) of equation (2.5) with |xy| > 1, n ≥ 3 and apart from the
possible exceptions (B, n) listed in Table 2.1 below are given by

n = 3, (B, x, y) = (511,±(8, 1)) , (513,±(8, 1)) , (635,±(361, 42)) ,

(651,±(26, 3)) ,

n = 9, (B, x, y) = (511,±(2, 1)) , (513,±(2, 1)) .
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Table 2.1

(B, n) (B, n) (B, n) (B, n) (B, n)
(413, 29) (519, 43) (649, 29) (695, 23) (757, 379)
(415, 41) (535, 53) (669, 37) (699, 29) (767, 29)
(417, 23) (537, 89) (681, 113) (717, 17) (789, 131)
(447, 37) (573, 19) (683, 31) (721, 17) (799, 23)
(501, 83) (581, 41) (685, 17) (745, 37)
(517, 23) (611, 23) (687, 19) (749, 53)

(ii) Let 800 < B < 2000 be odd. If n < 13, then all integer solutions
(x, y, n) of equation (2.5) with |xy| > 1, n ≥ 3 are given by

n = 3, (B, x, y) = (813,±(28, 3)) , (999,±(10, 1)) , (1001,±(10, 1)) ,

(1521,±(23, 2)) , (1657,±(71, 6)) , (1727,±(12, 1)) , (1729,±(12, 1)),

(1801,±(73, 6)) , (1953,±(25, 2))

n = 5, (B, x, y) = (1023,±(4, 1)) , (1025,±(4, 1)) ,

n = 10, (B, x, y) = (1023,±2,±1) , (1025,±2,±1) .

If n > 100 is a prime, then equation (2.5) has no solutions in integers
(x, y, n) with |xy| > 1, n ≥ 3 and apart from the possible exceptions
(B, n) listed in Table 2.2 below.

Table 2.2

(B, n) (B, n) (B, n)
(1041, 173) (1509, 251) (1795, 179)
(1077, 179) (1527, 127) (1821, 101)
(1135, 113) (1589, 113) (1841, 131)
(1149, 191) (1671, 139) (1857, 103)
(1315, 131) (1689, 281) (1915, 191)
(1401, 233) (1735, 173) (1929, 107)
(1437, 239) (1761, 293) (1959, 163)
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In case (ii), solving equation (2.5) with our present methods, for
13 ≤ n ≤ 100 we obtained so many exceptions that we disregard that
case.

For equation (2.3), we have the following.

Theorem 2.3. Under the assumptions (2.2) and max {A,B} ≤ 50,
all integer solutions (x, y, n) to equation (2.3) with |xy| > 1, n ≥ 3 and
with (A,B, n) /∈ {(21, 38, 17) , (26, 41, 17) , (22, 43, 17) , (17, 46, 17) ,
(31, 46, 17) , (21, 38, 19)} are given by

n = 3, (A,B, x, y) = (1, 7,±(2, 1)) , (1, 9,±(2, 1)) , (1, 17,±(18, 7)) ,

(1, 19,±(8, 3)) , (1, 20,±(19, 7)) , (1, 26,±(3, 1)) , (2, 15,±(2, 1)) ,

(2, 17,±(2, 1)) , (3, 10,±(3, 2)) , (5, 13,±(11, 8)) , (5, 17,±(3, 2)) ,

(8, 17,±(9, 7)) , (8, 19,±(4, 3)) , (11, 19,±(6, 5))

n = 4, (A,B, x, y) = (1, 5,±3,±2) , (1, 15,±2,±1) , (1, 17,±2,±1) ,

(1, 39,±5,±2) .

The next theorem can be regarded as an extension of Theorem 2.3
to the case max{A,B} ≤ 100. For n = 17 and 19, there are, however,
many exceptions (A,B, n) when none of our methods works. Hence we
consider only the situation when n is a prime greater than 19.

Theorem 2.4. Let A,B be integers with max {A,B} ≤ 100 and (2.2),
and let n be a prime.

(i) If n > 41, then equation (2.3) has no integer solutions (x, y, n)
with |xy| > 1.

(ii) If 19 < n ≤ 41, then equation (2.3) has no integer solu-
tions (x, y, n) with |xy| > 1, apart from the possible exceptions
(A,B, n) = (35, 58, 29), (8, 75, 31) , (11, 76, 31) , (23, 78, 31),
(31, 58, 31) , (39, 71, 31) and (17, 82, 41).

We conjecture that for max{A,B} ≤ 100, equation (2.3) possesses
only the solutions listed in Theorem 2.3.

Finally, we consider the case when C is not necessarily ±1.
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Theorem 2.5. Let A,B,C be integers with max {A,B, |C|} ≤ 30 and
with (2.2), (2.4), and let n be a prime.

(i) If n > 31, then equation (2.1) has no integer solutions (x, y, n)
with |xy| > 1.

(ii) If 19 < n ≤ 31, then equation (2.1) has no integer solutions
(x, y, n) with |xy| > 1, apart from the possible exceptions
(A,B,C, n) = (1, 19, 26, 31) , (1, 26, 19, 31) , (2, 15, 14, 31) ,
(2, 23, 6, 31) , (6, 23, 2, 31) and (13, 21, 30, 31).

In [9] and [29], some special cases of our Theorems 2.1 and 2.3
were used to solve, for certain values of k and D, the equations 1k +
2k + . . .+ xk = yn and x(x+ 1) = Dyn. Here x, y and n are unknown
positive integers with n ≥ 2.

The following result, which may have independent interest, will be
crucial in solving equation (2.5) in many cases. Let φ( ) denote Euler's
function.

Theorem 2.6. Suppose that in equation (2.5) n is a prime and that
each of the following conditions holds:

(i) n ≥ 17,

(ii) B ≤ exp {3000},

(iii) n - Bφ(B),

(iv) Bn−1 6≡ 2n−1 (mod n2),

(v) rn−1 6≡ 1 (mod n2) for some divisor r of B.

Then equation (2.5) has no solutions in integers (x, y, n) with |xy| > 1.

We remark that our results and their proofs provide the theoretical
background of a possible implementation of a binomial Thue equation
solver subroutine in certain computer algebraic systems like MAGMA
[18] or SAGE [50]. For a computational approach of modular forms we
refer to [49].
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2.4 Auxiliary results II.

To prove our theorems we need several lemmas.

Lemma 2.1. Set M = max {A,B, 3} and λ = log(1 + logM
| log(A/B)|).

Suppose that (x, y, n) is an integer solution to (2.1) with

x > |y| > 0, 3 log(1.5 |C/B|) ≤ 7400
logM

λ
and

log 2C

log 2
≤ 8 logM.

Then we have

n ≤ min

(
7400

logM

λ
, 3106 logM

)
.

Proof. A similar result was proved by Mignotte [37] with a weaker
upper bound for n. Mignotte's estimate has been improved in [42] by
Pintér by iterated application of Baker's theory of logarithmic forms.

Combining Lemma 2.1 with local arguments Gy®ry and Pintér
([29], Theorem 1) obtained considerably sharper upper bounds for n
whenever |xy| > 1. We now formulate this result of [29]. Lemmas 2.1
and 2.2 will be used to bound the exponent n in our equations.

Lemma 2.2. Suppose that (2.2) holds and

(2.6) C /∈ {A,B,B ± A} .

For the pairs (M1, n1), (M2, n2) given in Table 2.3, and for every in-
teger solution (x, y, n) of (2.1) with n ≥ 3 prime, we have
(i) n ≤ n1 if max {A,B,C} ≤M1, and
(ii) n ≤ n2 if C = 1 and max {A,B} ≤M2.
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Table 2.3

M1 n1 M2 n2

100 71 200 79
35 43 100 53
20 37 50 31
10 19 20 19

Proof. See Gy®ry and Pintér [29]. The proof depends on Lemma 2.1
and on a short MAGMA program which is based on the following
version of the local method. For each quadruple (A,B,C, n) one can
search for a local obstruction by considering (2.1) modulo a prime of
the form p = 2kn+ 1, coprime to A,B and C, with k ∈ N. For such a
prime, there are at most (2k+1)2 possible residue classes forAxn−Byn.
If none of these contains C, then equation (2.1) is impossible modulo
p. If one cannot �nd such a prime with k ≤ 150, then one can test the
solvability of the equation modulo n2. We note that using the method
of the proof, Table 2.3 can be extended to larger values of M1 and M2

as well.

Combining several powerful techniques, Bennett [5] obtained the
following results.

Lemma 2.3. If A,B and n are nonzero integers and n ≥ 3, then
equation (2.3) has at most one solution in positive integers x, y.

Proof. See Theorem 1.1 in [5]. We shall use this lemma in the special
case B = A+1. Then x = y = 1 is a solution to (2.3), hence no further
solution exists.

Lemma 2.4. Let b > a be positive, coprime integers and suppose that

17 ≤ n ≤ 43 is prime, m =

[
n+ 1

3

]
,

and de�ne c1(n), d(n) via
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n c1 (n) d (n) n c1 (n) d (n)
17 8.93 13.06 31 17.92 30.55
19 9.40 15.46 37 21.92 32.51
23 13.03 17.66 41 25.83 36.08
29 17.39 29.95 43 26.62 33.95

If we have (
m
√
b− m
√
a
)m

ec1(n) < 1

then, if x and y > 0 are integers, we may conclude that∣∣∣∣∣
(
b

a

) 1
n

− x

y

∣∣∣∣ >(
3.15 · 1024(m− 1)2nm−1ec1(n)+d(n)

(
m
√
b+ m
√
a
)m)−1

y−λ,

where

λ = (m− 1)

1−
log(

(
m
√
b+ m
√
a
)m

ec1(n)+1/20)

log(
(

m
√
b− m
√
a
)m

ec1(n))

 .

Proof. This is a special case of Theorem 7.1 in [5] which is stated and
proved for primes 17 ≤ n ≤ 347.

Recently, Bennett [8] improved this result by giving a sharper lower
bound for primes 37 ≤ n ≤ 73. However, in our applications we cannot
bene�t from this improvement.

We recall that for a �nite set of primes S, an integer u is an S-unit
if all its prime factors lie in S. The following result is due to Bennett,
Gy®ry, Mignotte and Pintér [10] for 2 ≤ p, q ≤ 13, and to Gy®ry and
Pintér [31] for 2 ≤ p, q ≤ 29.

Lemma 2.5. Let S = {p, q} for primes p and q with 2 ≤ p, q ≤ 29.
If A,B, x, y and n are positive integers with A,B S-units, A < B and
n ≥ 3, then the only solutions to equation (2.3) are those with

n ≥ 3, A ∈ {1, 2, 3, 4, 7, 8, 16} , x = y = 1
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and

n = 3, (A, x) = (1, 2) , (1, 3) , (1, 4) , (1, 9) , (1, 19) , (1, 23), (3, 2), (5, 11),

n = 4, (A, x) = (1, 2) , (1, 3) , (1, 5) , (3, 2) ,

n = 5, (A, x) = (1, 2) , (1, 3) ,

n = 6, (A, x) = (1, 2) .

Proof. This is Theorem 1 in [31]; see also Theorem 1.1 in [10].

The following two lemmas are special cases of two theorems of
Bugeaud, Mignotte and Siksek [21] and will be used in the proofs of
our Theorems 2.3 and 2.4.

Lemma 2.6. Suppose 3 ≤ q < 100 is a prime. The equation

quxn − 2vyn = ±1

has no solutions in integers x, y, u, v, n with x, y > 0, |xy| > 1, u, v ≥ 0
and n > 5.

Proof. Cf. Theorem 1.1 in [21].

Lemma 2.7. Suppose 3 ≤ p < q ≤ 31 are primes. The equation

puxn − qvyn = ±1

has no solutions in integers x, y, u, v, n with x, y > 0, u, v ≥ 0 and
n > 5.

Proof. Cf. Theorem 1.2 in [21].

We note that in contrast with Lemma 2.5, the Lemmas 2.6 and 2.7
cannot be applied to equations of the form (2.3) when A = 1 and B
has two distinct prime factors. Further, in case A = 1 equation (2.3)
cannot be solved by the methods used in [10], [31] and [21] when B is
divisible by more than two distinct primes.

We now consider the equation

(2.7) xn + yn = Bzn,

where n > 3 is a prime, B is a nonzero integer and x, y, z are coprime
nonzero rational integers.



40 CHAPTER 2. BINOMIAL THUE EQUATIONS

Lemma 2.8. Suppose that n is coprime to Bφ(B), Bn−1 6≡ 2n−1

(mod n2) and (2.7) has a solution in pairwise coprime nonzero in-
tegers x, y and z. Then either (i) n | z or (ii) n | xy, Bz is odd and
rn−1 ≡ 1 (mod n2) for each divisor r of B.

Proof. This lemma was proved in [9] (see also [25]).

Assume that in (2.7) n | B but n - z. Let n, p1, . . . , pr denote the
distinct prime factors of B. For r ≥ 1, denote by f1, . . . , fr the smallest
positive integers for which

pfi

i ≡ 1 (mod n), i = 1, . . . , r,

and set ordn(B) = N .
Remark. If N = 1, then (2.7) has no solution x, y, z with n - z.

Indeed, in the opposite case (2.7) implies n | x + y whence n | xn+yn

x+y
,

a contradiction.
Let ζ = e2π/n. We recall that a prime n is called regular if n does

not divide the class number of the cyclotomic �eld Q (ζ). The next
assertion is due to Maillet [36].

Lemma 2.9. Suppose that the prime n is regular. If N ≥ 1, N ≡ 0
or 1 (mod n) and, for r ≥ 1,

(2.8)
r∑
i=1

1

fi
≤ n− 3

n− 1
,

then (2.7) has no solutions in coprime nonzero rational integers x, y, z
not divisible by n.

Proof. See [36].

Denote by h+
n the class number of the maximal real sub�eld

Q (ζ + ζ−1) of Q (ζ). The following result has been recently proved by
Mih ilescu [38].
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Lemma 2.10. Let n ≥ 17 be a prime. If the equation

xn − 1

x− 1
= ne · wn, e ∈ {0, 1}

has an integer solution (x,w) with x ≡ 0, 1 or − 1 (mod n), then

(2.9) n | h+
n .

Remark. It follows from the results of Buhler, Crandall, Ernvall,
Metsänkylä and Shokrollahi [22] that condition (2.9) implies that n >
12 · 106.

2.5 Proofs

In this section we prove our Theorems 2.1 - 2.6. The Tables A1-A10
needed in the proofs are collected in Section 2.6.

First we prove Theorem 2.6 because this theorem will be one of
the main tools of the proof of Theorems 2.1, 2.2 and 2.5.

Proof of Theorem 2.6. Suppose that in equation (2.5) n and B satisfy
the conditions of Theorem 2.6 and that we have an integer solution
(x, y, n) to (2.5) with |xy| > 1. It is clear that then the equation

(2.10) xn − 1 = Byn

also has an integer solution (x, y, n) with |xy| > 1. We can apply
Lemma 2.1 with the choice A = C = 1 to obtain that n ≤ 3106 logB.
Together with condition (ii) this yields n ≤ 9.318 · 106. Furthermore,
in view of (iii), (iv) and (v), Lemma 2.8 implies that n | y. Thus we
have n | x− 1 and hence n | xn−1

x−1
. It is known that

gcd

(
xn − 1

x− 1
, x− 1

)
| n.

Further, each prime factor of xn−1
x−1

is either n or ≡ 1 (mod n) and
n2 - xn−1

x−1
. Since by assumption n - φ(B), we infer from (2.10) that

(2.11)
xn − 1

x− 1
= nwn
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with some nonzero integer w. Now, since n ≥ 17 by (i), one can apply
Lemma 2.10 to equation (2.11) which implies that n | h+

n . But as is
remarked after Lemma 2.10, it then follows that n > 12 · 106 which is
a contradiction. Thus Theorem 2.6 is proved.

To prove our Theorems 2.1, 2.3 and Theorem 2.2 (i), it will be
enough to solve the corresponding equations for n = 4 and for odd
primes n. From the values of the solutions x, y so obtained one can
easily determine all solutions (x, y, n) with composite n ≥ 3.

Proof of Theorem 2.1. In view of Theorem 4 of [29] it su�ces to deal
with the case when 71 ≤ B ≤ 400. For n ≤ 13 we resolved the
corresponding Thue equations using PARI [40] or MAGMA.

In case of n ≥ 17, we obtained an upper bound n0 on n for each
B by means of Lemma 2.1. Then combining Theorem 2.6 with the
modular approach (Lemma 1.1) with signature (n, n, n) we could ex-
clude the solvability of most of the equations under consideration with
17 ≤ n ≤ n0.

To illustrate our method we give an example. Set B = 119. Then
Lemma 2.1 implies that n ≤ n0 = 14843. With an easy MAGMA
program we checked that each of the conditions of Theorem 2.6 is
ful�lled for each such n, except n = 17. Thus Theorem 2.6 implies
that the equation xn − 119yn = ±1 has no solutions with |xy| >
1, unless possibly when n = 17. Then we considered the equation
x17 − 119y17 = ±1 as a ternary equation and applied Lemma 1.1
with signature (n, n, n). The level of the corresponding newforms is
238. There are 6 newforms of level 238. If (x, y) is a solution of the
equation then one can show by local arguments that 103 | xy. We
recall that Kf denotes the �eld generated by the Fourier coe�cients
cr of a modular form f . In the case |xy| > 1, Proposition 1.1 implies
that

103 | NormKf/Q(c103 − 104) ·NormKf/Q(c103 + 104)

for some cuspidal newform f of level 238. However, an easy calculation
shows that the above relation is impossible for each newform under
consideration, hence no nontrivial x, y solutions exist.
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After these computations, it remained to consider equation (2.5)
in the following cases
(B, n) ∈ {(141, 23), (177, 29), (235, 23), (249, 41), (268, 17), (274, 29) ,
(282, 23) , (295, 29) , (309, 17) , (321, 53) , (329, 23) , (354, 29)}.

For (B, n) = (268, 17) and (309, 17), we resolved the corresponding
Thue equations using PARI.

For (B, n) ∈ {(141, 23), (177, 29), (249, 41), (274, 29), (321, 53)} we
applied Proposition 1.1 with signature (n, n, 3) and used MAGMA to
get a contradiction in each case. For instance, when (B, n) = (249, 41),
one can see that 2 | xy for each solution x, y of the equation x41 −
249y41 = ±1. In view of Lemma 1.1 it is enough to check the relation

(2.12) 2 | NormKf/Q(c2 − 3) ·NormKf/Q(c2 + 3),

for each newform f of level N ∈ {249, 6723}, where c2 denotes the
second Fourier coe�cient of f . There are 5 and 22 newforms at levels
249 and 6723 respectively. It is easy to check that condition (2.12)
does not hold for any of those newforms, hence there are no nontrivial
solutions x, y.

Finally, in the exceptional cases listed in the theorem we were
unable to solve the corresponding Thue equations. This completes the
proof of Theorem 2.1.

Proof of Theorem 2.2. (i) For n ≤ 13, (B, n) 6= (649, 13), we resolved
the corresponding Thue equations of the form (2.5) one by one using
PARI or MAGMA. When (B, n) = (649, 13), PARI cannot handle
the corresponding Thue equation. We then applied Lemmas 2.8 and
2.9 in the following way. It is easy to check that (13, 649 · φ(649)) =
1, 64912 6≡ 212 (mod 132) and 64912 6≡ 1 (mod 132). Thus Lemma
2.8 gives that in (2.5) 13 must divide y. Then we can rewrite our
equation x13 − 649y13 = 1 as x13 − 649 · 13Ny13

1 = 1 where 13 | N
and 13 - y1. With the notation of Lemma 2.9 we have r = 2, p1 = 11,
p2 = 59, f1 = f2 = 12 and since 2/12 < 10/12, Lemma 2.9 yields a
contradiction.
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Consider now the case n ≥ 17. As in the proof of Theorem 2.1,
we obtained an upper bound n0 on n for each B using Lemma 2.1.
Then we combined again Theorem 2.6 with the modular approach
(Lemma 1.1) with signature (n, n, n). We used this sieve for each of
the equations of the form (2.5) with odd 400 < B < 800 and with
primes 17 ≤ n ≤ n0. We considered the pairs

(B, n) ∈ {(411, 17), (423, 23), (509, 17), (531, 29), (747, 41)} .

For (B, n) = (411, 17) and (509, 17), the corresponding Thue equa-
tions of the form (2.5) can be solved using PARI. When (B, n) =
(423, 23), (531, 29) or (747, 41), we applied Lemma 1.1 with signature
(n, n, 3) to prove that the corresponding Thue equations of the form
(2.5) have no integer solutions x, y with |xy| > 1.

Unfortunately, for the remaining pairs (B, n) which are listed in
Table 2.1 we failed to resolve the corresponding Thue equations. This
completes the proof of part (i) of Theorem 2.2.

(ii) For n < 13, (B, n) 6= (1799, 11), we resolved the corresponding
Thue equations of the form (2.5) one by one using PARI. In the case
when (B, n) = (1799, 11), PARI cannot handle the occuring Thue
equation, hence we applied Proposition 1.1 with signature (n, n, n) to
prove that no nontrivial solutions exist.

In the sequel we assume that n > 100. For each odd B under
consideration we deduced �rst an upper bound n0 on n using Lemma
2.1. Then we applied again the sieve consisting of Theorem 2.6 and the
modular technique (Lemma 1.1) with signature (n, n, n) for each of the
equations of the form (2.5) with odd 800 < B < 2000 and with primes
101 ≤ n ≤ n0. We obtained that all equations of the form (2.5) under
consideration can have integer solutions (x, y, n) with |xy| ≤ 1 only,
except possibly for the pairs (B, n) listed in Table 2.2. This completes
the proof of part (ii) of Theorem 2.2.

Proof of Theorem 2.3. Our Theorem 2.1 provides all solutions of equa-
tion (2.3) with A = 1 and B ≤ 50. Further Gy®ry and Pintér [29]



2.5. PROOFS 45

gave, under the assumption (2.2), all solutions to equation (2.3) for
max {A,B} ≤ 20. In view of these results we may assume that A > 1
and max {A,B} ≥ 21. If B − A = 1 then x = y = 1 is a solution of
(2.3), and Lemma 2.3 gives that equation (2.3) has no solution with
|xy| > 1. Hence we may also assume that B − A > 1. Then Lemma
2.2, (ii) yields that n ≤ 31.

We used the local method described in the proof of Lemma 2.2
to prove that under the assumptions of Theorem 2.3 equation (2.3)
has no solutions (x, y, n) with |xy| > 1, n ≥ 3, except for the triples
(A,B, n) contained in Table A1 of Section 2.6.

Using PARI, we resolved the corresponding Thue equations (2.3)
for n ≤ 19 wherever it was possible. We note that this subroutine of
PARI that we used is based on theoretical work of Hanrot [33], and it
works without assuming the GRH if the right-hand side of the Thue
equation is 1 or if the conditional class group is trivial.

If (A,B, n) ∈ {(2, 37, 19), (4, 23, 13), (8, 43, 31), (11, 32, 19) ,
(17, 32, 17)} or (A,B, n) ∈ {(7, 23, 13), (13, 23, 13), (17, 29, 17) ,
(23, 25, 13), (23, 29, 13), (23, 29, 19), (23, 49, 19), (31, 49, 19)}, then the
corresponding Thue equations are impossible by Lemmas 2.6 or 2.7,
respectively.

In the case when (A,B, n) is one of the triples listed in Table A2
of Section 2.6, we applied Lemma 2.4 to show that equation (2.3) has
no solutions. For example, when (A,B, n) = (19, 26, 31), we applied
Lemma 2.4 with b = 26, a = 19. Then one can check that the condi-
tion

(
m
√

26− m
√

19
)m

ec1(31) < 1 is ful�lled for m =
[

31+1
3

]
= 10 and

c1(31) = 17.92. Thus Lemma 2.4 yields that∣∣∣∣∣
(

26

19

) 1
31

− x

y

∣∣∣∣∣ > 1

1.7259 · 1065
y−27.5338.

On the other hand, the equation |19x31 − 26y31| = 1 implies that∣∣∣∣∣
(

26

19

) 1
31

− x

y

∣∣∣∣∣ < 1

y31
,
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i.e. we have y < 5.5677 · 1021. Then in each case we used an algo-
rithm developed by Peth® [41] for �nding the small solutions of Thue
equations to resolve our corresponding equation.

When (A,B, n) = (27, 37, 19) or (27, 47, 19), we considered the
corresponding equations as ternary equations with signature (n, n, 3)
and we applied Proposition 1.1 as in the proof of Theorem 2.1 to solve
our equations.

For (A,B, n) contained in Table A3, we considered the correspond-
ing equations as ternary equations with signature (n, n, n). Applying
again Proposition 1.1, we proved using MAGMA that the equations
under consideration have no nontrivial solutions.

In the exceptional cases excluded in the theorem, we were unable
to prove with the above-mentioned methods that the corresponding
Thue equations have no nontrivial integer solutions.

Proof of Theorem 2.4. As in the proof of Theorem 2.3, it su�ces to
consider the case when A > 1 and B − A > 1. Then, in view of
Lemma 2.2 we may assume that 19 < n ≤ 53. By Theorem 2.3 we
may further assume that max {A,B} ≥ 51. Using the local method, we
obtained that for most of the triples (A,B, n) under consideration, the
corresponding equation (2.3) has no solutions. Those triples (A,B, n)
for which the local method does not work are listed in Table A4.

In the cases corresponding to the triples of Table A5 we applied
Lemma 2.4 and the above-mentioned algorithm of [41] to show the
impossibility of equation (2.3).

When (A,B, n) = (27, 91, 31) one can see that 2 | xy for all so-
lutions. Then we applied Proposition 1.1 with signature (n, n, 3) to
infer that if x, y is a solution to equation (2.3) with |xy| > 1 then
(2.12) holds for the Fourier coe�cient c2 of some newform f of level
91. There are 4 newforms of level 91 and using MAGMA we arrived
at a contradiction with (2.12) in each case.

For (A,B, n) ∈ {(6, 67, 31) , (31, 73, 31) , (31, 77, 53), (31, 89, 31),
(37, 88, 31), (40, 79, 31), (44, 83, 31), (52, 83, 31), (64, 99, 31)} we applied
Proposition 1.1 with signature (n, n, n). Here, for the computation of
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the corresponding Fourier coe�cients of the arising newforms, we used
again MAGMA.

Unfortunately, in the remaining 7 cases mentioned in the theorem,
we could not �nd any way to solve the corresponding equations.

Proof of Theorem 2.5. Let A,B,C be positive integers with
max {A,B,C} ≤ 30 which satisfy conditions (2.2) and (2.4) and let
(x, y, n) be a �xed solution of the corresponding equation (2.1). By
Theorem 2.3 it su�ces to consider the case when C > 1.

1) First assume that (A− C) (B − C) 6= 0. In this case Lemma 2.2
yields 19 < n ≤ 43. Using the local method, we showed that for most
of the quadruples (A,B,C, n) under consideration, the corresponding
equation (2.1) has no solutions. Those quadruples for which the local
method does not work can be found in Table A6 of Section 2.6.

For (A,B,C, n) listed in Table A7 we applied Proposition 1.1 with
signature (n, n, n), and using MAGMA we arrived at a contradiction
in each case.

When (A,B,C, n) = (1, 15, 21, 31) or (1, 21, 15, 31), we applied
Proposition 1.1 with signature (n, n, 3). We note that here 2 | xy
for every solution x, y of both Thue equations. Computing again in
MAGMA we checked the impossibility of relation (2.12) for all arising
newforms f .

To exclude the cases (A,B,C, n) ∈ {(11, 14, 17, 37) , (13, 21, 30, 31) ,
(14, 15, 2, 31), (14, 17, 11, 37), (15, 19, 21, 31), (17, 24, 21, 31), (18, 19, 22,
31), (19, 21, 15, 31), (21, 29, 26, 31)}, we combined Lemma 2.4 as above
with Peth®'s algorithm [41] to get a contradiction.

In the remaining 6 exceptional cases that are listed in the theo-
rem, we were unable to solve the corresponding Thue equations. This
completes the �rst part of the proof.

2) Next consider the case when (A− C) (B − C) = 0. In this case
equation (2.1) leads to an equation of the form

(2.13) xn1 −B1y
n
1 = ±1 in integers x1, y1,
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where B1 is a positive integer having no prime factors greater than 29.
If in (2.1) AB has at most 2 prime factors, then Lemma 2.5 applies to
the new equation (2.13) and gives the possible solutions. The remain-
ing cases for (A,B) in (2.1) are listed in Table A8 of Section 2.6. For
the pairs (A,B) occurring in Table A8 we infer that B1 = A ·Bn−1 or
B · An−1.

Since equation (2.13) always has the trivial solution (x, y) = (1, 0),
the local method cannot be used for showing the unsolvability of such
an equation. However, since n > 19, we can apply Theorem 2.6 to
equation (2.13). In this way we could exclude on one hand each case
when A = C except the ones corresponding to the triples (A,B, n) of
Table A9. On the other hand, when B = C we could exclude each case
but the ones corresponding to the triples (A,B, n) occurring in Table
A10.

When (A,B,C, n) = (29, 30, 29, 29) or (29, 30, 29, 67), we applied
as above Lemma 2.4 combined with Peth®'s algorithm.

For the rest of the equations corresponding to the triples in Tables
A9 and A10 we applied Proposition 1.1 using MAGMA for the com-
putations. For (A,B,C, n) = (8, 21, 21, 31), we considered equation
(2.1) as a ternary equation with signature (n, n, 3) and arrived at the
desired contradiction. In the remaining cases we applied Proposition
1.1 with signature (n, n, n) to prove that there is no nontrivial integer
solutions of the corresponding equations. This completes the proof of
Theorem 2.5.
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2.6 Tables

In this section we present the tables cited in the proofs in the preceed-
ing section. They contain all the data which is necessary to reconstruct
the computations done for proving the theorems of this chapter. For
those readers who are not interested in this reconstruction, this section
can be skipped.

Table A1

(A,B, n) (A,B, n) (A,B, n) (A,B, n) (A,B, n) (A,B, n)
(2, 23, 13) (7, 47, 19) (15, 23, 13) (20, 49, 19) (23, 50, 13) (35, 47, 11)
(2, 37, 19) (8, 43, 17) (15, 26, 13) (21, 29, 13) (24, 41, 17) (36, 49, 17)
(3, 26, 13) (8, 43, 31) (15, 26, 17) (21, 38, 17) (25, 36, 31) (37, 46, 17)
(3, 35, 19) (8, 45, 11) (15, 32, 11) (21, 38, 19) (26, 41, 17) (37, 46, 19)
(3, 37, 19) (9, 31, 11) (15, 38, 13) (21, 44, 17) (27, 34, 19) (38, 41, 19)
(3, 43, 19) (9, 38, 11) (17, 29, 17) (22, 39, 11) (27, 37, 19) (38, 47, 11)
(3, 50, 11) (9, 40, 19) (17, 32, 17) (22, 43, 17) (27, 47, 19) (38, 49, 17)
(4, 23, 13) (10, 33, 13) (17, 37, 13) (23, 25, 13) (28, 43, 19) (39, 44, 13)
(5, 22, 31) (10, 37, 11) (17, 46, 17) (23, 29, 13) (29, 33, 17) (39, 44, 17)
(5, 27, 11) (11, 32, 19) (18, 29, 17) (23, 29, 19) (29, 37, 19) (39, 46, 17)
(5, 39, 13) (11, 34, 11) (18, 41, 13) (23, 34, 13) (29, 41, 11) (39, 50, 13)
(5, 42, 11) (12, 23, 13) (18, 47, 17) (23, 35, 13) (29, 47, 11) (40, 47, 11)
(5, 46, 17) (13, 23, 13) (19, 22, 11) (23, 37, 13) (31, 37, 11) (41, 43, 19)
(7, 23, 13) (13, 36, 13) (19, 24, 19) (23, 37, 29) (31, 46, 17) (43, 46, 23)
(7, 29, 11) (13, 37, 11) (19, 26, 31) (23, 38, 13) (31, 49, 19) (44, 49, 11)
(7, 33, 17) (13, 41, 13) (19, 37, 19) (23, 39, 13) (33, 47, 11) (44, 49, 19)
(7, 37, 19) (13, 42, 13) (19, 41, 13) (23, 47, 13) (33, 47, 13)
(7, 41, 31) (14, 23, 31) (19, 49, 11) (23, 48, 13) (34, 49, 13)
(7, 47, 11) (15, 22, 11) (20, 27, 11) (23, 49, 19) (35, 44, 19)

Table A2

(A,B, n) (A,B, n) (A,B, n) (A,B, n) (A,B, n)
(19, 24, 19) (29, 33, 17) (37, 46, 17) (39, 44, 17) (43, 46, 23)
(19, 26, 31) (29, 37, 19) (37, 46, 19) (39, 46, 17) (44, 49, 19)
(27, 34, 19) (35, 44, 19) (38, 41, 19) (41, 43, 19)



50 CHAPTER 2. BINOMIAL THUE EQUATIONS

Table A3

(A,B, n) (A,B, n) (A,B, n) (A,B, n) (A,B, n) (A,B, n)
(5, 22, 31) (7, 41, 31) (15, 26, 17) (21, 44, 17) (28, 43, 19) (38, 49, 17)
(5, 46, 17) (7, 47, 19) (18, 47, 17) (23, 37, 29) (33, 47, 11)
(7, 33, 17) (8, 43, 17) (19, 37, 19) (24, 41, 17) (33, 47, 13)
(7, 37, 19) (14, 23, 31) (20, 49, 19) (25, 36, 31) (36, 49, 17)

Table A4

(A,B, n) (A,B, n) (A,B, n) (A,B, n) (A,B, n) (A,B, n)
(6, 67, 31) (27, 91, 31) (35, 58, 29) (44, 83, 31) (64, 99, 31) (79, 84, 41)
(8, 75, 31) (31, 58, 31) (37, 88, 31) (45, 59, 31) (67, 82, 41) (82, 91, 31)
(11, 76, 31) (31, 73, 31) (39, 71, 31) (52, 83, 31) (68, 95, 43) (93, 95, 31)
(17, 82, 41) (31, 77, 53) (40, 79, 31) (55, 82, 41) (69, 91, 31) (95, 98, 37)
(23, 78, 31) (31, 89, 31) (44, 53, 31) (61, 79, 23) (79, 82, 41)

Table A5

(A,B, n) (A,B, n) (A,B, n) (A,B, n) (A,B, n) (A,B, n)
(44, 53, 31) (55, 82, 41) (67, 82, 41) (69, 91, 31) (79, 84, 41) (93, 95, 31)
(45, 59, 31) (61, 79, 23) (68, 95, 43) (79, 82, 41) (82, 91, 31) (95, 98, 37)

Table A6

(A,B,C, n) (A,B,C, n) (A,B,C, n) (A,B,C, n) (A,B,C, n)
(1, 4, 28, 31) (2, 23, 4, 31) (7, 24, 4, 31) (13, 15, 9, 31) (17, 24, 18, 29)
(1, 5, 22, 31) (2, 23, 6, 31) (7, 25, 13, 31) (13, 20, 11, 31) (17, 24, 21, 31)
(1, 8, 6, 31) (3, 4, 24, 31) (8, 19, 23, 31) (13, 21, 30, 31) (17, 27, 21, 31)

(1, 14, 23, 31) (3, 7, 16, 31) (8, 27, 16, 31) (13, 30, 4, 31) (17, 29, 9, 31)
(1, 15, 21, 31) (4, 7, 24, 31) (9, 13, 26, 31) (14, 15, 2, 31) (18, 19, 22, 31)
(1, 19, 26, 31) (4, 13, 10, 31) (9, 17, 29, 31) (14, 17, 11, 37) (19, 21, 15, 31)
(1, 21, 15, 31) (4, 13, 30, 31) (9, 29, 17, 31) (15, 19, 21, 31) (19, 22, 26, 31)
(1, 23, 14, 31) (4, 23, 2, 31) (10, 13, 4, 31) (16, 19, 27, 31) (19, 23, 8, 31)
(1, 26, 19, 31) (4, 27, 16, 31) (11, 14, 17, 37) (16, 27, 4, 31) (19, 26, 22, 31)
(1, 28, 4, 31) (5, 27, 2, 31) (11, 15, 30, 31) (16, 27, 8, 31) (19, 27, 16, 31)
(2, 5, 27, 31) (6, 23, 2, 31) (11, 20, 13, 31) (16, 27, 19, 31) (21, 29, 26, 31)
(2, 9, 13, 31) (7, 10, 18, 31) (11, 28, 30, 23) (16, 27, 20, 43) (25, 28, 5, 31)
(2, 13, 9, 31) (7, 13, 25, 31) (11, 30, 15, 31) (17, 20, 11, 37)
(2, 15, 14, 31) (7, 16, 3, 31) (12, 13, 26, 31) (17, 24, 6, 31)
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Table A7

(A,B,C, n) (A,B,C, n) (A,B,C, n) (A,B,C, n)
(1, 4, 28, 31) (4, 13, 10, 31) (9, 17, 29, 31) (16, 27, 8, 31)
(1, 5, 22, 31) (4, 13, 30, 31) (9, 29, 17, 31) (16, 27, 19, 31)
(1, 8, 6, 31) (4, 23, 2, 31) (10, 13, 4, 31) (16, 27, 20, 43)

(1, 14, 23, 31) (4, 27, 16, 31) (11, 15, 30, 31) (17, 20, 11, 37)
(1, 23, 14, 31) (5, 27, 2, 31) (11, 20, 13, 31) (17, 24, 6, 31)
(1, 28, 4, 31) (7, 10, 18, 31) (11, 28, 30, 23) (17, 24, 18, 29)
(2, 5, 27, 31) (7, 13, 25, 31) (11, 30, 15, 31) (17, 27, 21, 31)
(2, 9, 13, 31) (7, 16, 3, 31) (12, 13, 26, 31) (17, 29, 9, 31)
(2, 13, 9, 31) (7, 24, 4, 31) (13, 15, 9, 31) (19, 22, 26, 31)
(2, 23, 4, 31) (7, 25, 13, 31) (13, 20, 11, 31) (19, 23, 8, 31)
(3, 4, 24, 31) (8, 19, 23, 31) (13, 30, 4, 31) (19, 26, 22, 31)
(3, 7, 16, 31) (8, 27, 16, 31) (16, 19, 27, 31) (19, 27, 16, 31)
(4, 7, 24, 31) (9, 13, 26, 31) (16, 27, 4, 31) (25, 28, 5, 31)

Table A8

(A,B) (A,B) (A,B) (A,B) (A,B) (A,B) (A,B) (A,B)
(2, 15) (5, 28) (8, 15) (11, 15) (13, 21) (15, 28) (19, 24) (23, 26)
(2, 21) (6, 7) (8, 21) (11, 18) (13, 22) (15, 29) (19, 26) (23, 28)
(3, 10) (6, 11) (9, 10) (11, 20) (13, 24) (16, 21) (19, 28) (23, 30)
(3, 14) (6, 13) (9, 14) (11, 21) (13, 28) (17, 18) (19, 30) (24, 25)
(3, 20) (6, 17) (9, 20) (11, 24) (13, 30) (17, 20) (20, 21) (24, 29)
(3, 22) (6, 19) (9, 22) (11, 26) (14, 15) (17, 21) (20, 23) (25, 26)
(3, 26) (6, 23) (9, 26) (11, 28) (14, 17) (17, 22) (20, 27) (25, 28)
(3, 28) (6, 25) (9, 28) (11, 30) (14, 19) (17, 24) (20, 29) (26, 27)
(4, 15) (6, 29) (10, 11) (12, 13) (14, 23) (17, 26) (21, 22) (26, 29)
(4, 21) (7, 10) (10, 13) (12, 17) (14, 25) (17, 28) (21, 23) (27, 28)
(5, 6) (7, 12) (10, 17) (12, 19) (14, 27) (17, 30) (21, 25) (28, 29)
(5, 12) (7, 15) (10, 19) (12, 23) (14, 29) (18, 19) (21, 26) (29, 30)
(5, 14) (7, 18) (10, 21) (12, 25) (15, 16) (18, 23) (21, 29)
(5, 18) (7, 20) (10, 23) (12, 29) (15, 17) (18, 25) (22, 23)
(5, 21) (7, 22) (10, 27) (13, 14) (15, 19) (18, 29) (22, 25)
(5, 22) (7, 24) (10, 29) (13, 15) (15, 22) (19, 20) (22, 27)
(5, 24) (7, 26) (11, 12) (13, 18) (15, 23) (19, 21) (22, 29)
(5, 26) (7, 30) (11, 14) (13, 20) (15, 26) (19, 22) (23, 24)
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Table A9

(A,B, n) (A,B, n) (A,B, n) (A,B, n) (A,B, n) (A,B, n)
(2, 15, 2081) (6, 25, 811) (10, 23, 269) (14, 23, 23) (18, 23, 23) (22, 27, 5393)
(2, 21, 31) (6, 29, 29) (10, 27, 43) (14, 23, 47) (18, 25, 3457) (22, 29, 29)
(3, 10, 383) (6, 29, 67) (10, 27, 229) (14, 23, 4513) (18, 29, 29) (23, 24, 23)
(3, 20, 61) (7, 10, 593) (10, 27, 263) (14, 27, 2437) (18, 29, 151) (23, 24, 2731)
(3, 22, 359) (7, 15, 5749) (10, 29, 29) (14, 29, 29) (18, 29, 157) (23, 26, 23)
(3, 22, 4813) (7, 18, 113) (10, 29, 283) (14, 29, 617) (18, 29, 173) (23, 28, 23)
(3, 26, 269) (7, 20, 41) (10, 29, 8387) (14, 29, 677) (18, 29, 191) (23, 28, 509)
(4, 21, 131) (7, 20, 97) (11, 21, 2711) (14, 29, 2273) (18, 29, 5261) (23, 28, 599)
(5, 6, 383) (7, 20, 653) (11, 24, 107) (15, 17, 2617) (19, 24, 829) (23, 28, 5197)

(5, 12, 3457) (7, 30, 31) (11, 24, 4637) (15, 19, 281) (19, 24, 1663) (23, 30, 23)
(5, 14, 593) (7, 30, 47) (11, 26, 47) (15, 19, 2999) (19, 26, 83) (24, 29, 29)
(5, 21, 89) (7, 30, 73) (11, 26, 79) (15, 23, 23) (19, 26, 8329) (24, 29, 601)
(5, 21, 719) (7, 30, 491) (11, 26, 2053) (15, 23, 293) (19, 28, 3499) (25, 26, 29)
(5, 21, 2857) (7, 30, 1987) (12, 17, 2273) (15, 28, 5749) (19, 30, 2399) (25, 26, 233)
(5, 22, 1531) (9, 14, 113) (12, 23, 23) (15, 29, 29) (20, 21, 71) (25, 28, 61)
(5, 26, 89) (9, 20, 67) (12, 23, 43) (15, 29, 73) (20, 21, 137) (26, 27, 103)

(5, 26, 3607) (9, 20, 887) (12, 23, 179) (15, 29, 101) (20, 21, 2339) (26, 29, 29)
(5, 26, 6619) (9, 20, 9257) (12, 23, 1637) (15, 29, 6217) (20, 23, 23) (26, 29, 2287)
(5, 28, 43) (9, 26, 727) (12, 25, 353) (16, 21, 173) (20, 29, 29) (27, 28, 149)
(6, 11, 107) (9, 28, 439) (12, 29, 29) (17, 20, 401) (21, 23, 23) (27, 28, 1291)
(6, 11, 4637) (10, 11, 1279) (12, 29, 6833) (17, 21, 71) (21, 23, 41) (28, 29, 29)
(6, 17, 1231) (10, 13, 61) (13, 15, 2297) (17, 21, 251) (21, 23, 73) (29, 30, 29)
(6, 17, 1493) (10, 13, 157) (13, 18, 727) (17, 21, 2851) (21, 25, 31) (29, 30, 67)
(6, 19, 829) (10, 17, 31) (13, 21, 89) (17, 24, 1231) (21, 26, 331)
(6, 19, 1663) (10, 17, 71) (13, 22, 47) (17, 24, 1493) (21, 29, 29)
(6, 23, 23) (10, 19, 269) (13, 22, 79) (17, 26, 23) (21, 29, 1601)

(6, 23, 2731) (10, 21, 29) (13, 22, 2053) (17, 26, 1117) (22, 23, 23)
(6, 25, 23) (10, 23, 23) (14, 15, 61) (17, 28, 257) (22, 27, 4793)
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Table A10

(A,B, n) (A,B, n) (A,B, n) (A,B, n) (A,B, n) (A,B, n)
(3, 14, 223) (6, 25, 4253) (10, 23, 6857) (13, 28, 6211) (17, 28, 9209) (21, 29, 467)
(3, 20, 29) (6, 29, 29) (10, 29, 29) (13, 30, 701) (17, 28, 9623) (22, 23, 23)

(3, 20, 2311) (7, 10, 4889) (10, 29, 367) (14, 15, 31) (17, 30, 179) (22, 25, 137)
(3, 22, 2203) (7, 12, 4253) (11, 12, 31) (14, 15, 47) (18, 19, 947) (22, 27, 47)
(3, 22, 8111) (7, 15, 29) (11, 12, 1321) (14, 15, 73) (18, 23, 23) (22, 27, 89)
(3, 26, 137) (7, 15, 109) (11, 14, 281) (14, 15, 491) (18, 25, 383) (22, 29, 23)
(3, 28, 23) (7, 18, 1039) (11, 21, 37) (14, 15, 1987) (18, 29, 29) (22, 29, 29)
(4, 15, 163) (7, 18, 2131) (11, 24, 1289) (14, 17, 733) (18, 29, 109) (23, 24, 23)
(5, 14, 193) (7, 20, 37) (11, 28, 271) (14, 23, 23) (19, 20, 101) (23, 26, 23)
(5, 18, 1291) (7, 20, 487) (11, 30, 61) (14, 25, 431) (19, 21, 53) (23, 28, 23)
(5, 22, 43) (7, 20, 7699) (12, 13, 61) (14, 27, 2111) (19, 21, 2861) (23, 28, 53)
(5, 22, 97) (7, 22, 2897) (12, 13, 1889) (14, 29, 29) (19, 22, 5839) (23, 30, 23)
(5, 22, 157) (7, 24, 103) (12, 19, 29) (15, 17, 1879) (19, 24, 47) (23, 30, 41)
(5, 24, 47) (7, 24, 797) (12, 19, 163) (15, 19, 41) (19, 26, 163) (23, 30, 47)
(5, 24, 113) (7, 30, 571) (12, 19, 193) (15, 19, 233) (19, 28, 23) (23, 30, 139)
(5, 24, 1481) (8, 15, 2081) (12, 23, 23) (15, 19, 5297) (19, 28, 659) (24, 25, 23)
(5, 26, 31) (8, 21, 31) (12, 23, 199) (15, 22, 53) (19, 28, 7079) (24, 25, 811)
(5, 26, 101) (9, 10, 1733) (12, 23, 5867) (15, 22, 487) (19, 30, 89) (24, 29, 29)
(5, 28, 83) (9, 14, 29) (12, 25, 3967) (15, 22, 5431) (19, 30, 1163) (24, 29, 67)
(5, 28, 89) (9, 14, 41) (12, 29, 29) (15, 23, 23) (19, 30, 8599) (25, 26, 41)
(5, 28, 163) (9, 20, 41) (12, 29, 179) (15, 23, 421) (20, 21, 89) (25, 26, 347)
(6, 11, 359) (9, 22, 227) (12, 29, 2837) (15, 28, 151) (20, 21, 719) (25, 28, 53)
(6, 11, 4813) (9, 28, 61) (13, 14, 199) (15, 28, 1229) (20, 21, 2857) (25, 28, 59)
(6, 13, 269) (10, 11, 1531) (13, 15, 53) (15, 28, 1291) (20, 23, 23) (26, 27, 47)
(6, 17, 157) (10, 13, 89) (13, 15, 743) (15, 29, 29) (20, 23, 659) (26, 27, 2243)
(6, 19, 23) (10, 13, 3607) (13, 18, 37) (15, 29, 71) (20, 29, 29) (26, 29, 29)
(6, 19, 263) (10, 13, 6619) (13, 18, 8563) (16, 21, 131) (21, 22, 151) (27, 28, 43)
(6, 23, 23) (10, 17, 1657) (13, 20, 7603) (17, 20, 107) (21, 22, 1013) (28, 29, 29)
(6, 23, 79) (10, 17, 2237) (13, 21, 563) (17, 20, 151) (21, 23, 23) (28, 29, 73)
(6, 23, 151) (10, 19, 47) (13, 22, 263) (17, 20, 241) (21, 23, 5419) (29, 30, 29)
(6, 23, 673) (10, 19, 601) (13, 24, 43) (17, 21, 47) (21, 25, 103)
(6, 25, 197) (10, 19, 821) (13, 28, 89) (17, 26, 173) (21, 26, 2347)
(6, 25, 313) (10, 23, 23) (13, 28, 569) (17, 28, 3931) (21, 29, 29)
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2.7 The case of S-unit coe�cients (A new

result)

We end this chapter by considering binomial Thue equations of the
form (2.3) in which the coe�cients A,B are allowed to be arbitrary
large but we specify the set of their prime divisors.

Let S be a �nite set of primes. We recall that an integer with no
prime factors outside S is an S-unit. As we mentioned in Section 2.1,
binomial Thue equations have �nitely many solutions which can be
e�ectively bounded even in the case when the coe�cients are unknown
S-units. In the sequel we restrict our attention to the equation

(2.14) Axn −Byn = ±1

in unknown S-units A,B ∈ Z, and unknown integers x, y, n with
|xy| ≥ 1 and n ≥ 3. For S = {p} with a prime p ∈ {2, 3, 5, 7, 11, 13, 17,
19, 23, 29, 53, 59}, it follows from the work of Wiles [53], Darmon and
Merel [23] and Ribet [43] on Fermat-type equations that (2.14) has no
solutions with |xy| > 1 and n ≥ 3. For S = {2, 3}, (2.14) was solved
by Bennett [7]. His result was extended by Bennett, Gy®ry, Mignotte
and Pintér [10] to the case when S = {p, q} with primes 2 ≤ p, q ≤ 13.
Independently, Bugeaud, Mignotte and Siksek [21] solved (2.14) in the
case when, in (2.14), A = 2α, B = qβ with a prime 3 ≤ q < 100, or
A = pα, B = qβ with primes 3 ≤ p < q ≤ 31, and in both cases α, β are
nonnegative integers. Recently, Gy®ry and Pintér [31] generalized the
results of [10] to the case when S = {p, q} with primes 2 ≤ p, q ≤ 29
(Cf. Lemma 2.5).

As an application of our Theorems 1.1, 1.2, 1.3 and 2.6, combining
them with some other techniques, we extend the above results by
studying the solutions of equation (2.14) in the case when S = {p, q}
with primes 2 ≤ p, q ≤ 71. Although our Theorem 2.7 does not give
the resolution of equation (2.14), we give reasonable upper bounds for
n which may be useful if someone needs to solve concrete binomial
Thue equations of such type. Our result is the following.
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Theorem 2.7. Let n ≥ 3 be a prime, S = {p, q} with primes 2 ≤
p, q ≤ 71 and let A,B be coprime integer S-units with A < B.

If (A, p, q) 6= (1, 2, 31) and

(p, q) /∈ {(23, 41), (17, 47), (29, 61), (61, 67), (17, 71)} ,

then for every integer solution (x, y, A,B, n) of equation (2.14) with
|xy| > 1 we have n ≤ 31.

Moreover,
(i) if A = 1 and
(p, q, n) /∈ {(47, q, 23) , (59, q, 29) , (2, 61, 31) , (17, 61, 31) , (43, 61, 31) ,
(53, 67, 17)}, then for every integer solution (x, y, A,B, n) of equation
(2.14) with |xy| > 1 we have n ≤ 13;
(ii) if A > 1 and
(p, q, n) /∈ {(3, 37, 19) , (5, 37, 19) , (3, 61, 31) , (17, 61, 31) , (43, 61, 31)},
then for every integer solution (x, y, A,B, n) of equation (2.14) with
|xy| > 1 we have n ≤ 17.

Proof. In view of Lemmas 2.5 and 2.7 it is enough to solve equation
(2.14) for primes 31 ≤ max {p, q} ≤ 71. Let x, y, A,B, n be a solution
of equation (2.14) with |xy| > 1, n ≥ 3 and A,B coprime S-units.
Then clearly, (x, y,±1) is a solution of the ternary equations (1.5) and
(1.6) respectively. Then Theorems 1.1, 1.2 and 1.3 imply that n ≤ 31
unless

(p, q) ∈ {(2, 31), (23, 41), (17, 47), (29, 61), (61, 67), (17, 71)} .

For A > 1 and (p, q) = (2, 31) one can apply Lemma 2.6 to obtain
that n < 6 is true for all solutions of 2αxn−31βyn = ±1, thus the �rst
statement of the theorem is proved.

For the proof of the stronger statements (i) and (ii) of Theorem
2.7, by Theorems 1.1, 1.2 and 1.3 we have to consider the equation

Axn −Byn = ±1

for 50 cases of (p, q, n) which are listed in Table 2.15.
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Table 2.15

(p, q, n) (p, q, n) (p, q, n) (p, q, n) (p, q, n)
(2, 37, 19) (23, 47, 23) (7, 59, 29) (43, 59, 29) (59, 61, 29)
(3, 37, 19) (29, 47, 23) (11, 59, 29) (47, 59, 23) (2, 67, 17)
(5, 37, 19) (31, 47, 23) (13, 59, 29) (47, 59, 29) (3, 67, 17)
(2, 47, 23) (37, 47, 23) (17, 59, 29) (53, 59, 29) (5, 67, 17)
(3, 47, 23) (41, 47, 23) (19, 59, 29) (2, 61, 31) (47, 67, 23)
(5, 47, 23) (43, 47, 23) (23, 59, 29) (3, 61, 31) (53, 67, 17)
(7, 47, 23) (2, 53, 17) (29, 59, 29) (17, 61, 31) (59, 67, 29)
(11, 47, 23) (47, 53, 23) (31, 59, 29) (31, 61, 17) (43, 71, 17)
(13, 47, 23) (2, 59, 29) (37, 59, 29) (43, 61, 31) (47, 71, 23)
(19, 47, 23) (3, 59, 29) (41, 59, 29) (47, 61, 23) (59, 71, 29)

For each such triple, we have to consider the equation for

A = 1, B = pαqβ; and for A = pα, B = qβ

with every (α, β) ∈ {1, . . . , n− 1}2. For example, that means 2 · 282 =
1568 equations to solve when n = 29.

First, let A = 1. For (p, q, n) ∈ {(3, 37, 19) , (5, 37, 19) , (2, 53, 17) ,
(3, 61, 31), (31, 61, 17), (3, 67, 17), (43, 71, 17)} we applied Theorem 2.6
combined with the modular method with signature (n, n, n) to ex-
clude the solvability of all equations under consideration. To illustrate
how this approach works we give the details for the case (p, q, n) =
(5, 37, 19). We checked that apart from the pairs (α, β) in Table 2.16
below, for each (α, β) ∈ {1, . . . , 18}2 the equations

(2.15) x19 − 5α37βy19 = ±1

full�ll the conditions (i) − (v) of Theorem 2.6, so they do not have
nontrivial integer solutions. For each pair in Table 2.16, by local argu-
ments we found two distinct primes p1, p2 which divide xy, where x, y
is a putative nontrivial solution of the corresponding equation (2.15).
These primes are also listed in Table 2.16.
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Table 2.16

(α, β) p1, p2 (α, β) p1, p2 (α, β) p1, p2

(1, 5) 419, 457 (8, 1) 191, 761 (14, 3) 191, 229
(2, 18) 191, 229 (9, 14) 191, 229 (15, 16) 191, 229
(3, 12) 229, 419 (10, 8) 191, 229 (16, 10) 191, 229
(4, 6) 191, 419 (11, 2) 191, 229 (17, 4) 191, 419
(6, 13) 191, 419 (12, 15) 229, 457 (18, 17) 191, 229
(7, 7) 457, 571 (13, 9) 229, 1483

There are 16 cuspidal newforms f at level 2 · 5 · 37. We recall that
Kf denotes the number �eld generated by the Fourier coe�cients cr
of the modular form f . Using the program package MAGMA for each
pairs (α, β) of Table 2.16, we obtained that

19 - NormKf/Q(cpi
− (pi + 1)) ·NormKf/Q(cpi

+ (pi + 1))

with either i = 1 or i = 2 for all 16 newforms. Thus, Proposition 1.1
implies that the equations (2.15) corresponding to the pairs (α, β) in
Table 2.16 have no solutions with |xy| > 1.

In the case (p, q, n) ∈ {(2, 37, 19), (2, 67, 17), (5, 67, 17)}, we com-
bined Theorem 2.6 with the routine of PARI for solving Thue equa-
tions of low degree. For example, Theorem 2.6 implies that the equa-
tion

x19 − 2α37βy19 = ±1

has no nontrivial solutions, unless
(α, β) ∈ {(3, 16) , (5, 13) , (6, 2) , (7, 10) , (8, 18) , (9, 7) , (10, 15), (11, 4),
(12, 12) , (13, 1) , (14, 9) , (15, 17) , (16, 6) , (17, 14), (18, 13)}. We solved
each equation corresponding to these pairs using PARI.

In the sequel letA > 1. For (p, q, n) ∈ {(2, 37, 19), (2, 47, 23), (2, 59,
29), (2, 61, 31)} we can apply again Lemma 2.6 to exclude the solvabil-
ity of the corresponding equations.

For the remaining 46 triples of Table 2.15, and for each correspond-
ing binomial Thue equation we used a similar local approach as was
introduced in the proof of Lemma 2.2. We chose a small integer k such
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that p = 2kn+1 is a prime. Since in this case both xn and yn are either
2k-th roots of unity (mod p) or zero, we had to check the congruence

Axn −Byn ≡ ±1 (mod p)

only in (2k+1)2 cases, which was quickly done with a short MAGMA
program. (We note that this method cannot be used when A = 1,
because xn − Byn = 1 always has the solution (x, y) = (1, 0).) These
computations proved the unsolvability of each binomial Thue equation
under consideration, except the ones with

(p, q, n) ∈ {(3, 37, 19), (5, 37, 19), (3, 61, 31), (17, 61, 31), (43, 61, 31)} .

This completes the proof of Theorem 2.7.

For the exceptional (p, q, n), the methods used in the proof of The-
orem 2.7 proved to be ine�cient to solve equation (2.14) for arbitrary
nonnegative integer exponents of the primes p, q. However, they work
for several particular exponents. We further note that binomial Thue
equations with degree at most 17 can be solved in most cases by using
a powerful computer and the program packages MAGMA [18], PARI
[40] or SAGE [50].



Chapter 3

An application of binomial
Thue equations

As we have pointed out in the beginning of Chapter 2, many number
theoretical problems lead to (generalized) binomial Thue equations.
In this chapter we present an application to norm form equations,
another important type of Diophantine equations. Under some condi-
tions, such equations have in�nitely many solutions. In this case we
study those solutions whose coordinates form an arithmetic progres-
sion. For a certain family of norm form equations we determine all
such solutions.

3.1 On norm form equations with solutions

forming arithmetic progressions

Let α1 = 1, α2, . . . , αm be linearly independent algebraic numbers over
Q and put K = Q (α1, . . . , αm). Denote by n the degree [K : Q] of the
�eld K over the rationals. Let σ1, . . . , σn be the Q-isomorphisms of K
into C. For any α ∈ K put α(i) = σi(α). Consider the linear forms

l(i)(X) = X1+α
(i)
2 X2+. . .+α

(i)
n Xn , i = 1, . . . , n, X = (X1, . . . , Xn) .
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Then there exists a nonnegative integer a0 such that the form

F (X) := a0NK/Q(α1X1 + . . .+ αmXm) = a0

n∏
i=1

l(i)(X)

has integer coe�cients. Such a form is called a norm form, and the
equation

(3.1) a0NK/Q(α1x1 + . . .+ αmxm) = b

is called a norm form equation.
We call (3.1) degenerate if the Q-vector space generated by α1, . . . ,

αm has a subspace, which is proportional to a full Z-module of an
algebraic number �eld, di�erent from Q and the imaginary quadratic
�elds. In this case it is easy to see, that there exists b ∈ Z, such
that (3.1) has in�nitely many solutions. For non-degenerate norm form
equations Schmidt [44] proved in an ine�ective way that the number
of their solutions is �nite. For a large class of norm form equations
Gy®ry and Papp [26] gained e�ective �niteness results and explicit
bounds for the solutions. In the sequel, from the broad literature of
norm form equations we mention only those results which motivated
our investigations.

The study of searching for arithmetic progressions among the so-
lutions of norm form equations has been initiated by Attila Peth®.
The problem itself �rst raised when Buchmann and Peth® [19] found,
as a byproduct of a search for independent units, that in the �eld
K := Q (α) with α7 = 3 the integer

10 + 9α + 8α2 + 7α3 + 6α4 + 5α5 + 4α6

is a unit. This means that the equation

NK/Q
(
x0 + x1α + . . .+ x6α

6
)

= 1

has a solution (x0, . . . , x6) ∈ Z7 such that the coordinates form an
arithmetic progression.
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This led Bérczes and Peth® in [14] to investigate in more general
context norm form equations with solutions whose coordinates form
an arithmetic progression. They considered the equation

(3.2) NK/Q
(
x0 + x1α + . . .+ xn−1α

n−1
)

= m.

where α is an algebraic number of degree n, K = Q (α), m ∈ Z and
{x0, . . . , xn−1} ∈ Zn. Put X = max {|x0|, . . . , |xn−1|}. The sequence
{x0, . . . , xn−1} is said to be nearly an arithmetic progression if there
exists d ∈ Z and 0 < δ ∈ R such that

(3.3) |(xi − xi−1)− d| < X1−δ, i = 1, . . . , n− 1.

They proved an e�ective �niteness result on the solutions of (3.2) with
property (3.3) provided that

β :=
nαn

αn − 1
− α

α− 1

is an algebraic number of degree at least 3, over Q. In the special case
when δ = 1 they proved a nearly complete �niteness result.

Bérczes and Peth® also considered arithmetic progressions arising
from the norm form equation

NK/Q
(
x0 + x1α + . . .+ xn−1α

n−1
)

= 1.

In [14], they determined all such solutions when α is a zero of either
xn − 2 or xn − 3, both with n ≥ 3. Further they proved in [15] that
there are no such solutions at all when α is a zero of the polynomial
xn − a, with n ≥ 3 and 4 ≤ a ≤ 100.

In the case when α is a zero of the polynomial

fa(x) = x3 − (a− 1)x2 − (a+ 2)x− 1, a ∈ Z,

Bérczes, Peth® and Ziegler [16] determined all primitive solutions of
the norm form inequality

|NK/Q(x0 + x1α + x2α
2)| ≤ |2a+ 1|
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such that x0 < x1 < x2 is an arithmetic progression.
We note that arithmetic progressions may occur not only in a so-

lution but in the solution set of a norm form equation if we consider
some �xed coordinate of the solutions. For results in this direction we
refer to Bérczes, Hajdu and Peth® [13].

3.2 New results

In this section our aim is to extend the result of Bérczes and Peth®
[15] on equation (3.4).

Let α be an algebraic integer of degree n ≥ 3, K = Q (α), and
consider the equation

(3.4) NK/Q
(
x0 + x1α + . . .+ xn−1α

n−1
)

= 1

in x0, . . . , xn−1 ∈ Z. Let α be a zero of the polynomial xn− a, where a
is an integer such that xn− a is irreducible. As was mentioned above,
Bérczes and Peth® [15] proved that equation (3.4) has no solution
in integers forming an arithmetic progression when 4 ≤ a ≤ 100. In
the following theorem, we extend their result to negative values of the
parameter a. More precisely, for −100 ≤ a ≤ −2 we determine all such
solutions of equation (3.4) for which x0, . . . , xn−1 ∈ Z are consecutive
terms of an arithmetic progression.

Theorem 3.1. Let n ≥ 3 be an integer, let α be a zero of the irre-
ducible polynomial xn − a ∈ Z[x]. Put K = Q (α) and suppose that
−100 ≤ a ≤ −2. Then the only solutions of equation (3.4) which
form an arithmetic progression are (2, 1, 0) when (n, a) = (3,−7), and
(−2,−1, 0) when (n, a) = (3,−9). In the case when (n, a) = (11,−67)
our result is conditional and depends on the truth of the generalized
Riemann Hypothesis.

We will deduce Theorem 3.1 from the following result concerning
a special family of generalized binomial Thue-equations.



3.2. NEW RESULTS 63

Theorem 3.2. The only solutions of the generalized binomial Thue-
equation

(3.5) Xn − aY n = (a− 1)2

in (n, a,X, Y ) for −100 ≤ a ≤ −2, are those listed in Table 3.1 below.
In the case when (n, a) = (11,−67) our result depends on the truth of
the generalized Riemann Hypothesis.

Table 3.1

n a (X, Y )

3 -97 (35, -7)
3 -63 (4, 4), (16,0), (64, -16)
3 -62 (1, 4)
3 -61 (13, 3)
3 -39 (16, -4)
3 -35 (11, -1), (46, -14)
3 -27 (10, -2)
3 -26 (3, 3), (9, 0), (27, -9)
3 -25 (1, 3)
3 -18 (-5, 3), (7, 1)
3 -12 (-11, 5)
3 -9 (7, -3)
3 -7 (-5, 3), (2, 2), (4, 0), (8, -4)
3 -6 (1, 2)
3 -3 (-2, 2)
4 -99 (-10, 0), (10, 0)
4 -80 (-9, 0), (-3, -3), (-3, 3), (3, -3), (3, 3), (9, 0)
4 -79 (-1, -3), (-1, 3), (1, -3), (1, 3)
4 -63 (-8, 0), (8, 0)
4 -48 (-7, 0), (7, 0)
4 -35 (-6, 0), (6, 0)
4 -24 (-5, 0), (5, 0)
4 -15 (-4, 0), (-2, -2), (-2, 2), (2, -2), (2, 2), (4, 0)
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Table 3.1 (Continued)

n a (X, Y )

4 -14 (-1, -2), (-1, 2), (1, -2), (1, 2)
4 -8 (-3, 0), (3, 0)
4 -3 (-2, 0), (2, 0)
5 -31 (2, 2), (4, 0), (8, -4)
5 -30 (1, 2)
6 -63 (2, 2), (-2, -2), (2, -2), (-2, 2), (4, 0), (-4, 0)
6 -26 (3, 0), (-3, 0)
6 -7 (2, 0), (-2, 0)
8 -80 (3, 0), (-3, 0)
8 -15 (2, 0), (-2, 0)
10 -31 (2, 0), (-2, 0)
12 -63 (2, 0), (-2, 0)

3.3 Proofs

To prove Theorem 3.2 we need some results from Sections 1.1 and 2.4.

Proof of Theorem 3.2. Clearly, it is enough to solve equation (3.5) for
n = 4 and in the cases when n is an odd prime. The other cases are
simple consequences of these.

As a �rst step we use Lemma 2.1. Clearly, the conditions of Lemma
2.1 are ful�lled, so it provides an upper bound B(a) for the degree n
of the Thue-equation (3.5) in terms of a. Since |a| ≤ 100, this shows
that in order to prove Lemma 3.2 we have to consider only �nitely
many cases for n. The following table contains the approximate value
of the bound B(a) for some values of |a|.

Table 3.2

|a| 10 20 30 40 50 60 70 80 90 100

B(a) 7151 9304 10564 11457 12150 12717 13195 13610 13976 14303
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The second step is to use a local argument (that we already used in
former chapters) to prove that apart from a few exceptions equation
3.5 has no solutions in X, Y for −100 ≤ a ≤ −2 and 11 ≤ n ≤ B(a).
For sake of completeness, we sketch the main idea of this local method.
Choose a small integer k such that p = 2kn + 1 is a prime. Then
both Xn and Y n are either 2k-th roots of unity (mod p) or zero. The
congruence

Xn − aY n ≡ (a− 1)2 (mod p)

then have to be checked only in (2k + 1)2 cases. Those values of 11 ≤
n ≤ B(a) and −100 ≤ a ≤ −2 for which this method did not prove
the unsolvability of equation (3.5) are listed in Table 3.3.

Table 3.3

n 11 11 11 11 11 11 11 11 13 13 13 13 13 13 13 13

a -2 -36 -45 -46 -55 -67 -78 -89 -8 -12 -21 -28 -52 -71 -76 -81

n 13 13 17 17 17 17 17 17 19 19 19 19 19 19 23

a -82 -91 -9 -42 -45 -46 -52 -100 -14 -51 -60 -68 -77 -99 -94

The third step is to solve one by one the remaining equations.
Wherever it was possible we used the Thue-solver implemented in the
computer algebra packages MAGMA [18] and PARI [40].

To solve the equations corresponding to pairs (n, a) with n ∈
{3, 4, 5, 7} and −100 ≤ a ≤ −2 we used the package MAGMA. In or-
der to solve the �exceptional� equations corresponding to pairs (n, a)
listed in Table 3.3 we used the Thue-solver included in PARI. (For
the main ideas behind the latest improvements on this Thue-solver
implemented by G. Hanrot see [33] and [17].)

In the case when (n, a) = (23,−94) the Thue-solvers of the men-
tioned computer algebra packages were unable to solve equation (3.5),
and if

(n, a) ∈ {(11,−89) , (11,−67) , (11,−46) , (13,−82) , (19,−77)} ,

using PARI we were able to get only conditional result assuming
the generalized Riemann Hypothesis. To get an unconditional result,
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we considered the above cases as ternary equations with signature
(n, n, 2).

If n = 23 and a = −94, we used Proposition 1.1 with p = 599. First
using the local approach we proved that equation (3.5) might only
have solutions with xy ≡ 0 (mod 599) and then we used Proposition
1.1 with this value of p. Here both for the local computations and
for the computation of the needed Fourier coe�cients of all occurring
newforms we used again MAGMA.

If

(n, a) ∈ {(11,−89) , (11,−46) , (13,−82) , (19,−77)} ,

we also used Proposition 1.1 but in these cases we found no primes
which divide xy. For instance, we consider the case when n = 11, a =
−89. Equation (3.5) then takes the form

(3.6) x11 + 89y11 = (−90)2 .

Let us suppose that we have a solution (x, y, z) of (3.6) with z = −90
and with the conditions of Proposition 1.1. Then ε2 = 32, since 89y
must be odd, and we have to consider the space of modular forms of
level

N = Rad2(1 · 89) ·Rad2(1)2 · 32 = 89 · 32 = 2848 .

17 cuspidal newforms occur at this level. Let us denote them by
f1, . . . , f17 and put p = 23. Then using MAGMA we get a contra-
diction with

(3.7) NormKf/Q (c23 − a23) ≡ 0 (mod 11),

on the case of all of these newforms if a23 = ±24 or a23 ∈ {x :
|x| < 2

√
23, x ≡ 0 (mod 2)} except f1 and f4 that are both rational

newforms. Analyzing the conditions on (x, y, z, A,B,C) we get that
we can only be in case (i) among the above mentioned (i)-(v) cases.
So we associate to the solution (x, y, z) of equation (3.6) the elliptic
curve E1 that now takes the form

E1(x, y, z) : Y 2 = X3 − 180X2 + 89y11X .
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The local method shows that y11 ≡ 22 (mod 23) always holds. Thus
the curve E1 has the following form over F23:

E1 : Y 2 = X3 + 4X2 + 3X ,

which is independent of (x, y, z). For the number of points on this
curve over F23 we get that #E1(F23) = 24 so we have

a23 = 23 + 1− 24 = 0 .

The Fourier series and the 23rd Fourier coe�cient of f1 and f4 are

f1 = q+2q5−2q7−3q9+4q11+4q13−2q17+8q19+6q23+O
(
q24
)
, c23 = 6

and

f4 = q+2q5+2q7−3q9−4q11+4q13−2q17−8q19−6q23+O
(
q24
)
, c23 = −6,

respectively. Thus we get a contradiction with (3.7) in both cases since
the corresponding norms are not divisible by 11. In the other cases we
did similar computations.

Unfortunately in the case n = 11, a = −67 we found no way to
prove the result unconditionally. Theorem 3.2 is proved.

Now, using an idea of Bérczes and Peth® [14] and Theorem 3.2, we
prove our main theorem.

Proof of Theorem 3.1. Let x0, . . . , xn−1 ∈ Z be a solution of equation
(3.4) which forms an arithmetic progression and put d = xi+1− xi for
i = 1, . . . , n− 1. Then equation (3.4) has the form

NK/Q

(
(1 + α + α2+ . . .+ αn−1)x0

+ (α + 2α2 + . . .+ (n− 1)αn−1)d
)

= 1 .
(3.8)

In [14], Bérczes and Peth® showed that any solution x0, d of equa-
tion (3.8) leads to a solution X, Y of equation (3.5) and these solutions
are related to each other by the formulas

X := −x0 (a− 1)− dan
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and
Y := −x0 (a− 1)− dan+ d (a− 1) .

Theorem 3.2 gives us all solutions of equation (3.5), and these solutions
are listed in Table 3.1.

Now to prove our Theorem 3.1, we have to check whether a solution
of equation (3.5) leads to an integral solution of equation (3.4), which
has coordinates forming an arithmetic progression, or not. Using Table
3.1 one can verify that this condition is ful�lled only if (n, a,X, Y ) ∈
{(3,−7,−5, 3) , (3,−9, 7,−3)}. Any other solution (X, Y ) of equation
(3.5) leads to a pair (x0, d), where x0 and d are not both integers. This
concludes the proof of Theorem 3.1.



Summary

Our dissertation consists of three chapters.
In the �rst chapter results concerning (n, n,m) signature ternary

diophantine equations of the form (1.4) are presented. The unsolv-
ability of such an equation can often be proved via an analogue of
the method used by Wiles [53] to prove Fermat's Last Theorem, the
so-called modular approach including Frey-curves and modular forms.
The applicability of this approach depends only on the prime factors
of the coe�cients in (1.4).

Let m = n. The works of Serre [45], Wiles [53], Darmon and Merel
[23], and Ribet [43] give all solutions of (1.4) when the coe�cients A,B
are of the form AB = pα with a prime p for which either p ≤ 29 or
p = 53, 59. Bennett, Gy®ry, Mignotte and Pintér [10] solved (1.4) in the
case n > 7 is a prime and AB = 2αqβ with a prime 3 ≤ q ≤ 13. Gy®ry
and Pintér [31] recently extended this result to primes 3 ≤ q ≤ 29,
and showed that in this case, apart from 8 possible exceptions (q, n, α)
every nontrivial solution (x, y, z, A,B, n) of (1.4) has n ≤ 11. We were
able to considerably generalize this result to primes 3 ≤ q ≤ 151, q 6=
31, 127 by showing then that apart from 31 explicitly given possible
exceptions (q, n, α) every nontrivial solution (x, y, z, A,B, n) of (1.4)
has n ≤ 13. The case when, in (1.4), AB = pαqβ with two odd primes
p, q was �rst considered by Kraus [35]. For 5 ≤ p < q ≤ 29, Gy®ry
and Pintér [31] proved that apart from 10 possible exceptional pairs
(p, q) every nontrivial solution (x, y, z, A,B, n) of (1.4) has n ≤ 11. We
give the bound n ≤ 13 on the solutions of (1.4) in the more general
case when 5 ≤ p, q ≤ 71 with 28 explicitly given possible exceptions
(p, q, n).
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Suppose that m = 3. Those types of equations (1.4) were inves-
tigated by Bennett, Gy®ry, Mignotte és Pintér [10] for primes 3 ≤
p, q ≤ 13, and later by Gy®ry és Pintér [31] for primes 3 ≤ p <
q ≤ 29. Their results can be summarized as follows: if AB = pαqβ

with primes 3 ≤ p < q ≤ 29 such that either p ≤ 7 or (p, q) ∈
{(11, 13), (11, 17), (11, 19), (13, 17), (13, 19), (17, 23)}, then apart from
14 possible exceptions (p, q, n), every nontrivial solution (x, y, z, A,B,
n) of (1.4) has n ≤ 11. In Chapter 1, an extension of this result is also
presented. We show that apart from 29 explicitly given possible excep-
tions, every nontrivial solution (x, y, z, A,B, n) of (1.4) has n ≤ 11,
when we allow the coe�cients to have prime factors 3 ≤ p < q ≤ 71
with pq ≤ 583. The results of this chapter will be published in our
paper [3].

The second chapter is devoted to the resolution of generalized bi-
nomial Thue equations of the form (2.1), where generalized means
that in (2.1), the exponent is also unknown. The �rst general result
on the resolution of binomial Thue equations is due to Bennett [5] who
showed by means of the hypergeometric method that for B = A + 1,
the equation (2.3) has no solutions with |xy| > 1. The case when, in
Axn−Byn = C, the coe�cients A,B,C are bounded positive integers
was �rst studied by Gy®ry and Pintér in [29], in which, using a local
considerations, they derived a relatively sharp upper bound for n for
concrete values of A,B,C ≤ 100 provided that (2.1) has no trivial so-
lutions with |xy| ≤ 1. Further, they determined all nontrivial solutions
of (2) under some natural conditions in case of various upper bounds
on the coe�cients.

We were able to signi�cantly improve on the results of [29]. Among
other things we completely solved equation (2.1) when A = |C| =
1, B < 235 and C = ±1, 1 < A < B ≤ 37, respectively. More
precisely, in the second chapter we present results on the complete
and incomplete resolution of the following cases of coe�cients: A =
|C| = 1, B ≤ 400; A = |C| = 1, 400 < B < 2000 with B being
odd; C = ±1, max {A,B} ≤ 50, 100; and max {A,B, |C|} ≤ 30. In
our proofs, we combine almost all techniques of the modern diophan-
tine analysis, including local methods, linear forms in logarithms, the
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modular approach and computational methods to solve Thue equa-
tions of low degree. Beside these, a main ingredient of our proofs is a
new result of ours, namely Theorem 2.6, concerning the solvability of
equation (5).

In the second chapter, we also present results concerning the res-
olution of generalized binomial Thue equations of the form (2.14)
Axn − Byn = ±1, when the coe�cients A,B ∈ Z are unknown S-
units for certain sets S of prime numbers. Using our results from the
�rst chapter combined with our Theorem 2.6, we establish reason-
able bounds on n in the solutions of (2.14), when S = {p, q} with
primes 2 ≤ p, q ≤ 71. The results presented in Section 2.3 have been
obtained jointly with A. Bérczes, K. Gy®ry and Á. Pintér, and have
been published in [4]. The result concerning binomial Thue equations
with S-unit coe�cients will be published in [3].

In the third chapter we are concerned with searching for arith-
metical progressions among the solutions of norm form equations.
This problem was �rst considered by Bérczes and Peth® [14], [15].
For an algebraic number α of degree n, K = Q (α) and m ∈ Z,
they proved a nearly complete �niteness result on those solutions of
(3.2) NK/Q (x0 + x1α + . . .+ xn−1α

n−1) = m whose coordinates form
an arithmetic progression. They also considered (3.2) with m = 1 and
determined all solutions in question when α is a root of the polynomial
xn − a, with n ≥ 3 and 2 ≤ a ≤ 100. Further related results can be
found in [16] and [13].

In Chapter 3, we extend the result of [15] on (3.2) with m = 1, by
showing that there are only two solutions of that norm form equation
whose coordinates are consecutive terms of an arithmetic progression
in the case when α is a root of the polynomial xn − a with n ≥ 3 and
−100 ≤ a ≤ −2. These solutions are (2, 1, 0) when (n, a) = (3,−7),
and (−2,−1, 0) when (n, a) = (3,−9). The proof of this result of
ours is based on the idea of reducing the corresponding solutions of
the norm form equation to solutions of the generalized binomial Thue
equation (3.5) Xn − aY n = (a− 1)2. On the other hand another own
result is applied, in which we give all integer solutions of (3.5) for
−100 ≤ a ≤ −2. The results of the third chapter are published in [2].





Összefoglaló

Értekezésem három fejezetb®l áll. Ebben az Összefoglalóban az egyen-
letek a bevezetés (Introduction) szerinti számozással szerepelnek.

Az els® fejezetben

(1) Axn +Byn = Czm, m ∈ {2, 3, n}

alakú ternér diofantikus egyenletek megoldásaival foglalkozunk, ahol
A,B és C nemnulla egészek, n ≥ 3 és x, y, z pedig ismeretlen egészek.
A Fermat-sejtés Wiles [53] által adott bizonyításának Frey-görbéken
[24] és moduláris formákon alapuló módszere, az ún. moduláris mód-
szer számos konkrét esetben alkalmazható annak bizonyítására, hogy
az (1) egyenletnek nincs olyan x, y, z egész megoldása, melyre |xy| > 1
teljesül. Mivel ezt a módszert minden kés®bbi fejezetben alkalmazzuk,
így az 1.1 szakaszban Bennett [6] nyomán vázoljuk az általunk használt
moduláris technikákat, amelyek Bennett és Skinner [11], Kraus [35], és
Bennett, Vatsal és Yazdani [12] mély eredményein alapulnak. Megje-
gyezzük, hogy az említett moduláris módszer alkalmazhatósága csak az
(1)-beli A,B,C együtthatók prímosztóitól függ, a nagyságuktól nem.
A fejezet további részében a

(3) Axn −Byn = zm

egyenlet megoldásaira koncentrálunk. Legyen m = n. Serre [45], Wiles
[53], Darmon és Merel [23], és Ribet [43] munkái alapján ismert a (3)
összes megoldása abban az esetben, ha AB = pα, ahol p egy prím,
amelyre p ≤ 29 vagy p = 53, 59. Bennett, Gy®ry, Mignotte és Pin-
tér [10] megoldották (3)-at n > 7 prím és AB = 2αqβ esetén, ha
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3 ≤ q ≤ 13 egy prím. Gy®ry és Pintér [31] nemrég általánosították ezt
az eredményt a 3 ≤ q ≤ 29 esetre abban az értelemben, hogy 8 kivéte-
les (q, α)-tól eltekintve a (3) egyenlet minden olyan (x, y, z, A,B, n)
megoldására, ahol |xy| > 1, és Ax,By, z páronként relatív prímek,
teljesül, hogy n ≤ 11. A következ® tételünk tovább általánosítja a
fenti eredményeket.

Tétel (Theorem 1.1). Legyen AB = 2αqβ, ahol q egy prím, melyre
3 ≤ q ≤ 151, q 6= 31, 127 továbbá legyenek α, β nemnegatív egészek.
Ha n prím, akkor a (3) egyenlet minden olyan (x, y, z, A,B, n) meg-
oldására, amelyre |xy| > 1, és Ax,By, z páronként relatív prímek,
n ≤ 53 teljesül.
Továbbá, az 1.1 táblázatban szerepl® 31 lehetséges (q, n, α) kivételt®l
eltekintve a (3) egyenlet minden olyan (x, y, z, A,B, n) megoldására,
amelyre |xy| > 1, és Ax,By, z páronként relatív prímek, n ≤ 13 tel-
jesül.

Az AB = pαqβ esetet el®ször Gy®ry és Pintér [31] vizsgálták ab-
ban az esetben, amikor 5 ≤ p < q ≤ 29 prímek. Belátták, hogy ha
ezenfelül n is prím, akkor 10 megadott (p, q) lehetséges kivételt®l el-
tekintve az (3) egyenlet minden olyan (x, y, z, A,B, n) megoldására,
ahol |xy| > 1, és Ax,By, z páronként relatív prímek, n ≤ 11 teljesül.
A következ®képpen sikerült kiterjesztenünk ezt az eredményt nagyobb
prímekre.

Tétel (Theorem 1.2). Legyen AB = pαqβ, ahol 5 ≤ p, q ≤ 71 prímek
és α, β nemnegatív egészek. Ha n prím, akkor az 1.2 táblázatban sze-
repl® 28 lehetséges (p, q, n) kivételt®l eltekintve a (3) egyenlet min-
den olyan (x, y, z, A,B, n) megoldására, melyre |xy| > 1, és Ax,By, z
páronként relatív prímek, n ≤ 13 teljesül.

Tekintsük a (3) egyenletet m = 3 és AB = pαqβ mellett, ahol
p, q prímek és α, β nemnegatív egészek. Ezt az esetet 3 ≤ p, q ≤
13 prímekre Bennett, Gy®ry, Mignotte és Pintér [10] vizsgálta; majd
kés®bb 3 ≤ p < q ≤ 29 prímekre Gy®ry és Pintér [31]. Belátták, hogy
ha n prím és AB = pαqβ, ahol 3 ≤ p < q ≤ 29 olyan prímek, melyekre
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vagy p ≤ 7 vagy (p, q) ∈ {(11, 13) , (11, 17) , (11, 19) , (13, 17) , (13, 19) ,
(17, 23)}, akkor 14 megadott (p, q, n) lehetséges kivételt®l eltekintve a
(3) egyenlet minden olyan (x, y, z, A,B, n) megoldására, melyre |xy| >
1, és Ax,By, z páronként relatív prímek, teljesül, hogy n ≤ 11. A
következ® általánosítást sikerült bizonyítanunk.

Tétel (Theorem 1.3). Legyen AB = pαqβ ahol α, β nemnegatív e-
gészek és 3 ≤ p < q ≤ 71 olyan prímek, melyekre pq ≤ 583. Ha n
prím, akkor az 1.3 táblázatban szerepl® 29 lehetséges (p, q, n) kivételt®l
eltekintve a (3) egyenlet minden olyan (x, y, z, A,B, n) megoldására,
melyre |xy| > 1, xy páros, és Ax,By, z páronként relatív prímek, tel-
jesül, hogy n ≤ 13.

Az els® fejezetben szerepl® eredményeink a [3] dolgozatban fognak
megjelenni.

A második fejezet bizonyos (általánosított) binom Thue-egyen-
letek teljes megoldásával kapcsolatos eredményeket tartalmaz. Tekint-
sük a

(2) Axn −Byn = C

diofantikus egyenletet, ahol A,B,C, n ∈ Z \ {0} és n ≥ 3 rögzített
vagy ismeretlen. Rögzített n esetén (2) egy binom Thue-egyenlet.
A Thue-egyenletek és általánosított Thue-egyenletek irodalma megle-
het®sen gazdag. Thue [51] 1909-es ine�ektív eredményéb®l tudjuk,
hogy a Thue-egyenleteknek csak véges sok megoldása lehet. Baker
[1] 1968-ban els®ként adott e�ektív fels® korlátot a Thue-egyenle-
tek megoldásainak a méretére. Mindkét eredményb®l következik, hogy
(2)-nek rögzített n mellett csak véges sok megoldása lehet. Tijdeman
[52] ismeretlen n kitev® esetén e�ektív korlátot adott max {|x|, |y|, n}
értékére, ahol (x, y, n) a (2) egy olyan megoldása, melyre |xy| > 1.
További binom Thue-egyenletekkel és alkalmazásaikkal kapcsolatos e-
redmények találhatók a [39], [46], [5], [34], [7], [9], [28], [10], [15], [2],
[31] dolgozatokban és az ezekben található hivatkozásokban.

A második fejezetben (általánosított) binom Thue-egyenletek teljes
megoldását tárgyaljuk, amihez általában önmagukban nem elegend®ek
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akár a legélesebb e�ektív korlátok sem, mivel túlságosan nagyok. Így
a megoldáshoz további módszerek szükségesek. Az els® általános ered-
mény ebben az irányban Bennett [5] nevéhez f¶z®dik, aki a hiperge-
ometrikus módszerrel megmutatta, hogy B = A+ 1 esetén az

(4) Axn −Byn = ±1

egyenletnek nincs olyan x, y megoldása, melyre |xy| > 1. Gy®ry és Pin-
tér [29] vizsgálta el®ször azt az esetet, amikor (2)-ben az együtthatók
korlátos pozitív egészek. Egy - a 2.4 szakaszban tárgyalt - lokális mód-
szerrel sikerült konkrét A,B,C értékek mellett viszonylag éles fels®
korlátot adniuk n-re, feltéve, hogy az (2) egyenletnek nincs triviális,
|xy| ≤ 1 tulajdonságú megoldása. Továbbá, természetes feltételek mel-
lett meghatározták a (2) összes |xy| > 1 tulajdonságú megoldását az
együtthatókra vonatkozó különböz® fels® korátok esetén. Az utóbbi
eredményeket sikerült jelent®s mértékben kiterjeszteni. Legfontosabb
új eredményeink egyszer¶sített formában a következ®k:

Tétel (Theorem 2.1'). Ha 1 < B ≤ 400, akkor az

(5) xn −Byn = ±1

egyenlet összes (x, y, n) megoldásaira, melyre |xy| > 1, n ≥ 3 és
(B, n) /∈ {(235, 23) , (282, 23) , (295, 29), (329, 23), (354, 29)}, teljesül,
hogy n ∈ {3, 4, 5, 6, 7, 8}.

Tétel (Theorem 2.2'). (i) Ha 400 < B < 800 páratlan, és (B, n)
nem szerepel a 2.1 táblázatban, akkor az (5) egyenlet összes (x, y, n),
|xy| > 1, n ≥ 3 tulajdonságú megoldásaira n = 3, 9.

(ii) Legyen 800 < B < 2000 páratlan. Ha n < 13, akkor az (5)
egyenlet összes (x, y, n), |xy| > 1, n ≥ 3 tulajdonságú megoldásaira
n ∈ {3, 5, 10}.
Ha n > 100 egy prím, akkor eltekintve a 2.2 táblázatbeli lehetséges
(B, n) kivételekt®l, az (5) egyenletnek nincs (x, y, n), |xy| > 1, n ≥ 3
tulajdonságú megoldása.
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Tétel (Theorem 2.3'). Az 1 ≤ A < B ≤ 50, gcd(A,B) = 1 feltételek
mellett, a (4) egyenlet összes olyan (x, y, n), |xy| > 1, n ≥ 3 megoldá-
saira, amelyre (A,B, n) /∈ {(21, 38, 17) , (26, 41, 17) , (22, 43, 17) ,
(17, 46, 17) , (31, 46, 17) , (21, 38, 19)}, teljesül, hogy n = 3, 4.

Az eredeti megfogalmazásokban az n-re vonatkozó következtetések
helyett a megoldások listája szerepel.

Ebben a fejezetben bizonyítunk még két további eredményt kor-
látos együtthatójú, (2) illetve (4) alakú binom Thue-egyenletekre vo-
natkozóan. Mindkét tétel azt állítja, hogy a megfelel® egyenleteknek
nincs |xy| > 1 tulajdonságú megoldása, ha n > 19, eltekintve bizonyos
lehetséges kivételekt®l, amelyeket a Theorem 2.4 illetve Theorem 2.5 e-
redményeinkben felsorolunk. Megjegyezzük, hogy tételeinkben elértük
a jelenlegi módszereink alkalmazhatóságának a határát.

Bizonyításainkban alkalmazzuk a modern diofantikus számelmélet
majdnem minden technikáját. A [29]-ben használt módszerek közül
használjuk a lokális módszert, Pintér [42] egy e�ektív eredményét
és a moduláris technikát. Ezek és mások mellett, az (5) egyenletre
vonatkozó tételek bizonyításai els®sorban a következ® saját eredmé-
nyünkön alapulnak:

Tétel (Theorem 2.6). Tegyük fel, hogy az (5) egyenletben n prím és
hogy az alábbi feltételek mindegyike teljesül:

(i) n ≥ 17,

(ii) B ≤ exp {3000},

(iii) n - Bφ(B),

(iv) Bn−1 6≡ 2n−1 (mod n2),

(v) rn−1 6≡ 1 (mod n2) valamely r|B esetén.

Ekkor (5)-nek nincs olyan (x, y, n) megoldása, melyre |xy| > 1.

A 2.7 szakaszban (4) alakú binom Thue-egyenletek teljes megoldá-
sának egy másik megközelítését tárgyaljuk, amelyben az A,B együtt-
hatók tetsz®legesen nagyok lehetnek, de csak adott prímekkel lehetnek
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oszthatók. Más szóval, az együtthatók ismeretlen S-egységek, prím-
számok valamely kis elemszámú S halmaza esetén. Ha S = {p} és p ∈
{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 53, 59}, a (4) egyenletnek nincs |xy| > 1,
n ≥ 3 tulajdonságú megoldása Wiles [53], Darmon és Merel [23] és
Ribet [43] ternér egyenletekre vonatkozó eredményei alapján. Bennett
[7] megoldotta (4)-et az S = {2, 3} esetben, amit Bennett, Gy®ry,
Mignotte és Pintér [10] kiterjesztett az S = {p, q} , 2 ≤ p, q ≤ 13
esetre. Bugeaud, Mignotte és Siksek [21] más módszerrel megoldotta
(4)-et, ha A = 2α, B = qβ ahol 3 ≤ q < 100 egy prím, vagy A =
pα, B = qβ ahol 3 ≤ p < q ≤ 31 prímek. Gy®ry és Pintér [31]-ben
általánosította a [10]-beli eredményeket az S = {p, q} , 2 ≤ p, q ≤
29 esetre. A második fejezet lezárásaként éles fels® korlátot adunk
a (4) egyenletbeli n kitev®re, ha S = {p, q} és 2 ≤ p, q ≤ 71. Ez
a tételünk hasznos eszköz lehet konkrét S-egység együtthatós binom
Thue-egyenletek megoldása során.

A 2.3 szakaszban szerepl® tételek Bérczes Attilával, Gy®ry Kálmán-
nal és Pintér Ákossal közösen elért eredmények, amelyek a [4] közös
cikkben jelentek meg. A Theorem 2.7 [3]-ban fog megjelenni.

A harmadik fejezet binom Thue-egyenletek egy alkalmazását
tárgyalja norma forma egyenletek számtani sorozatot alkotó megoldá-
sainak meghatározására. Legyenek α1 = 1, α2, . . . , αm Q fölött lineári-
san független elemei egy n-edfokú K algebrai számtestnek és tekintsük
az

(6) a0NK/Q(α1x1 + . . .+ αmxm) = b, b ∈ Z \ {0}

norma forma egyenletet, ahol a0-t úgy választjuk meg, hogy a (6) bal-
oldalán szerepl® polinom egész együtthatós legyen. 1971-ben Schmidt
[44] egy ine�ektív kritériumot adott arra, hogy a (6) egyenletnek véges
sok megoldása legyen. Kés®bb, Gy®ry és Papp [26] e�ektív végességi
eredményeket és explicit fels® korlátokat nyertek norma forma egyen-
letek széles osztályainak megoldásaira.

A norma forma egyenletek megoldásai közötti számtani sorozatok
vizsgálatának ötletét Peth® Attila vetette fel, és el®ször Bérczes és
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Peth® [14], [15] végeztek ilyen vizsgálatokat a

(7) NK/Q
(
x0 + x1α + . . .+ xn−1α

n−1
)

= m

egyenlettel kapcsolatban, ahol α egy n-edfokú algebrai szám, K =
Q (α), m ∈ Z és (x0, . . . , xn−1) ∈ Zn. [14]-ben egyebek mellett egy
majdnem teljes e�ektív végességi eredményt bizonyítottak (7) azon
megoldásaira, melynek koordinátái számtani sorozatot alkotnak. Ezen-
kívül meghatározták a

(8) NK/Q
(
x0 + x1α + . . .+ xn−1α

n−1
)

= 1

egyenlet összes számtani sorozatot alkotó megoldását, abban az eset-
ben, ha (8)-ban az α gyöke az xn− 2 illetve xn− 3 (n ≥ 3) polinomok
valamelyikének. Továbbá, [15]-ben megmutatták, hogy (8)-nak nincs
ilyen megoldása, ha α gyöke az xn − a polinomnak, ahol n ≥ 3 és
4 ≤ a ≤ 100. A témában további eredmények találhatók a [16] és [13]
dolgozatokban.

A harmadik fejezetben kiterjesztjük a [15]-beli eredményeket arra
az esetre, ha (8)-ban az α gyöke az xn − a, (n ≥ 3) polinomnak,
ahol −100 ≤ a ≤ −2. Ekkor megmutatjuk, hogy a (8) egyenlet összes
olyan (x0, . . . , xn−1) ∈ Zn megoldása, amelyre az xi koordináták egy
számtani sorozat egymást követ® elemei a (2, 1, 0) amikor (n, a) =
(3,−7), illetve (−2,−1, 0) amikor (n, a) = (3,−9). Az (n, a) = (11,
−67) esetben állításunk az általánosított Riemann hipotézis (GRH)
feltételezése mellett igazolható. E tételünk bizonyításában el®ször a
(8) megfelel® megoldásait visszavezetjük az

(9) Xn − aY n = (a− 1)2, −100 ≤ a ≤ −2

általánosított binom Thue-egyenlet megoldásaira, majd használjuk a
fejezetbeli másik saját eredményünket, amely megadja a (9) egyenlet
összes egész megoldását ((n, a) = (11,−67) esetén a GRH mellett).

A harmadik fejezetben tárgyalt eredményeink a [2] dolgozatban
jelentek meg.
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