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are associated with high-dose intermittent 
UVR, and there are even types of CMM that 
are not related to sunlight [2]. The incidence of 
CMM is 4-19 per 100000 individuals in Europe 
[3], and many patients are younger than 40 
years old. Hereditary factors that affect skin 
pigmentation, DNA repair efficacy, and immu-
ne response play a very important role in the 
pathogenesis of CMM. CMM is characterised 
by a high propensity to metastasise and a low 
healing rate in metastatic cases. Surgery is the 
mainstay of skin cancer therapies. Topical and 
systemic medications are used to treat very early 
or advanced stages of the disease.

2. Physiological role of zinc in the 
skin

2.1	 Epidermal homeostasis, immune 
surveillance, zinc signalling

Approximately 9 % of the zinc content of the 
body is associated with the skin, primarily 
with the epidermis (50–70 mg∙g-1 dry weight) 
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1. Introduction 
The increasing incidence of non-melanoma skin 
cancers (NMSC) and cutaneous malignant 
melanoma (CMM) is a significant burden on 
the health care system. The incidence of NMSC 
is approximately 100 per 100000 individuals 
in Europe [1]. Basal cell carcinoma (BCC) is a 
semi-malignant tumour that usually develops 
on sun-exposed skin areas. Both cumulative 
and intermittent high-dose ultraviolet irradia-
tion (UVR) play a role in the formation of BCC 
[1]. Cutaneous squamous cell cancer (CSCC) 
appears to be associated with the cumulative 
UVR because it develops on the chronically 
sun damaged skin of elderly people at the site 
of precancerous skin lesions [1]. CSCCs rarely 
metastasise to regional lymph nodes, but they 
do so in a manner that depends on tumour dep-
th and immune status. Cutaneous malignant 
melanoma (CMM) has a heterogeneous aetiolo-
gy and pathogenesis, e.g., lentigo maligna me-
lanoma is associated with chronic cumulative 
sun exposure, whereas other forms of CMM 
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[4,5]. The severe skin symptoms of hereditary 
or acquired zinc deficiency, including erytha-
ematous rashes, scaly plaques, and ulcers at 
orifices and acra [6,7], and the ability of systemic 
or topical zinc preparations to improve hair loss, 
acne and several inflammatory skin conditions 
[8] highlight the importance of zinc in skin 
homeostasis. Extracellular Zn(II) is believed 
to enter the cell through the plasma membrane 
zinc importers (ZIP) and is then transported 
via a muffler with high Zn(II) affinity like me-
tallothionein (MT), to the intracellular storage 
sites such as the endoplasmic reticulum [9,10]. 
The cellular level and distribution of Zn(II) is 
tightly controlled by zinc importers and trans-
porters (ZnT) [11]. Half of the available zinc is 
localised to the cytoplasm, whereas 30–40% 
is localised to the nucleus, and the remainder 
is associated with the plasma membrane [12]. 
Zn(II) is required for the activity of more than 
300 enzymes, for proper immune function and 
for the conformation of more than 2000 trans-
cription factors that control cell proliferation, 
apoptosis and signalling pathways [8,13,14]. The 
MT/thionein pair is critical to sequester or re-
lease Zn(II) depending on the local redox state, 
thereby influencing the function of numerous 
proteins, transcription factors and enzymes 
involved such processes as nucleic acid and 
protein synthesis [15]. The keratinocytes (KC) 
in the basal layer of the epidermis constitutively 
express MT1, whereas the spinous layer is cha-
racterised by MT4 expression [16]. Epidermal 
melanocytes, dermal fibroblasts and endothe-
lial cells also produce MT [16,17]. In MT-null 
mice, the epidermal zinc content is lower, and 
the stimulation of epidermal hyperplasia, e.g., 
by UVR is impaired [18]. MT is highly expressed 
in hyperproliferative epidermal KC  [19]. KC 
differentiation is associated with the increased 
expression of ZIP2, which leads to increased 
intracellular levels of Zn(II) [20]. Moreover, 
ZIP2 knockdown inhibits KC differentiation 
[20]. Interestingly, differentiation-associated 
higher intracellular Zn (II) concentrations have 
also been observed in other cell types [21].

We found that Zn (II) might also affect reactive 
oxygen species (ROS)-sensitive signalling path-
ways [22]. We observed an upregulation of the 

cytoprotective and anti-inflammatory protein 
HMOX1 [23-25] and the downregulation of 
some pro-inflammatory mediators such as IL8 
and PTGS2 [26,27] in cultured KC upon nonto-
xic Zn(II) exposure. Furthermore, the ability of 
Zn(II) to modulate phosphorylation signalling 
can explain the cell cycle regulatory role of the 
fluctuations of intracellular Zn(II) concentrati-
ons during cell cycle progression [21].

2.2	 Cellular stress response to ultraviolet ra-
diation: zinc for skin cancer prevention?

Solar UV exposure is one of the most im-
portant environmental factors that affect 
skin physiology [28,29]. UVB (290–320 nm) 
exposure of human skin is known to induce 
pathophysiological processes, such as DNA 
damage, oxidative stress, inflammation and 
photo-immunosuppression, with clinical sig-
ns of erythema (sunburn reaction), tanning, 
photo-aging, and skin cancers [28]. UVB causes 
skin cell damage both directly, by inducing the 
production of cyclobutane pyrimidine dimers 
(CPDs), and indirectly, by triggering the pro-
duction of reactive species and interfering with 
cellular redox homeostasis. CPDs are primarily 
responsible for the genome mutations induced 
by UVR; thus, UVB is considered the main 
pathogenetic factor for skin cancer develop-
ment [29,30]. The MT levels have been found 
to be elevated in the epidermis after acute UVR 
exposure [17]. Importantly, MT seems to signi-
ficantly reduce the formation of sunburn cells 
and induce hyperplasia after UVB irradiation 
[18,19,31,32]. Accordingly, in vitro, the expre-
ssion of MT has been shown to increase 24 h 
after UV irradiation [33]. Interestingly, we ob-
served that the expression of the MT1E isoform 
is down-regulated in UVB-exposed KC 6 h after 
UVB irradiation [22], which is also dependent 
on CPD formation (not reported). These results 
support the modulation of zinc homeostasis 
by UVB as part of a cellular stress response 
to UVR. Furthermore, the induction of MT by 
zinc chloride (ZnCl2) exposure enhanced cell 
survival and reduced both the immediate DNA 
damage [33,34] and the DNA fragmentation 
induced by solar UVR exposure [35]. We found 
that the level of induced CPD was lower in ZnCl2 
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pre-treated cells 3 h after UVB irradiation when 
the translocation of MTs to the nucleus could 
also be demonstrated. However, similar to the 
results reported by Saito et al. [36], pre-treating 
the cells with Zn(II) for 24 h was not sufficient 
to improve cell survival after UVB irradiation, 
although the fraction of early apoptotic cells 
decreased. Previously, the elevation of intrace-
llular Zn(II) levels has been demonstrated after 
UVB irradiation, which was proportional to 
the fraction of dying or dead cells and suggests 
that UVB-induced Zn(II) release may be an 
important step in the UVB-induced cell death 
pathways [37,38]. Furthermore, we observed 
that the increase in superoxide production after 
UVB treatment was augmented by Zn(II) pre-
-exposure and that the fraction of late apoptotic 
plus necrotic cells increased. It can be assumed 
that a vicious cycle of ROS-induced zinc release 
and zinc-driven mitochondrial ROS production 
is involved in this type of cell death [39] or the 
trans-activation of signal transduction pathwa-
ys (e.g., p53) by ROS alters the mechanism of 
UVB-induced cell death [40]. Whether a change 
in the mechanism of death upon Zn(II) pre-ex-
posure can affect the immunogenic potential of 
cell death [41] induced by UVB exposure, which 
would impact the development of skin cancers, 
requires further investigation. Furthermore, 
revealing the functions of the different MT 
isoforms in epidermal cells may also contribute 
to an understanding of the role of zinc in the 
UV-induced stress response.

3.	 Zinc and skin carcinogenesis
3.1 	Alterations in the expression of zinc 
homeostatic proteins in skin cancers have 
prognostic relevance

Changes in MT expression (up- or downregu-
lation) are a known feature of tumour progre-
ssion in several types of human malignancies 
and may be associated with a more aggressive 
phenotype and therapeutic resistance, ultima-
tely resulting in a worse prognosis [42,43]. Data 
also exist that suggest that the upregulation 
of MT expression in CMM is a significant and 
independent factor for reduced patient survival 
[44,45]. We also observed that MTI/II overex-
pression in melanoma cells is significantly more 

frequent in primary CMM with haematogenous 
metastases [46]. It is not known which MT iso-
forms are overexpressed, but it may be worth 
noting that MT1E and MT1G have been shown 
to be downregulated by hypermethylation in 
CMM [47,48]. Regarding NMSC, significantly 
higher MTI/II and MTIII expression was noted 
in actinic keratosis and CSCC, compared with 
normal skin epidermis, whereas very low levels 
of MTIII expression were found in BCC [49,50].

3.2	 Alterations in the expression of zinc 
homeostatic proteins in skin cancers: cause 
or consequence?

The role of MT in metastasis formation re-
mains to be confirmed, and experimental 
evidence for its oncogenic role is still lacking. 
Signalling pathways activated during tumour 
development and/or the altered physiology of 
cancer cells could trigger high MT expression in 
malignancies. The exploration of genome-wide 
transcriptional and epigenetic dysregulations 
induced by driver mutations has only just begun 
[51]. Nevertheless, skin cancers such as CSCC 
and CMM consist of non-differentiated/dedif-
ferentiated cells that possess high proliferative 
capacity. Accordingly, the zinc content of CSCC 
is significantly lower than that of normal skin, 
which is primarily composed of differentiated 
KC [52]. Thus, we can assume that one reason 
for the high expression level of MT in cancer 
is cellular hyperplasia [18]. Conversely, MTI/II 
transcription can be induced by inflammatory 
cytokines (IL-6, TNF-α, interferons), hypoxia 
and free radicals that are present in the tumour 
microenvironment. Furthermore, it is possi-
ble that circulating cytokines can contribute 
to increased MT production in skin cancers 
because the increased expression and nuclear 
translocation of MT can be observed in the 
basal KC layer in non-exposed skin areas when 
other areas are subjected to UV exposure. This 
phenomenon was connected to increased IL-6 
blood levels produced by neutrophils upon UV 
irradiation [17].

Interestingly, the alterations of zinc homeo-
stasis may also be significant in human pa-
pilloma virus (HPV)-associated skin cancer 
development. The transmembrane channel-like 
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(TMC) proteins EVER1 (TMC6) and EVER2 
(TMC8) proteins form a complex and interact 
with the ZnT1 protein and affect the distribu-
tion of intracellular Zn (II) [53]. Mutations in 
EVER1/2 cause a genodermatosis (epidermo-
dysplasia verruciformis) that is associated with 
HPV related skin cancers. It has been shown 
that HPV oncoproteins bind to EVER and ZnT1 
and block their negative regulation of trans-
cription factors stimulated by zinc (MTF-1) or 
cytokines (c-Jun and Elk) [53].

3.3	 Modulation of cell proliferation, invasi-
on and the tumour microenvironment: a po-
ssible pathogenetic role of zinc

Chronic inflammation is an important patho-
genetic factor in several types of malignancies, 
such as CSCC. Key mediators of inflammation-
-induced cancer include nuclear factor kappa B, 
reactive oxygen and nitrogen species, inflam-
matory cytokines, prostaglandins and specific 
microRNAs (miR) [54]. It has been found that 
prolonged zinc deficiency results in the upre-
gulation of key inflammatory genes (S100A8, 
S100A9, Ptgs2, Tlr4) and an oncogenic miR 
signature (miR-31, miR-21) in the skin of a rat 
model. This finding suggests that zinc deficiency 
can contribute to the formation of a pro-tu-
morigenic inflammatory microenvironment 
that facilitates carcinoma development [55]. 
A significant upregulation of miR-21, miR-31, 
S100A8, S100A9, PTGS2 and TLR4 has been 
found in human CSCC and has been linked to 
tumorigenesis [56-60]. In addition, zinc defi-
ciency is associated with impaired innate and 
adaptive immune functions that can contribute 
to cancer development [61].

A high expression level of MT in CSCC and 
CMM suggests that the release or sequestrati-
on of Zn(II) by MT [15] may be important for 
tumour progression. Many of the zinc-depen-
dent enzymes are involved in skin homeostasis 
and host defence against cancer formation; 
however, after the cancer has been formed, they 
can promote the growth and invasion of malig-
nant cells [16]. In addition, several zinc finger 
transcription factors are involved in oncogenic 
driver signalling pathways [62,63].

Finally, we have found that the expression of 

MTI/II in melanoma cells might play a role in 
the formation of an immunosuppressive tumour 
microenvironment, which can promote CMM 
progression [46].

4.	 Zinc in the treatment of skin 
cancers
4.1	 Cytotoxic effect of zinc

High concentrations of zinc are cytotoxic to 
cancer cells. It has been reported that 20 % 
topical zinc sulphate can induce the clearance 
of actinic keratoses and small skin cancers in 
patients with xeroderma pigmentosum [4]. 
Importantly, it has been demonstrated that 
ionophoric zinc can affect the posttranscrip-
tional regulation of gene expression, thereby 
inducing cytotoxicity in cancer cells [64]. It can 
also sensitise cancer cells to other anticancer 
therapeutic modalities [65]. It would be worth 
considering the therapeutic potential of zinc 
pyrithione and the related zinc ionophores for 
skin cancer therapy [66].

4.2 Modulation of signalling pathways and 
the tumour microenvironment

Zn supplementation in rats decreased the 
incidence of chemical-induced tongue SCC and 
elicited a reduced proliferative/inflammatory 
cancer phenotype [55]. It could also be shown 
that Zn supplementation that suppressed ton-
gue cancer development also attenuated miR-31 
and miR-21 expression [55]. These investigati-
ons should be extended to CSCC.

Furthermore, it has been demonstrated that 
the administration of zinc can re-establish the 
chemosensitivity of cancer cells by reactivating 
p53 and increasing the immunogenic potential 
of cancer cell death [41,67]. This phenomenon 
has not been studied in CMM cells.

5.	 Conclusions
Proper functioning of zinc homeostatic pro-

teins and appropriate dietary zinc intake seem 
to be important in epidermal homeostasis and 
defence against skin cancer development (Figu-
re 1). Prolonged dietary zinc deficiency causes 
aberrant miRNA expression in the skin, which 
is associated with chronic inflammation and 
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may contribute to carcinogenesis. The immuno-
-modulatory role of MT together with the ability 
to affect the activity of transcription factors and 
enzymes altering cell proliferation and differen-
tiation might contribute to the progression of 
skin cancers such as CSCC and CMM. It seems 
worthwhile to further examine the role of zinc 
in skin because clarifying this issue can affect 
our thinking about the pathogenesis of skin 
diseases and contribute to the identification 
of new therapeutic targets.
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