Egyetemi doktori (PhD) értekezés tézisei

1,4-BENZOKINON-SZÁRMAZÉKOK FOTOKÉMIAI ÉS REDOXISAJÁTSÁGAI

Józsa Éva

Témavezető: Dr. Ősz Katalin

DEBRECENI EGYETEM Kémia Doktori Iskola Debrecen, 2014

I. BEVEZETÉS ÉS CÉLKITŰZÉSEK

A napenergia hasznosításának számos lehetősége ismert, hőenergiává, illetve elektromos energiává alakítható napkollektorok vagy napelemek segítségével. A természetben lezajló fotoszintézis során a növények a napenergiát kémiai kötések (szénhidrátok) formájában tárolják, amelyet szükség szerint felhasználhatnak, így energiaellátásuk folyamatos. Mesterséges fotoszintetikus rendszerek, amelyek lehetővé tennék a napenergia tárolását H₂ és más kismolekulájú energiahordozók formájában, már az 1970-es évek óta foglalkoztatják a tudományos társadalmat¹.

A vízbontást egy lépésben megvalósító 3 eV-nál nagyobb tiltott sávval rendelkező fotorendszerek (félvezetők, fémorganikus vegyületek) a napfény Földre érkező spektrumának mindössze az UV-tartományát abszorbeálják, ami gátat szab hatékonyságuknak. A természetes fotoszintézis Z-sémájához látható fény hullámhossztartományában hasonlóan а elnvelő két fotorendszer (melyek egyenként 1–2 eV tiltott sávval rendelkeznek) szükséges a hatékonyabb vízbontáshoz, melynek a túlfeszültség figyelembevételével körülbelül 2–3 eV az energiaigénye². A természetes fotoszintézisben a két fotorendszert összekötő redoximediátor szerepét izoprenoid-oldalláncot tartalmazó 1,4-benzokinon-származék, a plasztokinon tölti be. Az 1,4-benzokinon-származékok alkalmazhatóságáról, mint mesterséges fotoszintetikus redoximediátorok, összehasonlító tanulmányt még nem végeztek.

Megállapították, hogy a 2,6-diklór-1,4-benzokinon fény hatására vizes közegben a megfelelő hidrokinonná redukálódik, miközben O₂ szabadul

¹ T. Inoue, A. Fujishima, S.Konishi, K. Honda, Nature, 1979, 277, 637

² R. Abe, K. Sayama, H. Sugihara, *The Journal of Physical Chemistry B*, 2005, 109, 16052

fel³, tehát felvetődik annak a lehetősége, hogy a kinonok közvetlen fotoredukcióját mesterséges fotoszintetikus rendszerekben alkalmazzuk.

A mesterséges fotoszintetikus redoximediátorok gyakorlati alkalmazhatóságát a redoxipár számos tulajdonsága befolyásolja. Az oxidáció és a redukció kis túlfeszültsége, a gyors diffúzió és a nagy elektrontranszfersebesség, valamint a fényrezisztencia és a víz részleges oxidációja során keletkező reaktív oxigénformákkal szembeni stabilitás mind hozzájárulhat az energiaátalakulás hatékonyságához. Az 1,4-benzokinon-származékok potenciális redoximediátor szerepének megállapításához elengedhetetlen a redoxi- és a fotoreakcióik ismerete.

Célul tűztük ki a különböző elektronszívó vagy elektronküldő szubsztituens(ek)kel rendelkező 1,4-benzokinon-származékok fotoreakciójának spektrofotometriás, pH-sztát és spektrofluorimetriás vizsgálatát, emellett a fotoreakció monitorozását egy általunk tervezett, száloptikás spektrofotometriás detektáláson alapuló fotoreaktorral.

Céljaink közé tartozott a különböző fényforrások fotonfluxusának meghatározására egy egyszerűsített aktinometriás módszer kifejlesztése.

Célul tűztük ki a benzokinon/hidrokinon rendszerek redoxisajátságainak tanulmányozását ciklikus voltammetriás módszerrel.

Az 1,4-benzokinonokból gerjesztés hatására képződő erős oxidáló tulajdonságú részecske, valamint a víz részleges oxidációja során keletkező reaktív oxigénformák oxidatív hatásának tanulmányozására modellfolyamatként a kinonok hidrogén-peroxid hatására lejátszódó oxidációs reakciójának kinetikai vizsgálatát tűztük ki célul.

³ G. Lente, J. H. Espenson, Journal of Photochemisry and Photobiology A, 2004, 163, 249

RÖVIDÍTÉSJEGYZÉK

Q: 1,4-benzokinon; Q-H₂: 1,4-hidrokinon; Q-OH: 2-hidroxi-1,4-benzokinon; QMe: 2-metil-1,4-benzokinon; QMe-H₂: 2-metil-1,4-hidrokinon;
QMe-OH: 2-metil-5-hidroxi-1,4-benzokinon; QMe₂: 2,6-dimetil-1,4-benzokinon; Q(MeO)₂: 2,6-dimetoxi-1,4-benzokinon; Q(MeO)₂-H₂: 2,6-dimetoxi-1,4-bidrokinon; QMe(MeO)₂: 2,3-dimetoxi-5-metil-1,4-benzokinon;
QMe(MeO)₂-H₂: 2,3-dimetoxi-5-metil-1,4-hidrokinon; Q-2,5-Cl₂: 2,5-diklór-1,4-benzokinon; Q-2,6-Cl₂: 2,6-diklór-1,4-benzokinon; Q-2,6-Cl₂: 2,6-diklór-3-hidroxi-1,4-benzokinon;
Q-2,6-Cl₂: 2,6-diklór-1,4-benzokinon; Q-2,6-Cl₂-OH: 2,6-diklór-3-hidroxi-1,4-benzokinon;
xarmazék; QR-H₂: -R funkciós csoporttal rendelkező 1,4-bidrokinon-származék; QR-OH: -R funkciós csoporttal rendelkező hidroxi-1,4-benzokinon

(8) és (9) egyenletek:

 $q_{\rm P}$ fotonfluxus; $N_{\rm A}$: Avogadro-állandó; V: megvilágított oldattérfogat; Φ_{365} : megvilágító fényforrás emissziós hullámhosszára а vonatkozó kvantumhasznosítási tényező; aktinométer oldat **E**390: az moláris abszorbanciája 390 nm-en; l: optikai úthossz; cFe(II): Fe(II) koncentráció; C: a küvettába jutó összes foton energiája és a detektor által érzékelt relatív energia aránya ($C = E_{\lambda} / E_{\lambda}^{rel}$); **h**: Planck-állandó; **c**: fénysebesség

(10) és (11) egyenletek:

co: a reaktáns kezdeti koncentrációja; A_{λ}^{ini} és A_{λ}^{fin} : a detektálási hullámhosszon mért kezdeti- és végabszorbancia; A_{Φ}^{ini} és A_{Φ}^{fin} : a megvilágítási hullámhosszon mért kezdeti- és végabszorbancia; β : a megvilágítási és a detektálási úthossz aránya; ζ : reakciókoordináta.

3

II. ALKALMAZOTT VIZSGÁLATI MÓDSZEREK

Az 1,4-benzokinon-oldatok készítéséhez háromszorosan ioncserélt vizet (Millipore) használtunk.

UV-látható spektrofotometriás módszerrel végeztük a QR-OH képződésének és bomlásának kinetikai vizsgálatát. Az adott QR-OH termék spektrumát UV-Probe szoftverrel vezérelt Shimadzu UV-1601 kétsugaras spektrofotométerrel rögzítettük. A reakciókat a QR-OH látható tartományban megjelenő, maximális abszorbanciájához tartozó egy kiválasztott hullámhosszon követtük. A Q oxidációs reakcióját 0,09-0,18 mol dm⁻³ koncentrációjú hidrogén-peroxid esetén gyorskinetikai (stopped-flow) kísérletekben tanulmányoztuk, Applied Photophysics DX-17 MV fotoelektron-sokszorozóval rendelkező készülékkel.

Az 1,4-benzokinon-származékok fotokémiai reakcióinak kinetikai vizsgálatait UV-lámpával kiegészített AnalytikJena SPECORD S600 diódasoros spektrofotométerrel és ABU 91 AUTOBURETTA RADIOMETER COPENHAGEN pH-sztát titráló berendezéssel, valamint egy általunk tervezett, LED fényforrással kombinált Avantes Avaspec-2048 száloptikás CCD spektrofotométerrel összekapcsolt fotoreaktorral végeztük.

UV-látható spektrofotometriás titrálással határoztuk meg a QR-OH p K_s értékeit, melyhez a QR-OH-t fotokémiai reakcióban 365 nm hullámhosszon emittáló Spectroline FC-100/F UV-A lámpával kiegészített ABU 91 AUTOBURETTA RADIOMETER COPENHAGEN pH-sztát titráló rendszerrel állítottuk elő, termosztálható reakcióedényben. A pH-sztát mérések során karbonátmentes, argon alatt készített és tárolt KOH-oldatot használtunk. Spektrofluorimetriás módszerrel (Jasco FP-8500 spektrofluoriméter) vizsgáltuk a Q-H₂ és QMe-H₂ fluoreszcencia emissziós spektrumát, valamint a Q fotoreakciója során keletkező Q-H₂ képződési kinetikáját.

A kinetikai mérésekből és a spektrofotometriás titrálásból nyert adatokat a legkisebb négyzetek módszerével illesztettük MicroMath SCIENTIST szoftver segítségével.

A hidrogén-peroxiddal előállított QMe-OH bomlástermékeinek vizsgálatát ¹H-NMR spektroszkópiás és GC-MS módszerrel végeztük. A ¹H-NMR spektrumokat BRUKER DRX 400 készüléken rögzítettük, a spektrumok kiértékeléséhez MestReNova NMR szoftvert használtunk. A GC-MS mérésekhez Shimadzu GCMS-QP2010plus rendszert, a vegyületek azonosításához NIST05 spektrumkönyvtárat használtunk.

Ciklikus voltammetria segítségével határoztuk meg a QR/QR-H₂ redoxirendszerek formálpotenciál-értékeit, a Q-H₂, QCl-H₂ és QMe(MeO₂)-H₂ p K_{s1} értékét, emellett a Q-H₂ és a QMe(MeO₂)-H₂ Pt-elektródon lejátszódó elektrontranszfer sebességi együtthatóját. Méréseinkhez háromelektródos (Pt munkaelektród, Pt segédelektród, Ag/AgCl referencia elektród) rendszert használtunk. Méréseinket Metrohm 747 VA Stand-hez csatlakozó 746 VA Trace Analyzer készülékkel végeztük. A ciklikus voltammogramokat CACYVO programmal értékeltük ki.

A benzokinonoldatok pH-értékét ABU 93 Triburette potenciometriás titrátorral vagy Metrohm 827 mobil pH-mérő készülékkel összekötött Metrohm hidrogénion-szelektív üvegelektróddal határoztuk meg.

5

A TANULMÁNYOZOTT KINONSZÁRMAZÉKOK SZERKEZETI KÉPLETE

1,4-benzokinon

2-metil-

1,4-benzokinon

H₃C I CH₃

2,6-dimetil-1,4-benzokinon

2-klór-1,4-benzokinon

2,5-diklór-1,4-benzokinon

2,6-diklór-1,4-benzokinon

2,6-dimetoxi-1,4-benzokinon

OCH₃ H₃C Ĭ OCH₃

2,3-dimetoxi-5-metil-1,4-benzokinon

III. ÚJ TUDOMÁNYOS EREDMÉNYEK

1. Megállapítottuk a Q, QMe és QCl hidrogén-peroxid hatására lejátszódó reakciójának kinetikai jellemzőit.

A látható hullámhossztartományban a QR-OH abszorpciós maximumához tartozó hullámhosszon mért abszorbancia–idő görbékkel szelektíven követtük a QR-OH kialakulását és bomlását. Minden kísérletben a H_2O_2 nagy feleslege biztosította az oxidálószer állandó koncentrációját. Az oldatok pHját szintén állandó értéken tartottuk a QR koncentrációjához képest nagy feleslegben alkalmazott foszfátpufferrel. A kinetikai görbéket az (1) és (2) egyenletekkel leírható kinetikai séma alapján illesztettük.

1. ábra: A Q-H₂O₂ reakció kinetikai görbéje 25,0 °C-on; $c(Q) = 8,7 \times 10^{-4} \text{ mol dm}^{-3}$; $c(H_2O_2) = 0.54 \text{ mol dm}^{-3}$; pH = 6,52; \Box : kísérleti adatok; — : illesztett görbe

$$QR \xrightarrow{H_2O_2} QR \cdot O^-$$

$$v_1 = k_{\psi 1} [QR]$$
(1)

$$QR-OH \xrightarrow{H_2O_2} Bomlástermék(ek)$$

$$v_2 = k_{\Psi^2} [QR-OH] + k_{\Psi^3} [QR-OH]^2$$
(2)

A kinetikai görbék nemlineáris illesztése segítségével meghatároztuk a QR-O⁻ (deprotonált QR-OH) moláris abszorpciós együtthatóját (1. táblázat), valamint a $k_{\Psi 1}$, $k_{\Psi 2}$ és $k_{\Psi 3}$ látszólagos sebességi együtthatókat.

Kísérleteink alapján a QR-OH képződésre vonatkozó sebességi egyenleteket a következő módon írhatjuk fel:

$$v_{1} = k_{\psi 1} [QR] = k_{1} \frac{[QR][H_{2}O_{2}]}{[H^{+}]}$$
(3)

A sebesség-meghatározó lépés a QR reakciója a deprotonált hidrogénperoxiddal (HO₂⁻), melyet a hidrogén-peroxid deprotonálódásának gyors előegyensúlyi lépése előz meg:

$$H_{2}O_{2} \xleftarrow{K_{s,H_{2}O_{2}}} H^{+} + HO_{2}^{-}$$

$$\tag{4}$$

A sebesség-meghatározó lépést leíró egyenlet:

$$QR + HO_2^{-} \xrightarrow{k_b} QR - O^{-} + H_2O$$
⁽⁵⁾

A k_1 sebességi együtthatókat, a QR-O⁻ moláris abszorbanciáit és a spektrofotometriás titrálás alapján meghatározott p K_s értékeit az 1. táblázat tartalmazza.

Kinonszármazék	k 1, s ⁻¹	pK _s (QR-OH)	ε (QR-O ⁻), dm ³ mol ⁻¹ cm ⁻¹
QMe	$(3,46\pm0,01) \times 10^{-9}$	4,5±0,4	817±20 (490 nm)
Q	$(1,23\pm0,02) \times 10^{-8}$	3,4±0,1	1703±88 (480 nm)
QCl	$(1,49\pm0,03) \times 10^{-7}$	2,8±0,6	823±10 (510 nm)
Q-2,6-Cl ₂	$2,7 \times 10^{-7}$ *	1,8±0,6	2530±60 (524 nm) *

1. táblázat: A QR-OH képződés k_1 , a QR-OH p K_s és deprotonált formájának moláris abszorbancia (ε) értékei; T = 25,0 °C; *: irodalmi adat

A QMe-OH bomlástermékeinek ¹H-NMR vizsgálatai arra utaltak, hogy a QMe-OH kisebb alifás fragmensekre bomlik.

2. Meghatároztuk a Q, QMe, QCl, Q-2,6-Cl₂ és a hidrogén-peroxid közötti reakció sebesség-meghatározó lépésének aktiválási paramétereit.

A hőmérsékletfüggő kísérleteket 10-40 °C hőmérséklettartományban végeztük (2. ábra). A Q, QMe, QCl, Q-2,6-Cl₂ – H₂O₂ rendszerben a sebességmeghatározó lépés (5) sebességi együtthatóját (k_b) a hőmérsékletfüggő kinetikai görbék illesztéséből nyert $k_{\psi 1}$ értékek és a H₂O₂ hőmérsékletfüggő K_s értékeinek a felhasználásával határoztuk meg (6, 7).

$$k_1 = k_{\psi 1} \frac{[\mathrm{H}^+]}{[\mathrm{H}_2 \mathrm{O}_2]}$$
 és $k_b = \frac{k_1}{K_{s,H_2 \mathrm{O}_2}}$ (6, 7)

A hőmérsékletfüggő k_b értékek felhasználásával Arrhenius- és Eyring ábrázolás segítségével meghatároztuk a sebesség-meghatározó lépés aktiválási energiáját (E_a), aktiválási entalpiáját (ΔH^{\ddagger}) és aktiválási entrópiáját (ΔS^{\ddagger} ; 2. táblázat).

2. táblázat: A QR-OH képződés sebesség-meghatározó lépésének aktiválási paraméterei

Kinonszármazék	E_{a} , kJ mol ⁻¹	ΔH^{\ddagger} , kJ mol ⁻¹	Δ S^{\ddagger} , J mol ⁻¹ K ⁻¹
QMe	18,4±0,4	15,9±0,4	-129±1
Q	15,3±1,3	12,9±1,3	-127±4
QC1	8,9±0,6	6,5±0,6	-128±2
Q-2,6-Cl ₂	5,5±0,3	3,0±0,3	-142±1

3. Egyszerűsített aktinometriás módszert dolgoztunk ki fényforrások fotonfluxusának meghatározására.

A IUPAC által javasolt ferrioxalát aktinometria módszerét továbbfejlesztettük, így a reakcióban keletkező Fe(II) koncentrációjának indirekt mérése helyett közvetlenül a Fe(III) bomlásával járó abszorbancia változást vizsgáltuk spektrofotométer segítségével (3. ábra).

А diódasoros spektrofotométer fényforrásai fotonfluxusának meghatározása során párhuzamos kísérletek alapján megállapítottuk, hogy az egyszerűsített aktinometriás módszer a klasszikus módszerhez (9%) képest kisebb relatív hibával (6%) működik, emellett lehetővé teszi a ellenőrzését. fénvforrás stabilitásának А monokróm fényforrások fotonfluxusát a (8) egyenlet alapján, a polikromatikus fényforrások hullámhossz szerinti fotonfluxusát a (9) egyenlettel számíthatjuk a relatív energiaspektrum ismeretében (a jelmagyarázatok a rövidítésjegyzékben találhatók).

$$q_{\rm p} = \left(\frac{dA_{\rm 390}}{dt}\right) \frac{N_{\rm A}V}{\Phi_{\rm 365}\varepsilon_{\rm 390}l} \tag{8}$$

$$v = \frac{d\mathbf{c}_{\text{Fe(II)}}}{dt} = C \int \frac{\boldsymbol{\Phi}_{\lambda} \boldsymbol{E}_{\lambda}^{\text{rel}} \lambda}{N_{A} h c V t} (1 - 10^{-A_{\lambda}}) d\lambda$$
(9)

4. Speciális, száloptikás spektrofotométerrel kiegészített fotoreaktort építettünk az 1,4-benzokinon-származékok fotobomlásának tanulmányozásához.

A fotoreakciók tanulmányozásához kontrollált geometriai elrendezés mellett fotokémiai reaktort építettünk. A fotoreaktor egy 12,5×12,5×45 mm-es küvettával kompatibilis mintatartó egységet tartalmaz, amelyet felülről cserélhető LED fényforrás világít meg (4. ábra). A fotoreaktor két szemközti oldalán található furatokhoz csatlakoztathatjuk az abszorpciós spektrumváltozás nyomon követésére használt száloptikás spektrofotométer kollimátor lencséit. A kollimátor lencsék a száloptikás spektrofotométer optikai kábelei segítségével vezetett fényt irányítják. A száloptikás spektrofotométer megvilágító egységéből érkező fotonfluxus elhanyagolható mértékben indukálja a vizsgált reakciót a LED-hez képest.

A fotokémiai reakciók vizsgálatához az oldat kevertetése a reakció teljes ideje alatt nélkülözhetetlen. A fotoreaktor sárgarézből készült, amely nem befolyásolja a mágneses keverő működését, emellett jó hővezető képességgel rendelkezik, ami a minták termosztálása szempontjából előnyös.

A LED szoftveresen vezérelhető, így különféle megvilágítási profilokat alkalmazhatunk a LED fényintenzitásának szabályozása mellett.

4. ábra: A száloptikás spektrofotométerrel kiegészített fotoreaktor felépítése; **a**: LED fényforrás; **b**: kollimátor lencse; **c**: optikai kábel

5. Meghatároztuk a Q, QCl, Q-2,5-Cl₂ és a Q-2,6-Cl₂ LED₄₀₀ hatására bekövetkező bomlásának kvantumhasznosítási tényezőjét.

A fotoreaktorban végrehajtott kísérletekben a reakció előrehaladását a QCl, Q-2,5-Cl₂ és Q-2,6-Cl₂ esetén a képződő deprotonált hidroxi-származékaik abszorpciós maximumához rendelhető hullámhosszon vizsgáltuk puffereletlen oldataikban. A Q esetén a fotoreakció során kialakuló pH a Q-OH p K_s értékéhez közeli, így a Q-OH és a Q-O⁻ abszorpciós spektrumai izobesztikus pontjának megfelelő hullámhosszon vizsgáltuk a kinetikai görbe lefutását. A kinetikai görbéket a (10) és a (11) egyenlet felhasználásával illesztettük (a jelmagyarázatok a rövidítésjegyzékben találhatók). Az illesztés során felhasznált paramétereket és а kvantumhasznosítási tényezők értékét a 3. táblázatban összegeztem.

$$\frac{d\xi}{dt} = \frac{q_{n,p}\Phi}{Vc_0} \left(1 - 10^{-(1-\xi)\beta A_{\Phi}^{ini} - \xi\beta A_{\Phi}^{fin}} \right) \frac{(1-\xi)A_{\Phi}^{ini}}{(1-\xi)A_{\Phi}^{ini} + \xi A_{\Phi}^{fin}}$$
(10)

$$A_{\lambda} = (1 - \xi) A_{\lambda}^{ini} + \xi A_{\lambda}^{fin} \tag{11}$$

3. táblázat: A QR-bomlására vonatkozó kvantumhasznosítási tényező, a kinetikai görbék illesztéséből nyert paraméter és az illesztés során felhasznált paraméterek; $T = 25,0 \text{ }^{\circ}\text{C}$

	Q	QCI	Q-2,5-Cl ₂	Q-2,6-Cl ₂
Φ_{400}	0,34	1,11	1,34	1,10
$q_{n,p} \Phi(Vc_0)^{-1},$ s ⁻¹	(1,76±0,05) × 10 ⁻³	(5,70±0,09) × 10 ⁻³	(2,08±0,02) × 10 ⁻³	(5,65±0,05) × 10 ⁻³
A^{ini}_λ	0,0444 (425 nm)	0,0275 (510 nm)	0,145 (524 nm)	0,0161 (524 nm)
A^{fin}_λ	0,386 (425 nm)	0,815 (510 nm)	0,908 (524 nm)	0,848 (524 nm)
A_{Φ}^{ini} (400 nm)	0,0300	0,0579	0,184	0,110
$A_{\Phi}^{fin}(400 \text{ nm})$	0,505	0,297	0,351	0,167
q_{p}, s^{-1}	7,7 × 10 ¹⁵	7,7 × 10 ¹⁵	2,8 × 10 ¹⁵	7,7 × 10 ¹⁵
β		2	,5	

6. Szelektíven nyomon követtük a Q-OH és a Q-2,6-Cl₂-OH fotoindukált képződését spektrális és sav-bázis tulajdonságaik felhasználásával.

A fotoreakció indukálására UV-lámpát használtunk, a reakció előrehaladását spektrofotometriás, valamint pH-sztát módszerrel követtük nyomon. A QR-OH képződésének 365 nm-re vonatkozó kvantumhasznosítási tényező értékét a kezdeti sebességek módszere (12) alapján határoztuk meg (4. táblázat).

$$v_{ini} = \frac{\Phi q_{\rm p}}{V} \left(1 - 10^{-\beta A_0^{ini}} \right) \tag{12}$$

Az abszorbancia-idő kinetikai görbéket a QR-O⁻ moláris abszorpciós együtthatójának ismeretében (1. táblázat) értékeltük ki.

A pH-sztát módszerrel nyert kinetikai paraméterek nem mutatnak jelentős eltérést a fotometriás kísérletek eredményeitől, ami azt igazolja, hogy a fotoreakció során képződő H⁺ kizárólag a QR-OH deprotonálódásából származik, tehát a KOH-oldat fogyása a pH-sztát titrálás során a fotoreakcióban keletkező hidroxi-kinon mennyiségét tükrözi.

4. táblázat: A QR-OH fotokémiai képződésének kezdeti sebessége, a kvantumhasznosítási tényező értéke, valamint a megvilágítási hullámhosszon mért kezdeti abszorbancia értéke; T = 25,0 °C

Kinonszármazék		Q	Q-2,6-Cl ₂
Spektrofotometriás	Φ_{365}	0,07	0,40
módszer	v_{ini} , mol dm ⁻³ s ⁻¹	6,75 × 10 ⁻⁸	$2,28 \times 10^{-6}$
β=2,5	q _p , s ⁻¹	9,54 × 1015	9,54 × 1015
pH-sztát módszer	Φ_{365}	0,08	0,47
$nH \sim nK$ on $om \pm 2$	vini, mol dm ⁻³ s ⁻¹	8,05 × 10 ⁻⁸	3,39 × 10-6
β=1,77	<i>q</i> _P , s ⁻¹	$2,7 \times 10^{17}$	$2,7 \times 10^{17}$
A_{Φ}^{ini} (365 nm)		0,029	0,39

7. Megállapítottuk a Q- H_2 és a QMe- H_2 fluoreszcens emissziós spektrumának jellemzőit.

A Q-H₂ és a QMe-H₂ gerjesztési maximuma 290 nm-nél, az emissziós maximuma 330 nm-nél található (5. ábra). A fluoreszcencia felhasználható a fotoredukció során képződő QR-H₂ szelektív nyomon követésére, azonban a QR elnyelése egybeesik a QR-H₂ emissziós maximumával, így

5. ábra: A QMe-H₂ fluoreszcens emissziós spektruma; $\lambda_{ex} = 290 \text{ nm}$

erőteljes belső szűrő hatást fejt ki. A belső szűrő hatást különböző arányú QMe-H₂ és QMe elegyekkel vizsgáltuk (6. ábra). Megállapítottuk, hogy 5×10^{-5} mol dm⁻³ koncentráció ([QR-H₂]+[QR]) esetén a fluoreszcens emisszió a QR-H₂ koncentrációjával egyenesen arányos és független a QR koncentrációjától. Ilyen alacsony koncentrációk esetén azonban a fotoreakció csak nagyon hosszú idő alatt megy végbe. A különböző ideig megvilágított mintákat húszszorosára hígítottuk a fluorimetriás mérés előtt. Meghatároztuk a Q-H₂ képződés kvantumhasznosítási tényező értékét: 0,21.

6. ábra: A $c(QMe-H_2)$ és a fluoreszcencia intenzitás közötti összefüggés vizsgálata QMe jelenlétében

8. Megállapítottuk a $Q/Q-H_2$, $QMe/QMe-H_2$, $Q(MeO)_2/Q(MeO)_2-H_2$, $QMe(MeO)_2/QMe(MeO)_2-H_2$, $QCl/QCl-H_2$, $Q-2,6-Cl_2/Q-2,6-Cl_2-H_2$ redoxirendszerek formálpotenciáljainak szubsztituensektől való függését, valamint a $Q-H_2$, $QMe(MeO)_2-H_2$ és a $QCl-H_2$ pK_{s1} értékét.

A QR/QR-H₂ puffereletlen közegben mért Pourbaix-diagramjai pHfüggetlen szakaszán összevetettük a formálpotenciál-értékeket. Minél elektronküldőbb szubsztituenssel rendelkezik az adott kinonszármazék, annál kisebb a formálpotenciál értéke (7. ábra).

Meghatároztuk a Q-H₂, QMe(MeO)₂-H₂ és a QCl-H₂ p K_{s1} értékét pufferelt vizes közegben mért formálpotenciál – pH függvényük alapján. Megállapítottuk, hogy a csúcspotenciál különbség – pH függvény minimuma a vizsgált QR-H₂ p K_{s1} értékének felel meg. A p K_{s1} értékek (rendre 9,7; 11,3; 8,2) összefüggést mutatnak a QR/QR-H₂ redoxirendszerek egy adott pH-hoz tartozó formálpotenciál-értékeivel (8. ábra), hasonlóan az irodalomban közölt kinon/szemikinon rendszerhez.

7. ábra: QR/QR-H₂ redoxirendszerek Pourbaixdiagramjai; T = 25,0 °C \blacktriangle : Q-2,6-Cl₂; \blacklozenge : QCl; \blacksquare : Q; \diamondsuit : QMe; \blacklozenge : QMe(MeO)₂; \blacksquare : Q(MeO)₂

8. ábra:

Összefüggés a QR-H₂ lg K_s értékei és a

9. Meghatároztuk a $Q-H_2$ és a $QMe(MeO)_2-H_2$ diffúziós együtthatóját, valamint a Pt elektródra vonatkozó heterogén elektrontranszfer sebességi együtthatóját.

A Q/Q-H₂, és a QMe(MeO)₂/QMe(MeO)₂-H₂ redoxirendszerek ciklikus voltammogramjait különböző pásztázási sebességek (v) mellett vizsgáltuk. A katódos csúcspotenciál – lg v függvény (9. ábra) diffúziókontrollált szakaszából a Randles–Sevcik-egyenlet felhasználásával meghatároztuk a Q-H₂ és a QMe(MeO)₂-H₂ diffúziós együtthatóját, valamint a heterogén elektrontranszfer sebességi együtthatóját a függvény azon szakaszából, ahol a csúcspotenciál a pásztázási sebesség függvénye, Nicholson és Shain módszere alapján (5. táblázat).

9. ábra: A QMe(MeO)₂/QMe(MeO)₂-H₂ rendszer csúcspotenciáljának (E_p) összefüggése a pásztázási sebességgel (v, mV s⁻¹); T = 25,0 °C

5. táblázat: QR/QR-H₂ redoxirendszerek diffúziós együtthatója és a heterogén elektrontranszfer sebességi együtthatója; T = 25,0 °C

Kinonszármazék	$D, cm^2 s^{-1}$	$k_{\rm s}$, cm s ⁻¹
Q/Q-H ₂	1,63 × 10 ⁻⁶	0,031
QMe(MeO) ₂ /QMe(MeO) ₂ -H ₂	2,02 × 10-6	0,035

10. Korrelációt találtunk a $QR - H_2O_2$ reakció sebességi állandója (k_1), a reakció sebességmeghatározó lépésének aktiválási energiája, a $QR/QR-H_2$ redoxirendszerek formálpotenciálja, és a hidroxi-benzokinonok pK_s értékei között.

Megállapítottuk, hogy a szubsztituensek elektronküldő vagy -szívó sajátságai jelentősen megváltoztatják a QR és a H_2O_2 közötti reakció sebességi állandóját, a folyamat aktiválási energiáját, a QR/QR- H_2 redoxirendszerek formálpotenciálját és a hidroxi-kinonok p K_s értékeit. A fenti paraméterek a különböző 1,4-benzokinon-származékok esetén lineáris korrelációt mutatnak egymással. Ez azt jelenti, hogy egy közös szerkezeti tényező határozza meg a vizsgált paramétereket, amelyeket a szubsztituensek, elektronegativitásuk függvényében módosítanak (10. és 11. ábra).

10. ábra:

A QR – H₂O₂ reakció lg k_1 értékeinek (y-tengely, \blacklozenge), valamint a QR-OH lg K_s értékeinek (y-tengely, \square) lineáris összefüggése a QR/QR-H₂ rendszerek formálpotenciál értékeivel (x-tengely); T = 25,0 °C

11. ábra:

A QR – H₂O₂ reakció sebességmeghatározó lépésének aktiválási energiája és a QR-OH pK_s értékeiből számolt Hammett-féle állandó (σ) közötti lineáris összefüggés

IV. AZ EREDMÉNYEK HASZNOSÍTÁSI LEHETŐSÉGEI

A vizsgálataink rámutattak, hogy a fotoszenzitív QR közvetlen fotoreakciója QR-OH képződéséhez vezet, és a QR-H₂, valamint a QR-OH képződés kvantumhasznosítási tényezője nagymértékben változik különböző -R szubsztituensek esetén. Eredményeink alapján az általunk vizsgált fotoszenzitív 1,4-benzokinonok (Q, QMe, QCl, Q-2,5-Cl₂, Q-2,6-Cl₂) nem alkalmasak a napenergia közvetlen hasznosítására. A Q(MeO)₂ és a QMe(MeO)₂ fotoszenzitivitása jóval kisebb, azonban ez azt jelenti, hogy a közvetlen fotoredukciójuk sem hatékony.

A természetes fotoszintézisben a plasztokinon (1,4-benzokinonszármazék) redoximediátor szereppel rendelkezik. A Z-séma elvén alapuló mesterséges fotoszintetikus rendszerek egy csoportja redoximediátorokat használ a két fotorendszer (oxigén- és hidrogénfejlesztő rendszer) közötti elektrontranszfer megvalósítására. Eredményeink azt mutatják, hogy a mesterséges fotoszintetikus rendszerek fotoszenzibilizáló rendszerei közötti elektrontranszfer-szerep betöltésére a fotorezisztens, elektronküldő szubsztituenssel rendelkező kinonszármazékok (pl. QMe(MeO)₂) alkalmasak lehetnek (12. ábra).

A fotorendszerek a $Q(MeO)_2$ -t vagy $QMe(MeO)_2$ -t a megfelelő hidrokinonná redukálják, amelyek oxidációja és a H⁺ redukciója külső áramforrással megvalósítható. A napenergia csökkentheti ezáltal a vízbontás energiaköltségét, ugyanis ehhez csak a redoximediátor és a H₂/H⁺ formálpotenciálja közötti különbségnek megfelelő elektromos energia befektetése szükséges (13. ábra). Platinaelektródon a hidrogénionok redukciója mindössze 0,07 V-os túlfeszültség mellett megvalósul, nyitott kérdés volt azonban az anódos reakció (QR/QR-H₂) túlfeszültsége. Az eredményeink azt mutatják, hogy platinaelektródon a

18

Q(MeO)₂ és a QMe(MeO)₂ redukciós és oxidációs túlfeszültsége alacsony puffereletlen semleges és lúgos pH tartományban, azonban savas körülmények között az anódos túlfeszültség pufferelt közegben jelentősen növekszik, csökkentve a visszaoxidáció hatékonyságát.

13. ábra: A víz fény segített elektrolízisének kinonmediátort tartalmazó rendszere

V. TUDOMÁNYOS KÖZLEMÉNYEK/ LIST OF PUBLICATIONS

Az értekezés alapját képező közlemények/Papers related to the dissertation:

1. <u>Éva Józsa</u>, Mihály Purgel, Marianna Bihari, Péter Pál Fehér, Gábor Sustyák, Balázs Várnagy, Virág Kiss, Eszter Ladó and Katalin Ősz **Kinetic studies of hydroxyquinone formation from water soluble benzoquinones**

New Journal of Chemistry, **2014**, 38, 588 IF: 2,966 (2012)

2. Tímea Lehóczki, <u>Éva Józsa</u>, Katalin Ösz **Ferrioxalate actinometry with online spectrophotometric detection** *Journal of Photochemistry and Photobiology A - Chemistry*, **2013**, 251, 63. IF: 2,416 (2012)

3. Melinda Gombár, <u>Éva Józsa</u>, Mihály Braun and Katalin Ősz Construction of a photochemical reactor combining a CCD spectrophotometer and a LED radiation source *Photochemical and Photobiological Sciences*, **2012**, 11, 1592 IF: 2,923

Egyéb közlemény/Other publication:

4. <u>Éva Józsa</u>, Katalin Ősz, Csilla Kállay, Paolo de Bona, Chiara A. Damante, Giuseppe Pappalardo, Enrico Rizzarelli, and Imre Sóvágó Nickel(II) and mixed metal complexes of amyloid-β N-terminus. Results of potentiometric and spectroscopic studies on the binary nickel(II) and mixed metal nickel(II)-copper(II) and nickel(II)copper(II)-zinc(II) complexes of peptide fragments Dalton Transactions, 2010, 39, 7046 IF: 3,647

Az értekezés témájához kapcsolódó előadások és poszterek/Lectures and posters related to the dissertation:

Előadások/Lectures:

 Józsa Éva*, Ősz Katalin
 J-Benzokinon-származékok fotokémiai és redoxisajátságai MTA Reakciókinetikai és Fotokémiai Munkabizottságának ülése 2014. május 26-27., Siófok, Magyarország

2. Kiss Virág*, Józsa Éva, Ősz Katalin

1.4-Benzokinonok redukciójának kinetikai vizsgálata MTA Reakciókinetikai és Fotokémiai Munkabizottságának ülése 2014. május 26-27., Siófok, Magyarország

3. Józsa Éva

A fényenergia hasznosításának lehetőségei – Kinonok foto- és elektrokémiai reakciói

Debreceni Egyetem, Fizikai Kémiai Tanszék szeminárium-sorozata. Nemzeti Kiválóság Program, Apáczai Csere János Doktoranduszi Ösztöndíj teljesítés

2014. február 26., Debrecen, Magyarország

4. Józsa Éva, Ősz Katalin*, Purgel Mihály

Vízoldható benzokinonok oxidációs reakcióinak kinetikai vizsgálata

Magyar Tudománvos Akadémia Reakciókinetikai és Fotokémiai Munkabizottságának ülése

2013. szeptember 26-27., Mátraháza, Magyarország

5. Józsa Éva

A fénvenergia hasznosításának lehetősége 1,4-benzokinon származékokkal

XXXVI. Kémiai Előadói Napok 2013. október 28-30., Szeged, Magyarország

6. Józsa Éva*, Beyer Dániel Ernő, Ősz Katalin

A fényenergia hasznosításának lehetőségei

Debreceni Egyetem, Fizikai Kémiai Tanszék szeminárium-sorozata, Nemzeti Kiválóság Program, Apáczai Csere János Doktoranduszi Ösztöndíj teljesítés

2013. június 6., Debrecen, Magyarország

7. Józsa Éva, Ösz Katalin*, Szatmári Enikő, Bradács Orsolya Szubsztituált para-benzokinonok fotoreakciója fémionok jelenlétében 47. Komplexkémiai Kollokvium 2013. május 29-31., Mátraháza, Magyarország

8. Józsa Éva*. Ősz Katalin

A fényenergia hasznosításának lehetősége 1,4-benzokinon származékokkal

Magyar Tudományos Akadémia Reakciókinetikai és Fotokémiai Munkabizottságának ülése 2013. április 25-26., Siófok, Magyarország

9. Józsa Éva*, Kiss Virág, Ősz Katalin

Kinonok fotokémiai reakcióinak vizsgálata

Magyar Tudományos Akadémia Reakciókinetikai és Fotokémiai Munkabizottságának ülése 2012. október 25-26., Gyöngyöstarján, Magyarország

10. Katalin Ősz*, <u>Éva Józsa</u>, Virág Kiss

Kinetic studies on the photo-oxidation reaction of water by quinones *4th EuCheMS Chemistry Congress* 2012. augusztus 26-30., Prága, Csehország

11. <u>Éva Józsa*</u>, Ádám Péter Pap, Virág Kiss, Judit Michnyóczki, Katalin Ősz

Possibilities to utilize solar energy in homogeneous aqueous medium: the use of metal ions and/or quinones as photocatalysts

46. Komplexkémiai Kollokvium 2012. május 21-23., Mátrafüred, Magyarország

<u>Józsa Éva*</u>, Ősz Katalin
 Szubsztituált kinonok fotokémiai oxidációja vizes közegben
 Magyar Tudományos Akadémia Reakciókinetikai és Fotokémiai
 Munkabizottságának ülése
 2011. május 5-6., Siófok, Magyarország

Poszterek/Posters:

1. Éva Józsa*, Katalin Ősz

Photochemical and Oxidation Reactions of Water Soluble 1,4-Benzoquinones

European Colloquium on Inorganic Reaction Mechanisms 2014. június 17-20., Debrecen, Magyarország

2. Virág Kiss*, Éva Józsa, Katalin Ősz

Kinetics of the reaction between 2,5-dichloro-1,4-benzoquinone and sulfite ion

European Colloquium on Inorganic Reaction Mechanisms 2014. június 17-20., Debrecen, Magyarország

3. <u>Éva Józsa*</u>, Virág Kiss, Marianna Bihari, Enikő Szatmári, Orsolya Bradács, Katalin Ősz

Photochemical reactions of 1,4-benzoquinones in homogeneous aqueous medium

8th International Conference on Chemical Kinetics 2013. július 8-12., Seville, Spanyolország

4. <u>Éva Józsa*</u>, Eszter Ladó, Dániel Ernő Beyer, Katalin Ősz **pH dependent formal potentials of 1,4-benzoquinone derivatives** *Debrecen Colloquium on Inorganic Reaction Mechanisms* 2013. június 11-15., Debrecen, Magyarország

5. Virág Kiss*, Éva Józsa, Katalin Ősz

Redox and spectrophotometric studies of the photo-decomposition products of quinone derivatives

Debrecen Colloquium on Inorganic Reaction Mechanisms 2013. június 11-15., Debrecen, Magyarország

6. <u>Éva Józsa</u>, Enikő Szatmári*, Orsolya Bradács*, Katalin Ősz Photochemical reactions of substituted *para*-benzoquinone derivatives in the presence of redox metal ions

Debrecen Colloquium on Inorganic Reaction Mechanisms 2013. június 11-15., Debrecen, Magyarország

7. Ádám Péter Pap, <u>Éva Józsa</u>, Adrienn Vas, Judit Michnyóczki, Katalin Ősz*

Photochemical water splitting catalyzed by cerium(III) complexes Debrecen Colloquium on Inorganic Reaction Mechanisms 2013. június 11-15., Debrecen, Magyarország

8. Mihály Purgel*, Marianna Bihari, <u>Éva Józsa</u>, Balázs Várnagy, Gábor Sustyák, Katalin Ősz

Kinetics and mechanistic studies of 1,4-benzoquinone and its 2-methyl derivative

Debrecen Colloquium on Inorganic Reaction Mechanisms 2013. június 11-15., Debrecen, Magyarország

9. <u>Éva Józsa*</u>, Virág Kiss, Marianna Bihari, Enikő Szatmári, Orsolya Bradács, Katalin Ősz

Photochemical reaction of 1,4-benzoquinones in homogeneous aqueous medium

Gordon Research Conference, Inorganic Reaction Mechanisms 2013. március 3-8., Galveston, TX, USA

10. Katalin Ősz, <u>Éva Józsa*</u>, Ádám Péter Pap, Judit Michnyóczki Kinetic studies on the light induced water splitting catalyzed by the Ce(III)/Ce(IV) redox system

International Symposium on Metal Complexes 2012. június 18-22., Lisszabon, Portugália

11. <u>Józsa Éva*</u>, Gombár Melinda, Braun Mihály, Ősz Katalin **Kinonok fotokémiai reakcióinak vizsgálata** *Magyar Kémikusok Egyesülete 1. Nemzeti Konferencia*

2011. május 22-25., Sopron, Magyarország

12. Melinda Gombár, <u>Éva Józsa</u>, Mihály Braun, Katalin Ősz* **Mechanistic aspects of the photooxidation of water by quinones** *Gordon Research Conferences, Inorganic Reaction Mechanisms* 2011. március 6-11., Galveston, TX, USA

* az előadást illetve posztert bemutató személy/person presenting lectures or posters

Köszönetnyilvánítás:

A kutatás a TÁMOP 4.2.4.A/2-11-1-2012-0001 azonosító számú Nemzeti Kiválóság Program – Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése országos program című kiemelt projekt keretében zajlott. A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósult meg.

A kutatás a TÁMOP-4.2.2.A-11/1/KONV-2012-0043 számú ENVIKUT projekt keretében, az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósult meg.

