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INTRODUCTION

In this Ph.D. dissertation first of all we undertake a quite comprehensive survey
of general theoretical elements of Finsler geometry. The primary aim of this survey
is to present a standard system of notations and terminology built on three pillars:
the theory of horizontal endomorphisms, the calculus of vector-valued forms and a
“tangent-bundle version” of the method of moving frames. On the other hand we
present a systematic treatment of some distinguished Finsler connections and some
special Finsler manifolds. In particular we are interested in the conformal theory
of Riemann-Finsler metrics and the theory of Wagner connections and Wagner
manifolds. As we shall see, they are closely related. Finally, we investigate a
special conformal change of the metric proving that its existence implies the Finsler
manifold to be Riemannian. (The necessity is clear.)

I

This dissertation is divided into three parts. In part I first of all we present
a quite detailed exposition of the conceptual and calculational background. Our
main purpose is to insert the theory of Finsler connections and the foundations of
special Finsler manifolds into a new approach of Finsler geometry. The first epoch-
making steps in this direction were done by J. GRIFONE [10], [11], our work can be
considered as a systematic continuation of the program initiated by him. Following
Grifone’s theory of nonlinear connections (whose role is played in our presentation
by the so-called horizontal endomorphisms) we use systematically an “intrinsic”
calculus based on the Frolicher-Nijenhuis formalism. Technically, we enlarged and
— at the same time — simplified the apparatus by using the tools of tangent bundle
differential geometry. This means first of all the consistent use of a special frame
field, constituted by vertically and completely (or vertically and horizontally) lifted
vector fields. Thus the third pillar of our approach is the method of moving frames.
It has a decisive superiority in calculations over coordinate methods: the formula-
tion of the concepts and results becomes perfectly transparent, and the proofs have
a purely intrinsic character. We believe that the compact, elegant and efficient
formulation presented here demonstrate the power of our approach. For example,
in section I/4 we present an invariant and axiomatic description of three notable
Finsler connection (linear connections associated to a nonlinear one with the help of
some conditions of compatibility): the Berwald, Cartan and Chern-Rund connec-
tions. Theorems are organized as follows: the first group of axioms characterizes
a unique Finsler connection allowing us to derive the explicit rules of calculations
for the corresponding covariant derivatives. Adding further conditions to them,
the second group yields the characterization of the three classical Finsler connec-
tions. Although these results belong to the foundations they are new. Moreover,



we hope that they help in better understanding the role of the different axioms, and
open a path for further, essential generalizations. As motivations, we can mention
the so-called Wagner connections (as generalized Cartan connections, i.e. Cartan
connections with nonvanishing (h)h-torsion) or the associated Berwald-type Finsler
connections (as generalized Berwald connections, i.e. Berwald connections with
nonvanishing (h)h-torsion).

II

In part IT we start with the definition of conformal equivalence of Riemann-
Finsler metrics. (This relation is formally the same as that in Riemannian geom-
etry.) We give a modern proof of Knebelman’s famous observation which points
out that the scale function between conformally equivalent Riemann-Finsler metrics
must be independent of the “direction”, i.e. it is a vertical lift. We also derive some
important conformal invariants and transformation formulas. As an application of
the results a well-known classical theorem will be proved intrinsically. It states (in
H. Weil’s terminology; [30], p. 226) that “the projective and conformal properties
of a Finsler space determine its metric properties uniquely”.

In this part we also demonstrate that the Frolicher-Nijenhuis formalism pro-
vides a perfectly adequate conceptual and technical framework for the study even
of such complicated objects as Wagner connections. Our intrinsically formulated
and proved results not only cover the classical local results but give a much more
precise and transparent picture and open new perspectives. First of all we establish
an explicit formula between the (canonical) Barthel endomorphism and a Wagner
endomorphism (the nonlinear part of a Wagner connection). Then we calculate its
tension, weak and strong torsion, i.e. data determining uniquely a nonlinear con-
nection by Grifone’s theory. It turns out that the rules of calculation with respect
to a Wagner connection are formally the same as those with respect to the classi-
cal Cartan connection. These investigations are based on a number of some new
(but more or less) technical observations and a fine analysis of the second Cartan
tensor belonging to a Wagner endomorphism. Using these results an important
classical theorem on the so-called Landsberg manifolds, first formulated and proved
intrinsically by J. G. D1z will be generalized. The classical version contains equiv-
alent characterizations of the vanishing of the second Cartan tensor belonging to
the Barthel endomorphism (i.e. the canonical nonlinear connection of the Finsler
manifold). In his thesis [8] the author gives a coordinate-free proof of the theorem
using several explicit relations between the classical Cartan tensors and curvatures
(or their lowered tensors) of the Cartan connection. We managed to reduce the
number of these relations to some of fundamental ones and the theorem is proved
in generality of Wagner connections and Wagner manifolds. Techniques we need to
discuss them are suitable to reproduce lots of classical results as well. We found
this observation very useful.

Finally, after a new intrinsic definition as well as several tensorial characteriza-
tions of Wagner manifolds we present coordinate-free proofs of Hashiguchi-Ichijya’s
theorems to clarify the geometrical meaning of this special class of Finsler manifolds.
In the classical terminology: “The condition that a Finsler space be conformal to a
Berwald space is that the space becomes a Wagner space with respect to a gradient
a;(z)”, (see [16], Theorem B).



II1

In part IIT we deal with a special conformal change of Riemann-Finsler metrics
introduced by M. HAsHIGUCHT [14]. The point of the C-conformality is that we
require the vanishing of one of conformal invariants. Under this hypothesis the
gradient, vector field of the scale function becomes independent of the “direction”,
i.e. it will be a vertically lifted vector field. (Vector fields with such a property is
called concurrent too; see e.g. [14], [28] and [37].)

In his cited work [14] Hashiguchi proved for some special Finsler manifolds (in
his terminology: two-dimensional spaces, C-reducible spaces, spaces with («, 3)-
metric etc.) that the existence of a C-conformal change of the metric implies that
the manifold is Riemannian (at least locally). Here we show that Hashiguchi’s result
is valid without any extra condition. In terms of our characterization this means
that the vanishing of some conformal invariants, like the conformal invariant first
Cartan tensor, can be interpreted as a sufficient condition for a Finsler manifold
to be Riemannian. (The necessity is clear.) Our result is based on a usual, but
relatively “rigid” definition of Finsler manifolds: the differentiability is required
at all nonzero tangent vectors, i.e. there is mo singularities except for the zero
vectors of tangent spaces. Actually, the main points are the homogeneity and
continuity of the Riemann-Finsler metric along the gradient vector field of the scale
function which depends only on the “position” in case of a C-conformal change.
Weakening the condition of differentiability new perspectives open to investigate
the C-conformality. As an illustration we shall cite some valuable fragments from
Hashiguchi’s original ideas in one of the last remarks.



I. A NEW LOOK AT FINSLER CONNECTIONS
AND SPECIAL FINSLER MANIFOLDS

In part I first of all we present a quite detailed exposition of the conceptual and
calculational background. Although it means a practical summary (the troublesome
details will be omitted) it seems to be enough to make our work self-contained as
far as possible. As the next step we come to the overview of the fundamental facts
and constructions concerning a Finsler manifold.

3.1. Definitions. Let a function £ : TM — R be given. The pair (M, E), or
simply M, is said to be a Finsler manifold, if the following conditions are satisfied:

Ya € TM : E(a) > 0; E(0) =0.

E is of class C' on TM and smooth over 7 M.

3.1c) CE =2E; i.e. E is homogeneous of degree 2.

3.1d)  The fundamental form w := dd;E € Q*(T M) is nondegenerate.

The function E is called the energy function of the Finsler manifold. A horizontal
endomorphism on M is said to be conservative if d, E = 0.

In conformity with the demands of Finsler geometry, the smoothness is not
required or assured a priori on the whole tangent manifold TM. (It is well-known
that Finsler structures without singularities are just Riemannian). With the help
of the so-called energy function E we can introduce a (pseudo-) Riemannian metric

g:veTM\{0} =gy, ¢o:T' . TMxT", TM — R

(the so-called Riemann-Finsler metric) on the vertical subbundle of the “tangent
bundle” TT M. This means that in such the geometry all of objects depend on both
“position” and “direction”. As it is usual in case of a Riemannian manifold we also
can associate a canonical horizontal endomorphism (the so-called Barthel endo-
morphism) to the function E together with lots of important tensors and further
geometrical structures such as Cartan tensors and the canonical almost complex
structure on the Finsler manifold.

4.2. Theorem (Fundamental lemma of Finsler geometry). Let (M, E) be a Finsler
manifold. There exists a unique horizontal endomorphism h on M ,called the Barthel
endomorphism, such that

(a) h is conservative (i.e., dyE =0),

(b) h is homogeneous (i.e., H =[h,C] =0),
(c) h is torsion-free (i.e., t =[J,h] = 0).
Ezxplicitly,

1

h= 3 (Lx(rary +[,51)



where S is the canonical spray.

The result is due to J. GRIFONE [10].

Among others we pay a particular attention to the so-called first and second
Cartan tensors. The second Cartan tensor is introduced in a more general situ-
ation as usual. It means that this tensor is associated to an arbitrary horizontal
endomorphism instead of just the canonical one. In particular we investigate the
connection between the symmetry properties of the tensor and the characteristic
data of the horizontal endomorphism.

3.9. Proposition. Let (M,E) be a Finsler manifold. If h is a conservative,
torsion-free horizontal endomorphism then the lowered second Cartan tensor is to-
tally symmetric.

Although our results belong to the foundations, they are new. The reason of this
careful investigation is that the first and second Cartan tensors play an essential
role in Finsler geometry as it will be demonstrated in section I/4. Here we present
an invariant and axiomatic description of three notable Finsler connections (linear
connections associated to a nonlinear one with the help of some conditions of com-
patibility): the Berwald, Cartan and Chern-Rund connections. We hope that our
approach helps in better understanding the role of the different axioms, and open a
path for further, essential generalizations. Theorems are organized as follows: the
first group of the axioms characterizes a unique Finsler connection allowing us to
derive the explicit rules of calculations for the corresponding covariant derivatives.
Adding further conditions to them the second group yields the characterization of
the three classical Finsler connections.

4.5. Theorem and definition. Let (M, E) be a Finsler manifold and suppose
that h is a conservative torsion-free horizontal endomorphism on M. Let g be the
prolongation of g along h and C' the second Cartan tensor belonging to h. There
exists a unique Finsler connection (D,h) on M such that

(4.5a) D is metrical (i.e. Dgp, =0);
(4.5b) the (v)v-torsion S' of D vanishes;
(4.5¢) the (h)h-torsion A of D vanishes.

The covariant derivatives with respect to D can be explicitly calculated by the fol-
lowing formulas: for each vector fields X,Y on TM,

45d)  DyxJY = JJJX,Y]+C(X,Y) = DyxJY +C(X,Y);
(45¢)  DaxJY = o[hX,JY]+C'(X,Y) = Dpx JY + C'(X,Y);
(450 DyxhY = B[JX,Y] + FC(X,Y) = DyxhY + FC(X,Y);

(45g)  DpxhY = hF[AX, JY]+ FC'(X,Y) = DpxhY + FC'(X,Y).

Then 1
h*DC = §H
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where H is the tension of h (2.2b). Therefore, if in addition to (4.5a)—(4.5¢c)
(4.5h) h*DC =0

is also satisfied, then h is the Barthel endomorphism of the Finsler manifold. In
this case (D, h) is called the (classical) Cartan connection of the Finsler manifold
(M,E).

The idea of the existence proof is immediate. We start from a conservative,
torsion-free horizontal endomorphism h (whose ezistence is clearly guaranteed; see
also 4.6. Remarks (c)) and build the second Cartan tensor C' belonging to h. Then
we define a rule of covariant differentation by the formulas (4.5d)—(4.5g). It can be
checked by a straightforward calculation that the pair (D, h) obtained in this way is
indeed a Finsler connection, and the azioms (4.5a)-(4.5¢) are satisfied.

In our subsequent considerations we are going to prove the unicity statement.
Assume (D, h) is a Finsler connection on M, satisfying (4.5a)—(4.5c). By the help
of a systematic application of the “Christoffel process” we show that the rules of
calculation (4.5d)—(4.5g) are valid.

4.6. Remarks.

(a) Observe that axioms (4.5a) and (4.5h) imply for any Finsler connection (D, h)
that h is a conservative horizontal endomorphism. Indeed, for each vector field X
on M,

(4.5a)

0 (Dxngn) (C,0) = X"g,(C,C) — 2g1(Dx1C,C) =

(3-3a) (4.5h)

2X"E — 29, (Dx1C,0) 2X"E = 2(d, E)(XM),

which means that d, E = 0.

(b) Axioms to characterize the classical Cartan connection were first formulated by
M. MATSUMOTO; for an instructive historical remark see [24], p. 112.

(c) For the sake of completness we sketch an original process to construct torsion-
free, conservative horizontal endomorphisms on a Finsler manifold (M, E). Let a
function 8 € C*°(M) be given and define a semispray S by the formula

(4.6) S =5 —gradf,

where S denotes the canonical spray and grad 3" is the gradient of the function
BY := B om (see I.1.1). Then the horizontal endomophism h induced by S is
torsion-free and conservative. Indeed, from the definition

~ 1

~ 1
h:= 5 (]-X(TM) + [J, S]) =h-— 5[.], gradﬂ”]

we get immediately that for any vector fields X,Y € X(M),

~ (2.6b)

HXe,Y") X" YU — VP X7 - (X, Y] =

1 1 e
= 1%, ¥) = G IX° grad 8], Y] + g [V, mrad 64, 5] T 2

=L, grad 7,17 + L, rad 7, X7 =0



using the Jacobi identity. This means that I is torsion-free.
On the other hand, for any vector field X € X(T' M),

& E(X) = W(X)E = h(X)E — %[J, grad g7)(0)E ™ 42 @

h

I1.(1.2d)

:—%[J, grad 8°|(X)E C(Fgrad 8, X)E=dE(C(F grad 8", X))=

"2 —w(8,C(F grad §*, X)) = w(C(F grad §, X), §) =

= g(C(Fgrad 8, X),C) = C,(F grad 8", X, S) Lemma 3.8

i.e. h is conservative.

The next step is to insert the foundations of special Finsler manifolds such as
the so-called Berwald and locally Minkowski manifolds into the framework has been
elaborated by then. To realize our plan we need several technical observations sum-
marized under the title Basic curvature identities. In this section we derive some
important (partly well-known) relations between the curvature data of the different
Finsler connections, these will be indispensable for a tensorial description of the
special Finsler manifolds studied in the last two sections. Section I/6 concentrates
the characterization of Berwald manifolds; some of them (e.g. 6.5 and 6.7) are new,
and all of the proofs are original.

6.5. Definition. A Finsler manifold (M, E) is said to be a Berwald manifold if
there is a linear connection V on M such that for each vector fields X,Y on M,

(VxY)" = [X"Y"],

where the horizontal lifting is taken with respect to the Barthel endomorphism.

6.7. Lemma. A Finsler manifold (M, E) is a Berwald manifold if and only if

(6.7) VX,Y € X(M): [X"Y"] is a vertical lift.

We believe that the compact, elegant and efficient formulations presented here
demonstrate the power of our approach. In the concluding section I/7 the key
observation is given in Proposition 7.2; this provides a very simple proof of the
classical characterization of locally Minkowski manifolds.

7.2. Proposition. A Finsler manifold (M, E) is a locally Minkowski manifold
if and only if there exists a torsion-free, flat linear connection V on M whose

h
horizontal lift V is h-metrical with respect to the horizontal endomorphism arising
from V.

Finally, we have to emphasize that these results, more precisely the analogous
ones play an important role in the theory of Wagner connections and Wagner man-
ifolds. Since they are generalizations of the usual concepts in Finsler geometry
(such as the Cartan connection and the Berwald or locally Minkowski manifolds)
we present some of proofs in sections II/4 and II/5 in a more general situation as
well. In this consideration one of the most important results is a generalization of



a classical theorem (see 1.6.3), first formulated and proved intrinsically by J. G.
Diaz [8]. It contains equivalent tensorial characterizations of the vanishing of the
second Cartan tensor associated to the Barthel endomorphism, i.e. the character-
izations of the so-called Landsberg manifolds. In his thesis [8] the author gives a
coordinate-free proof of this theorem using several explicit relations between the
classical Cartan tensors and curvatures (or their lowered tensors) of the Cartan
connection. We managed to reduce the number of these relations to some of fun-
damental ones and the theorem is proved in generality of Wagner connections and
Wagner manifolds in section II/5; see Proposition 5.4. Techniques we need to dis-
cuss them are suitable to reproduce lots of classical results as well. We found this
observation very useful.



II. WAGNER CONNECTIONS AND WAGNER MANIFOLDS

In part IT we start with the definition of conformal equivalence of Riemann-
Finsler metrics. This relation is formally the same as that in Riemannian geometry.
Two Riemann-Finsler metrics g and g are said to be conformally equivalent if there
exists a function ¢ : TM \ {0} — R™ such that

g=¢g.

It is an immediate consequence of the definition that the so-called scale or propor-
tionality function ¢ can be prolonged to a smooth function on the whole tangent
bundle, actually it is constant on each tangent space T'pM (p € M). We give a mod-
ern proof of this fameous observation due to M. S. KNEBELMAN [19]. In sections
IT/1 and II/2 we also derive some important conformal invariants and transforma-
tion formulas, first of all a key formula describing the change of the canonical spray
of a Finsler manifold under a conformal change of the metric.

2.1. Theorem. Suppose that g and g are conformally equivalent Riemann — Finsler
metrics on M, namely

J=vg; @=expoaom, «a€cC®(M).
Then the corresponding canonical sprays satisfy the relation

(2.1) S=8—a°C + Egrada®.

As a consequence, we get immediately, how the Barthel endomorphism is chang-
ing.

2.2. Corollary. Under the conditions of Theorem 2.1, the Barthel endomorphisms
are related as follows:

~ 1 1 1
(2.2) h=h-— §(aCJ +da’ ®C) + §E[J, grada”] + §dJE ® grada'.

Having these results, one can also describe the change of the Berwald and Cartan
(and other) connections, etc. A complete summary can be found in Hashiguchi’s
paper [14] using the classical coordinate methods of calculation. In order to illus-
trate the problem we derive how the second Cartan tensors are related in case of
conformal equivalence of Riemann-Finsler metrics.

2.8. Proposition. The second Cartan tensor associated with the Barthel endo-
morphism h changes by the formula

2.8) C'(X,Y)=C'(X,Y) - %(aCC(X, Y)+
+ JX(E)C(Fgrada®,Y)+ JY(E)C(F grada”, X)+

+C,(Fgrada’, X,Y)C) = B(DgraaarC)(X,Y),
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where ¢ := expoa” is the scale function.

An application of our results is also given in this section: we present an intrinsic
proof of the classical theorem which (roughly speaking) states that in case of a
simultaneous conformal and projective change the scale function is constant, i.e.
the conformal change must be homothetic (see [30], p. 226).

After these “preliminaries” and illustrations we define the notion of Wagner con-
nections. Such kind of Finsler connections were first constructed and used by V.
V. WAGNER [40]. With the help of this seemingly strange connection Wagner in-
troduced the notion of generalized Berwald manifolds (especially — in present day
terminology — Wagner manifolds) and he showed that this class of special Finsler
manifolds contains any two-dimensional Finsler manifold with cubic metric. The
next important steps in the extension of the theory of Wagner connections and
generalized Berwald manifolds were taken by M. HASHIGUCHI [13]. He successfully
carried over Wagner’s ideas to the arbitrary finite dimensional case, characterizing
the Wagner connections by an elegant system of axioms (cf. section II/3 ). One
of the most important observations, due to M. HASHIGUCHI and Y. ICHIIYO [16]
is that Wagner connections are at the heart of the theory of conformal change of
Riemann-Finsler metrics. Among others it turned out that the class of Wagner
manifolds is closed under a conformal change of the metric. These results con-
firm Matsumoto’s remarkable principle: “there should be existing a best Finsler
connection for every theory of Finsler spaces” (see [25]).

3.1. Definition. Let (M, E) be a Finsler manifold. The triplet (D, h,a) is said
to be a Wagner connection on M if it satisfies the following conditions:

(3.1a) (D, h) is a Finsler connection on M, € C™(M);
(3.1b) D is metrical with respect to gz : Dgy = 0;

(3.1c) the (v)v-torsion §' of D vanishes: §' = 0;

(3.1d) D is (h)h-semisymmetric, i.e. the (h)h-torsion A

of D has the following form:
A=da’*®h—h®da’;

(3.1e) the h-deflection 11 (DC) vanishes: 1" (DC) = 0.

Then h is called a Wagner endomorphism on M.

In this part we demonstrate that the Frolicher-Nijenhuis formalism provides
a perfectly adequate conceptual and technical framework for the study even of
such complicated objects as Wagner connections. Our intrinsically formulated and
proved results not only cover the classical local results but give a much more precise
and transparent picture and open new perspectives. For example, we calculate
the tension, the weak and strong torsion of a so-called Wagner endomorphism
(the “nonlinear part” of a Wagner connection), i.e. data determining uniquely a
nonlinear connection by Grifone’s theory.
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3.2. Proposition. Any Wagner endomorphism is a conservative horizontal en-
domorphism, i.e. dpE = 0.
(cf. 1.4.6. Remarks (a))

3.3. Theorem. The Wagner endomorphism h and the Barthel endomorphism h
of a Finsler manifold are related as follows:

(3.3a) h=h+a‘J—E[J,grada’] — d;E ® grada’.

The proof is based on a twofold Christoffel process applying the metrical char-
acter of the Wagner and the (classical) Cartan connection.

3.4. Corollary. The tension of a Wagner endomorphism vanishes.

3.5. Corollary. The weak torsion and the strong torsion of a Wagner endomor-
phism can be given as follows:

t=do'"®J—J®da", T=a‘d—da"®C.

As one of the main results we conclude that the rules of calculation with respect
to a Wagner connection are formally the same as those with respect to the classical
Cartan connection. These investigations are realized with the help of a number
of new (but more or less) technical observations and a fine analysis of the second
Cartan tensor belonging to a Wagner endomorphism.

3.7. Proposition. The second Cartan tensor c of a Wagner endomorphism h
has the following properties:

(3.7a) it is semibasic,
(3.7b) its lowered tensor E; is totally symmetric,
(3.7¢) c° = isoal =0 (So is an arbitrary semispray on M ).

Basic curvature identities concerning a Wagner connection, including Bianchi
identities are also derived. Using these results an important classical theorem on
Landsberg manifolds will be generalized in section II/5 (cf. remarks at the end of
part I):

5.4. Proposition. Let (D, h,a) be a Wagner connection. Then the following
assertions are equivalent:

(a) the hv-curvature tensor P of D vanishes: P = 0.

(b) The second Cartan tensor C of T vanishes: C = 0.

(¢c) VX,Y,Z € X(TM) : (D5 C) (Y, Z) = (D5,C) (X,Y).

)

(d) VX,Y,Z € 2(TM) : B(X,Y)Z = — (D;xC) (Y, Z).

Finally, after a new intrinsic definition as well as several tensorial characteri-
zations of Wagner manifolds, we present an intrinsic formulation and coordinate-
free proofs for Hashiguchi-Ichijyo’s theorems. In their joint work [16] the authors
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have explored the significance of Wagner manifolds relating them to the conformal
changes of Riemann-Finsler metrics. Simply put, for any conformal change of the
metric we can construct a special Finsler connection, the so-called Wagner connec-
tion with the help of the scale function. We can say that a Wagner connection is a
Cartan connection with non-vanishing (h)h-torsion; i.e. it is a generalized Cartan
connection. (The (h)h-torsion has a special semisymmetric form; cf. section II/3;
Definition 3.1.) Then Wagner manifolds can be introduced on the model of classical
Berwald manifolds. This means that the Wagner endomorphism, i.e. the nonlinear
part of the Wagner connection is induced by a linear connection on the underlying
manifold M. (Or, equivalently, the Wagner endomorphism is smooth on the whole
tangent manifold T'M.)

5.1. Definition. Let (M, E) be a Finsler manifold endowed with a Wagner con-
nection (D, h, a). (M, E) is said to be a Wagner manifold (with respect to (D, h, @)
if there is a linear connection V on M such that

(5.1) VX,Y € X(M): Dy YV = (VxY)".

Then V is called the linear connection of the Wagner manifold.

5.3. Theorem. Let (D,h,a) be a Wagner connection on the Finsler manifold
(M, E). Then the following assertions are equivalent:

(a) (M, E) is a Wagner manifold (with respect to (D, h,a)).

(b) The hv-curvature tensor P of the Finsler connection (D, h) vanishes.

5.5. Theorem. Let (D,h,a) be a Wagner connection on the Finsler manifold
(M, E). Then the following assertions are equivalent:

(a) (M,E) is a Wagner manifold (with respect to (D, h,q)).
(b) VX,Y,Z € X(TM) : (DzC) (Y, Z) = 0.

In his paper [14], Hashiguchi suggested and (in some sense!) solved the problem:
under what conditions does a Finsler manifold become conformal to a Berwald (or
locally Minkowski) manifold. “These conditions were, however, given in terms of
very complicated systems of differential equation, for which appropriate geometrical
meanings have been wanted”, he wrote a year later in [16]. As it was shown these
“appropriate geometrical meanings” were hidden in the notion of Wagner manifolds,
sketched by the following diagram:
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Wagner manifolds (with integrable Wagner endomorphism)

N S
N
Conformal change of the metric
7N
e pY
Berwald manifolds — — — — —— --» Locally Minkowski

manifolds
Integrability condition

Namely, in the classical terminology: “The condition that a Finsler space be
conformal to a Berwald space is that the space becomes a Wagner space with respect
to a gradient «;(z)” ([16], Theorem B.). The key observation is the following

6.1. Theorem. Let (M,E) be a Wagner manifold with respect to (D, h,a) and
let us consider the conformal change § = pg (¢ = expofY) of the metric g. Then
the Finsler manifold (M, E) is also a Wagner manifold with respect to the Wagner
connection induced by 18+ a € C°(M).

It is now possible for us to complete our investigations by two important results
(due to Hashiguchi and Ichijyd) of the theory of Wagner manifolds:

6.3. Theorem. A Finsler manifold is conformal to a Berwald manifold if and
only if it is a Wagner manifold.

Proof. Let us suppose that the Finsler manifold (M, E) is conformal to a Berwald
manifold, i.e., there is a conformal change § = ¢g (¢ = expof¥) such that
(M, E) is a Berwald manifold. Since the Berwald manifolds are, in particular,
Wagner manifolds (cf. Prop. 3.12), in view of Theorem 6.1, the conformal change
g= %ﬁ yields a Wagner manifold with respect to the Wagner connection induced by
—%[3 € C°(M).

Explicitly, the Wagner endomorphism 4 and the Barthel endomorphism h of the
Berwald manifold (M, E) are related as follows:

- ~ 1
h:h+§dﬁv®0.

Conversely, let us suppose that (M, E) is a Wagner manifold with respect to
(D,h,a). Then, in view of Theorem 6.1, the conformal change § = ¢g (p =
exp oY, B := —2q) yields a Wagner manifold whose Wagner connection is induced
by the function £ + & = —a + a = 0. Therefore (cf. Prop. 3.12) (M, E)is a
Berwald manifold. The Barthel endomorphism h and the Wagner endomorphism
h of the Wagner manifold (M, E) are related as follows:

h=h+da"®C. 0
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6.4. Theorem. A Finsler manifold is conformal to a locally Minkowski manifold
if and only if it is a Wagner manifold and one (therefore all) of the conditions

(a) Q=0, (b) R=0, (c) i:o

are satisfied.
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ITI. C-CONFORMALITY

In part IIT we deal with a special conformal change of Riemann-Finsler metrics
introduced by M. HAsHIGUCHT [14]. The point of the so-called C-conformality is
that we require the vanishing of one of conformal invariants described in section
IT/1; cf. Proposition 1.12.

2.1. Definition. Consider a Finsler manifold (M, E). A conformal change g = g
(p = expoa?, a € C*°(M)) is said to be C-conformal at a point p € M if the
following conditions are satisfied:

(2.1a) (da)p # 0,i.e., a is regular at the point p;
(2.1b) [J,grad a”] = 0.

(J is the vertical endomorphism or, in equivalent terminology, the canonical
almost tangent structure of the tangent bundle 7 : TM — M.)

Under this hypothesis the gradient vector field of the scale function becomes
independent of the “direction”; i.e. it will be a vertically lifted vector field. (Vector
fields with such a property is called concurrent too; see e.g. [14], [28] and [37].)

2.2. Proposition. Let (M, E) be a Finsler manifold and o € C*®(M). Then the
following assertions are equivalent:
(a) [J,grada?] =0.
(b) ngradavC = 0
(c) grada? is a vertical lift, i.e., there exists a vector field X € X(M) such that

(2.2) grada’ = X".

In his cited work [14] Hashiguchi proved for some special Finsler manifolds (in

his terminology: two-dimensional spaces, C-reducible spaces, spaces with («, 3)-
metric etc.) that the existence of a C-conformal change of the metric implies that
the manifold is Riemannian (at least locally; cf. the condition (2.1a)). Here we
show that Hashiguchi’s result is valid without any extra condition.
2.3. Lemma and definition. Consider a Finsler manifold (M,E) and let us
suppose that the change § = pg (¢ = expoa?, a € C*®(M)) is C-conformal at a
point p € M. Let o € X(M) be an arbitrary vector field with the property o(p) # 0
which obviously implies that o is nonvanishing over a connected open neighbourhood
U of p. Then the mapping

(2.3a) () X(U) x X(U) = C®(U),
(Y,Z) - <7 )(Ya Z) = <Y7Z> = g(Yv,Zv) °o

is a (pseudo-) Riemannian metric. This metric is called the osculating Riemannian
metric along o.

If, in addition, grady o € X(U) is the gradient of the function a with respect to
(,) then

(2.3b) (grady )’ = grada®.
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2.4. Remark. In the sequel we shall fix the vector field X determined by the
formula (2.2) as o in Lemma 2.3. (Note that the regularity property (2.1a) implies
that X (p) #0.)

Therefore, the osculating Riemannian metric (, } will be considered as a mapping

(2.4) (,):X(U) xX(U) = C>*(U),
Y, Z2) = ()Y, Z2)=:(Y,Z) ==g(Y",Z") 0 X,

where U is a fixed connected open neighbourhood of the point p such that for any
qeU, X(q) #0.

2.5. Proposition. Consider a Finsler manifold (M, E) with the Riemann-Finsler
metric g and let us suppose that the change § = g (p = expoa?, a € C*°(M)) is
C-conformal at a point p € M. If W C TpM is a subspace of dimension n — 1 such
that TpM =W @ L(X (p)) then for any tangent vector w € W \ {0} and t € R,

g(Y*, Z%)(w +tX(p)) = g(Y", Z%)(w).

Consequently, for any vector fields Y, Z € X(M), the function g(Y'V, ZV) is con-
stant on TpM \ {0}.

The main result is a direct consequence of Proposition 2.5. More precisely, for
any vector fields Y, Z € X(M),

gV, Z"y=(Y,Z)orm = (Y, Z)",
where (, ) is the osculating Riemannian metric defined over U (cf. Theorem 2.6).

In terms of our characterization this means that the vanishing of some conformal
invariants, like the conformal invariant first Cartan tensor, can be interpreted as
a sufficient condition for a Finsler manifold to be Riemannian. (The necessity is
clear.) Our result is based on a usual, but relatively “rigid” definition of Finsler
manifolds: the differentiability of the energy function is required at all nonzero tan-
gent vector, i.e. there is no singularity except for the zero vectors of tangent spaces.
The basic idea we use to prove our statement is an observation on homogeneous
functions. (Actually, we generalize the following well-known fact: if a function is
homogeneous of degree 0 and it is continuous at the origin, then the function is
constant.)

1.2. Proposition. Let us select a subspace W of dimension n — 1 and a nonzero
vector ¢ of R™ (n > 2) such that

R*=Wo{tg|t e R} =W & L(q).

Suppose that a function f : R™ — R has the following properties:
(i) it is positive homogeneous of degree 0;

(i) 4t s continuous at the points q, —q;

(ili) for any point a € W \ {0} and scalar t € R

fla+tq) = f(a).
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Then f is constant on R™ \ {0}.

In other words, the main points are the homogeneity and continuity of the
Riemann-Finsler metric along the gradient vector field of the scale function which
depends only on the “position” in case of a C'-conformal change. Weakening the con-
dition of differentiability new perspectives open to investigate the C-conformality.
As an illustration we shall cite some valuable fragments from Hashiguchi’s original
ideas in one of the last remarks:

“When I wrote my thesis ... , I imaged the following example as a non-Rieman-
nian Finsler metric L admitting a C-conformal change: Let m be a fixed integer
such that 1 < m < n. Indices a, b and A, u are supposed to take the values 1,...,m
and m + 1,...,n, respectively. On R"” we consider L given by

where L is a non-Riemannian Finsler metric, and L5 is a Riemannian metric ... .
Especially, the three-dimensional Finsler metric L on R* given by

(y")* 3y2
Lot 2%, 2%yt y%,y°) = 2° 555 + (0°)
(¥2)
admits a C-conformal change L = e*L, where a := —%(m3)2, which gives a so-called

concurrent, vector field «; ”. (Hashiguchi’s letter to the author; 2000-01-05).

Indeed, a routine calculation shows that for example the gradient of the function
a’ := aom, a:= —+(2%)? is just the vector field (—z%5%5)" = —(z° o W)Biyg.
Therefore, the elements of the matrix

0 0 1

are neither continuous along the vector field X := —a:%%a and even nor defined

there.
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