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Abstract 

For the purpose of the intermittency analysis of high-energy heavy-ion data, the definition of factorial moments is 
reformulated in terms of horizontal averages determined by the sandbox method. It is shown that the sandbox method gives 
the correct anomalous fractal dimensions for exactly solvable models of geometrical multifractals when the box-counting 
method usually used in heavy-ion physics fails. For the RQMD generated event sample with two-particle correlations, the 
anomalous fractal dimensions obtained by the both methods differ significantly. 

1. Motivations 

Bialas and Peschanski proposed to study the scaled 
factorial moments of the (pseudo) rapidity distribu- 
tion of the final state particles to investigate properties 
of dynamical fluctuations in high-energy heavy-ion re- 
actions and introduced the concept of intermittency 
into high-energy nuclear physics [ 11. The scaled fac- 
torial moments F;: of the (pseudo) rapidity distribution 
of the produced particles are defined by 

Fj(M) = M’_’ ( lW n,(n,--I)...(&-ifl) c 
ml N(N-l)...(N-i+l) 

1 
(1) 

where the pseudorapidity interval AT considered was 
split into M bins of equal size 87 = AT/M, rz,,, is the 
multiplicity in the m-th bin, N is the total multiplic- 
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ity of an event and the brackets ( . . . ) denote the av- 
erage over events. The most important property of Fi 
discovered in Ref. [ l] is that it filters out the statisti- 
cal fluctuations, thus any nontrivial behaviour of F;: is 
a direct consequence of some features of the dynam- 
ics of particle production. Another significant aspect 
of Fi that only such bins can contribute to its value 
for which n,,, 2 i. That is why higher order moments 
at high resolution give information about the spikes. 
The disadvantage of the factorial moments is the in- 
ability to extract any information about dips, although 
it is recognized that the rapidity gaps are also impor- 
tant to study. The power law behaviour of the scaled 
factorial moments with increasing resolution is called 
intermittency, namely, 

Fi N (&j-fi (2) 

(or Fi N Mfi ) . The intermittency indices fi are related 
to the so-called anomalous fractal dimensions di = 

fi/(i - 1). 
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As it can be seen in Eq. ( 1) the calculation of the 
factorial moments Fi contains two different kinds of 
averages: a horizontal one (within one event) and a 

vertical one (over the event ensemble). As a rule, the 
horizontal average is calculated using the so-called 
box-counting method, putting a fixed grid onto the 
pseudorapidity interval of interest and increasing the 

resolution (decreasing the bin size) up to the experi- 

mental resolution. 
In the present letter we show that this procedure may 

lead to incorrect values of the anomalous fractal di- 
mensions in the analysis of the rapidity distributions of 
particles created in high-energy heavy-ion collisions. 
We propose to use the sandbox method for horizon- 

tal averaging, which was successfully applied in the 
study of strange attractors [ 13-151 and geometrical 
multifractals [7-lo]. We show using a data set cal- 
culated for nucleus-nucleus collisions at 200 AGeV 
with the transport model RQMD [4,5] that the sand- 

box method results in values of the anomalous fractal 
dimensions rather different from that obtained by the 

box-counting method. 
The organization of the remaining part of the pa- 

per is as follows. The concept of horizontal averaging 
with the sandbox method will be introduced applying 
it to geometrical multifractals as an example. We re- 
view the connection of the sandbox average for the 
moments G, to correlation integrals. As to the next, it 
will be shown for a deterministic multifractal model 

that the sandbox method can give a much better esti- 
mate of the anomalous fractal dimensions in case of a 
single event with very high multiplicity. Furtheron, it 
will be demonstrated for an exactly solvable statistical 
multifractal model that the sandbox method converges 
faster to the exact values of the fractal dimensions with 
increasing number of (low multiplicity) events. We 
close this letter by comparing the factorial moments 
and the anomalous fractal dimensions obtained by both 
methods using them to the analysis of RQh4D events. 
The significant differences found and the tests per- 
formed on exactly solvable multifractal models show 
that the sandbox method must be favoured for the in- 
termittency analysis of rapidity distributions of parti- 
cles produced in high-energy heavy-ion collisions in- 
dependently whether they were obtained either in an 
experiment or in the framework of a theoretical model. 

2. Sandbox method 

Non-equilibrium physical processes usually create 
complex structures which can be described in terms 
of fractal geometry in many cases. The fractal is 
characterized by a non-integer exponent called fractal 
dimension. In addition to this single fractal dimen- 
sion of the object itself, any singular distribution of 

a physical quantity (any measure) defined on the 
fractal determines an infinite set of fractal dimensions 
each one corresponding to the distribution of a given 
kind of singularity of the measure. Different distri- 
butions determine different multifractal spectra. That 

is why multifractality in general manifests itself via 
non-geometrical properties. 

The concepts of geometrical multifractality was in- 
troduced by Tel and Vicsek [ 71. In the case of frac- 
tals on which the measure (e.g. the mass, in systems 

formed by particles unit mass is associated to each 
particle) is uniformly distributed, multifractality man- 

ifests itself via purely geometrical properties, via the 
density fluctuations in the embedding space. Then the 
multifractal spectra can be considered to characterize 
the fractal support itself. These fractals are called geo- 
metrical or mass multifractals. It is evident that parti- 
cle spectra created by heavy-ion collisions are directly 
related to geometrical multifractals. To determine mul- 
tifractal properties of an object there are two basic 
methods: the box-counting (mentioned above) and the 
sandbox method (reviewed below). Tel and Vicsek 
showed [ 81 that the box-counting method usually fails 
for geometrical multihactals. It is not suitable to cal- 

culate the multifractal spectra correctly. They demon- 
strated on an exactly solvable geometrical multifractal 
model [ 81 that in the determination of the D, spectra 
the sandbox method can reproduce the exact values 
at any 4 but the box-counting method can give good 
results only in the case of high 4 values (q 2 8). Be- 
cause of the analogy of geometrical multifractals with 
particle spectra, the sandbox method can be a more 
powerful tool to study the dynamical correlations in 
heavy-ion physics as well. 

We review briefly the concept of the sandbox 
method [ 8,151 and then we apply it to the calculation 
of the factorial moments. 

Total description of the scaling properties of a dis- 
tribution can be given in terms of the G4 moments [ 21 

which are defined by 
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G,(M) = 5~: (3) 
m=l 

where pm = n,/N at a given resolution and q can be 
any arbitrary real number. Rewriting Eq. (3) we find: 

G~=~p:=~(~)‘=~~(~)‘-’ 

m=l m=l 

(4) 

Since n,/N can be considered as a probability distri- 
bution we get: 

Gb,c(Sv) = ((~)q-‘) N ($)‘q-l’D’, (5) 

where the average is taken according to the distribution 
p,jz = n,/N. This expectation value can be calculated 

in another way using ‘sandboxes’ of radius ST < A7 
centered on the particles of the object, instead of a 
grid of lattice unit ST: 

GF(@) = ( (!i$)q-l)c_ ($)(q-l)D’b 
(6) 

The subscript c denotes the average over the centers. 

(It should be noted that in principle, applying the sand- 
box method it is not necessary to put sandboxes onto 
all the elements of the set. One can choose among 

them according to a unique distribution.) 
Both methods of horizontal averaging give the same 

result in general, but they are not equivalent for geo- 
metrical multifractals. 

The n-th order correlation integral is defined as 

C,,(r) = NVn [number of n-tuplets (xi,, . . . , xi,) 
of particles with distances 
/xi, - xiP] < r for all (i,,ip)] (7) 

In the special case of 12 = 2: 

(8) 

where 0 is the Heaviside-function. The number of 
particles in the sphere of radius ST and centered at xi: 

ni(S77) = $~O(S~- IXi-XjI). (9) 
j=l 

Evidently Cz(S7) 3 (n( ST)), E Gsb( ST), i.e. the 
sandbox average G$” of the moment G2 accounts for 
the two particle correlations exactly. For higher order 
correlation integrals: 

where 

C;(r) = & 

i=l 

[number of n-tuplets (Xii, . . . , Xi, ) 

of particles in the i-th sphere 

with distances 1 Xi, - Xi6 1 < Y 
for all (ia,&)] (11) 

If the distribution of the particles in the i-th box can 
be considered uniform then Ci( Sr]) N nr( ST) and 

G;‘(Srl) N C,( ST). In the future heavy-ion experi- 

ments where the event multiplicities can be very high 
the multifractal analysis is reliable within one event. 
In the evaluation of those experiments the sandbox av- 
eraged Gq moments can be a useful tool besides the 
factorial moments. 

The definition of the factorial moments (Eq. ( 1) ) 
can also be reformulated in terms of the sandbox av- 
erage similarly to the moments Gq. Without the event 
average: 

M Fp = M’-’ c n,(n, - 1). . . (n, - i + 1) 

m=l N(N- l)...(N-i+l) 

(n,-l)...(n,-i+l) 

(N-l)...(N-i+l) 

The last expression can also be considered as an expec- 
tation value and we can again use the sandbox method 
for its calculation. Thus we can define Ffb as 
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(13) 

We have to note that in this expression Aq/6q is not 
equal to the number of boxes. 

3. Results and discussion 

In this section we would like to present the advan- 

tages of the usage of the sandbox method for the cal- 
culation of horizontal averages in heavy-ion physics. 
We restrict ourselves to the study of factorial moments 

because there are several examples in the literature for 

the study of multifractality [ 15,7-g]. At first the role 
of the sandbox averaging in the determination of the 
anomalous fractal dimensions will be shown on ex- 
actly solvable model systems. 

To study the case of a single but very high multi- 

plicity event we used the model of the so-called asym- 
metric growing Cantor set [7,8] to generate density 
fluctuations in one dimension. The number of gener- 
ations n in the model calculations was chosen n = 7. 
We calculated the anomalous fractal dimension as a 

function of the resolution with the sandbox ( dib) and 
the box-counting methods (dy) and compared them 
to the exact solutions d+ z . 

(14) 

This comparison is shown in Fig. 1 for i = 2,3,4. 
We see that the sandbox method gives much better 
estimates of the di’s, the dy’s are far away from the 
exact values. Increasing the rank i of the moments 
the differences between dp and d? decrease, but the 
dib’s are close to the exact solutions for all ranks i. 
Due to the finiteness of the sample the curves for dfb’s 
and dp’s break down for small and large resolution as 
well. Nevertheless, for dib’s we find a wide window of 

0.4 

a.3 

0.25 -i 

sandbox 

- dz 
....... 6 

d4 

0.2 ’ ’ 4 
2 5 10’ 2 5 lo2 * 5 lo3 * 5 10 

M 

Fig. 1. The comparison of the anomalous fractal dimensions ob- 
tained by different methods of horizontal averages in the case of 
a single but very high multiplicity ‘event’. The results for d2, d3, 

and d4 are shown. 

resolution within which the average of dib is in good 

agreement with dy. 
To study the ensemble of low multiplicity events 

we used a simple one-parameter multifractal model, 
the so-called p-model introduced in Ref. [ 111. (The 

p-model was also studied previously by Lipa and 
Buschbeck in the context of factorial moments [ 121.) 

By means of this model we generated a one-particle 
distribution of width Ar) = 3 in seven iteration steps 
and filled m = 35 particles according to this distri- 
bution in the resulting 128 intervals. The multiplicity 
distribution of the event sample was Poissonian with 

the mean value m = 35. Varying the number of 

‘events’ considered in the analysis we studied the 
convergence of dib and dp to dy as a function of the 
number of events. These results are shown in Fig. 2 
for 20,50,80,100 events. The sandbox method gives 
a reliable estimate of the anomalous fractal dimen- 
sions even for small event-numbers and increasing the 
number of events its convergence to the exact values 
is faster than that of the box-counting method. 

Finally, we analysed RQMD events for the quasi- 
central collision of 32S beam at 200 GeV/nucleon en- 
ergy with Ag/Br emulsion. RQMD is a microscopic 
phase space approach based on resonance and string 
excitations, fusion of neighbouring strings into SO- 

called ropes and subsequent reinteractions of all sec- 
ondaries with each other and with the original ingoing 
baryons (see [ 41 and [ 51 for a description of the re- 
cently updated version RQMD 1.08 which was used 
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Fig. 2. The test of the convergence of the anomalous fractal dimensions obtained by the sandbox and the box - counting methods to 
the exact solutions in the case of the low multiplicity event sample. The horizontal continuous lines represent the exact solutions for 
d2, d3, d4, ds, the different types of dashed lines are for the sandbox results and the filled symbols are for the box-counting results. 

for the calculations presented here). In our previous 
paper [6] we studied the role of quantum correla- 
tions in intermittency in the framework of the RQMD 
model. In Ref. 161 we presented a procedure to de- 
termine Bose-Einstein correlations by making use of 
the spacetime and momentum coordinates of the par- 
ticles at freeze-out obtained in RQMD and to gen- 
erate events improved by such correlations. Both the 
original and the improved sets of events were anal- 
ysed with the method of factorial moments using both 
algorithms of horizontal averaging. Vertically we av- 
eraged over 500 events. The detailed description of 
our method to put two-particle correlations into the 
RQMD generated data sample can be found in Ref. 

[ 61. Fig 3 shows the comparison of the factorial mo- 
ments for the original (Fig. 3a) ) and the ‘correlated’ 
data sets (Fig. 3b) ) calculated with the box-counting 
and sandbox methods. For the correlated data set (Fig. 
3b) we calculated the anomalous fractal dimensions. 
In the region 1.5-3.5 straight lines were fitted to the 
In Fi’s as a function of In AT/ST. The results are pre- 
sented in Fig. 4. With the box-counting method we 
reproduced our previous results (see Ref. [ 61) . It can 
be seen that there are significant differences between 
the anomalous fractal dimensions calculated with both 
methods of horizontal averaging. d$” is approximately 
three times larger than d,bc but on increasing the rank 
i of the moments the differences between the d” and 
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Fig. 3. The comparison of the factorial moments obtained by 
different types of horizontal averages in the case of the RQMD 
simulated data sample. The rank of the moments are i = 2,3,4,S. 

dy decrease as expected, because only second-order 
correlations are included in the data sets. 

The sandbox method for horizontal averaging is 
even more relevant for the intermittency analysis of 
experimental data in which generally the higher-order 
correlations can be also present. 

Summarizing, in the present letter we reformulated 
the definition of factorial moments in terms of the 
sandbox method for horizontal averaging. Tests of the 
method have been performed in the cases of a single 
but very high multiplicity event, of the ensemble of 
low multiplicity events and of RQMD data samples 
with two-particle correlations. They revealed the reli- 
ability and advantages of the sandbox method in in- 
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0.01 A dbc 
q d? 

0.0 
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i 
Fig. 4. The anomalous fractal dimensions extracted from F-PC and 
Ffb in the case of the ‘correlated’ RQMD sample (Fig. 3b). The 
ranks are i = 2, . . . . 7. Significant differences can be seen between 
the &‘s and dsb’s. 

termittency analysis of data on high-energy heavy-ion 
collisions: 

For a single high multiplicity event the sandbox 
averaging leads to reliable anomalous fractal di- 
mensions in a wide range of resolution when box- 
counting is completely unreliable. 
For an ensemble of low multiplicity events the sand- 

box averaging leads to a much better convergence 

of the anomalous fractal dimensions to their exact 

value with increasing number of events. 
Sandbox averaging results in values of the anoma- 
lous fractal dimensions for RQMD data samples 
with Bose-Einstein correlation which differ signif- 
icantly from those obtained by the box-counting 

method. 
We also argued that sandbox type horizontal averages 
take into account two-particle correlations exactly. 
Thus we conclude that rather the sandbox method than 
the box-counting one should be used for a reliable 
analysis of correlations and intermittency based on ei- 
ther experimental data or some theoretical framework. 
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