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., You see, one thing is, I can live with doubt
and uncertainty and not knowing. I think it
is much more interesting to live not knowing
than to have answers which might be wrong...
but I do not have to know an answer. I do
not feel frightened by not knowing things, by
being lost in a mysterious universe without
having any purpose which is the way it really
is as far as I can tell — possibly. It does not
frighten me.”

Richard Feynman






Conventions and notation

We are going to use the usual notation for the special subsets of the set
of real numbers R, namely, N, Z, and Q will stand for the set of natural,
integer, and rational numbers, respectively. Sometimes we shall need only the
positive elements of (Q and R. These subsets will be denoted shortly by Q.
and R, . We note that, in the light of this convention, N can be also interpreted
as Z. . Some of the considered functions will map their domain into the set of
extended real numbers R := R U {—o0, +00}.

The function id : R — R will stand for the identity function, that is, we
have id(z) = z for all z € R. The restrictions of id for any given subset of R
will be denoted also by id.

For given numbers n, m € 7Z, we define the finite set {n,...,m} by the
intersection {k € Z | n < k}N{k € Z | k < m}. According to this,
{n,...,m} is the empty set if m < n, and it equals to the singleton {n} if
n =m. The set {1, ..., n} will be denoted simply by N,,.

For a given subset H C N, let 15 : N — {0, 1} stand for the characteristic
function of H, that is,

Iyg(n):=1 ifne H and Ig(n):=0 ifneN\H.






Jensen’s Theorem as motivation

To motivate our investigations, first [ would like to recall a celebrated the-
orem belonging to the theory of convex functions, which is due to the Danish
mathematician Johan L. W. V. Jensen from 1906. To formulate the theorem
precisely, first we need some notions, which shall play a crucial role also in
the whole dissertation.

Let X be a linear space, that is, a vector space over the field R. We say that
asubset D C X is convex if, for all t € [0, 1], the inclusion tD+(1—t)D C D
is satisfied. This definition implies that the whole space X and the empty set
are convex.

Having a nonempty convex subset D C X and t € [0, 1], we say that a
function f : D — R is t-convex on D if the inequality

(1) flz+ (1 —t)y) <tf(z)+(1—1t)f(y)

holds for all z,y € D. The function f will be called midpoint convex or, in
honor of Jensen, Jensen convex on its domain if the inequality (1) is valid for
all z,y € Dundert = % Finally, we will say that f is convex on D if (1) holds
for all t € [0, 1]. We note that any function defined on D trivially satisfies the
inequality (1) under the parameters t = 0 and ¢ = 1.

After introducing these concepts, Jensen’s Theorem [10] sounds as fol-
lows.

THEOREM 0.1. Let X be a linear space and D C X be a nonempty convex
subset. Then the following statements are pairwise equivalent.

(1) The function f : D — R is Jensen convex.

(2) For any given positive integer n € N, the function f : D — R fulfills
the n-variable Jensen Inequality, that is, for all x4, ...,x, € D, we
have

f<:c1—i—~~+xn> - fla) 4+ flza)

n n



Jensen’s Theorem as motivation

(3) The function f : D — R is rationally convex on D, that is, for all
r € (0,1 NQ and for all z,y € D, we have

flra+ 1 =r)y) <rf(x)+ (1 —=7)f(y).

The above theorem draws attention, among others, two interesting phe-

nomenon concerning real functions. Now I only would like to highlight them,

the
I

IL.

details will be clarified later.

. Firstly, in view of the assertions (1) and (3), if f satisfies the inequality

(1) with t = %, then there are infinitely many other parameters, for which
(1) is fulfilled by f too. In addition, it also turns out that this set of
parameters is at least countable and it forms a dense subset of the closed
unit interval.

Introducing the notation

Cs:={t€]0,1]]| fist-convex on D} C [0, 1],

the equivalence of (1) and (3) of Theorem 0.1 can be reformulated as fol-
lows: the inclusion 1 € C; holds if and only if [0,1] N Q is contained
in Cy. Now the following question arises naturally, namely, for a given
function f : D — R, what kind of implications are valid among the
members of C; or, more general, what can we state about the algebraic
and topological structure of the set C;? As we will see, these questions
were totally answered in the previous years, but only in the case of stan-
dard convexity.

The second is the connection of the statements (1) and (2). More pre-
cisely, in view of the above theorem, the n-variable Jensen Inequality, as
a convexity property, is reducible in the sense that, for any fixed n € N,
it implies the two-variable Jensen Inequality, namely the midpoint con-
vexity of the function. We will see that this property strongly depends on
the behavior of the arithmetic mean.

Based on I. and II., with regard its subject, my dissertation can be divided

in two main parts. The first part consists of Chapter 1. and Chapter 2., where
we are going to introduce a ,,convexity parameter set”, which is very similar
to Cy but concern a more general concept of convexity. Then we will deduce
algebraic and topological properties of it pointing to the similarities and dif-
ferences with the standard case.

ing

In Chapter 3., which gives the second part of the dissertation, we are go-
to deal with reducibility of general mean values and generalized convexity

properties. Here we also introduce a possible generalization of standard de-
viation means, more precisely, we extend them from the subintervals of R to
convex subsets of any topological vector spaces of Hausdorff type. It turns
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out that our results about reducibility can be naturally applied in this gen-
eral class. Finally, as a consequence, we also formulate and prove an abstract
Holder—Minkowski type inequality.






Introduction to the First Part

In this short introduction I would like to expound the historical background
of the statement about the structure of Cy leaded up in I. I also recall some
analogs of this result related to different generalizations of standard convexity.
This chapter of my dissertation is based on the paper [11].

By its definition, the set C; is never empty, namely {0, 1} is trivially con-
tained in C;. Furthermore, our function f is convex if and only if C; = [0, 1].
As we mentioned, Jensen proved in [10] that the inclusion Q N [0, 1] C Cy
holds provided that f is midpoint convex. This result immediately has a cru-
cial consequence concerning C, namely, if % is contained in C; then it forms
automatically a dense subset of the closed unit interval. After this the exact
algebraic structure of C; remained still hidden.

The next step in a very similar direction was due to Jiirg Rétz in the year
1976. In [34] the author proved that the homogeneity set of an additive func-
tion automatically possesses some nice algebraic structure, more precisely, if
A and B are modules over some non-trivial ring R then the set of parameters

Hy={teR| f(tx) =tf(x)forallz € A}

forms a subring of R, provided that f : A — B is additive, that is, it satisfies
the Cauchy Functional Equation. Motivated by this, }(; is called the homo-
geneity ring of the function in question. In the same paper it also turned out
that, for any given ring R and for any R-modules A and B, one can construct
a function f : A — B such that H; and R coincide with each other, assum-
ing that A has a basis over R. Particular cases of this phenomenon are also
discussed in [14].

In view of Jensen’s previous result and the definition of C¢, we have the
chain of inclusions

@ﬂ[o,l]ngg[O,l]:Rﬂ[O,l],

which suggest the investigation of C; from the view point of Jiirg Ritz, namely
if C; can be written as an intersection of some proper subfield of R and the
closed unit interval or not.



8 Introduction to the First Part

In 1980, the question, related to Jensen convex functions, was answered
affirmatively by Roman Ger. More precisely, Ger proved that, for any Jensen
convex function f : D — R defined on a nonempty convex subset D of a real
linear space X, the set C; can be written as F' N [0, 1], where £ is a suitable
subfield of R. Similarly to the result of Ritz, the reverse statement turned to
be also true, that is, having any subfield /' C R and a nonempty convex subset
D C X, one can construct a function f : D — R, such that Cy = F' N [0, 1].
Obviously, such a function is necessarily Jensen convex.

However, this result of Ger was not so complete as in the case of addi-
tive functions, because an additional technical assumption related to C; was
needed. The final, satisfactory answer was given by Norbert Kuhn in the year
1984 (cf. [15]).

THEOREM 0.2. (Kuhn, 1984) For any function f : I — R, the convexity
parameter set Cy is either {0, 1} or it can be written as F' N [0, 1], where F is
the subfield of R generated by Cy.

This, of course, implies Jensen’s result about the relationship of Q N [0, 1]
and C in the case, when C; contains % The proof of Kuhn is transparent but it
is quite long. In 1987, Zoltan Dardczy and Zsolt Pales, using an elegant one-
row-calculation, showed that the same conclusion can be obtained supposing
that Cy has at least three elements.

Obviously, the above questions can be formulated in terms of more general
concept of convexity. Keeping the previous notations, we say that a function
f : D — R is t-Wright convex on D for some given ¢t € [0, 1] if, for all
x,y € D, we have the inequality

fltz+ (1 =t)y) + f(1=t)x+ty) < f(x) + fy).

It is easy to see that any ¢-convex function, and hence any convex function, is
t-Wright convex. Indeed, taking the inequality (1), interchanging the points x
and y and finally adding up the two inequalities so obtained, we get the above
inequality of £-Wright convexity. The function f is called Wright-convex if it
is t-Wright convex for all ¢ € [0, 1]. Now, for a given f : D — R, let us define
the set
Wy = {t € [0,1] | f is t-Wright convex on D}.

The above set is never empty, because {0,1} C ;. In addition, Gyula
Maksa, Kazimierz Nikodem and Zsolt Péles proved in [21] that Wy is always
symmetric with respect to 1, itis dense in [0, 1] if Wy \ {0, 1} is nonempty, it is
closed under the binary operation (s, t) — st-+(1—s)(1—t), and 5 is contained
in W, provided that it has at least one rational element different from 0 and 1.
On the other hand, if ¢ €]0, 1] is transcendental or it is algebraic such that one



9

of its algebraic conjugates does not belong to the disc {z € C | |z — 1| < 1},
then there exists a ¢-Wright convex function f : D — R such that 1 ¢ W.

As a generalization of ¢-Wright-convexity, we can consider the class of ¢-
Schur convex functions. We say that a function F' : D x D — R is t-Schur
convex for some given t € [0, 1] if, for all z,y € D, the inequality

F(tx+ (1 =t)y,(1 —t)z +ty) < F(x,y)

is valid. Setting F'(u,v) := f(u) + f(v), we get back the notion of ¢-Wright
convexity. In the paper [3], Pdl Burai and Judit Makd, showed that the set

Sp:={t €[0,1] | F is t-Schur convex on D}

is symmetric with respect to %, it is closed under the binary operation (s, t) —
st + (1 — s)(1 — t), and if X is a normed linear space, I’ is lower semi-
continuous with nonempty S \ {0, 1}, then 3 is contained in Sp. The density
of Sr in [0, 1] forms still an open problem.

In the first chapter of the dissertation, we are going to consider and investi-
gate the previous questions related to the concept of lower and upper convexity
of extended real valued functions. After defining the certain convexity fami-
lies, we will earn some algebraic and topological properties of them. Then we
will apply our theorems for asymmetrically t-convex functions and give also
an example for a function, whose parameter set fails to satisfy Kuhn’s theorem
in this extended sense. More precisely, we are going to construct an asymmet-
rically upper convex function, where the parameter set is not closed under the
addition of its elements, but it forms a dense subgroup of [0, 1] with respect to
the usual multiplication of real numbers.






CHAPTER 1

Constructing new means from given ones

Throughout the dissertation, let / stand for a nonempty subinterval of R
having at least two distinct elements. In this chapter we are going to present a
general method which, having a given finite sequence of two-variable means
My, ..., M, defined on a certain subset of [ x I, is suitable to derive further
means of two variables defined on the same domain. To avoid the trivial cases,
we will always assume that n > 2. Before we perform the main idea, we
clarify the notion of means and partial means under the more general setting.

Let X be a linear space and H C X be any subset. The smallest convex
subset of X, which contains H is called the convex hull of H and is denoted
by conv(H). The intersection of any family of convex subsets of X is convex
again, furthermore X is convex itself, hence the notion of the convex hull of a
set is well-defined. It can be easily checked that the convex hull of H, provided
it is nonempty, is nothing else but the set of all convex combinations made of
its elements. More precisely, we have u € conv(H) if and only if there exist
meN, ty,...,t, >0witht; +---+1t, =1land z4,...,x,, € H, such that
u = t1x1 + -+ + tyxy,. If each element of {t1,...,¢,,} is positive, then we
say that u belongs to the relative interior of conv(H).

Let n > 2 be a fixed integer number and S C X be a nonempty subset.
A function M : S™ — X will be called an n-variable mean on S if, for all

(x1,...,2,) € S™, we have the inclusion

(1) M(zy,...,x,) € conv(zy, ..., T,),

The mean M is said to be strict if M(zy,...,x,) belongs to the relative
interior of conv(zy,...,x,), whenever the set {z1,...,2,} C S has at

least two elements. We will say that M is symmetric if, for any bijection
m:{l,...,n} = {1,...,n}, we have M (2rq),..., Zr(n)) = M(21,...,2,).

We note that, by its definition, an n-variable mean M is a reflexive function,
thatis, M (xy,...,x,) = xif {z1,...,z,} is the singleton {z}.

Now, as an extension of the notion of means, we define partial means. Let
P C S™ be any nonempty subset and M : S™ — X be a mean. We say that
M : S™ — X is a partial mean on S with respect to P or, shortly, M : P — X
is a partial mean on S if the restriction M| p is a mean on P.

11



12 CHAPTER 1. CONSTRUCTING NEW MEANS FROM GIVEN ONES

Now we present some classes of n-variable means, which will be crucial
to formulate our further results.

1.1. The class of Daroczy means

The means appearing in the title were introduced by Zoltan Dardczy in
1971 in the paper [5]. This class is rather wide and it contains the well-known,
usual means. Furthermore it has many interesting properties which were in-
vestigated by several authors, cf. Aczél and Daréczy [1], Dardezy [S, 4],
Dar6czy-Losonczi [6], Daréczy—Péles [7, 8], Losonczi [18, 17, 19, 20], and
Péles [25, 24, 26, 27, 28, 29, 30, 32, 31]. To interpret them, we need the notion
of deviation functions.

A two-place function £ : I x I — R is called a deviation function on I
or, simply, a deviation on I, if
(D1) E vanishes on the diagonal of I x I, that is, F(u,u) = 0 forall u € I

and,

(D2) for any fixed element u € I, the function v — FE(u, v) is continuous and
strictly decreasing on the interval I.

The class of all deviation functions defined on / will be denoted by D (7).
Note that the properties (D1) and (D2) together imply that a deviation func-
tion £/ € E(I) always possesses the so-called sign-property

(2) sgn E(u,v) = sgn(u — v), (u,v € 1).

Indeed, if v = wv, then due to (D1), the statement in (2) is trivial. Hence
we may assume that say v < v. Then sgn(u — v) = —1 and, by the strict
decreasingness of E in the second variable, we have 0 = E(u,u) > E(u,v),
that is, sgn £(u, v) equals to —1 too. The case v < u can be treated similarly.

For (Fy,...,FE,) € D(I)"and (x4, ...,x,) € I", the unique value y € I,
satisfying the equation

(3) El(x17y)++En<xnyy> :O,
is called the (Eu, . .., E,)-deviation mean or the (E, ..., E,)-Daréczy mean
of the elements 1, . . ., 7, and is denoted by DEv-En) (g ).

Now we shortly show that the notion of the (E1, . .., E,)-Daréczy mean is
well-defined. Let z := (xy,...,x,) € I" be arbitrarily fixed, and denote the
minimum and the maximum of the set {z1,...,x,} by « and 3, respectively.

Let us further define the function
(4) ZE,I II—)R, EE,x(“) = E1($1,U)+"'+En($n,u).

The sign-property (2) of the deviation functions Fi,..., E, implies that
Yg . (8) <0< Xg (). Thus, due to the continuity in the second variable of
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the deviation functions, we get that the equation (3) has at least one solution
in the convex hull of the set {zy,...,z,}. Finally, the strict monotonicity-
property of the deviations provides that this solution has to be unique.

Now we recall the most classical subclasses of the class of deviation
means.

1.1.1. The class of Matkowski means. This class of means was intro-
duced by Janusz Matkowski in the paper [22] in 2010. A function M : I — R
is said to be an n-variable generalized quasi-arithmetic mean or, shortly, an
n-variable Matkowski mean if there exist continuous functions fi,..., f, :
I — R, which are strictly monotone in the same sense and for which

My, wn) = (fr 4+ L) (i) + -+ falzn))

holds for all zy,...,z, € I. In this case, the n-tuple (f1,..., f,) is called
the generator of the Matkowski mean, furthermore the Matkowski mean of the
given points z,, . .., x, € I is denoted by MUv-fn) (1, .. 2,).

If, fori € {1,...,n}, we define E; : [ x I — R by the formula

Ei(u,v) == fi(u) = fi(v),
it can be proved that E; is a deviation function for all ¢ € {1,...,n},
and that the corresponding deviation mean D(F1+Fr) is nothing else but the

Matkowski mean M /1),
Specializing the generator functions, this notion gives back the usual, well-

known classes of means. If f; = --- = f,, =: f on [ then we get the concept
of quasi-arithmetic means, more precisely, for all x4, ..., z, € I, we have
M@y, a,) = f_1<f(x1) AR f(%)) =: O/ (z1,...,wn).
n

If I C [0,+00[ and, for some fixed p € R, we have f := id” on I, then
the quasi-arithmetic mean generated by f is called a Holder mean or a power
mean and is denoted by J,,. In detail, the definition is

P 1
—_ B if 0,
Hy(z1, ..., 2) = ( n p7
YTy Xy ifp=0,
where, setting p = —1 or p = 1, we obtain the notion of harmonic mean or

arithmetic mean, respectively.

The Matkowski means, by the definition, are strict and continuous.
Roughly speaking, a Matkowski mean is symmetric or homogeneous if and
only if it is a quasi-arithmetic mean or a Holder mean, respectively. The equal-
ity, comparison and invariance problem were also investigated in the class of
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Matkowski means. The first two are completely, the last only partially re-
solved.

1.1.2. The class of Bajraktarevi¢ means. The other wide subclass of
Dar6czy means is the class of Bajraktarevi¢ means, which was originally in-
troduced by the Bosnian mathematician Mahmut Bajraktarevi¢ in the paper
[2] from 1958.

A function M : I — R is called an n-variable Bajraktarevi¢ mean if
there exist a continuous, strictly increasing function f : I — R and an n-tuple
of weight functions w : (w1, ... ,wy) : I — R such that

(@) +- + Wn(l‘n)f(xn))
wi(z1) + -+ wplxy,)

M(xy,...,m,) = f" (w1(x1

holds for all zy, ..., x, € I. The pair (f,w) is called the generator of the Ba-
jraktarevi¢ mean and, in the above case, the function M is denoted by Bfw),

To see that such a mean is indeed a deviation mean, for: € {1,...,n}, let
us define the function F; : [ x I — R by the formula

Ei(u,v) := wi(u)(f(u) = f(v)).

Obviously, for all i € {1,...,n}, the function E; enjoys the properties listed
as (D1) and (D2). Using the above definition of F1, ..., E,, it is also easy to
see that D(F1-En) = B/w) on [,

Similarly to the previous part, well-known classes of means can be ob-
tained if the generator functions are specialized. If w; = 1 on [ for all
i € {1,...,n}, then we get back the class of quasi-arithmetic means. For-
mally, if I C [0, +00], p, ¢ € R are distinct numbers, furthermore f = id’™?
and w; := id? for all i € {1,...,n}, we get the notion of Gini means, which
are exactly the homogeneous Bajraktarevic means. The precise definition is
given by

P .. DN\ ——
(—xé+ HE?)“’ if p # q,
9(1%61)@1 e Tp) = 371‘*‘;0"-1-'%
T <x1 ln(xl)—l—-“—l—xﬁln(:cn)) -
P al -+ P=1
where x1,...,2, € I C [0,+o0[. Putting ¢ = 0, it can also easily seen that

Holder means are also Bajraktarevié means. If the generator f is the identity
function, then we get the notion of functionally weighted arithmetic mean,
which will be denoted by A« := Blidw),

The equality, comparison, and invariance problems were also considered
by several authors.
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1.2. Tools from linear algebra

For n € N and for given vectors u = (uy,...,u,) and v = (vy,...,v,) in
R, define the two-diagonal matrix A(u, v) by

0O w; ... 0 0
vp, 0 ... 0 O
(5) Alwv) == =+ 0
0O 0 ... 0 wu,
O 0 ... v, O

The next theorem is about the properties of the eigenvalues of A(u,v).

THEOREM 1.1. For all n € N and for all u,v € R"}, any eigenvalue of
A(u,v) is a real number. Furthermore, the eigenvalues of A(u,v) are smaller
than 1 if and only if wy, ..., w, > 0, where

(6) Wy = Wg—1 — UpVpWg—2, (k € {1, . ,Tl}),
provided that w_; := wy = 1.

PROOF. In the sequel, for £ € N, denote the unit matrix of the matrix
algebra R*** by I, and, for a square matrix S € R*** let Pg : R — R stand
for the characteristic polynomial of S defined by Ps := det(id -1}, — S).

Let u = (u1,...,u,) and v = (vq,...,v,) be any elements of R}, let
Ap(u,v) := 0, and, for k € {1,...,n}, define
U1 0 ... 0 0
D Awe)= |5 | e REFDHOT

In other words, Ay (u, v) is the leading principal minor of order & of the matrix
A(u,v), where k € {1,...,n}. Then, obviously, 4, (u,v) = A(u,v). Ob-
serve that Py () = id and Py, (40 = id? —ujv;. Expanding the determinant
in the definition of the characteristic polynomial by its last row, we can easily

deduce a recursive formula. More precisely, for & € {1,...,n — 1}, we have
(8) Pay i (uw) = 1d-Pay wpy = U1 Vi1 Pay_ (w)-
Now, by induction on k, we are going to prove that, forall k € {1,...,n},

the characteristic polynomials of the matrices A (u, v) and Ay (y/uv, \/uv) are
identical, where the notation y/uv stands for the vector (,/u1v1, . .., /tnty)-
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The statement is trivial for £ = 0. If kK = 1, then we have

P,y = 1d* —uyvy = id® —/urvr\/uror = P, (o, /uw)-
Assume that we have established the identity Py () = P A, (/i) forj < k.

Using the recursive formula in (8) two times and then our inductive hypothesis,
for k € {1,...,n — 1}, we obtain that

Py = 14 Py (aw i) — VU1 Vk+ 17/ Wk 1 Ve 11 Pa, | (Jaw, )
= Papi (vaw,yaw) -

This completes the proof of Py, (yv) = Pa,(yuw,aw) forall k € {1,...,n}.

The matrix A,(y/uv,/uv) is symmetric with real entries, therefore its
characteristic polynomial has only real roots, whence it follows that the eigen-
values of A, (u,v) = A(u,v) are also real. The eigenvalues of A,,(1/uv, /uv)
are smaller than 1 if and only if the eigenvalues of the symmetric matrix
I1 — A, (y/uv, /uv) are positive, which is equivalent to the positive def-
initeness of 1,1 — A,(y/uv, y/uv). In view of the Sylvester’s Criterion,
this holds if and only if all the leading principal minor determinants of

Iy — An(y/uv, \/uv) are positive, that is, if

9) PAk(u,v)(l) = PAk(\/ﬁ,\/ﬁ)(l) >0 (k’ S {O, o ,n})

By the recursive formula (8) applied for A = 1, it results that
Py, (vav,yur) (1) = wy, for all k& € {0,...,n}, therefore, (9) is equivalent to
the inequalities wy, . .., w, > 0. Il

In the next result we give a sufficient condition in order that the inequalities
wi, ..., w, > 0hold.

LEMMA 1.2. Letn € N, u = (uq,...,u,) andv = (vy,...,v,) be vectors
in R"} and assume that

(10) v <1, max{u; + v, ..., U1 +v,} <1, and u,<1.

Then the system of inequalities wy, . .., w, > 0 holds, where wy, ..., w, are
defined as in (6) of Theorem 1.1.

PROOF. Observe that the positivity of vy, ..., v, and (10) yield that

Uy, ...,u, < 1. To show that wy, is positive for all k£ € {1,...,n}, we shall
prove that
(11) wy >0 and (1 — up)wg—1 < wy < wr_q

hold for all k € {1,...,n — 1}. For k = 1, the second chain of inequalities is
equivalentto 1 — u; < 1 — wyv; < 1, which easily follows from 0 < v; < 1
and 0 < w;. Hence wy > 0 also holds.
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Assume that we have proved (11) for some k& € {1,...,n — 1}. Then,
using the recursion (6) and using the right hand side inequality in (11), we get
that

W41 = Wk — Up41Vp+1We—1 < Wk — Uk4+1Vk4+1Wk
= wk(l — uk+1vk+1) < Wg-
On the other hand, using the upper estimate for wy_; obtained from (11), it
follows that

Wi+1 = Wi — Ug41V+1Wk—1

Wy 1— Uk — Uk4+1Vk
2 W — Uk+1Vk+1 = Wk s
1-— UL 1-— Uk
1 —up —up (1 —u
> Wy, k= U ) = wi(1 — ugy1) > 0,
1-— U
which completes the proof of (11). OJ
LEMMA 1.3. For all n € N and for all vectors w = (uy,...,u,) and
v = (v1,...,0,) in RY, there exists an eigenvector of A(u,v) with positive

components whose eigenvalue is also positive.

PROOF. We follow the argument of the standard proof of the Perron—
Frobenius Theorem. Consider the set

Spi1 = {(zo,...,zn) ER"™ | 2¢,...,2, >0and zg + - +x, = 1}.

Then S, is a compact convex subset of R"*1. Let u, v € R" be fixed vectors

with positive components and let Ay, . .., A, be the row vectors of the matrix
A(u,v). Observe that
(12) Alu,v)z = ((Ao, ), ..., (An, T)), (x € R™),

furthermore the sum (Ag, ) + - - - + (A,,, =) does not vanish on S, ;1. Indeed,
if for some = € 5,41 we have (Ag, z) + -+ + (A, z) = 0, then, by the non-
negativity of the terms on the left hand side of this equation, it follows that
(A;,x) = 0foralli € {0,...,n}. Using the positivity of the parameters u;
and v;, these equalities imply x = 0, which contradicts = € S, ;.

Consider now the mapping F : S,,; — R"*! defined by

A(u,v)x
<A0"T> +oot <An7x>’
Then F is continuous on S, 1 and, by (12), we have F'(S,,+1) C S,+1. Hence,

in view of the Brouwer Fixed Point Theorem, there exists a fixed point p €
Spa1 of the function F'. Then we have

A(u,v)p = ((Ao, p) + -+ + (An, p)) F(p) = ((Ao,p) + -+ + (An, p))p,

F(x) = (I € Sn+1).
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which shows that p is an eigenvector of A(u,v) with the eigenvalue \ :=
(Ao, p) + -+ + (An,p) > 0. Therefore, by A(u,v)p = Ap, the system of
equations

Uipr - )‘p()’
(13) Uip1Piv1 T UiDic1 = Aps, (ie{l,...,n—1}),
UnPn—-1 = )\pn

hold, where p = (po,...,pn). If p; = 0 for some i € {0,...,n}, then the
non-negativity of the terms on the left hand side of the :th equation yields that
p; =0forj e {i—1,i+1}N{l,...,n — 1}. This results that p has to be
zero, which contradicts p € S,,11. [l

1.3. Tools from fixed point theory

For our purposes, we recall some notions and results related to fixed point
theorems. Let X be a nonempty set. A functiond : X x X — R will be called
a semimetric if

(1) it is positive definite, that is, for all z,y € X, we have d(z,y) > 0
and d(z,y) = 0 if and only if x = y, and
(2) itis symmetric, that is, for all x,y € X, the identity d(z,y) = d(y, )
holds.
If d is a semimetric, then the pair (X, d) is called semimetric space. If (X, dx)
and (Y, dy) are semimetric spaces then a function f : X — Y is said to have
the Lipschitz property if there exists L > 0 such that

The Lipschitz modulus of f is defined by

Lip(f) _SUP{%M y€ Xandz # y}.

Obviously, f possesses the Lipschitz property if and only if Lip(f) is finite.
The function f will be called a contraction if Lip(f) < 1.

It is an immediate consequence of these definitions, that, for a subset D C
X and for a contraction f : D — X with respect to the semimetric dx, the
map f can have at most one fixed point in D. Indeed, if = and y are both fixed
points of f in D, then

which implies dx (z,y) < 0. By property (1) of semimetrics, we get z = y.
The following lemma is useful to compute the Lipschitz modulus of dif-
ferentiable real valued functions.
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LEMMA 1.4. Let f,g : I — R be differentiable functions such that 0 ¢
g'(I). Then, for the Lipschitz modulus of the function f o g=': g(I) — R, we

have
f’(t)'
g'(t)
PROOF. Due to the assumptions, g : I — R is continuous and strictly

monotone. Therefore g=! : g(I) — R is well-defined. Thus, applying the
Cauchy Mean Value Theorem, we have that

|fog () — fog ' (y)l

Lip (f o g_l) = sup
tel

Lip (f og‘l) = sup

z,yeg(l) |$ - y|
TH#Y
_ @) = )] f’<t>’
- ip 9(w) —g(v)] et |g@) |

OJ

In what follows, we recall first the following generalization of the Ty-
chonov Fixed Point Theorem established by Halpern and Bergman [9]. For
the formulation of this result, we define the notion of the inward set of a con-
vex subset K of a locally convex space X by

Inwg(x) == 2+ R, (K — z), (x € K).

Observe that the inclusion X' C Inwg(x) is valid for all z € K. On the
other hand, for an interior point z € K, we have Inwg (z) = X, therefore
y € Inwg (x) is always trivial, provided that x € K \ 0K, where 0K stands
for the set of boundary points of K.

We say that a function f : K — X is weakly inward if f(x) €
cloInwg (x) holds for all z € 0K.

THEOREM 1.5. Let X be a locally convex Hausdorff space, K C X be a
compact convex subset and f : K — X be a continuous weakly inward map.
Then the set of the fixed points of f forms a nonempty compact subset of K.

If f(K) C K, then f(z) € cloInwg/(x) trivially holds for all x € 0K,
therefore, in this case, the above result reduces to the Tychonov Fixed Point
Theorem.

The fixed point theorem stated below, that we are going to use for the ex-
istence proofs in our main results, is consequence of the Halpern—Bergman
Fixed Point Theorem. It establishes the existence of the fixed point for contin-
uous maps defined over a convex polyhedron.
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THEOREM 1.6. Letcy,...,cp € R™, v1, ..., %m € R and assume that the
polyhedron
(15) K::{IGR"|(ck,x>§7k,k€{1,...,m}}

is bounded. Let further f : K — R"™ be a continuous function such that
(16) (crs f(@)) < o

forallz € K and forall k € {1, ..., m} with the property (cy, z) = 7. Then
the set of the fixed points of f is a nonempty compact subset of K.

PROOF. By our assumption, K is a compact convex set. Therefore, it is
sufficient to show that the set Inw (x) and

(17) {ueR"| (cr,u) <y forall k € {1,...,m} such that (cy, z) =y, }

coincide with each other for all x € K. Having this, by condition (16), it
follows that f(z) € Inwg(x) for all z € K, whence the Halpern—-Bergman
Fixed Point Theorem yields the existence the fixed point of f. For the brevity,
denote the set in (17) by H.

Let x € K be any point. If u € Inwg(x), then there exists y € K and
t > Osuchthatu = (1—t)x+ty. Then, for k € {1,...,m} with (¢, ) = Y,
we have

(e, u) = {cg, (1 = t)x + ty) = (1 — t){ck, x) + t{ck, y)
= (1=t +ter,y) < (1 =) m +ty = W,

which proves the inclusion Inwg (z) C H.

For the inclusion H C Inwg(z), pick up v € R™ such that (¢, u) < 7y
for all £ € {1,...,m} with (cg, &) = ~. Choose further ¢ > 0 such that
t > % forall k € {1,...,m} with (¢, x) < -, and define the point
y € R" by the formula y := {(u — ) + z. Then, distinguishing the cases
whether (cy, x) = 7y or not, for every k € {1,...,m}, we obtain that

(cru—x) <ty — (en, 7))
Therefore, for all k € {1,...,m}, we have
<Ck:ay> = <Ck7 %(U - ’I) + ZL’) < (’yk - <Ck7$>) + <Ck7$> = Tk

which proves that y € K. On the other hand, by the definition of y, we have
that uw = (1 — t)z + ty. Consequently, v € Inwg (z), which finishes the proof
the theorem. U
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1.4. Descendants of means

In this section we are going to investigate two-variable means but only on
a restricted domain. To formulate our results, let us introduce some notations.

For a given nonempty subset S C R and for n € N, denote the set of
increasingly and strictly increasingly ordered n-tuples of S by S” and SZ,
respectively, that is, we have -

and

SLi={(t1,....t,) €S" |t < - <t}
We note that, if we have a two-variable mean M : I x I — R on I and we
want to state something about the restriction M | 12, then we will simply say

that M : 12 — R is a mean on /. This means that, in our case, the values of
the original mean on the complementary set S2 := 52\ S% are irrelevant.

Letn > 2 and (My,...,M,) : I2 — R" be a given n-tuple of two-
variable means on I. Then, we are going to deal with the existence and the
uniqueness of two-variable means Ny, ..., N, : I2 — R satisfying the system
of functional equations -

Ni(z,y) = M, (35, NQ(I,y)),
(13) Ni(x,y) = Mi(Ni—l(m7y)a Nz‘+1(Iay))a (i€{2,....n—1}),
Nn(xay) = Mn(anl<x>y)vy)

on /. In order to make the problem more manageable, we reformulate it as
follows. Observe, that the validity of (18) states that, for any (x,y) € IZ, the

vector (Nl(x, Y), ..., Nu(z, y)) € [z, y] is a fixed point of () : [2,y]% —
R™, where, for t = (1,...,t,) € [z,y]Z, we have the definition

(19) Sp(w,y) (t) = (Ml<x7 t2)7 R Mi(ti—la ti-‘rl)? tt Mn(tn—b y))

This means that, firstly, we have to investigate the fixed point set

There are many cases, when the fixed points can be elementary calculated. For
example, let M, := -+ = M, := A, and z,y € RZ be arbitrarily fixed. Then

the fixed point equation in question is of the form

(tla--'atn) =

<£L‘+t2 t1 4+ t3 tn1+y)
2 Y 2 VAR 2 )
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where we assume that (¢y,...,%,) € [r,y|%. Then one can easily calculate
that W, ) is the singleton {(&1,...,&,)}, where

(n+1—1i)z+iy .

P = , ed{l,..., i
: — (ie{L,....n})
Due to our auxiliary results of the previous sections, we have the following
theorem concerning the behavior of the set @, ).

THEOREM 1.7. Let n > 2, (My,..., M,) : I% — R™ be an n-tuple of
two-variable means on I, and (x,y) € I% be any point. Then the following
statements hold.

(1) The fixed point set ®(, ) is a nonempty compact subset of [a:,y]%

provided that all the means M, . . ., M, are continuous. In addition,
if all the means My, ..., M, are strict, then ®, ) is contained in
Jz, y[ %

(2) The set (., is a singleton provided that there exist semimetrics

y
dy,...,dy: [z,y]*> — Ry such that the system of inequalities
dy(My(z,s), Mi(x,v)) < bids(s,v),
d;(M;(t,s), Mi(u,v)) < a;d;i—1(t,u) + bidip1(s,v), (1€{2,...,n—1}),
dn (M (t,y), My(u,y)) < andn1(t, u)
hold for all t,s,u,v € [x,y| with some positive real numbers
ag,...,a, and by, ..., b,_1 such that wy, ..., w,_1 > 0, where, pro-
vided that w_1 := wq := 1, we have the recursion
(21) Wy = Wi—1 — Aip1bjw;_, (ie{l,....,n—1}).

PROOF. Let (z,y) € I2 be arbitrarily fixed. Then the set /{ := [z, y]Z is
a compact convex set, which can be characterized using n + 1 inequalities as
follows. The vector (¢y,...,t,) belongs to K if and only if

(22) —tl S —T, tl — t2 S O, ey tn—l - tn S 0, and tn S Y.

Therefore, K is a polyhedron of the form (15) with m = n + 1, suitably
chosen vectors cq,...,c,11 € R" and scalars v1,...,7,0.1 € R. Thus, in
order to show that the fixed point set of the continuous function f := ¢, , is
a nonempty compact subset of K = [z, y|”, we need to verify that condition
(16) is satisfied. -

For the sake of brevity, denote ¢y := x and ¢,,,; := y. If, for some k£ €
{2,...,n}, the kth inequality holds with equality in (22), then t;_1 = tj.
Therefore, by the mean value property of the means M;,_; and M, we get

Sk—1 = My_1(tp—a,tr) < tr = tp—1 < Mi(te—1,tkr1) = Sk,
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which proves that the vector s satisfies the kth inequality in (22).

On the other hand, by the mean value properties of M, and M,,, we have
x < My(z,ts) = sy and s,, = M, (t,,—1,y) < y, therefore, s also satisfies the
first and last inequality in (22), and thus the verification of condition (16) is
complete.

To prove the second part of the statement (1), assume that all the means
M, ..., M, are strict and let (&1, ...,&,) € Ps,y). Then

(23) Ml(fL‘,Sz) :gla M2(517€3) :§2a ceey Mn(gn—lay) :Sn

If x = £, then the strict mean property of M, and the identity M;(x, &) = &
imply that & = &. Now, by the strict mean property of M, and the identity
My(&1,&3) = &, it follows that & = £3. Continuing this argument, we get
that &, 1 = &,. Finally, the strict mean property of M,, and M, (§,-1,y) = &,
imply that &, = y. This leads to the contradiction x = y. Hence, we may
assume that x < & . Applying the strict mean property of M, ..., M, and
the equalities in (23), we get &; < &;1; recursively fori € {1,...,n — 1} and
finally &, < y, which proves that (§1,...,&,) €]z, y[ 2.

To prove (2), assume that there exist semimetrics dy, . ..,d, : [z,y]> —
R, such that the estimates listed in (2) of Theorem 1.7 hold and let a :=
(ag,...,a,) and b := (by,...,b,_1) such that each member of the sequence
wi, ..., w,_1, defined by (21), is positive. According to the previous lemmas,
the matrix A(a, b) has an eigenvector p := (py, ..., p,) with positive compo-
nents and with eigenvalue 0 < A < 1. This means that p and \ satisfy the
following system of linear equations:

A2P2 = Ap1,
(24) Air1Piv1  + bz‘_1pi_1 = /\pi (Z € {2, e, — 1}),
bn—lpn—l - Apn

We show that ¢, ) is a contraction with modulus A with respect to the semi-
metric D), : [z,y|" x [z,y]" — R defined by

Dp((ub v 7un)7 (Ula s o 71)71)) = pldl(ula Ul) + - +pndn(un7vn)

for all (u1,...,uy,), (vi,...,v,) € [z,y]". To prove this, let (t,...,t,) and
(s1,...,5,) be arbitrary elements of [z, y]Z. For the sake of brevity, set t, =
so = x and t,, = s, = y. Using our estimates concerning the semimetrics and
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then the identities in (24), we obtain that

Dp(SD(a:,y) (t1, o tn)s Py (515 -+ sn))
= Z Cidi (Mz (ti—la ti+1), Mi<8i_1, Si—i—l))

=1

n—1
< c1bydy(ta, s2) + (Z ciaid;—1(ti—1, Si—1) + ¢ibiy1di(tis1, Si—l—l))

i—2
+ Cnandn(tnfh Snfl)

= /\(Cldl(tl, 81> + -+ Cndn(tna Sn)) = )\DC((tl, N 7tn)> (31, ce 73n))-

This results the uniqueness of the fixed point of ;). U

Now we turn to the definition of the descendants. Let n > 2 and let
(My,...,M,) : I % — R" be an n-tuple of continuous two-variable means.

Fori € {1,...,n}, the mean N : I2 — R is said to be an ith descendant of
the n-tuple of means (M, ..., M,) if, for all (z,y) € 12, we have

N(z,y) € U {& | (&1,...,&,) € (ID(W)} whenever © < y
(25) and

N(z,y)=xifx =y,

where @, ) stands for the fixed point set of ¢, . : [z,y]> — R" defined by
(19). The class of all such functions will be denoted by D;(Ml, oo My).

Note that, in view of Theorem 1.7, the continuity of the means My, ..., M,
implies that the descendant functions are well-defined. As a direct conse-
quence of the compactness of the fixed point set ®(,,), we obtain that the
family D;(M;, ..., M,,) has a minimal and a maximal member in the follow-
ing sense: there exist N, , N;" € D;(M,, ..., M,) such that

N; (z,y) < N(z,y) < N/ (z,y)
for all z,y € I and for all N € D;(M,,...,M,). It is also obvious that
each element of D;(My, ..., M,) is a strict mean provided that all the means
My, ..., M, are strict.

We also note that the uniqueness of the fixed point of the map ¢, ,,y cannot
be stated in general. For instance, let n > 2, M; := max, M,, := min, and
let M; be the two-variable arithmetic mean for each i € {2,...,n — 1} over
the interval R. Then, for (z,y) € R2, the fixed point equation (1, ..., t,) =
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Qay)(t1, ..., t,) holds if and only if

t1 + 13 ln—o + 1y
tVHJn:<u . ,m)
( 1 ) 2 2 9 1
One can easily compute that this equality is equivalent to t; = --- = ¢,.
Therefore we have infinitely many fixed points for all z < y, namely

gy = {(t1,-- o ta) |1 = =1, € [z, 9]}

1.5. Descendants of Matkowski means

In this section we are going to apply our technique to two-variable
Matkowski means, introduced in Section 1.1. More precisely, we present some
useful corollaries of Theorem 1.7, stating that Matkowski means always have
descendants.

THEOREM 1.8. Let n > 2 and let f,..., f0n,91,---,9n : I — R be
continuous, strictly increasing functions. For (x,y) € I2, define the function
Oy ¢ [Tyt — R™ as in (19) using the means M; := MUi9), where
i € {1,...,n}. Then, for (z,y) € I2, the set of fixed points (), defined by
(20), is nonempty and compact. Furthermore, ®, . is a singleton if

a;:==Lip [fio(fii+ i)Y <+oo  (1€{2,...,n}),

(26) ‘ .
b :=Lip [gio (fix1 + gir1) '] <+o0 (i€ {l,...,n—1}),
hold and if the constants wy, . .., w,_1 defined by (21) are positive.
PROOF. The means M99 MUn97) are continuous, thus, for all

pair (z,y) € IZ, the mapping ©(x,y) 18 also continuous. Based on the Theo-
rem 1.7, the corresponding set @, ,) is a nonempty compact subset of [z, y]2.
Due to the strictness of Matkowski means it also follows that ®, ) C ]z, y[ ™.

Now assume that (26) and wy,...,w,—1 > 0 hold and pick up a point
(z,y) € I2 arbitrarily. To show that @, is a singleton, for i € {1,...,n},
define the semimetrics d; : I x [ — R by

di(s,t) == [(fi + g:)(s) — (fi + 9:)(D)], (s,t €1).

Note that in our case, for all i € {1,...,n}, the function d; is a metric. This
mean that in addition of the properties (1) and (2) of semimetrics, d; also
satisfies the triangle inequality, namely, for all i € {1,... ,n}, we have

di(s,t) < d;(s,r) + d;i(r, 1), (rys,t €1).
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Let ¢,s,u,v € [z,y] be arbitrary. Then, for alli € {2,...,n — 1}, we have
the following estimation:

di(Mi(t, s), Mi(u,v)) = |(fi + 9:) My, g,(£,5)) = (fi + 9:) My, 4, (u, 0))]
= 1fi@) + gi(s) — fi(u) — gs(0)| < [£i(t) = fi(w)| + |gi(s) — gi(v)]
< Lip (fi o (fic1 + gi—1)” ') di—1(t,u) + Lip (gi © (fis1 + git1) ") dis1(s, v)
= a;d;—1(t,u) + bid;i1(s,v).
On the other hand, for 7 = 1 and 7 = n, we get that
dy (M (z,s), Mi(z,v)) < bids(s,v)

and

dn(My(t, y), Mo(u,y)) < andp—1(t, u)
are valid. Therefore, all the estimates listed in (2) of Theorem 1.7 are satisfied.

Thus, in view of the Theorem 1.7, for all (z,y) € IZ, the fixed point set Q)
is indeed a singleton. U

Due to the fact that Lipschitz modulus can be easily calculated in case of
differentiable functions, we have the following consequence of Theorem 1.8.

COROLLARY 1.9. Letn > 2 and f1,..., fn,91,--.,90 : I — R be dif-
ferentiable, strictly increasing functions such that 0 ¢ (f; + g;)'(I) for all
i € {1,...,n}. For (x,y) € 12, define the function ¢ ) : [z, y|~ — R"
as in (19) using the means M; = M9 where i € {1,...,n}, and, finally,
assume that

o= sup [£- (L +gi) (1) < too (€ {2 m)),

bi == ?UI}) [9; (fi T+ 9;+1)71}(t) < F0o0 (te{l,....n—1}).

€
Then, for all (x,y) € I2, the set of fixed points ®(, ) defined by (20) is a
nonempty compact subset of [v,y|%, and, it is a singleton if the constants
wi, ..., w,_1 defined by (21) are positive.

(27)

PROOF. In view of Theorem 1.8, we only need to verify that ¢, . is a
singleton, which in turn is obvious. Using Lemma 1.4 and the conditions in
(27), one can easily see that the estimations in (26) of Theorem 1.8 hold, that
is, the constants ao, ..., a, and by, . .., b,_; are real numbers. O

In view of the next theorem, the descendants of a chain of Matkowski
means are uniquely determined provided that they are weighted quasi-
arithmetic means with a common generator function /. In this case, the de-
scendants will be again weighted quasi-arithmetic means, where the new gen-
erators can be directly calculated using the original weights and h.
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THEOREM 1.10. Let n > 2, $1,...,8, €|0,1], and h : I — R be a
continuous, strictly increasing function. For (z,y) € I2, define the function
Py o [Ty~ — R™ as in (19) using the means M; := MEM0=50M) ywhere
i € {1,...,n}. Then, for all (z,y) € I2, the fixed point set @, ) is the
singleton { (M(@h- (=M (g gy M(enh-U=om)h) (32 4)) Y, where

28) o= (iﬁliksk)< Y Hli’“sk)_l, (ie{l,....n}).

PROOE. In order to apply Theorem 1.8, let f; := s;h and g; := (1 — s;)h
fori € {1,...,n}. Then it immediately follows that the fixed point set ®(,
is nonempty and compact for all (z,y) € I2.

To show that ®(,,) is a singleton, define the constants ay,...,a,,
bi,...,bh_1,and wy, ..., w,_1 as in Theorem 1.8. We need to show that con-
ditions (26) and wy, ..., w,_1 > 0 hold. Observe that, fori € {1,...,n}, we
have f; + g; = h, furthermore

a; = Lip (fz o(fie1+ gi—l)_l) = Lip[s;-hoh™'] = s
foralli € {2,...,n} and
b; = Lip (gi o(fix1+ gz‘+1)_1) =Lip((1 —s;)-hoh™)=1—s;

for all i € {1,...,n — 1}. Thus each of the constants as,...,a, and
b1, ...,b,_1 are finite, on the other hand, under the notation (w1, ..., u, 1) :=
(ag,...,a,) and (vy,...,v,—1) := (by1,...,b,—1), they also satisfy the con-
dition (10) of Lemma 1.2. Therefore, the inequalities wq, ..., w,_; > 0 and
hence @, . has to be a singleton.

Finally, we verify that, for all (z,y) € IZ, the vector

(29) (M(Ulh’ (1701)}1)(1)7 y)a SR M(U'nh7 (1=on)h) (m’ y))

is a fixed point of ¢, .. For this purpose, we show first that oy, . . . , o, fulfill
the following system of linear equations:

o1 =81+ (1 — 81)0'2,
30) 0; = 8;0;,_1+ (1 — Si)0i+1 (Z € {2, e, — 1}),

On = SpOp—1-
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We prove the above equality for ¢ € {2,...,n — 1}. First observe that

% i—1

Sk S; Sk
Hl—Skzl—Sili[ll—Sk

k=1
S, il il i 5

— s (1 i > k — s k k .

S( +1—si gl—sk S(}Hl—sk+g1—sk

Adding this 1dent1ty to the equahty

ca-a YT

Jj=t+1 k= 1 Jj=t+1 k= 1 Jj=i+1 k=1

side by side, we get the desired identity o; = s;0,_1 + (1 — s;)0;41. In the
cases ¢ = 1 and ¢ = n the proof of (30) is completely analogous.

For the brevity, denote &; := M(i"(1=9)h) (g 4/) wheneveri € {1,...,n}.
Using (30), after some calculation we easily get that

£ = MEh (=50 (1 ¢,y
& = MEm U= (g 1 6 4), (te{2,....n=1}),
En = MU= (e y),
which proves that (29) is indeed a fixed point of ¢, ). Ul

In the next theorem the means are not necessarily weighted quasi-
arithmetic, but they are strongly related to each other by shifts. In this case the
descendants are turned to be uniquely determined and easily calculated, but
only recursively. Furthermore, the descendants are not necessarily Matkowski
mean, only compositions of them.

THEOREM 1.11. Letn > 2, j € {1,....,n} and p,q,h1,...,hy_1 : [ —
R be continuous, strictly increasing functions, furthermore set hy := h,, := 0.
For (z,y) € 12, define the mapping ¢,y : [z, y]% — R by (19), using the
means

N (P+hi-1,hi) ifie{l,...,j—1},
M; := { Methi-1,hita) ifi =7,
M (hi-1, hi+a) ifie{j+1,...,n}.

Then, for (z,y) € I2, the fixed point set D, defined by (20) is the singleton
{(&,...,&)}, where & := MP9(x,y) and the rest of the coordinates are
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defined by the two-way recurrence
MPh) (g &) ified{l,...,j—1},
MP-va (& ) ifie{j+1,...,n}

PROOF. Let (z,y) € I2 be fixed. By Theorem 1.7, the set ®(,, is
nonempty. Let (&1,...,&,) € ®(,,) be arbitrary, furthermore denote §, := x
and &, 1 := y. Then, by the definition of Matkowski means, we have

(p+ hict + 1) (&) = 0+ hic1)(§im1) + hi(&Giv), Ge{l,...,5—1}),
(p+hict +hi+q)(&) = (p+ hic)(§i1) + (hi + @) (§ia), (1= 1),

(i1 +hi + @) (&) = hic1(&im1) + (hi + @) (&), (€ {7+ 1,...,n}).
Adding up these equalities for i € {1,...,n} side by side, it follows that

p(fj) + ho(gl) =+ hn(fn) + q(fj) = p(€0> + hU(’Sﬂ) + hn(gnJrl) + Q(£n+1)a
which finally simplifies to

(p+q)(&) = plx) +q(y).

This is equivalent to the equality on the left hand side of (31). By this compu-
tation it also follows that §; is uniquely determined.

To prove the first equality on the right hand side of (31), let assume that
1<j—1landletk € {1,...,j— 1} be fixed. Adding up the previous system
of equalities but only for i € {1,...,k}, we arrive at

p(&k) + ho(&1) + i (&) = p(&0) + ho(&o) + P (§xtr),

which reduces to (p + hx) (&) = p(x) + hi(€k+1) proving the first equality on
the right hand side of (31) for ¢ = &.

Analogously, to verify the second equality on the right hand side of (31),
assume that j + 1 < mandletk € {j + 1,...,n} be fixed. Similarly, adding
up the equalities in our system of equations for i € {k,...,n}, we obtain that

Pie—1(&k) + hn(&n) + @(§k) = Pr—1(&r—1) + hn(&ns1) + q(Ensr)-

This yields (hx—1 + ¢)(&) = hx—1(&k—1) + q(y), which verifies the second
equality on the right hand side of (31) for ¢ = k.

In view of the uniqueness of ; and the recursive system of equalities on
the right hand side of (31), we can see that, for ¢ # j, the value of &; is also
uniquely determined. [

31) & =






CHAPTER 2

Deriving new convexity properties

2.1. The class of upper and lower ) -convex functions

To motivate the definition of our main notion, we recall a well-known char-
acterization of standard convexity of real functions. It is easy to show that the
concept of standard convexity can be characterized in terms of second order
divided differences. More precisely, the function f is convex on [ if and only
if, for all elements < u < y from [, the corresponding second order divided
difference [z, u, y; f] is non-negative.

The upper and lower M -convexity will concern not necessarily real valued
but extended real valued functions. Hence, to extend the above characteriza-
tion, firstly, we have to adopt the definition of second order divided differences
for the case of extended real valued functions. To do this, consider the follow-
ing binary operations defined on the extended real line R. For given z,y € R,
let their upper sum and lower sum are defined by

. x+y, if max{z,y} < 400,
Tty = .
+oo, if max{z,y} = +oo,

and
r+y, if min{z,y} > —o0,
Tty = Y . . te.y}
: —o0, if min{z,y} = —o0,
respectively. We note that both of the operations + and + restricted to pairs

of real numbers are the same as the standard addition of the reals. In fact, apart
from the standard cases, the only difference between + and -+ is that

(—00) + (+00) = (+00) + (—00) = +00
and
(~00) + (+00) = (+00) +(~o0) = —o0.

It is also easy to see, that the pairs (R, + ) and (R, + ) are commutative semi-
groups. As direct consequences of the definitions we have the following easy-
to-prove statement.

31
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PROPOSITION 1. Forall z,y € R, we have
(32) vty<azty and  —(vty)=(-z)+(-y),
furthermore, we have the following equivalences.
(i) The upper sum x + y is non-negative or it is non-positive if and only if

—x <y or max(z,y) < +oo and x < —y,
respectively.
(¢1) The lower sum x + y is non-negative or it is non-positive if and only if
—oo < min{z,y} and —x<y or r < —y,
respectively.

PROOF. The statements easily follow by the definition of lower and upper
sum. U

Let S C R be a nonempty subset and f : S — R. The upper second-order
divided difference of f at the distinct points x, y and z of S is an extended real

number defined by
f(z) SAY) G
x,y, 2 [ = + + .
R 7 [y A e R e [ )
Similarly, the lower second-order divided difference of f at the points z, y and

zof S'is
e @) fw) f(2)
|_.fl§', Y, %5 fJ T T 1 .
(y—z)(z—x) " (z—y)lz-y) " (z—2)(y-2)

Obviously, the above second-order divided differences are symmetric func-
tions of (z,y, z). Observe that if the inequalities z < y < z hold, then the
coefficients of f(xz) and f(z) are positive and the coefficient to f(y) is nega-
tive.

Using the definitions and Proposition 1, one can easily prove the following
useful statement about connections between upper- and lower second-order
divided differences.

PROPOSITION 2. Let S C Rand f : S — R. Then we have

vy, 2 fl < [xy,z /1 and = |2y, 2 f] = [2,y,2—f]
for all points x < y < z of S.

The following proposition determine further relations among these ex-
tended versions of second-order divided differences. The corresponding result

concerning the standard real valued case, among others, can be found in [13,
Lemma XV.2.2, pp. 376-377].
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PROPOSITION 3. (Extended Chain Inequality) Let S C Rand f : S — R.
Then, foralln € Nandxy < x1 < -+ < Tpy1inS, andforalli € {1,...,n},
the inequalities

1£njn lzj-1, 25, 75015 f] < |20, Tiy Ty f
<j<n

< Dﬁo,ﬂﬁi,mnusﬂ < max [xjflaxjaijrl;f—l
1<j<n
hold.

PROOF. We only need to prove the first inequality, because the second one
is trivial, furthermore the last one is the consequence of the first and Proposi-
tion 2.

The statement is trivial for n = 1, therefore we may assume that n > 2.
Let o < 1 < -++ < x4 be arbitrary elements of S and ¢ € {1,...,n}. If
either the left hand side of the first inequality equals —oo or the right hand side
equals 400, then there is nothing to prove. In the remaining case, for all j €
{1, o ,n}, we have that ij—la T, Tjq1; fJ > —o0 and Ll‘o, Tiy Tyl fJ <
+o00. The first inequality implies, for all j € {1,...,n}, that

min{ f(z;-1), —f(2;), f(2j41)} > —oc.

In view of n > 2, the set {1,...,n} contains at least two elements, therefore,
forall j € {1,...,n}, we get that f(z;) € R and min{f(x¢), f(znt1)} >
—o0. Thus, f(z;) € R and hence the inequality |xg, z;, T,+1; f| < +oo yields
max{ f(zo), f(xns+1)} < +o0, which proves that, for all j € {0,...,n+ 1},
we have f(z;) € R. We also note that, in this case, the first inequality is a
consequence of [23, Corollary 1]. O

Now we are able to define lower and upper M -convexity of extended real
valued functions. For a fixed strict mean M : [ % — R, we say that the function

f: I — Ris lower M-convex on I if

(33) Lo, M(z,y),y; f] >0, ((z,y) € 12)

holds. On the other hand, the function f is called upper M-convex on I pro-
vided that

(34) [z, M(x,y),y; f] >0

holds on the same domain.

Note that, due to the property (32), if f is lower M -convex, then it is also
upper M -convex.

The lower and upper M -concavity of functions can be also interpreted,
namely we may consider (33) and (34) with the reverse inequality. It is easy to
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verify, that these definitions are equivalent to the upper and lower M -convexity
of the function — f, respectively.

The next statement clarifies an essential difference between lower and up-
per M-convexity.

LEMMA 2.1. Let M : I% — R be a strict mean and f : I — R. Then the
following statements hold.

(a) The function [ is lower M-convex if and only if f(u) > —oo forall u € T
and for all (z,y) € I2, the inequalities f(M (x,y)) < +oo and

M) ) 4 D=2 g

(35) M (e,y) < === —

hold.

(b) The function f is upper M-convex if and only if, for all (x,y) € IZ, the
inequality

(36) f(M(z,y)) <
holds.

y—M(x,y)f(x)+M(x,y)—x

- - f(y)

PROOF. First we prove the statement (b). Suppose that f is upper M-
convex and let (z,y) € I2 be any element. For the brevity, denote the value
M (z,y) by p. The upper M -convexity of f means that we have [z, p,y; f] >
0. Due to (i) of Proposition 1, this inequality is equivalent to

e fw W)

+ :
p—z)y—p) = p—z)ly—2z) (@—-y)p-y)
Using that (p — x)(y — p) is positive, we obtain that (36) is valid for (x,y),
which was arbitrarily chosen.

To prove the reverse implication of (b), suppose that (36) holds on the
domain indicated. Then (37) is also valid and, in view of (i) of Proposition 1,
this implies (36).

Now we prove the statement (a). Suppose that f is lower M-convex,
let (z,y) € I2 be arbitrary, and let again p := M(x,y). Then
|z, p,y; f] > 0 holds. Based on (ii) of Proposition 1, it follows that

—oo < min{f(z), —f(p), f(y)} and that

f(p) < fl@) W)
p—2)y—p) ~ p—2)y—2) (x—y)lp—y)
Thus, for all u € I, we get —oco < f(u) and, by the positivity of the product
(p — x)(y — p), the inequality (38) is equivalent to the inequalities (35) and
f(p) < 4o0.

(37)

(38)
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Finally, to prove the reversed implication of the statement (a), suppose
that f(M(z,y)) < 4oo and (35) hold for all pairs (z,y) € I%, furthermore
we have —oo < f(u) for all u € I. Then (38) is also valid and, in view of (i7)
in Proposition 1, this implies (35). ]

2.2. The lower and upper convexity class

In the sequel, we are going to formulate Jensen type theorems concerning
this extended concept of convexity. To do this, similarly to the standard case,
we introduce the related ,,parameter families”, which, in our case, instead of
real numbers, will contain strict means.

For a given function f : [ — R, define

M, ={M: I% — R | f is lower M-convex on [}

and
My :={M :IZ — R f is upper M-convex on I}.

Note that, due to the strictness of the means in the definition, unlike the
standard case, the above families can be also empty. The following proposition
is about a certain algebraic closedness property of M, and M.

PROPOSITION 4. Let f : I — R be any function and let M € {Mf,ﬂf}.
Then the following statements hold.

(a) If M, Ny, Ny € M with Ny < Ny on the set 12, then M o (N1, Ny) € M.

<
(b) If M, N € M, then the compositions M o (min, N) and M o (N, max)
also belong to the family M.

We note that the statement (b) is not a direct consequence of (a), because
the means min and max are not strict, and hence they do not belong to the
family M.

PROOF. We prove the statements for the family M ¢ only. The proof in the
other case is completely analogous and also based on Lemma 2.1.

Let (z,y) € I2 be arbitrarily fixed, furthermore define p; = Ni(z,y)
and py := Ny(x,y). Obviously, under our conditions, it follows that p; < ps.
Using these notations, in view of Lemma 2.1, it is sufficient to show, that

(9 F(Mlprp)) < L)y g MBI 2

Y
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holds. Applying the upper M-convexity, and then the upper /N;- and N,-
convexity of f, we have the following calculation.

f(M(p1,p2)) < b2 — M(Pl,m)f(pl) i M(M;pz) _plf(pg)

P2 —p1 P2 =P
= 22 ML) g )+ ) R v )
< 34}2117@ (A2 pw) + 2= 1)

LM 0;12{2;1— B2 pa) + 2 1)
_ %@;’Wﬂx) - %ﬂy)-

Thus the inequality (39) is satisfied, which means that (a) is true.
A completely similar calculation shows that the statement (b) is also valid.
U

As a consequence, we get that the separately continuous subfamily of M,

and M # has only accumulation points with respect to the pointwise conver-
gence.

COROLLARY 2.2. Let f : I — R be any function, define

M= {M € M | M is separately continuous in both variables},

./\/l; = {M € M | M is separately continuous in both variables},

and, finally, let M* € {M},M;} Then M* has no isolated points with
respect to the pointwise convergence, more precisely, for all M € M, there
exist sequences of means (Ly,), (U,) C M* such that L,, < M < U,, whenever
n € N, furthermore L, — M and U, — M pointwise on the set I% as
n — Q.

PROOF. We prove the statement only for the class M. Let M € M;
be an arbitrarily but fixed mean. We construct only the lower sequence (U, ),
because the existence of (L,,) can be proved similarly.

Let Uy = max furthermore, for n € N, let U,, be defined by the composi-
tion M o (M, U, ). Firstly we show that the sequence (U,,) belongs to M.
To see this, we prove, by induction, that M < U,, < U,,_; for alln € N on Ii.
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Let (z,y) € I2 be any point. For n = 1, using that M is a strict mean, we get
Ur(x,y) = M(M(x,y), Uo(,y))
= M(M(z,y),y) €]M(z,y),y[=]M(z,y), Us(z,y)|.

Assume that the inequalities M < U, < U,_; hold on ]i for some n € N.
Using this, for n 4 1, we obtain that

Un-i—l(x?y) = M(M(xvy)’ Un(l‘,y)) E]M(ZL‘,y), Un(l‘,y)[

Hence M(z,y) < Usii(z,y) < U,(z,y) follows for all (z,y) € IZ,
which completes the proof of the induction. Then, Proposition 4 yields that
(U, € M - Moreover, by its definition, U, is a strict mean and it is sep-
arately continuous in both variables for all n € N, hence (U,) € M} also
holds.

In the second step we show, that U,, | M pointwise on 2 as n — oo. Let
(z,y) € IZ be arbitrarily fixed again. Obviously, the sequence (U, (z,y)) C
|z, y| has to be convergent, because it is monotone decreasing and bounded
from below by M (z, y). Denote the limit lim,,,, U, (z,y) by U*(z, y) which,
clearly, cannot be smaller than M (z, y). Upon taking the limit n — oo in the
identity

Un(2,y) = M(M(z,y), Un(2,y)),
we obtain that

U™ (2,y) = M(M(z,y), U (x,y))-
The inequality M (x,y) < U*(x,y) would contradict the strictness of M,
therefore, U*(x,y) = M (x, y) must be valid. O

The following theorem is one of our main results. Roughly speaking, it
states that M ; is closed under deriving the descendants.

THEOREM 2.3. Let f : I — R be any function, n > 2, furthermore
My,...,M, € Mf be continuous means. Then D;(M,, ..., M,) C Mffor
alli € {1,...,n}

PROOF. Let i € {1,...,n} and N € D;(M,...,M,) be arbitrarily
fixed. We have already seen that, under our conditions, /N is a strict mean.
If (x,y) € I2, then there exists k € {1,...,n}and (&,...,&,) € P,y such
that N (x,y) = &. Furthermore, with &, := x and &, := y, we have

M;j(&-1,8+1) =&, (G€{l,....n}).

Using this and, for all j € {1,...,n}, the lower M -convexity of the function
f, we obtain that

0<&-1.&,8+1: 1], (jefl,...,n}).
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Now, applying the Extended Chain Inequality, we get that
0< min [§1,&, 65 f] < (2,84 f] = 2, N(z,y),u: £

1<yj

By the deﬁmtlon, this means that f is lower N-convex, or equivalently, we
must have N € M. O

In view of the results about the descendants of Matkowski means obtained
in the previous chapter, Theorem 2.3 has several consequences for M ,, pro-
vided that it contains Matkowski means.

COROLLARY 2.4. Let f : I — R, n > 2, 51,...,5, €]0,1[, and finally
h : I — R be a continuous, strictly increasing function. Assume further that
Mih-(U=sdh) e M for all i € {1,...,n}. Then, for all i € {1,...,n},
the Matkowski mean M@ =9I qlso belongs to the family M > where the
weight o; is defined as in (28) forall i € {1,...,n}.

PROOF. For (z,y) € I2, define the mapping ¢, : [z,y]% — R™ as in
Theorem 1.10. In view of this theorem, it follows that, for all (a; ,y) € I2, the
fixed point set ®, . equals with the singleton {(&1,...,&,)}, where we have
& = M("ih’(l_ai)h)(m,y) foralli € {1,...,n}. Thus, fori € {1,...,n},
the function J\/[ oih,(1=00)h) ig the i™ descendant of the n-tuple of means

(M (s1hs (1=s1) M(S" (1=su)h)) . Therefore, due to Theorem 2.3, we ob-
tain that M(@:h (=7 ) e M foralli e {1,...,n}. O
COROLLARY 2.5. Letn > 2, p,q,hy,...,h,_1 : I — R be continuous,

strictly increasing functions and f : I — R. Set further hy := h,, := 0 and
assume that there exists j € {1,...,n} such that, forall i € {1,...,n}, the
mean M; defined by

M P+hi-1,hi) ifie{l,...,5—1},
(40) M; = § MEHhi=bitd) - f = j,
M (hi-1,hita) ifie{j+1,...,n}
is contained in M ;. Then Ny, ..., N, € M, where, for all (z,y) € Ii,
M®R) (@, N (z,y)) - ifi € {1,....5 -1},
Ni(w,y) = q MPD(z, y) ifi=
M- (N;_y(z,y),y) ifi€{j+1,...,n}.

PROOF. The method of the proof is same as that of Corollary 2.4. For a
given pair (z,y) € I2, define the mapping ¢, as in (19) by the using the
means M, ..., M, defined in (40). Due to Theorem 1.11, it follows that, for
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all (z,y) € I2, the fixed point set @, , is the singleton {(&, ..., &,)}, where
we have

M®Ph) (g, &) ifie{l,...,5—1},
MPi-ra (& y) ifie {j+1,...,n}

Thus, for i € {1,...,n}, the function N; : IZ — R, Ny(x,y) := & is the i
descendant of the n-tuple

&= M(p"”(x,y) and & := {

(M(p‘i’hifl,hi)? o MR- Rt ’M(hifl,fhﬂ’Q))'
Hence, by Theorem 2.3, it follows that N; € M, foralli € {1,...,n}. [

2.3. The class of asymmetrically ¢-convex functions

In this section we restrict our attention to a special subfamily of M, and

Mf. First, for a given ¢t € [0,1], denote A; : I x I — R the t-weighted
arithmetic mean on /. B
For a given extended real valued function f : I — R consider the sets AC f

and AC ¢ defined by
AC; = {t €]0,1[| f is lower A;-convex on [ }

and

AC; = {t €]0,1]| f is upper A;-convex on I}.
If f is real-valued, then, clearly, these two sets are the same. Therefore, in
this case, we will simply denote them by AC;. Note that, by the definitions,
both sets can be empty. On the other hand, these sets can be easily identi-
fied with the subfamily of weighted arithmetic means in M, and M  respec-
tively. More precisely, ¢ € AC; and s € AC; if and only if A, 12 € M;and

Asl 2 € Mf. The motivation for our investigations is the well known result

due to N. Kuhn [15], which was mentioned in the Introduction. In view of our
new notations, the theorem states that for a given function f : I — R, the
intersection

41) Cr=AC;N(1— ACy)

is either empty or it can be written in the form F'N]0, 1] for some suitable
subfield F' C R. The following results are about some algebraical properties
of the sets AC, and ACy.

THEOREM 2.6. Let f : I — R be any function and AC € {AC;, AC;}.
Then the following statements hold.

(1) If t, s1, 82 € AC with s1 < S, thentsy + (1 — t)s; € AC.
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(2) Ift,s € AC, thents and 1 — (1 — t)(1 — s) also belong to AC.

(3) The set AC is dense in the open unit interval, provided that it is
nonempty.

PROOF. We verify only the statements about AC ;. The proof for AC; is
analogous.

Let ¢,s1,8, € AC f with s; < s, be any parameters. Then the means
A, Ag, and A, belong to Mf and, because of s; < sy, we have A, < A,
on ]i. Using Proposition 4 for M = A;, Ny = A, and Ny = A, we
obtain that A; o (A,,, A, ) € M. On the other hand, for (z,y) € I, we have

Ap o (Asy, As))(2,y) = Au(As, (2,9), Asy (2,9))
= Ai(s22 + (1 — s2)y, s12 + (1 — s1)y)
= (tso+ (1 —t)s1)z+ (1 — (tsa + (1 —t)s1))y
= -Atsg+(1ft)31(x>y)'

Consequently tsy + (1 —t)s; € AC,, which proves the statement (1).

To prove (2), observe that, under our notation, min = A; and max = A
on I2. Thus, according to the second statement of Proposition 4, the means
Ay o_(Al,AS) and A; o (Ag, Ag) belong to M - Then the same calculation
yields that 1 — (1 —¢)(1 — s) and s belong to AC , respectively.

To verify (3), assume that AC, is nonempty and indirectly suppose that
AC; is not dense in |0, 1[, that is there exist a < [ in [0,1] such that
AC;Nla, B[ is empty. We may also assume that the interval ]a, 3] is max-
imal, or equivalently, for all £ > 0, the intersection AC N lao—¢e, 8+ ¢ is
nonempty. Observe that, due to the second assertion of the theorem, it easily
follows that 0 < «vand 8 < 1. Indeed, if t € AC ’ is arbitrary, then, due to
the fact that AC 7 is closed under the multiplication, for all £ € N, the value
t* belongs to AC - Thus any open neighborhood of zero contains an element
from AC o which means that 0 < «. Similarly, using the closedness of AC f
under the operation (¢,s) — 1 — (1 —¢)(1 — s), we get that 5 < 1. Thus
we obtained that [o, 3] C€]0,1[. Now, let ¢t € AC, be arbitrarily fixed and
(7n), (sn) € AC; be sequences such that r, ,/ « and s, N\, fasn — o.
Then, in view of the first statement of the theorem, ts,, + (1 — t)r,, € AC p for
alln € Nand ts, + (1 —t)r, = t8+ (1 —1t)a €]a, 5[ as n — oco. Therefore,
for sufficiently large n, we get that ts,, + (1 — t)r,, €]a, 8], which contradicts
that AC; N]a, B[ is empty. Hence AC ; must be dense in ]0, 1[. O
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COROLLARY 2.7. Let I C R be an interval, f : [ — R n > 2and
81,150 € AC;. Then o; € AC; foralli € {1,...,n}, where

@ o= (SHE)(SI)

j=i k=1 §=0 k=1

PROOF. Apply Corollary 2.4 under A := id. OJ

COROLLARY 2.8. For a function f : I — R the following statements hold.
(1) If1/2 € AC; then QN ]0,1[C AC}.
(2) If {/m € &fforsome {,m € Nwith ¢ < m and 2( # m, then, for
alln > 2 and forall i € {1,...,n}, the fraction
‘ gnJrl _ gz(m _ g)nJrlfi
T T (i —

belongs to AC,.

PROOF. To prove (1), assume that 1/2 € ﬁf and let p,q € N be arbi-
trarily fixed numbers such that ¢ > 1 and p < ¢q. For ¢ = 2, the statement
(1) is trivial, thus we may assume that ¢ > 2. Now set n := ¢ — 1 and
ip == q—p. Thenn > 2 and iy € {1,...,n}. Thus, using Corollary 2.7 for
§1:= -+ =8, = 1/2, we get that

yo_Mziotl _g-l-(g=p)+1 _p
io — = = -
q

n+1 g—1+1

This means that Q N]0, 1[C AC,.
To prove (2), assume that {/m € AC, for some ¢,m € N, where £ < m

and 2¢ # m. Let further n > 2 be arbitrarily fixed and set s; := --- = s, :=
¢/m. Then a simple calculation yields that o; = r; forall i € {1,...,n}. Due
to Corollary 2.7, we get that r; € AC, foralli € {1,...,n}. O

2.4. Counterpart of Kuhn’s Theorem

Now, we turn to the main difference between the standard and asymmetri-
cal upper convexity of functions.

We recall that the ¢-convexity of a real valued function implies its Jensen-
convexity provided that ¢ is different from O and 1. One can ask, what can we
state about such an implication if we turn to the asymmetric notion, that is, if
we require the validity of

(43) flx+ (1 =t)y) <tf(z)+ (1 —1)f(y)
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only for pairs (z,y) € I x [ with z < y. This problem was first formulated
by Zsolt Pdles and we have only partial results. Michat Lewicki and Andrze;j
Olbrys in [16, Example 3.1.] obtained the following example.

PROPOSITION 5. For a given transcendental numbert € [0, 1], there exists
a function dy : R — R which, for all x,y € R with x < vy, fulfills (43) with a
sharp inequality, furthermore we also have

(44) do((1 —t)x +ty) > (1 —t)do(z) + dof(y), (z,y e R,z <vy).

Shortly, there exists a strictly asymmetrically t-convex real valued function
defined on R, which is strictly asymmetrically (1 — t)-concave provided that ¢
is not an algebraic number.

To perform the proof, we need the notion of algebraic derivations. We say
that a function d : R — R is an algebraic derivation if, for all x,y € R, we
have

dz +y) =d(z)+d(y) and  d(zy) =zd(y) + d(v)y,

that is, d is additive and fulfills the Leibniz rule, respectively. It can be shown
that any algebraic derivation vanishes on the field of algebraic numbers, fur-
thermore, for all transcendental number A € R, there exists an algebraic
derivation which does not vanish at \.

PROOF OF PROPOSITION 5. Let ¢t € [0, 1] be a fixed transcendental pa-
rameter and dy : R — R be an algebraic derivation such that do(t) > 0. If
x,y € R are any points with x < y then the validity of the sharp version of
(43) with f = d is equivalent to the validity of

do(t)(x —y) <0,
which is obviously true. Using this, we also have

0 < —do(t)(x —y) = (do(1) — do(t)) (x — y) = do(1 — t)(z — y),
which proves that (44) holds too. ]

Now we show that, for certain rational numbers ¢, there exists an upper A;-
convex extended real valued function, which is not upper A;_;-convex. Such
a function cannot be ¢-convex. Having this example and the above result of
Lewicki and Olbrys, it is still an open problem if there exists a real-valued
function with the same property.

To construct our function, let us define the sets QQy and Q; by

- x

2ﬁl‘k€Z,nEN} and Q12={

—1
ke }
o _1‘ €eZ,neN
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It is easy to see, that the sets (Qy and QQ; are disjoint and that we have the
inclusions

Qo + Qo € Qo, Qo +Q; € Qy, Q1 + Qi € Qo,
QoQo € Qo, QoQ1 € Qo, Q:Q: € Q.

THEOREM 2.9. Let I C R be any subinterval withﬁ =supl € I NQy,
C : I — R be any convex function, and define f : I — R by

Fle) = {C(sc) ifxr € (1N Qo) U {a},
© 4o ifzeI\(QU{al).

Then, for all t €]0,1[NQy, the function f is upper A;-convex but it is not
upper Aq_-convex.

(45)

(46)

PROOF. Let z,y € I with x < y and ¢t €]0, 1[N Q) be arbitrarily fixed.
Then 1 — t € @Qp. We need to check that (34) is satisfied with A; for the
function f. This is equivalent to the validity of the inequality

(47) fltr+ (1 —t)y) < tf(z)+ (1 —1)f(y).

If max{f(x), f(y)} = +oo, then the right hand side of (47) is equal to + o0,
thus, we can suppose that the right hand side is finite, that is f(z) = C(x) and
f(y) = C(y). Now we have z € Qp and y € Qp U Q. Then, using (45), it
follows that tz + (1 — t)y € Q. Therefore, applying the convexity of C, we
get

fltz+ (1 —t)y) =C(te + (1 —t)y)
<tC(z)+ (1 -t)C(y) = tf(x)+ (1 - 1) f(y).

This proves that f is upper A;-convex for all ¢ € ]0, 1[N Q;.

To show that f is not upper A;_;-convex, let y := a € Q; and let x €
I N Qg be an arbitrary point. It follows from (45) that the convex combination
(1 —t)z + ty belongs to Q; and it is also different from a. Therefore we have
f((A=t)x+ty) =4ocand (1—1t)f(x)+tf(y) = (1—t)C(x)+tC(y) € R,
which means that (47) cannot be satisfied. [

COROLLARY 2.10. Keeping the above notation and conditions, AC 7 is not

closed under addition, consequently it cannot be written as an intersection of
10, 1] and a proper subfield of R.

PROOF. For arbitrarily fixed parameters s,t €]0,1[NQ; C AC; with
s+t <1, in view of (45), the sum s + ¢ belongs to (Qy. To prove that
s+t & ACy, we construct < y in I such that

48)  f((s+t)z+ (A —=(s+1))y) > (s+1)f(x) + (1= (s+1)f(y).
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Let z € I N Q) be arbitrarily fixed and set y := a. Then, using again (45), the
convex combination u := (s + t)x + (1 — (s + t))y belongs to I N Q; and it
is also different from a. Consequently, f(u) must be +o00, on the other hand

(s+0)f(x)+ (1= (s+1)f(y) = (s +)h(x) + (1 = (s + 1))h(y) € R.
This means that (48) is satisfied. U



Introduction to the Second Part

In the second part of the dissertation we are going to investigate the phe-
nomenon mentioned in II. We recall that a function f : D — R, defined on
a convex subset D of a linear space X, is called midpoint convex or Jensen
convex if

(49) f<x+y> < f@)+ 1)
2 2
In view of Theorem 0.1, the validity of (49) is equivalent to the validity of
(50) f(a?1+---+a:n><f(:vl)—|—---+f(:vn)
n

< - , (x1,...,2, € D).

(x,y € D).

for any fixed n € N. Now we would like to focus only the derivation of the
inequality (49) from (50). Obviously, it is enough to prove that having (50) for
some fixed n € N with n > 2, it implies the validity of

f<I1+---+$n—1> < flz) 4+ -+ flen-1)

, (xl,...,xn_l ED)

n—1 n—1
To prove this, let x4, ..., x,—1 € D be any points and define y as the arithmetic
mean of them, that is,

1

Yy = Y — 1($1 + e +96n71) :Aﬁ(xlw-wxnfl)-
Then, one can easily observe that y satisfies the equality
(51) Ai(zr,. . n1,y) =y
on the set conv{xy,...,z,_1}. Now, using the definition of y, the inequality

(50), and, finally, the fact that y solves (51), we obtain that
aj_’_+xn_ x++xn_ +y
r(* Y =) = 1(2 )

n—1 n
< fla)+ A fand) + fy)
- n
@)t ) + ()
n

45
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holds. Multiplying both sides by n, subtracting f(Z=*»=1) from both sides,

n—1

and dividing the inequality so obtained by n — 1, we get that

f<:v1—|—---—|—xn_1> < fla) 4+ + f(op_1)

n—1 n—1

In view of this short calculation, the reducibility of the Jensen inequality
strongly depends on the fact that (51) has a unique solution, which is noth-
ing else, but the n — 1-variable arithmetic mean of the points in question.

Now let us turn to the generalized problem. The main idea is to replace
the two appearance of the arithmetic mean in the inequality (50) by arbitrary
n-variable means M : D™ — D and N : I™ — I, and to consider functions
[+ D — I satisfying

(52) f(M(xl, o ,xn)) < N(f(a:l),...,f(xn)), (x1,...,2, € D).

According to the previous calculation, first we have to investigate the re-
ducibility of the means M and N. This will be interpreted using a fixed point
equation, which, in the case of the arithmetic means, goes back to the equation
(51). Finally, the type of the solution will be also important for us, namely,
that the solution remain in the same class.

Our main aim is to describe general sufficient conditions under which,
for k € {1,...,n}, a k-variable convexity property can be deduced from the
inequality (52). This requires the construction of k-variable means which are
the reductions of M and N, respectively. The construction and computation
of the k-variable reductions will be elaborated in the class of Dar6czy means
mentioned in Section 1.1. of the first chapter. Then, it will be also described
related to the class of generalized deviation means, which was introduced in
the paper [12] and which provides a broad class of means for the vector valued
setting. We also demonstrate how generalized deviation means can be derived
as solutions of convex minimum problems. Finally, we consider and establish
the reducibility property of Holder—Minkowski type inequalities under natural
assumptions.



CHAPTER 3

Reducibility of means and convexity properties

3.1. Reducibility of mean values

To avoid the long computations and to make our results more compact, let
us introduce some notations. For a nonempty set S and for a positive integer
n € N, we will identify the elements of the Cartesian product S™ with the set
of all functions mapping N,, to S, that is, with the set S := {z : N,, — S}.
If z € S™, then x(i) will simply denoted by x; for all i € N,,.

Now we are able to introduce the main notation of Chapter 3. Let n € N,
k € N,,, and x : N, — N, be an injective function. For z € S*¥ and y € S, the
symbol (z|x)(y) will stand for the element of S™ defined by

()W), = {y ifi € N, \ x(N),
o \ay ifie x(Ng) and i = x(5).

To understand the above notation, consider the following example. Let n € N

.....

r=(11,...,0,_1) € D" and y € D, we have
(z|x)(y) = (z1,...,xpn_1,y) € D".

Observe that this vector came up in the argument of the arithmetic mean in the
equation (51).

To see a much simpler example, set n := 5, k := 3, and let us define the
function x : {1,2,3} — {1,2,3,4,5} by

x(1) =2, X(2) :=5, and x(3) :=1.
Then, for x = (x1, 29, x3) € D3 andy € D, we have
(-T’X)(y) = (l'g,l’l,y,y,l'Q) € D5'

In what follows, we define the notions of continuity and reduction of a
mean M : D" — X with respect to a given injective function x : Ny — N,,.

We say that a mean M : D" — X is y-continuous if, for any x € D¥, the
mapping m; »s : conv(z(Ng)) — X defined as

(53) ma i (y) == M ((z]x)(y))
47
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is continuous on conv(z(Ny)).

The mean M : D™ — X will be called x-reducible if there exists a mean
K : D* — X such that, for all z € D*, the vector y = K (z) is a solution of
the equation

(54) M ((z]x)(y)) = v.

In this case, the mean K will be called a x-reduction of M. If for all x € D*,
the equation (54) has a unique solution y € conv(z(Ng)), that is, if K is
uniquely determined, then we say that M is a uniquely x-reducible mean,
furthermore, the mean K will be called the x-reduction of M and will be

denoted by M, .
To make the notion of reducibility more clear, let us turn back our
previous example, where (z|x)(y) was the vector (xy,...,x,_1,y) for all

(r1,...,2,_1) € D" ' and y € D. Replacing the mean M by the arithmetic
mean A1 in (54), the equation (54) goes back to the form (51).

Here we also note that, in general, if an n-variable symmetric mean is re-
ducible for some injective function mapping Ny, to N,,, then it is also reducible
with respect to any injective N,,-valued function defined on the set Nj.

The next theorem establishes a crucial connection among the notions of
x-reducibility and x-continuity.

THEOREM 3.1. The mean M : D" — X is x-reducible provided that it is
X -CONtINUOUS.

PROOF. Let € D* be arbitrarily fixed and define the function My M -
conv(z(Ng)) — X as in (53). Obviously, the target set of m, s is
conv(z(Ny)), and, because of the y-continuity of the mean M, the function
mg pr is continuous on the compact convex set conv(x(Ny)). Thus, due to the
Brouwer Fixed Point Theorem, the fixed point set

Fix(mg ) := {y € conv(z(Ny)) | mz m(y) =y}

is nonempty. Define now K () to be any element of Fix(im, »s). Then, for all
x € DF, the vector y = K (z) will be a solution of (54), meaning that K is a
x-reduction of M. O

For the setting of unique y-reducibility, we shall need the following useful
lemma.

LEMMA 3.2. Let I C R be an interval, n € N, k € N,, and x :
N, — N, be an injective function. Assume that the Y-continuous mean
M : I™ — R is uniquely x-reducible. Then, for all x € I* and for all
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y € J, := [min(z), max(x)], we have
(55) sgn (man(y) = y) = sen(My(z) —y).

PROOF. Let x € I* be arbitrarily fixed. If min(z) = max(z), then the
statement is obvious, thus we may assume that min(z) < max(z). For the
sake of brevity, define

e (y) = men(y) —y

for y € J,. Then, due to the definition of the y-reduction of means, we have
pz i (y) = 0fory € J, if and only if y = M, ().

First assume that M, (x) belongs to the interior of J,. Because of
the mean-property of M, obviously, we have p, p(max(z)) < 0 <
piz s (min(x)). Then, because of the uniqueness of the zero of 1, 5 and of
the x-continuity of M on the interval J,, it immediately follows that p, p/
must be strictly positive on the subinterval [min(z), M, (z)[, and it must be
strictly negative on the subinterval | M, (), max(x)].

On the other hand, if either M, (z) = min(z) or M, (z) = max(z), then a
similar argument shows that the function i, 5 1s strictly positive on the inter-
val J, \ {min(x)} or it is strictly negative on the entire interval J, \ {max(z)},
respectively, which finishes the proof. 0

3.2. Reducibility of special mean values

Before we turn the most general setting, we demonstrate the reducibility of
some easy to use mean values. The following notation will be very useful. For
a nonempty set S and for u = (uq,...,u,) € S™ let u, stand for the k-tuple
(ts, - ty,) € S,

Concerning the y-reduction of a functionally weighted arithmetic mean,
which is a very special deviation mean, we have the following result. Roughly
speaking, the functionally weighted arithmetic mean is uniquely y-reducible,
for all injective function Yy, and the y-reduction is a functionally weighted
arithmetic mean again, where the weight functions are determined by the
members of the image of .

PROPOSITION 6. Let w : D — R} be a weight function. Then we have
A5 = A
PROOF. For the mean M = A“ and for x € D*, the equation (54) can be
rewritten as
Wy (T1)T1 + -+ wy, (Tn) T + (Zigx(Nk) wz(y))y B
wX1<x1) T Wy (xk) + Zigx(Nk) wl(y)
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It immediately follows that the unique solution y of this equation is of the form

_ wX1(I1)m1+"'+ka<x1)xk _ wy
Yy = _‘A (IE),
Wy, (T1) + -+ wy, (1)

which proves that A (7) = A“x(x). O

As we will see later, similar result remains true in the class of standard de-
viation functions. Instead of proving this directly, first we are going to extend
the notion of deviation means and then formulate the theorem concerning this
class. Before that, we present a uniquely reducible mean, where the reduc-
tion is of the same form, and which does not belong to the class of standard
deviation means.

Let s, > 0 be fixed real numbers and, for n € N, define

AED () = _ (s min(z) + Z £+ tmax(x)), (xelIm).

t
SHnt gex(Ny)

It is easy to see that the above expression indeed defines an n-variable sym-
metric mean on /. If s = t = 0, then it gives back the n-variable arithmetic

mean, and Agf’t) is not a deviation mean whenever s + ¢ > 0.

PROPOSITION 7. Let s,t > 0 be fixed numbers, n € N, k € N,,, and let
X : Ny — N, be any injective function. Then Aﬁf’t) is uniquely x-reducible

and its x reduction is A",

PROOF. If s = t = 0, then our statement is a direct consequence of
Proposition 6, hence we assume that one of them is different from zero. Let
x € I* be any point. Our mean is y-continuous, consequently, in view of
Theorem 3.1, it must be x-reducible. Thus let y € conv(xz(Ny)) be a solution
of the equation (54). Then, for M = A,(f’t), the equation (54) can be written in
the form

1

s+n+t

(smin( (Np) U {y}) + Z E+(n—k

gcx(Ny)
+ t max (z(Ny) U {y})) =

Because of the inclusion y € conv(z(Ny)), the singleton {y} can be omitted
in the argument of the minimum and the maximum. Thus we obtain that

smin(x) + Z £+ (n—k)y+tmax(x) = (s+n+1t)y,
£z (Ng)
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from where y can be expressed as

1
e <s min(x) + Z £+ tmaX(x)) = A,(:’t) ().
gex(Ny)
This finishes the proof. 0

3.3. Extension of Daroczy means and their reducibility

In the sequel, let X be a Hausdorf{f topological vector space over R. For an
arbitrary nonempty subset S C X, let S* denote the the space of all continuous
linear functionals defined on the linear hull of S —.S. In what follows, we shall
extend the notion of deviation function and deviation mean to convex subsets
of linear spaces.

Let D C X be a nonempty convex set. We say that a mapping £ : D X
D — D~ is a generalized deviation function if it satisfies the following two
properties:

(GEl) E(u,u) =0 forallu € D, and

(GE2) for all fixed v € D, the function v — —FE(u,v) is continuous and
strictly monotone on D, that is

(E(u,v) — E(u,w))(v —w) <0, (u,v,w € D with v # w).

The class of generalized deviation functions defined on D will be denoted by
E(D). Observe that the properties (1) and (2) imply that, for a generalized
deviation F € E(D), we always have

(56) E(u,v)(u—wv) >0, (u,v € D, u#v).

Now, using a finite collection of generalized deviations, we can define
means on the convex set D. In contrast to the definition of deviation means
(that are defined on real intervals), the notion of generalized deviation mean
will be defined by a system of inequalities.

Let £ = (Fy,...,E,) € E(D)". For x € D", we say that the vector
y € conv(z(N,,)) is the generalized E-deviation mean of x if

67 (Ba(eny) oo 4 Eu(wn,y) (@i —y) <0, (i € Ny).

If y € conv(z(N,)) exists and unique, then it will be denoted by D (z).
The next theorem states that the notion of generalized E-deviation mean
is well-defined.

THEOREM 3.3. Let n € Nand E € E(D)". Then, for all x € D", there
uniquely exists y € conv(xz(N,,)) such that the inequality (57) holds.
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PROOF. Let x € D" be an arbitrarily fixed vector and, for the brevity,
denote the compact convex set conv(z(N,,)) by C,, finally, let us define the
function €, : D — D* by (4). Then, by the defining properties of gen-
eralized deviations, the function —& , is continuous and strictly monotone.
Observe, that the real valued mapping ¢ : C, x C, — R, given by

d(u,v) == Egq(u)(v —u),

is continuous in its first variable, and, in view of the linearity of £, (u)(-) for
any fixed u € C,, itis affine, that is, it is convex and concave simultaneously in
its second variable. Thus, due to the Ky Fan Variational Inequality Theorem,
there exists y € C,, such that

sup Ep.(y)(v —y) = sup ¢(y,v) < sup d(w,w)

veCy veCy wECy
= sup Egq(w)(w—w)=0.
’LUECw
Thus, for every v € C,, in particular, for every v € {z1,...,x,}, we have

Epe(y)(v—y) <0.

This proves the existence of y € conv(x(N,,)) satisfying (57).
To prove the uniqueness, assume, indirectly, that there exist y # z in
conv(z(N,,)) satisfying (57). Then, for all i € N,,, we have

(58) Epa(y)(zi—y) <0 and Epa(2)(x; —2) <O0.
The vectors y and z belong to the convex hull of z(N,,), therefore there exist
convex combination coefficients A{,..., A, > 0 with \; +--- 4+ ), = 1 and

M1y -y > O with g + -+ - + g, = 1 such that
Y=MTy+ -+ A\, and 2 =[x+ -+ Ty,

Multiplying the first and the second inequalities in (58) by p; and \;, respec-
tively, and then adding up the inequalities so obtained, we get

Coa(y)(z—y) <0 and  Ep.(2)(y—2) <0
The sum of these two inequalities can be written as
(59) (Epa(y) — Epal2))(y — 2) 2 0.
On the other hand, using the strict monotonicity of (—Ep ), we obtain that
(€ps(y) — €pa(2))(y —2) <0,

which contradicts (59). This proves that the vector y € conv(z(N,,)), satisfy-
ing the inequality (57), has to be uniquely determined. U
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It is obvious that if X is the real line and D C R is an interval, then D* =
R, furthermore the notion of generalized deviation functions and generalized
deviation means reduces to that of deviation functions and deviation means,
respectively.

To see the statement about the means, letn € N, E' € E(D)", and x € D"
be arbitrary, and assume that min(z) < max(z). We need to show that the
value y € D is the solution of the equation (3) in D if and only if it is the so-
lution of the system of inequalities (57) in conv(z(N,,)) = [min(z), max(z)].

If the value y € D is the solution of (3), or, equivalently, it is the F-
deviation mean of z, then, the inequalities € g ,(min(z)) > 0 > €, (max(x))
show that y € [min(z), max(z)] and it trivially satisfies the inequalities of
(57), that is, the vector y is the generalized E-deviation mean of z.

Conversely, assume that y € [min(z), max(z)| is the generalized E-
deviation mean of x, which means, it is the solution of the system (57). Then,
in particular, we have

60)  Ep.(y)- (min(zr) —y) <0 and Eg,(y)- (max(x) —y) <O0.

If y were one of the endpoints of the interval [min(z), max(z)], say y =
min(z), then y < max(z), therefore the second inequality yields that
Er.(y) < 0. On the other hand, y < z; for all indices ¢ € N,,, and, for at least
one index j € N,,, we have that y < ;. Thus, for all 7 € N,,, the inequalities
Ei(z;,y) > 0 and E;(z;,y) > 0 hold. This implies that £ ,(y) > 0. The
contradiction so obtained shows that y must be greater than min(z). Similarly,
y must be lesser than max(z). Therefore, the two inequalities in (60) result
that € g . (y) is nonnegative and also non-positive. Consequently, we must have
Ep.(y) = 0, that is, y is the E-deviation mean of x.
Now we formulate the main theorem of Chapter 3.

THEOREM 34. Letn € N, k € N,, and let E € E(D)". Then the
generalized E-deviation mean DF : D™ — D is reducible with respect to
any injective function x : N, — N,,. Furthermore, the x-reduction of D¥ is
uniquely determined, namely we have

DY (x) = D" (x), (z € DF).

PROOF. Let z € D* be arbitrarily fixed and denote the value D¥x(z) by
yo. The property (1) of generalized deviations provides that

0 ifi € N, \ x(Ny),
Ei(zj,y) ifi € x(Ni)and i = x(j).

Ei((=]x) ()i y) = {
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Therefore,

Ee. o (W) = E1 ()W) y) + - + Eu((2][X)(%)n, v)

=By (r1,y) + -+ By (21,y) = €p,2(y).

In view of the definition of y-reducibility, we need to show that y = y is the
unique solution of the equation D¥ ((z|x)(y)) = y in conv(z(Ny)), that is,
y = 1o is the unique solution of the system of inequalities

En o W) (@) W) —y) = Ep 2(y) (X)) —y) <0, (i €N,).

The inequalities automatically hold when ¢ € N,, \ x(Ng), because in these
cases we always have (z|x)(y); = y, therefore the above system is equivalent
to

(61) Epya(y)(zi —y) <0, (i € Np).

In view of Theorem 3.3, the system of inequalities in (61) is uniquely solv-
able in conv(z(Ny)) and its solution y equals yo = DFx(z), which was to be
proved. U

3.4. Characterization of standard Dardczy means

In the theorem below, we construct the large class of generalized deviations
in terms families of relatively Gateaux differentiable strictly convex functions.
As a consequence of such a representation, generalized deviation means can
be viewed as the unique minimizers of certain strictly convex functions.

Given an arbitrary set S C X, a point u € S is called a relative algebraic
interior point of S if, forallv € S, theset {t € R | tv + (1 —t)u € S}isa
right neighborhood of 0 in R. The set S is said to be relatively algebraically
open if every point of S is its relative algebraic interior point.

A function f : S — R is called relatively Gdteaux differentiable at a
relatively algebraically interior point u of S if there exists a continuous linear
functional f’(u) € S* such that, forall v € S,

t—0t+ t
The notion of Gateaux differentiability with respect to a subspace of X (in our
case, with respect to the linear span of S — 5), was considered in the paper
[33].
We need the following auxiliary result, which is the adaptation of some
well-known theorems about convex functions to our setting.

—u).

THEOREM 3.5. Let D C X be a convex setand f : D — R be a relatively
Gdateaux differentiable function on D. Then the following statements hold.
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(1) D is relatively algebraically open and, for every uw € D, the relative
Gateaux derivative f'(u) is uniquely determined.

(2) The function f is convex if and only if
(63) f) = fu) + fw)w—u),  (uveD),

and f is strictly convex if and only if this inequality is strict whenever
u # .

(3) The function f is convex if and only if its Gdteaux derivative [’ is mono-
tone, that is,

(64) (f'(w) = f(W)(u=v) 20,  (u,veD),

and f is strictly convex if and only if this inequality is strict whenever
u # 0.

(4) If S C D is a nonempty convex set and f attains its minimum at u € S on
the set S, then

(65) f'(u)(v—u) >0, (ves),

Conversely, if [ is convex and (65) holds for some u € S, then f attains
its minimum at u on the set S.

PROOF. Let u be arbitrarily fixed in D). Then, because of the convexity
of D, forallv € D, we have [0,1] C {t € R | tv + (1 — ¢t)u € S}, which
shows that u is a relative algebraic interior point of D. Assume that f’(u)
is not uniquely determined, that is, there exists ¢, € D* such that, for all
ve D,

tl_lgi f(u—i_t(v_?tu))_f(u) :(p(v_u) :1/}<U—U).

Then, (¢ —¢)(v —u) = 0 forall v € D. Now, let h € D — D be arbitrary.
Then there exist v, w € D such that h = v — w, hence

(o =9)(h) = (¢ = ¥)(v —u) = (¢ = Y)(w —u) = 0.

Therefore, ¢ — 1 vanishes on the linear span of D — D, showing that ¢ = ).
To prove (2), assume that f is convex. Then, for all u,v € D, the map
t— +(f(u+t(v —u)) — f(u)) is nondecreasing, hence

70 - sty = L0 10— = 0
flu+to — ) - f(u)

> lim . = f'(w)(v —u),
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which gives (63). If f is strictly convex and u # v, then t — 1(f(u +
t(v—u))— f(u)) is strictly increasing, which results that (63) holds with strict
inequality.

For the converse, assume (63), and let u,v € D and ¢ € [0, 1] be arbitrary.
Then, based on (63), we get that

fu) > fltu+ (1 —t)v) + f(tu+ (1 —t)v)(u — (tu+ (1 — t)v))
= fltu+ (1 —t)v)+ (1 —t)f (tu+ (1 —t)v)(u —v),

fo) > fltu+ (1 =t)v) + f'(tu+ (1 — t)v)(v — (tu+ (1 — t)v))
= fltu+ (1 —t)o) +tf (tu+ (1 —t)v)(v — u).

Multiplying the first inequality by ¢, the second one by (1 — t), and adding up
the inequalities so obtained side by side, we get

tf(u) + (1 =)f(v) = f(tu+ (1 = t)v),

which proves the convexity of f. If (63) holds with strict inequality for u # v
and x # y, then the inequalities in (66) are strict for ¢ ¢ {0, 1}, hence we
obtain the strict convexity of f.

To prove the second assertion, assume again that f is convex. Then (63)
holds, thus, applying this inequality twice, we obtain that

f) = flu)+ fw)v—-v) and  flu) > f(v) + f'(0)(u—v)

for all u,v € D. Adding up these inequalities side by side, it results that (64)
is valid. If f is strictly convex and u # v, then (63) is strict, which yields that
(64) is also strict.

Conversely, assume (64) and, for u,v € D, define the function f,, :
[0,1] — R by

(66)

fup(t) == ftu+ (1 —t)v).
Observe that f,, is differentiable on [0, 1], furthermore the derivative f;, , :=
% fuv 1s nondecreasing. Indeed, a short calculation shows that

U,V - Ju,w t

Tt T—1

= f'(tu+ (1 — t)v)(u —v).

Now let ¢, s € [0, 1] such that ¢ # s. Then, due to (64), we have
0 < (t—s)(f/(tu+ (1= t)) — F/(su+ (1 - 5)0))(u — )
= (t = s)(fiu(t) = fuu(5)),

which implies that f, , is nondecreasing. We obtained that f,, , is convex for
any fixed u,v € D.
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Finally, let u,v € D and t € [0, 1] be arbitrarily fixed. Then we have the
calculation

f(tu + (1 - t)v) = fu,v(t) = fu,v(t 1+ (1 - t) ’ O)
< tfup(l) + (1= 1) fun(0) = tf(u) + (1 = 1) f(v),
consequently f is convex.

For the third statement, let S C D be a nonempty convex set and assume
that f attains its minimum on S at the point u € S. Then, for all ¢ € [0, 1] and
v € S, we have that f(u + t(v —u)) > f(u). Hence, in view of formula (62),
we get that f'(u)(v —u) > 0forallv € S.

Now assume that f is convex and, for some u € S, (65) holds. Then,
applying (63) for u,v € .S, we get

f) = fu) + fl(w)(v —u) = f(u).
This proves that f attains its minimum on S at the point u € S. O
To formulate the next theorem, let F(D) denote the class of real functions
F : D x D — R which possess the following property.

(F) For any fixed v € D, the function F, := F'(u, -) is relatively Gateaux
differentiable and strictly convex on D, furthermore the derivative F,
vanishes at u.

THEOREM 3.6. Assume that D C X is a convex set and let F' € F(D).
Then the function Er : D x D — D*, defined by
(67) EF(U, U) = —F;(U),
is a generalized deviation. Furthermore, if n € N, F € F(D)" and Er =
(Ep,,...,Ep,), then, for v € D", the equality y = DEr(x) holds if and only
if y is the unique minimizer over conv(x(N,,)) of the function Fr, : D — R
defined by
(68) Fra(v) = Fi(z1,0) + -+ Fp(x,0).

Conversely, if X is the real line and D is an open subinterval, then, for all
deviations E € E(D), there exists a function F € F(D) such that, for all
u €D,

(69) Fy(v) =—=E(u,v),  (veED)
is satisfied.

PROOF. First let F' € F(D) and define the function Er : D x D — D*
as in (67). We are going to show that E' is a generalized deviation. It only

suffices to verify the strict monotonicity of —FEr in its second variable. To
do this, let u,v,w € D such that v # w. According to the property (F) of
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F', the function F, is strictly convex on its domain, or equivalently, based on
Theorem 3.5, we have that

0 < (F(v) = Fy(w))(v — w) = =(Er(u,v) = Ep(u,w))(v — w).

Consequently, the function — Er(u, -) is strictly monotone on D.

Now letn € N, FF € F(D)", Er = (Ep,...,Ep,) and let x € D"
be arbitrarily fixed. The function Fr, : D — R, defined in (68), is con-
tinuous on the convex, compact set conv(x(N,,)), thus there exists a point
y € conv(x(N,,)), which minimizes Fr, on the set conv(z(N,,)). Moreover,
because of the strict convexity of Iz ,, the minimizer y has to be unique. Thus,
based on the last statement of Theorem 3.5, for all v € conv(z(N,,)), we have

0<TFr,(W)(w—y)=—(Ep(z1,y) + -+ Ep, (x0,9) (v — y).

In particular, this inequality holds also for all v € {zy,...,z,}. Because of
the uniqueness of the generalized Ep-deviation mean of = (cf. Theorem 3.3),
we must have y = DFr ().

Conversely, if

(B (21,9) + - + Ep, (20,9)) (v —y) <0

for all v € {xy,...,x,}, then this inequality is also valid for all v €
conv(z(N,,)). Hence, for all v € conv(z(N,)),

T (y)(v—1y) > 0.

In view of the reversed implication in the last statement of Theorem 3.5, this
implies that y is the minimizer of the function ¥, over the set conv(z(N,,)).

Let finally X be the real line and D C R be a subinterval, furthermore let
E € E(D) be a deviation and define the function F' : D x D — R by the

formula
v

(70) F(u,v) = —/E(u,t) dt, (u,v € D).

For all u € D, the function ¢ — FE(u,t) is continuous on D, thus, due to the
Fundamental Theorem of Calculus, F, is continuously differentiable on D,
and (69) holds. The strict decreasingness of £ in its second variable implies
that F is a strictly monotone and hence F, is strictly convex. Obviously we
also have that F (u) = —E(u,u) = 0 forall u € D. d

The following result offers the construction of families of strictly convex
functions in terms of two single variable functions. We recall that the unit ball
of a normed space (X, || - ||) is called strictly convex if ||z|| = ||y|| = 1 and
x # y implies that ||tz + (1 —t)y|| < 1 for all ¢ €]0, 1]. Observe that the strict
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convexity of the unit ball does not imply that the norm is a strictly convex
function, moreover, by the positive homogeneity, any norm cannot be strictly
convex.

PROPOSITION 8. Let (X, || - ||) be a normed space, assume that the unit
ball is strictly convex and the norm is Gateaux differentiable on X \ {0}.
Let further D C X be a convex set and w : D — R,. Then the function
F: D x D — R, defined by

(71) F(u,v) :=wu)|v —ul? (u,v € D),

satisfies property (F).

PROOF. Letu € D be fixed. To show that F), := F'(u, -) is strictly convex,
letv,w € D withv # w and ¢t €]0, 1]. Now, we distinguish two cases.

First assume that the vectors v — u and w — w are not parallel, that is, there
isnot € [0, 1] such that tv—u) = (1 —t)(w — u). Then non of them is zero,
furthermore = := Hv uH and y := W are dlstlnct unit vectors. Therefore,

by the strict convexity of the unit ball, we have that ||sz + (1 — s)y|| < 1 for
all s €]0,1[. Now, by also using the convexity of the square function, we get
F,(tv+ (1 = tHw) = w(u)||tv + (1 — t)w — ul|?
= w(w)[[t(v —u) + (1 = t)(w — w)|?
w(u) (o = ufl + (1 = #)[Jw — ul])*
H tllv — ull (1 —t)flw — ull
x

tlo —ull+ (@ =t)lw—ull  tv—ul + 1 =)w—ul

< w(w) (tllv = ull + (1 = ) = w]))*
< w(w) (v —ull® + (1 = t)lw — ul*) = tF.(v) + (1 = ) Fu(w).

2

Secondly, assume that v — v and w — w are parallel vectors. Then, the relation
v # w implies that ||v — u|| # ||w — u||. Thus, by the subadditivity and the
positive homogeneity of the norm, and by the strict convexity of the square
function, we get that

Fu(tv + (1 = thw) = w(u)|lt(v —u) + (1 = ) (w — u)|*

< w(u)(tv —ul| + (1 = t)|Jw — “”)
< w(w) (o —ul® + (1 = t)[Jw — ul?)
= tF,(v) + (1 = t)Fy(w).
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To check the Giteaux differentiability, denote p(x) := ||z|| and letv € D\ {u}
and h € X. Then

F,(v+th) — F,(v)

F!(v)(h) = lim

t—0t t
o 9o+ th = ul? = w(wl — u)?
t—0t t

p(v —u+th) —p(v —u)
t

= w(u) tl_i)r(% (Jlv+th —ul| + [[v — ul|)
= 2w(u)|lv — ullp' (v — u)(h).

Therefore, for u # v, we get I (v) = 2w(u)||v — u||p'(v — u).
On the other hand, for v = u, we have

F!(u)(h) = lim Fy,(u+th) — F,(u)

t—0+ t
2 2
el — w(]o]
t—0+ t
t2||h||?
= w(u) lim al Ll =0,
t—0+ t

which proves that F! (u) is identically zero. This completes the proof of prop-
erty (F). O

Let (X, (-,-)) be an inner product space over R, D C X be a nonempty
convex set, and w : D — R,. Then, by the previous result, the function
F : D x D — R, defined by (71), belongs to F(D) and, for all u,v € D, we
have

(72) = —2w(u)llv = ullp'(v — u)(h)

for all h € X. Now we can explicitly compute the generalized deviation
mean generated by such generalized deviations. Letn € N, wy,...,w, :
D — Ry and Fi,...,F, : D x D — R be functions, defined as in (71)
using the weight functions wy, . ..,w,, respectively, furthermore let Frp =
(EF1> ey EFn) Then

- Wl(xl)xl +---+ wn<xn)xn

'DEF (I) wl(xl) T wn(xn)

= A°(z),  (x€D").
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Indeed, for x € D™ and h € X, with the notation y := A“(x) € conv(z(N,)),
we have
(Er(z1,y) + -+ + Ep, (20, y))(h)

= 2(wi(z){@r =y, h) + - + walan)(@n — y, 1))

= 2wy (z1)x1 + -+ + wal(Tn) T — (wWi(z1) + -+ + wp(xn))y, ) = 0.
In particular, this equality holds also for h € {z1,...,z,} — y, thus we must
have y = DEr (x).

On the other hand, by Theorem 3.6, the vector y = A“(x) is the unique
minimizer of the function
Fra(v) i = Fi(z1,0) + -+ Fo(@,,v)
= wi(z1) ]|z = ol* + -+ w2 — )%,

that is, y is the weighted least square approximant of the elements
X1y, Ty € D.

3.5. Reducible inequalities involving means

In this section we consider convexity properties, comparison and Holder—
Minkowski type inequalities and establish their reducibility. Let D C X be
a nonempty convex set, n € Nandlet M : D" — X and N : R® — R be
means. We say that a function f : D — R is convex with respect to the pair of
means (M, N) on D or, shortly, that f is (M, N)-convex on D if

(73) (foM)(z) < N(foz), (zeD"),
that 1s, if we have

F(M(z1,...,2,)) S N(f(21), ..., f(zn)), (x1,...,2, € D).

THEOREM 3.7. Let D C X be a nonempty convex set, I C R be an
interval, n € N, k € N,,, and let x : N, — N,, be an injective function. Let
further M : D" — X and N : I" — R be means such that M is x-reducible
and N is x-continuous and uniquely x-reducible. If a function f : D — [ is
(M, N)-convex, then it is also (K, N, )-convex for all x-reduction K : D* —
X of the mean M.

PROOF. Let f : D — I be an (M, N)-convex function, K : D™ — X be
any y-reduction of M and let z € D* be arbitrarily fixed. Denote y := K (z).
Then, because of the definition of y, we have M ((z|x)(y)) = y. Using this,
the (M, N)-convexity of f, and the notation (53), we obtain that

)= (fo M)((zIx)(®) < N(f((=)(®))) = mpoan(f(¥)),
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which is equivalent to the inequality

0 <myoun(f(y) — fy).

Due to the y-continuity and to the unique Yy-reducibility of N, using
Lemma 3.2, it immediately follows that f(y) < N,(f o z) holds, that is

(f o K)(z) < Ny(f o).
Consequently, f is (K, N, )-convex on its domain. O

The subsequent corollaries immediately follow from the theorem above,
from Proposition 6 and from Theorem 3.4.

COROLLARY 3.8. Let D C X be a nonempty convex set, I C R be an
interval and n € N. Let further w : D — R} and £ : I x I — R" such
that E; is a deviation for all i € N,,. If a function f : D — I satisfies the
n-variable inequality

f(fl“’(acl,...,xn)) < DE(f(xl),...,f(xn)), (x1,...,2, € D),

then, for all k € N,, and for all injective function x : N, — N,, it also satisfies
the k-variable inequality

FAX (@1, .. ) < DP(f(z1),.. ., f(zw)), (x1,...,2 € D).

COROLLARY 3.9. Let D C X be a nonempty convex set, I C R be an
interval and n € N. Let further G : D x D — (D*)"and E : I x I — R"
such that G; is a generalized deviation and E; is a deviation for all i € N,,. If
a function f : D — I satisfies the n-variable inequality

F(D (1, 2)) < DP(f(21),- .., flzn)), (x1,...,2, € D),

then, for all k € N,, and for all injective function x : N, — N,, it also satisfies
the k-variable inequality

F(DX (21, .. ay)) < DPx(f(zr), ..., fzw)), (z1,...,7 € D).

REMARK. Obviously, if, for all i € N,,, we have w; = 1 and F;(u,v) :=
u — v for all u,v € I in Corollary 3.8, or if X is an inner product space, and,
for all i € N,,, we have G;(z,y)(-) := (z — y,-) and E;(u,v) := u — v for
all z,y € D and for all u,v € I, respectively, in Corollary 3.9, then, in both
cases, we get back the reducibility of the Jensen inequality.

In particular, by applying the previous corollary to the function f(z) =
x, we immediately obtain the following consequence for the comparison of
deviation means.
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COROLLARY 3.10. Let I C R be an interval and n € N. Let further
G,E : I x I — R" such that GG; and E; are deviations for all i € N,,. If the
n-variable inequality

D (z1,. .., 1) < DF(2q,...,2,), (x1,...,2, € D)

holds, then, for all k € N,, and for all injective function x : N, — N,,, we also
have the k-variable inequality

D (21, ... ) < DEx(2q,..., 2p), (x1,...,2x € D).

The following result establishes the reducibility of an abstract Holder—
Minkowski type inequality.

THEOREM 3.11. Let Xy,..., X, be real Hausdorff topological linear
spaces, let Dy C Xy,...,D, C Xy be nonempty convex sets and I C R
be an interval. Letn € N, k € N, and let x : N, — N,, be an injective
function. Let Ny : DY — Xi,..., Ny : D} — X, be x-reducible means and
let M : I — R be a x-continuous, uniquely x-reducible mean. If a function
f Dy x---x Dy — I satisfies the n - (-variable inequality

(74) M(f(xl,...,xe)) < f(N1<I'1),...,Ng(l’€))

for all z* € Dy},... 2% € D}, then, for any x-reductions K, : Df —
Xi,...,K¢: DY — X, of Ny,..., N, respectively, it also fulfills the k - (-
variable inequality

(75) M (fa!,...,2%) < f(Ki(2h), ... Ko(a"))

forallz* € DY, ... x* € D¥ where, form € Nand x* € D", ... 2" € D",

we denote

flat, o2 = (flad, . 2t ), ).

PROOF. Let zt € D}, ... 2* € D} be arbitrarily fixed, K, : D} —
Xi,...,Ky : Db — X, be any x-reduction of Ny, ..., Ny, respectively, de-
note u; := Ky(a'),...,u, := K,(x*), finally let u := (uq,...,u,). Using
inequality (74), we get

M((f(',. . a)X)(f(w)) < F(N(( ) (), -, Ne((@]x) ()
F(E(2h), .. Ko(a")) = f(u),

that is, the inequality

Myt am(F(W) = f(u) = M((f(2,...,2"))(f(w)) — f(u) <0
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holds. The mean M is y-continuous and uniquely y-reducible, thus, using

Lemma 3.2 for the vector z := f(z',... 2% and for y := f(u), we obtain
that
M (f(2,....a")) < flu) = F(Ki(a), ..., Kula®),

which finishes the proof. U

To derive various consequences of Theorem 3.11, one can specialize the
means M and Ny, ..., N, by letting them equal to weighted arithmetic mean
or to a generalized deviation mean. Then the two choices f(z!,...,2%) =
ot + .-+ xfand f(2!, ..., 2%) ;= 2! - .- 2% result inequalities of Minkowski

and of Holder type, respectively.



Summary

In the sequel, I am going to sum up the main areas which are touched
by my dissertation and, in parallel, I also describe the most important related
results. The motivation of our investigations was served by the following es-
sential result from the theory of standard convexity of real valued functions,
which is originally due to Johan Jensen.

THEOREM. (Jensen, 1906) Let X be a linear space and D C X be a
nonempty convex subset. Then the following statements are pairwise equiva-
lent.

(1) The function f : D — R is Jensen convex.

(2) For any given positive integer n € N, the function f : D — R fulfills
the n-variable Jensen Inequality, that is, for all x4, ...,x, € D, we
have

f(901 + n +$n> < fla1) + n + fzn)

(3) The function f : D — R is rationally convex on D, that is, for all
r € [0,1] N Q and for all x,y € D, we have

flre+ (1 =r)y) <rf(z)+ 1 -7)f(y).

Among others, this result has two crucial message for us. According to
this, my dissertation can be divided in two main parts.

e First Part. Here we were concentrating on the connection between the
statements (1) and (3). In view of this, having the inequality of the standard
convexity with the weight %, that is, having the Jensen inequality for some
real valued function, we can conclude its rational convexity. This immedi-
ately yields some crucial properties of the convexity parameter set of a Jensen
convex function. Namely, it follows that is must be at least a countable (cardi-
nality property) and dense (topological property) subset of [0, 1], furthermore
it contains the intersection of the field of rational numbers and [0, 1] (alge-
braic property). The full characterization of the convexity parameter set is due
to Norbert Kuhn.
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THEOREM. (Kuhn, 1984) For any function f : I — R, the convexity
parameter set Cy is either {0, 1} or it can be written as F' N [0, 1], where F is
the subfield of R generated by Cy.

In the first part of the dissertation, related to a generalized notion of con-
vexity of extended real valued functions, we are going to formulate Kuhn type
theorems. Now we turn to the detailed explanation of the different sections.

In Capter 1., we explain the notion of mean values and the most important
types of classes of means what we will need for our purposes. Then we for-
mulate the main tools from linear algebra and fixed point theory what will be
used in the further steps. Finally we state our main results about deriving new
means from given ones and apply them for the class of Matkowski means.

The main notion of this chapter is the descendant of a mean. Theorem 1.7
provides that this notion is well-defined assuming, among others, that the orig-
inal means are continuous.

The following theorem states that the descendants of a chain of weighted
quasi-arithmetic means with the same generator function always exists, they
are uniquely determined, and are also weighted quasi-arithmetic means. As
one can see, the generator function is the same and the weights of the descen-
dants can be directly calculated using the original weights.

THEOREM. Let n > 2, s1,...,8, €|0,1], and h : I — R be a con-
tinuous, strictly increasing function. For (x,y) € I2%, define the function
Play) © [T,y — R™ as in (19) using the means M; := MEh(1=301) yyhere
i € {1,...,n}. Then, for all (x,y) € I2, the fixed point set O, is the
singleton {(M("lh’ (A=e)h) (3, y), ..., M@k (=an)h) (g y)) }, where

(an—sk)(;ﬂ;ﬁpsk)_ (e {l,...,n})

7=t k=1 k=1

In general, having proper Matkowski means (that is, not necessarily
weighted quasi-arithmetic means), the calculation of the descendants might be
difficult. However, assuming some relations between the generator functions
the task can be done using a two way recursion.

THEOREM. Letn > 2,j € {l,...,n}andp,q,h1,...,hy_1: I — Rbe
continuous, strictly increasing functions, furthermore set hy := h,, := 0. For
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(z,y) € I2, define the mapping Play) * 2 y]’% — R"™ by (19), using the means
M pthi-1,hi) ifie{l,...,j—1},
M; = { MP+hi—1;hit+aq) ifi =7,
N (hi-1, hita) ifie{j+1,...,n}

Then, for (z,y) € I2, the fixed point set ¥, defined by (20) is the singleton
{(&,...,&)}, where & := MP9(x,y) and the rest of the coordinates are
defined by the two-way recurrence

N L G AL I
v M(hi717Q)(€i_17y) le - {j+1,,..,n}.

In Chapter 2., we introduce and also characterize the concept of lower
and upper M -convex functions, we apply our previous results, and investigate
the algebraic and topological properties of their generalized convexity classes.
Then, taking the special subclass of asymmetrically t-convex functions, we
formulate also the counterpart of Kuhn’s Theorem.

It follows from Kuhn’s theorem that the standard convexity set is closed
under taking convex combinations weighted with its elements. The following
proposition generalizes this statement.

PROPOSITION. Let f : I — R be any function and let M € {Mf,ﬂf}.
Then the following statements hold.

(a) If M, N1, Ny € M with Ny < N5 on the set ]3, then M o (N1, Ny) € M.
(b) If M, N € M, then the compositions M o (min, N) and M o (N, max)
also belong to the family M.

Similarly to the standard case, a topological property can be derived from
the above proposition.

COROLLARY. Let f : I — R be any function, define

M = {M € M, | M is separately continuous in both variables},

M} = {M € M; | M is separately continuous in both variables},

and, finally, let M* € {M}Z,m;} Then M* has no isolated points with
respect to the pointwise convergence, more precisely, for all M € M, there
exist sequences of means (Ly,), (U,) C M* such that L,, < M < U,, whenever
n € N, furthermore L, — M and U, — M pointwise on the set I? as
n — oo.
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Using the results earned in the previous sections, it can be proved that the
lower convexity class is always closed under taking the descendants. This is
not true in the case of upper convexity.

THEOREM. Let f : I — R be any function, n > 2, furthermore
My,..., M, € M, be continuous means. Then D;(My,...,M,) C M,
forallie {1,...,n}.

Assuming that the lower convexity class contains certain type of
Matkowski means, we get the following consequences.

COROLLARY. Let f : [ — R, n > 2, s1,...,5, €]0,1[, and finally
h : I — R be a continuous, strictly increasing function. Assume further that
Mih-(U=sdh) e M for all i € {1,...,n}. Then, for all i € {1,...,n},
the Matkowski mean M@ 0=9)h) qlso belongs to the family M > where the
weight o; is defined as in (28) forall i € {1,...,n}.

COROLLARY. Let n > 2, p,q,h1,...,hn1 : I — R be continuous,
strictly increasing functions and f : I — R. Set further hy := h, := 0
and assume that there exists j € {1,... ,n} such that, forall i € {1,... ,n},
the mean M; defined by

MPhi—vhi) g e {1,005 — 1},
M; = N (pt+hi-1,hj+q) le =7,
MPi-vhita) gfi e {j+1,...,n}
is contained in Mf. Then Ny,...,N, € Mf, where, for all (z,y) € I%,

M®h) (2, Niy (2, y))  ifie{l,...,5—1},
Ni(z,y) = { M09z, y) ifi=j
M- O(N;_y(z,y),y) ifi€{j+1,...,n}.
Turning to the notion of asymmetrical convexity, the related lower and up-
per convexity classes can be identified with suitable subsets of the open unit
interval. In this case the statements about the algebraic and topological struc-
ture became more transparent. We obtain the special convexity property of the

parameter set. It turns to be closed under the multiplication of its elements and
we also get its density in |0, 1].

THEOREM. Let f : I — R be any function and AC € {&f,ﬁf}. Then
the following statements hold.
(1) If t, s1, 82 € AC with s1 < s, thentsy + (1 —t)s; € AC.
(2) Ift,s € AC, thentsand 1 — (1 — t)(1 — s) also belong to AC.
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(3) The set AC is dense in the open unit interval, provided that it is
nonempty.

Applying our general results obtained for Matkowski means, we earn the
following corollaries.

COROLLARY. Let I C R be an interval, f : I — R n > 2and
81,50 € AC;. Then o; € AC; foralli € {1,...,n}, where

i -= (iﬁ 1 iksk) (iﬁ 1 iksk)_l'

j=i k=1 §=0 k=1

COROLLARY. For a function f : I — R the following statements hold.
(1) If1/2 € AC then QnNJo,1[C AC,.

(2) If t/m € AC; for some £, m € N with { < m and 2( % m, then, for
alln > 2 and foralli € {1,...,n}, the fraction

o gn—l—l _ gz(m _ g)n—i—l—i
Ti = fn+1 (m _ g)n+1

belongs to AC,.

Finally, we construct a proper upper asymmetrically convex extended real
valued function whose parameter set contains rational (and hence algebraic)
numbers, is dense in [0, 1] but it fails to be an intersection of a field and the
open unit interval. An other example having similar behavior was given by
Lewicki and Olbrys concerning transcendental parameters and the real valued
case. The existence of a real valued function with the same property under
algebraic parameters forms still an open problem.

THEOREM. Let I C R be a subinterval with a = supl € INQq, C
I — R be any convex function, and define f : [ — R by

fl) {C(az) ifr € (INQp) U {a},
+oo  ifxel\(QyU{a}).

Then, for all t €10,1[NQ, the function f is upper A-convex but it is not
upper Ai_-convex.

COROLLARY. Keeping the above notation and conditions, Rf is not

closed under addition, consequently it cannot be written as an intersection
of 10, 1] and a proper subfield of R.
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e Second Part. The second part of the dissertation generalizes and in-
vestigates the statement about the equivalence of (1) and (2). The original
assertion provides that, having the Jensen inequality of n variables with fixed
positive integer n > 2 for a real function, its Jensen convexity can be deduced.
Obviously, the statement is interesting only when n > 2. In view of our ter-
minology, this means that the n variable Jensen inequality is reducible. The
calculation in the proof of the theorem shows that this depends strongly on the
reducibility of the mean in background, namely of the arithmetic mean.

In Chapter 3., we formulate precisely the notion of reducibility of general
mean values. The main theorem of this part, which gives a sufficient condition
for being reducible, is the following.

THEOREM. The mean M : D" — X is x-reducible provided that it is
X -CONLiNUOUS.

After this, generalizing widely the well-known means, we introduce the
notion of generalized deviation means on topological vector spaces of Haus-
dorff type. These means naturally turned out to be reducible. Moreover, the
reductions belong to the same class and the generators can be easily given
using the original ones.

THEOREM. Letn € N, k € N,,, and let E € E(D)™. Then the generalized
E-deviation mean D : D" — D is reducible with respect to any injective
function x : N, — N,. Furthermore, the x-reduction of DF is uniquely
determined, namely we have

DY (x) = D (x), (z € DF).

In the Section 3.4. of Chapter 3., we also characterize the generalized devi-
ation means using relatively Gateaux-differentiable strictly convex functions.

THEOREM. Assume that D C X is a convex set and let F' € F(D). Then
the function Er : D x D — D*, defined by

Er(u,v) = —F.(v),

is a generalized deviation. Furthermore, if n € N, F € F(D)" and Er =
(Ep,,...,Ep,), then, for v € D", the equality y = DFr (x) holds if and only
if y is the unique minimizer over conv(x(N,,)) of the function Fp, : D — R
defined by
Fro(v) == Fi(x1,0) + - - + Fo (2, v).
Conversely, if X is the real line and D is an open subinterval, then, for all
deviations E € E(D), there exists a function F € F(D) such that, for all
ue D,
F!(v) = —E(u,v), (ve D)
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is satisfied.

In the very last section we are dealing with the reducibility of the notion
of (M, N)-convexity of real functions, which is a self-evident generalization
of the Jensen convexity; one can obtain it by replacing the arithmetic mean on
the left hand side and on the right hand side by the general mean values M
and NV, respectively. As in the standard case, its reducibility depends strongly
on the reducibility property of the mean values what are involved, namely of
M and N.

THEOREM. Let D C X be a nonempty convex set, I C R be an interval,
n €N, k eN,, andlet x : N, — N,, be an injective function. Let further
M : D" — X and N : I — R be means such that M is x-reducible and N
is x-continuous and uniquely x-reducible. If a function f : D — I is (M, N)-
convex, then it is also (K, N, )-convex for all x-reduction K : D* — X of the
mean M.

Applying this result, we immediately get the following consequences,
which concern special mean values instead of general ones.

COROLLARY. Let D C X be a nonempty convex set, [ C R be an interval
andn € N. Let further w : D — R and E/ : I x I — R" such that E; is
a deviation for all 1 € N,,. If a function f : D — [ satisfies the n-variable
inequality

FA“ (21, .. mn)) < DP(f(2a), ..., flza)), (x1,...,2, € D),

then, for all k € N,, and for all injective function x : Ny — N,,, it also satisfies
the k-variable inequality

f(AwX(xl, o ,xk)) < @Ex(f(xl), . ,f(xk)), (x1,...,2x € D).

COROLLARY. Let D C X be a nonempty convex set, I C R be an interval
andn € N. Let further G : D X D — (D*)" and E : I x I — R" such that
G, is a generalized deviation and E; is a deviation for all i € N,,. If a function
f D — I satisfies the n-variable inequality

F(D (21, 2)) < DP(f(21),- .., flzn)), (x1,...,x, € D),

then, for all k € N,, and for all injective function x : Ny — N,,, it also satisfies
the k-variable inequality

F(D(zy, ... 2)) < D(f(a1),. ... flan)), (z1,...,7 € D).

COROLLARY. Let I C R be an interval and n € N. Let further G, E :
I x I — R" such that G; and E; are deviations for all i € N,,. If the n-variable
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inequality
D (21, .., 2,) < DF(21,...,2,), (x1,...,x, € D)
holds, then, for all k € N,, and for all injective function x : N, — N,,, we also
have the k-variable inequality
DG (24, .., x5) < DEx(zy, ..., 1), (x1,...,2x € D).

Finally we also establish the reducibility property of an abstract version of
a Holder-Minkowski type inequality.

THEOREM. Let Xy, ..., Xy be real Hausdorff topological linear spaces,
let D1 C X4,..., D, C Xy be nonempty convex sets and I C R be an interval.
Letn € N, k € N, and let x : N, — N,, be an injective function. Let N :
DY — Xi,...,Ng: D} — X, be x-reducible means and let M : I" — R bea
x-continuous, uniquely x-reducible mean. If a function f : Dy X ---x Dy — I
satisfies the n - (-variable inequality

M(f(z',....2%) < f(Ni(2h),..., Ne(2h)), (' e D,... 2" € DY),

then, for any x-reductions K, : DY — Xy,...  K;: D} — X, 0f Ny,..., N,
respectively, it also fulfills the k - (-variable inequality

My(f(s',...,2%) < F(Ki(2), ... Kua®),  (s' € Dk,....a" € DE),
where, form € Nand x' € D7, ... x* € D", we denote

flat, o2 = (fl, ), fal L al).



Osszefoglalé (Summary in Hungarian)

Az aldbbiakban néhany oldalon 6sszefoglalom azokat a t¢émakoroket, ame-
lyekkel a disszertaciom foglalkozik és, ezzel parhuzamosan, felsorom a kapc-
so0l6d6 fontosabb eredményeket. A vizsgdlatainkat Johan Jensen kovetkezd,
a valos fliggvények konvexitdsi elméletében alapvetdnek szamitd eredménye
motivalta.

TETEL. (Jensen, 1906) Legyen X valos vektortér és D C X nemiires,
konvex részhalmaz. Ekkor az aldbbi dllitdsok pdronként ekvivalensek.

(1) Az [ : D — R fiiggvény Jensen-konvex.

(2) Bdrmely rogzitettn € Nesetén, az f : D — R fiiggvény eleget tesz az
n-vdltozos Jensen egyenlétlenségnek, vagyis, barmely x4, ..., x, €
D esetén, fenndll az

f<x1—|-"'+flfn> Sf(x1)++f(xn)

n n

egyenlotlenség.

(3) Az f : D — R fiiggvény raciondlisan konvex az értelmezési tar-
tomdnydn, vagyis, barmely r € [0,1] N Q sily és x,y € D pontok
esetén

flra+ 1 =r)y) <rf(x)+ 1 —=7)f(y).

A fenti tételnek, tobbek kozott, két fontos iizenete van. Ennek
megfelelGen, témadjat tekintve, a disszertcio is két nagyobb részre bonthatd.

e Els6 rész. Ebben a részben az (1) és (3) allitasok kozotti kapcsolatot emel-
ném ki. Ennek értelmében, ha egy valdés értékid fliggvény % sullyal stan-
dard értelemben konvex, tehat Jensen konvex, akkor racionalisan is konvex.
Ebbdl az allitdsbol rogton kovetkezik a Jensen konvex fiiggvények konvexitasi
paraméterhalmazanak tobb 1ényeges tulajdonsaga. Nevezetesen, a konvexitasi
paraméterhalmaz egy legaldbb megszamlalhat6 (szdmossdgi tulajdonsdg) str
(topologikus tulajdonsdg) részhalmaza a [0, 1] intervallumnak, tovabb4 tartal-
mazza a raciondlis szamok testének [0, 1] intervalumba ess szeletét (algebrai
tulajdonsdg). A paraméterhalmaz jellemzése Norbert Kuhn nevéhez ftiz6dik.
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TETEL. (Kuhn, 1984) Adott f : I — R fiiggvényre, a Cy konvexitdsi
paraméterhalmaz vagy a trividlis {0, 1} halmaz vagy felirhaté F N |0, 1] alak-
ban, ahol F a legsziikebb Cy-et tartalmazo részteste R-nek.

A disszertici6 els6 részében Kuhn eredményéhez hasonl6 tételeket fogal-
mazunk meg egy, bovitett valos értékd fiiggvényekre bevezetett, dltalanositott
konvexitasi fogalom mellett. Most ratériink az egyes alfejezetek részletesebb
ismertetésére.

Az elsd alfejezetben definidljuk a kozépérték fogalmat és a fontosabb kozé-
posztalyokat, amelyekre a késGbbiekben sziikségiink lesz. Ezutdn megem-
litink héhdny nélkiilozhetetlen eszkozt a linedris algebrabdl és a fixpon-
telméletb6l. Végiil megfogalmazzuk a kozepek szdrmaztatdsara vonatkozo
fébb eredményeinket és alkalmazzuk ket a Matkowski kozepek osztdlyara.

Az alfejezet kozponti fogalma egy kozép leszdrmazottjainak osztdlya. Az
1.7 Tétel biztositja, hogy joldefinidlt fogalomrél van sz6, amennyiben, ne-
hany tovébbi feltétel mellett, feltessziik, hogy az eredeti kozepek folytonosak
voltak.

A kovetkezd tétel kimondja, hogy silyozott kvaziaritmetikai kozepek es-
etén a szarmaztatott kozepek mindig 1éteznek, sulyozott kvaziaritmetikaiak
maradnak az eredeti generatorfiiggvénnyel, €s hogy az 1j stulyok a régiek segit-
ségével egyértelmiien szamolhatdak.

TETEL. Legyen n > 2, $1,...,5, €]0,1[ és h : I — R folytonos, szig-
oriian nové fiiggvény. Adott (x,y) € I2 esetén, legyen o, : [z,y]% — R"
a (19) képlet alapjdn definidlt fiiggvény, ahol M; = MEh0=s0h) pg i ¢
{1,...,n}. Ekkor, bdarmely (x,y) € I2 esetén, a P, fixpontok halmaza
megegyezik az {(M("lh’(lf"l)h)(x, Y),. .., Mok (=en)h) (3 y))} egyelemii
halmazzal, ahol

(ZH 1_Sk)(i£[1i’“8k>_l, (i€ {l,...,n}).

7=t k=1

Altaldnos esetben, ha a kozepeink nem feltétleniil silyozott kvéziar-
itmetikaiak, a leszarmazottak szamolasa nehézkessé, sot, esetenként akar
lehetetlenné is valhat. Kideriil azonban, hogy ha a generatorfiiggvények
két elére megadott fiiggvény specidlis eltoltjai, akkor a leszarmazottak egy
kétirdnyu rekurzi6 segitségével konnyen leirhatok.

TETEL. Legyenn > 2,j € {1,...,n}ésp,q,hi,...,hn_1: 1 — Radott
folytonos, szigoriian novo fiiggvények, tovabbd legyen hy := h, := 0. Adott
(z,y) € 12 pdr esetén, legyen () - [x,y]% — R™ az (19) szerint definidlt



75

fiiggvény, tigy, hogy
MPthiz1,hi) haie{1l,...,j—1},
M, = M(p‘f‘hiflyhi'f‘Q)’ hai=j,
M (him1shita) haie{j+1,...,n}.

Ekkor, barmely (z,y) € I2 esetén, a @, ) fixpontok halmaza megegyezik a
{(&, ..., &)} egyelemii halmazzal, ahol &; := MP9 (., y), tovdbbd

3 MEP) (2, &41),  hadi€{l,....j 1},
o M9 (& 1 y), haie {j+1,...,n}.

s

A maésodik fejezetben definidljuk és jellemezziik bovitett valos értéki
fiiggvények also- és felsd konvexitdsdt egy adott M kozépre vonatkozoan.
Bevezetjiik a kapcsolddo konvexitdsi osztdlyokat és megvizsgaljuk algebrai
€s topologikus tulajdonsdgaikat. Végiil, attérve az aszimmetrikus konvexitds
specidlis esetére, megfogalmazzuk és bizonyitjuk Kuhn tételének ellenpdrjdt
is.

Kuhn tételébdl kovetkezik, hogy a standard konvexitdsi paraméterhalmaz
zart a sajat elemeivel sdlyozott konvex kombindcidk képzésére nézve. A

7 2

kovetkezd allitas ezt az eredményt dltaldnositja.
ALLITAS. Legyen f : I — R adott fiiggvény és M & {Mf,ﬂf}. Ekkor

az alabbi dllitdsok igazak.

(a) Ha M, Ny, Ny € M és Ny < Ny az I2 halmazon, akkor M o (Ny, Ny) €
M.

(b) Ha M,N € M, akkor az M o (min, N) és M o (N, max) kompozicick
ismét az M osztdlyhoz tartoznak.

A standard esethez hasonldan, topologikus tulajdonsag szdrmaztathat6 a
fenti eredménybdl.

KOVETKEZMENY. Legyen f : I — R esetén
M = {M € M, | M szepardltan folytonos},

M; = {M € M; | M szepardltan folytonos?},

és M* € {M3, M}} Ekkor az M* osztdlynak, a pontonkénti konvergencidra
nézve, nem létezik izoldlt pontja. Pontosabban fogalmazva, barmely M € M*
kozép esetén, léteznek kozepeknek olyan (L), (U,) C M* sorozatai, hogy
L, < M < U,, valahdnyszor n € N, tovdbbd L, — M és U, — M
pontonként az i halmazon, ha n — oo.
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Az elézoekben elért eredményeket felhasznélva, bizonyithat6 az alsé kon-
vexitési osztaly leszdrmazottakra val6 zartsdga. Felsé konvexitds esetén ez az
allitds nem marad érvényben.

TETEL. Legyen f : I — R adott fiiggvény, n > 2, tovdbbd legyenck
M, ..., M, € M, folytonos kozepek. Ekkor Di(M, ..., M,) € M, min-
deni € {1,...,n} esetén.

Feltéve, hogy az alsé konvexitasi halmaz specidlis Matkowski kozepeket
is tartalmaz, az aldbbi kovetkezmények vezethetdk le.

KOVETKEZMENY. Legyen f : I — R, n > 2, s1,...,5, €]0,1[ és,
végiil, legyen h : I — R folytonos, szigoriian nové fiiggvény. Tegyiik fel,
hogy MGt (1=s0h) " M minden i € {1,...,n} esetén. Ekkor, minden
i € {1,...,n} indexre, a M@" 0=00h) Matkowski kozép tagja az M, osztdly-

nak, ahol a o; sily (28) médon szdmolhaté értelmezve minden i € {1,... n}
esetén.
KOVETKEZMENY. Legyen n > 2, p,q,hy,...,h,—1 : I — R folytonos,

szigortian novd fiiggvények és f : I — R. Legyen tovabbd hy = h, =
0 és tegyiik fel, hogy létezik olyan j € {1,...,n} index, hogy, minden i €
{1,...,n} esetén az

MPthiovhi) - pgie {1,...,5— 1},

M; := { MPHhi-uhita) - pg g = j,

Mbi-vhitd) - hgie {j+1,...,n}
kozép az M, osztdlyhoz tartozik. Ekkor Ny,..., N, € M, ahol, barmely
(z,y) € IZ pontra,

M®Phi)(z Ny (z,y),  haie{l,...,5—1},
Ni(z,y) =  MP 9 (z,y), hai=j
M(hFl,Q)(Ni_l(x’y)?y), hai € {j—f—]_,,n}

7 2z

Attérve az aszimmetrikus konvexitds fogalmara a felsé és als6 konvexitdsi
osztilyok beazonosithatéak a [0, 1] intervallum valamilyen alkalmas részhal-
mazaval. Ekkor az algebrai és topologikus tulajdonsagokrdl sz6l6 tételek még
kifejez6bbek lesznek. Megkapjuk a paraméterhalmaz specidlis konvexitasat, a
szorzdsra valo zartsagét és a slirliségi tulajdonsédgot is.

TETEL. Legyen f : I — R és AC € {ﬂf,ﬁf}.
(1) Bdrmely t, sy, ss € AC esetén tss + (1 — t)s; € AC feltéve, hogy
S1 < So.
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(2) Bdrmely t,s € AC esetén, ts és 1 — (1 — t)(1 — s) eleme az AC
halmaznak.

sy s

(3) Az AC paraméterhalmaz siirii |0, 1[ -ben feltéve, hogy nem iires.

Alkalmazva a Matkowski kozepekre nyert altaldnos eredményeket, az
alabbi kovetkezmények vezethetdk le.

KOVETKEZMENY. Legyen I C R nemiires intervallum, f : [ — R, n > 2
és s1,...,5, € AC;. Ekkor o; € AC; bdrmelyi € {1,...,n} esetén, ahol

= (ST ) (ST )

j=i k=1 =0 k=1

KOVETKEZMENY. Adott f : I — R fiiggvényre az aldbbi dllitdsok igazak.

(1) Ha1/2 € AC;, akkor QN ]0,1[C AC;.

(2) Ha t/m € AC; valamilyen {,m € N pozitiv egészek mellett iigy,
hogy { < m és 20 # m, akkor, bdrmely n > 2 esetén és bdrmely
i€ {l,...,n} indexre, az

. gnJrl _ él(m _ g)nJrlfi
T T (i — gy

hdnyados az AC; halmazhoz tartozik.

Végiil konstrudlunk egy feliilrél aszimmetrikusan konvex, bovitett valos
értékii fiiggvényt amelynél a kapcsolddo paraméterhalmaz tartalmaz raciondlis
(és igy algebrai) szamokat, sfird a 0, 1| intervallumban, de nem igaz rd a Kuhn
tétel dllitdsa, nevezetesen, nem frhaté fel a ]0, 1| intervallum és valamilyen
alkalmas résztest metszeteként. Egy hasonldan viselkedd valds értéki fiig-
gvényre sikeriilt példat adnia Lewicki és OlbryS lengyel matematikusoknak,
ahol csak azt tudjuk, hogy a paraméterhalmaz tartalmaz transzcendens el-
emet. Olyan valds értékd fiiggvény 1étezése, amely aszimmetrikusan ¢-konvex
valamilyen algebrai ¢ paraméterrel, de nem aszimmetrikusan (1 — ¢)-konvex,
maig nyitott probléma.

TETEL. Legyen I C R olyan intervallum, amelyre a := sup I € I N Qy,
legyen C' : I — R konvex fiiggvény és f : I — R olyan, hogy

Fa) = {C’(m), hax € (INQy) U{a},
" 400, haxzel\(QoU{al).

Ekkor, bdarmely t €]0,1[NQy esetén, az f fiiggvény feliilrél A;-konvex, de
nem feliilrél A, _;-konvex.
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KOVETKEZMENY. A fenti jeldléseket és feltételeket megtartva, Ef nem
zdrt az dsszeaddsdra, kovetkezésképpen nem irhaté fel a |0, 1] intervallum és
R valamilyen résztestének metszeteként.

e Masodik rész. Ebben a részben az (1) és (2) allitdsok ekvivalenciajarol
sz0106 allitast altalanositjuk. Az eredeti allitdsbol kovetkezik, hogy ha egy valds
értékd fiiggvény eleget tesz az n-valtozds Jensen egyenlStlenségnek, valami-
lyen rogzitett n mellett, akkor teljesiti a kétvaltozés Jensen egyenlStlenséget
is. Nyilvan, az 4llitas akkor érdekes, ha n > 2. A disszerticidban ezt az n-
vdltozos Jensen egyenlétlenség redukdlhatosdgdnak nevezziik. Az eredeti tétel
bizonyitdsabdl kideriil, hogy ez a tulajdonsag szorosan Osszefiigg a héttérben
1évd kozép redukdlhatosdgdval, ami esetiinkben a szdmtani k6zép.

A harmadik fejezetben precizen definidljuk adott kozép redukalhatosagat.
Az alébbi tétel egy elegend¢ feltételt fogalmaz meg.

TETEL. Az M : D" — X kozép x-redukdlhato, ha x-folytonos.

Ezt kovetden, messzemenden dltaldnositva a jol ismert kozéposztalyokat,
bevezetjiik az dltaldnositott eltéréskozép fogalmat Hausdorff-féle topologikus
vektortereken. Kideriil, hogy ezek a kozepek természetes mddon rendelkeznek
a redukdlhat6sagi tulajdonsaggal, tovabba a redukalt kozepek generdtorfiig-
gvényei konnyen megadhatdk az eredeti generdtorok segitségével.

TETEL. Legyenn € N, k € N, és E € E(D)". Ekkora DY : D* — D
dltaldanositott E-eltéréskozép bdarmely injekitv x : Ny — N, fiiggvényre nézve
redukdlhaté. Tovdbbd a DF kozép x-redukdltia egyértelmiien meghatdrozott,
nevezetesen

DY (z) = D™ (x), (z € DF).

A 3.4. fejezetben, specidlis Gateaux-differencidlhaté konvex fiiggvények
segitségével, egy jellemzését adjuk az dltalanositott eltéréskdzepeknek.

TETEL. Legyen D C X konvex halmaz és I’ € F(D). Ekkor az
Ep(u,v) = —F,(v)

modon értelmezett Erp : D x D — D* fiiggvény egy dltaldnositott eltérés.
Tovdbbd, han € N, F € F(D)" és Er = (Ep,,...,FEr,), akkor, barmely
x € D" esetén, az y = DEF(x) egyenldség pontosan akkor teljesiil, ha y
egyértelmii minimumhelye az

Fro(v) == Fi(x1,0) + - 4+ Fp (2, v)

mddon értelmezett Fp, : D — R fiiggvénynek a conv(x(N,,)) halmaz felett.
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Megforditva, ha X = R és D egy nyilt intervallum, akkor, barmely E €
E(D) eltérés esetén, létezik F' € F(D) fiiggvény, hogy, barmely v € D pontra,

Fy(v) ==E(u,v),  (veED)
teljesiil.

A legutolsé fejezet valds fiiggvények (M, N)-konvexitdsdnak redukal-
hatésdgaval foglalkozik. Ez kozvetlen dltaldnositdsa a standard Jensen egyen-
16tlenségnek; megkapjuk, ha a bal, illetve a jobb oldalon 1évd szamtani
kozepet az M, illetve az N altalanos kozepekkel helyettesitjiik. of real func-
tions, which is a self-evident generalization of the Jensen convexity. As in the
standard case, its reducibility depends strongly on the reducibility property of
the mean values what are involved, namely of M and V.

TETEL. Legyen D C X egy nemiires konvex halmaz, I C R egy inter-
vallum, n € N, k € N,, és legyen x : Ny — N,, injektiv. Legyenek tovdbbd
M : D" — Xés N : I" — R kozepek gy, hogy M x-redukdlhato, N
pedig x-folytonos és egyértelmiien x-redukdlhato. Ha az f : D — I fiiggvény
(M, N)-konvex, akkor (K, N, )-konvex is az M kézép minden K : D* — X
X-redukdltjdval.

A fenti tételt alkalmazva specidlis redukdlhaté kozepekkel, az alabbi 4al-
litdsok bizonyithatdk.

KOVETKEZMENY. Legyen D C X nemiires konvex halmaz, I C R inter-
vallum és n € N. Legyen tovibbd w : D — R" és E : I x I — R" iigy,
hogy E; egy eltérés minden 1 € N,, index esetén. Ha az f : D — I fiiggvény

kielégiti az n-vdltozos
f(flw(ajl, . ,xn)) < DE(f(xl), . ,f(xn)), (x1,...,2, € D),

egyenldtlenséget, akkor, barmely k € N,, és bdarmely x : Ny — N,, injektiv
fiiggvény esetén, kielégiti a k-vdltozos

f('AwX(xh s 7xk)) S DEX (f(wl)a s 7f('rk))7 (xla ) S D)
egyenlotlenséget is.

KOVETKEZMENY. Legyen D C X egy nemiires konvex halmaz, I C R
intervallum ésn € N. Legyen tovdibbd G : Dx D — (D*)"és E : IxI — R"
olyan, hogy G, egy dltaldnositott eltérés és E; egy eltérés minden i1 € N,
esetén. Ha az f : D — 1 fiiggvény kielégiti az n-vdltozos

F(D% (21, 2)) < DP(f(21),- .., flzn)), (x1,...,x, € D),
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egyenldtlenséget, akkor, minden k € N, és minden x : Ny — N, injektiv
fiiggvény esetén, kielégiti a k-vdltozos

F(D(zq, ... xp)) <D (f(x1),. ... flzr)), (x1,...,2, € D).

egyenlotlenséget is.

A kovetkezd allitds szerint, ha két eltéréskozép osszehasonlithatd, akkor a
redukaltjaik is 6sszehasonlithatok.

KOVETKEZMENY. Legyen I C R intervallum és n € N. Legyen tovdbbd
G,E : I x 1 — R"olyan, hogy G; és E; eltérés minden i € N,, esetén. Ha

DE (w1, ..., 2,) < DE(zy, ..., 22), (x1,...,2, € D),
akkor, barmely k € N,, és bdarmely x : N, — N,, injektiv fiiggvény esetén,
DO (xy, ..., xp) < DPX(xy, ..., 1p), (x1,...,25 € D).

is teljesiil.

Végiil, a fenti allitdsok bizonyitasdban szerepl6 technikak segitségével,
Holder-Minkowski-tipusi egyenl6tlenségek redukdlhatsagi tétele is bi-
zonyithato.

TETEL. Legyenek Xi,...,X, Hausdorff-féle topologikus vektorterek,
D, C Xy,....D, C X, nemiires konvex halmazok és I C R interval-
lum. Legyen n € N, k € N, és x : N, — N, egy ijektiv fiiggvény.
Legyenek végiil Ny : DY — Xy,...,N; : D} — X, x-redukdlhato kozepek,
M : I" — R pedig x-folytonos és egyértelmiien x-redukdlhato. Ha az
f:Dyx---x Dy — 1 fiiggvény kielégiti n - (-vdltozos

M(f(z',....2%) < f(Ni(2h),..., Ne(2h)), (' e D,... 2" € DY),
egyenlétlenséget, akkor az Ny,...,N; kozepek bdrmely K, : D} —

X1,..., Ky : Df — X, x-redukdltja esetén, kielégiti a k - (-vdltozds
My(f(at, . ") < F(Ea(a)), - Kola®), (o' € DE,... 2" € Df),
egyenlétlenséget is, ahol, adott m € N és z* € DT, ... 2° € D" elemekre,

flat, 2 = (flay o a)), o fa, . 2h)).
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