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„You see, one thing is, I can live with doubt
and uncertainty and not knowing. I think it
is much more interesting to live not knowing
than to have answers which might be wrong...
but I do not have to know an answer. I do
not feel frightened by not knowing things, by
being lost in a mysterious universe without
having any purpose which is the way it really
is as far as I can tell – possibly. It does not
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Richard Feynman





Conventions and notation

We are going to use the usual notation for the special subsets of the set
of real numbers R, namely, N, Z, and Q will stand for the set of natural,
integer, and rational numbers, respectively. Sometimes we shall need only the
positive elements of Q and R. These subsets will be denoted shortly by Q+

and R+. We note that, in the light of this convention, N can be also interpreted
as Z+. Some of the considered functions will map their domain into the set of
extended real numbers R := R ∪ {−∞,+∞}.

The function id : R → R will stand for the identity function, that is, we
have id(x) = x for all x ∈ R. The restrictions of id for any given subset of R
will be denoted also by id.

For given numbers n,m ∈ Z, we define the finite set {n, . . . ,m} by the
intersection {k ∈ Z | n ≤ k} ∩ {k ∈ Z | k ≤ m}. According to this,
{n, . . . ,m} is the empty set if m < n, and it equals to the singleton {n} if
n = m. The set {1, . . . , n} will be denoted simply by Nn.

For a given subsetH ⊆ N, let 1H : N→ {0, 1} stand for the characteristic
function of H , that is,

1H(n) := 1 if n ∈ H and 1H(n) := 0 if n ∈ N \H.
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Jensen’s Theorem as motivation

To motivate our investigations, first I would like to recall a celebrated the-
orem belonging to the theory of convex functions, which is due to the Danish
mathematician Johan L. W. V. Jensen from 1906. To formulate the theorem
precisely, first we need some notions, which shall play a crucial role also in
the whole dissertation.

LetX be a linear space, that is, a vector space over the field R. We say that
a subsetD ⊆ X is convex if, for all t ∈ [0, 1], the inclusion tD+(1−t)D ⊆ D
is satisfied. This definition implies that the whole space X and the empty set
are convex.

Having a nonempty convex subset D ⊆ X and t ∈ [0, 1], we say that a
function f : D → R is t-convex on D if the inequality

(1) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

holds for all x, y ∈ D. The function f will be called midpoint convex or, in
honor of Jensen, Jensen convex on its domain if the inequality (1) is valid for
all x, y ∈ D under t = 1

2
. Finally, we will say that f is convex onD if (1) holds

for all t ∈ [0, 1]. We note that any function defined on D trivially satisfies the
inequality (1) under the parameters t = 0 and t = 1.

After introducing these concepts, Jensen’s Theorem [10] sounds as fol-
lows.

THEOREM 0.1. LetX be a linear space andD ⊆ X be a nonempty convex
subset. Then the following statements are pairwise equivalent.

(1) The function f : D → R is Jensen convex.
(2) For any given positive integer n ∈ N, the function f : D → R fulfills

the n-variable Jensen Inequality, that is, for all x1, . . . , xn ∈ D, we
have

f
(x1 + · · ·+ xn

n

)
≤ f(x1) + · · ·+ f(xn)

n
.
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4 Jensen’s Theorem as motivation

(3) The function f : D → R is rationally convex on D, that is, for all
r ∈ [0, 1] ∩Q and for all x, y ∈ D, we have

f(rx+ (1− r)y) ≤ rf(x) + (1− r)f(y).

The above theorem draws attention, among others, two interesting phe-
nomenon concerning real functions. Now I only would like to highlight them,
the details will be clarified later.

I. Firstly, in view of the assertions (1) and (3), if f satisfies the inequality
(1) with t = 1

2
, then there are infinitely many other parameters, for which

(1) is fulfilled by f too. In addition, it also turns out that this set of
parameters is at least countable and it forms a dense subset of the closed
unit interval.

Introducing the notation
Cf := {t ∈ [0, 1] | f is t-convex on D} ⊆ [0, 1],

the equivalence of (1) and (3) of Theorem 0.1 can be reformulated as fol-
lows: the inclusion 1

2
∈ Cf holds if and only if [0, 1] ∩ Q is contained

in Cf . Now the following question arises naturally, namely, for a given
function f : D → R, what kind of implications are valid among the
members of Cf or, more general, what can we state about the algebraic
and topological structure of the set Cf? As we will see, these questions
were totally answered in the previous years, but only in the case of stan-
dard convexity.

II. The second is the connection of the statements (1) and (2). More pre-
cisely, in view of the above theorem, the n-variable Jensen Inequality, as
a convexity property, is reducible in the sense that, for any fixed n ∈ N,
it implies the two-variable Jensen Inequality, namely the midpoint con-
vexity of the function. We will see that this property strongly depends on
the behavior of the arithmetic mean.

Based on I. and II., with regard its subject, my dissertation can be divided
in two main parts. The first part consists of Chapter 1. and Chapter 2., where
we are going to introduce a „convexity parameter set”, which is very similar
to Cf but concern a more general concept of convexity. Then we will deduce
algebraic and topological properties of it pointing to the similarities and dif-
ferences with the standard case.

In Chapter 3., which gives the second part of the dissertation, we are go-
ing to deal with reducibility of general mean values and generalized convexity
properties. Here we also introduce a possible generalization of standard de-
viation means, more precisely, we extend them from the subintervals of R to
convex subsets of any topological vector spaces of Hausdorff type. It turns
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out that our results about reducibility can be naturally applied in this gen-
eral class. Finally, as a consequence, we also formulate and prove an abstract
Hölder–Minkowski type inequality.





Introduction to the First Part

In this short introduction I would like to expound the historical background
of the statement about the structure of Cf leaded up in I. I also recall some
analogs of this result related to different generalizations of standard convexity.
This chapter of my dissertation is based on the paper [11].

By its definition, the set Cf is never empty, namely {0, 1} is trivially con-
tained in Cf . Furthermore, our function f is convex if and only if Cf = [0, 1].
As we mentioned, Jensen proved in [10] that the inclusion Q ∩ [0, 1] ⊆ Cf
holds provided that f is midpoint convex. This result immediately has a cru-
cial consequence concerning Cf , namely, if 1

2
is contained in Cf then it forms

automatically a dense subset of the closed unit interval. After this the exact
algebraic structure of Cf remained still hidden.

The next step in a very similar direction was due to Jürg Rätz in the year
1976. In [34] the author proved that the homogeneity set of an additive func-
tion automatically possesses some nice algebraic structure, more precisely, if
A and B are modules over some non-trivial ring R then the set of parameters

Hf := {t ∈ R | f(tx) = tf(x) for all x ∈ A}

forms a subring of R, provided that f : A → B is additive, that is, it satisfies
the Cauchy Functional Equation. Motivated by this, Hf is called the homo-
geneity ring of the function in question. In the same paper it also turned out
that, for any given ring R and for any R-modules A and B, one can construct
a function f : A → B such that Hf and R coincide with each other, assum-
ing that A has a basis over R. Particular cases of this phenomenon are also
discussed in [14].

In view of Jensen’s previous result and the definition of Cf , we have the
chain of inclusions

Q ∩ [0, 1] ⊆ Cf ⊆ [0, 1] = R ∩ [0, 1],

which suggest the investigation of Cf from the view point of Jürg Rätz, namely
if Cf can be written as an intersection of some proper subfield of R and the
closed unit interval or not.

7



8 Introduction to the First Part

In 1980, the question, related to Jensen convex functions, was answered
affirmatively by Roman Ger. More precisely, Ger proved that, for any Jensen
convex function f : D → R defined on a nonempty convex subset D of a real
linear space X , the set Cf can be written as F ∩ [0, 1], where F is a suitable
subfield of R. Similarly to the result of Rätz, the reverse statement turned to
be also true, that is, having any subfield F ⊆ R and a nonempty convex subset
D ⊆ X , one can construct a function f : D → R, such that Cf = F ∩ [0, 1].
Obviously, such a function is necessarily Jensen convex.

However, this result of Ger was not so complete as in the case of addi-
tive functions, because an additional technical assumption related to Cf was
needed. The final, satisfactory answer was given by Norbert Kuhn in the year
1984 (cf. [15]).

THEOREM 0.2. (Kuhn, 1984) For any function f : I → R, the convexity
parameter set Cf is either {0, 1} or it can be written as F ∩ [0, 1], where F is
the subfield of R generated by Cf .

This, of course, implies Jensen’s result about the relationship of Q ∩ [0, 1]
and Cf in the case, when Cf contains 1

2
. The proof of Kuhn is transparent but it

is quite long. In 1987, Zoltán Daróczy and Zsolt Páles, using an elegant one-
row-calculation, showed that the same conclusion can be obtained supposing
that Cf has at least three elements.

Obviously, the above questions can be formulated in terms of more general
concept of convexity. Keeping the previous notations, we say that a function
f : D → R is t-Wright convex on D for some given t ∈ [0, 1] if, for all
x, y ∈ D, we have the inequality

f(tx+ (1− t)y) + f((1− t)x+ ty) ≤ f(x) + f(y).

It is easy to see that any t-convex function, and hence any convex function, is
t-Wright convex. Indeed, taking the inequality (1), interchanging the points x
and y and finally adding up the two inequalities so obtained, we get the above
inequality of t-Wright convexity. The function f is called Wright-convex if it
is t-Wright convex for all t ∈ [0, 1]. Now, for a given f : D → R, let us define
the set

Wf := {t ∈ [0, 1] | f is t-Wright convex on D}.
The above set is never empty, because {0, 1} ⊆ Wf . In addition, Gyula
Maksa, Kazimierz Nikodem and Zsolt Páles proved in [21] thatWf is always
symmetric with respect to 1

2
, it is dense in [0, 1] ifWf \{0, 1} is nonempty, it is

closed under the binary operation (s, t) 7→ st+(1−s)(1−t), and 1
2

is contained
inWf provided that it has at least one rational element different from 0 and 1.
On the other hand, if t ∈ ]0, 1[ is transcendental or it is algebraic such that one
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of its algebraic conjugates does not belong to the disc {z ∈ C | |z − 1
2
| < 1

2
},

then there exists a t-Wright convex function f : D → R such that 1
2
/∈ Wf .

As a generalization of t-Wright-convexity, we can consider the class of t-
Schur convex functions. We say that a function F : D × D → R is t-Schur
convex for some given t ∈ [0, 1] if, for all x, y ∈ D, the inequality

F (tx+ (1− t)y, (1− t)x+ ty) ≤ F (x, y)

is valid. Setting F (u, v) := f(u) + f(v), we get back the notion of t-Wright
convexity. In the paper [3], Pál Burai and Judit Makó, showed that the set

SF := {t ∈ [0, 1] | F is t-Schur convex on D}
is symmetric with respect to 1

2
, it is closed under the binary operation (s, t) 7→

st + (1 − s)(1 − t), and if X is a normed linear space, F is lower semi-
continuous with nonempty SF \ {0, 1}, then 1

2
is contained in SF . The density

of SF in [0, 1] forms still an open problem.
In the first chapter of the dissertation, we are going to consider and investi-

gate the previous questions related to the concept of lower and upper convexity
of extended real valued functions. After defining the certain convexity fami-
lies, we will earn some algebraic and topological properties of them. Then we
will apply our theorems for asymmetrically t-convex functions and give also
an example for a function, whose parameter set fails to satisfy Kuhn’s theorem
in this extended sense. More precisely, we are going to construct an asymmet-
rically upper convex function, where the parameter set is not closed under the
addition of its elements, but it forms a dense subgroup of [0, 1] with respect to
the usual multiplication of real numbers.





CHAPTER 1

Constructing new means from given ones

Throughout the dissertation, let I stand for a nonempty subinterval of R
having at least two distinct elements. In this chapter we are going to present a
general method which, having a given finite sequence of two-variable means
M1, . . . ,Mn defined on a certain subset of I × I , is suitable to derive further
means of two variables defined on the same domain. To avoid the trivial cases,
we will always assume that n ≥ 2. Before we perform the main idea, we
clarify the notion of means and partial means under the more general setting.

Let X be a linear space and H ⊆ X be any subset. The smallest convex
subset of X , which contains H is called the convex hull of H and is denoted
by conv(H). The intersection of any family of convex subsets of X is convex
again, furthermore X is convex itself, hence the notion of the convex hull of a
set is well-defined. It can be easily checked that the convex hull ofH , provided
it is nonempty, is nothing else but the set of all convex combinations made of
its elements. More precisely, we have u ∈ conv(H) if and only if there exist
m ∈ N, t1, . . . , tm ≥ 0 with t1 + · · ·+ tm = 1 and x1, . . . , xm ∈ H , such that
u = t1x1 + · · · + tmxm. If each element of {t1, . . . , tm} is positive, then we
say that u belongs to the relative interior of conv(H).

Let n ≥ 2 be a fixed integer number and S ⊆ X be a nonempty subset.
A function M : Sn → X will be called an n-variable mean on S if, for all
(x1, . . . , xn) ∈ Sn, we have the inclusion

(1) M(x1, . . . , xn) ∈ conv(x1, . . . , xn),

The mean M is said to be strict if M(x1, . . . , xn) belongs to the relative
interior of conv(x1, . . . , xn), whenever the set {x1, . . . , xn} ⊆ S has at
least two elements. We will say that M is symmetric if, for any bijection
π : {1, . . . , n} → {1, . . . , n}, we have M(xπ(1), . . . , xπ(n)) = M(x1, . . . , xn).

We note that, by its definition, an n-variable meanM is a reflexive function,
that is, M(x1, . . . , xn) = x if {x1, . . . , xn} is the singleton {x}.

Now, as an extension of the notion of means, we define partial means. Let
P ⊆ Sn be any nonempty subset and M : Sn → X be a mean. We say that
M : Sn → X is a partial mean on S with respect to P or, shortly,M : P → X
is a partial mean on S if the restriction M |P is a mean on P .

11



12 CHAPTER 1. CONSTRUCTING NEW MEANS FROM GIVEN ONES

Now we present some classes of n-variable means, which will be crucial
to formulate our further results.

1.1. The class of Daróczy means

The means appearing in the title were introduced by Zoltán Daróczy in
1971 in the paper [5]. This class is rather wide and it contains the well-known,
usual means. Furthermore it has many interesting properties which were in-
vestigated by several authors, cf. Aczél and Daróczy [1], Daróczy [5, 4],
Daróczy–Losonczi [6], Daróczy–Páles [7, 8], Losonczi [18, 17, 19, 20], and
Páles [25, 24, 26, 27, 28, 29, 30, 32, 31]. To interpret them, we need the notion
of deviation functions.

A two-place function E : I × I → R is called a deviation function on I
or, simply, a deviation on I , if
(D1) E vanishes on the diagonal of I × I , that is, E(u, u) = 0 for all u ∈ I

and,
(D2) for any fixed element u ∈ I , the function v 7→ E(u, v) is continuous and

strictly decreasing on the interval I .
The class of all deviation functions defined on I will be denoted by D(I).

Note that the properties (D1) and (D2) together imply that a deviation func-
tion E ∈ E(I) always possesses the so-called sign-property

(2) sgnE(u, v) = sgn(u− v), (u, v ∈ I).

Indeed, if u = v, then due to (D1), the statement in (2) is trivial. Hence
we may assume that say u < v. Then sgn(u − v) = −1 and, by the strict
decreasingness of E in the second variable, we have 0 = E(u, u) > E(u, v),
that is, sgnE(u, v) equals to −1 too. The case v < u can be treated similarly.

For (E1, . . . , En) ∈ D(I)n and (x1, . . . , xn) ∈ In, the unique value y ∈ I ,
satisfying the equation

(3) E1(x1, y) + · · ·+ En(xn, y) = 0,

is called the (E1, . . . , En)-deviation mean or the (E1, . . . , En)-Daróczy mean
of the elements x1, . . . , xn, and is denoted by D(E1,...,En)(x1, . . . , xn).

Now we shortly show that the notion of the (E1, . . . , En)-Daróczy mean is
well-defined. Let x := (x1, . . . , xn) ∈ In be arbitrarily fixed, and denote the
minimum and the maximum of the set {x1, . . . , xn} by α and β, respectively.
Let us further define the function

(4) ΣE, x : I → R, ΣE, x(u) := E1(x1, u) + · · ·+ En(xn, u).

The sign-property (2) of the deviation functions E1, . . . , En implies that
ΣE, x(β) ≤ 0 ≤ ΣE, x(α). Thus, due to the continuity in the second variable of
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the deviation functions, we get that the equation (3) has at least one solution
in the convex hull of the set {x1, . . . , xn}. Finally, the strict monotonicity-
property of the deviations provides that this solution has to be unique.

Now we recall the most classical subclasses of the class of deviation
means.

1.1.1. The class of Matkowski means. This class of means was intro-
duced by Janusz Matkowski in the paper [22] in 2010. A functionM : In → R
is said to be an n-variable generalized quasi-arithmetic mean or, shortly, an
n-variable Matkowski mean if there exist continuous functions f1, . . . , fn :
I → R, which are strictly monotone in the same sense and for which

M(x1, . . . , xn) = (f1 + · · ·+ fn)−1(f1(x1) + · · ·+ fn(xn))

holds for all x1, . . . , xn ∈ I . In this case, the n-tuple (f1, . . . , fn) is called
the generator of the Matkowski mean, furthermore the Matkowski mean of the
given points x1, . . . , xn ∈ I is denoted by M(f1,...,fn)(x1, . . . , xn).

If, for i ∈ {1, . . . , n}, we define Ei : I × I → R by the formula

Ei(u, v) := fi(u)− fi(v),

it can be proved that Ei is a deviation function for all i ∈ {1, . . . , n},
and that the corresponding deviation mean D(E1,...,En) is nothing else but the
Matkowski mean M(f1,...,fn).

Specializing the generator functions, this notion gives back the usual, well-
known classes of means. If f1 = · · · = fn =: f on I then we get the concept
of quasi-arithmetic means, more precisely, for all x1, . . . , xn ∈ I , we have

M(f,...,f)(x1, . . . , xn) = f−1
(
f(x1) + · · ·+ f(xn)

n

)
=: Qf (x1, . . . , xn).

If I ⊆ [0,+∞[ and, for some fixed p ∈ R, we have f := idp on I , then
the quasi-arithmetic mean generated by f is called a Hölder mean or a power
mean and is denoted by Hp. In detail, the definition is

Hp(x1, . . . , xn) :=


(xp1 + · · ·+ xpn

n

) 1
p

if p 6= 0,

n
√
x1 . . . xn if p = 0,

where, setting p = −1 or p = 1, we obtain the notion of harmonic mean or
arithmetic mean, respectively.

The Matkowski means, by the definition, are strict and continuous.
Roughly speaking, a Matkowski mean is symmetric or homogeneous if and
only if it is a quasi-arithmetic mean or a Hölder mean, respectively. The equal-
ity, comparison and invariance problem were also investigated in the class of
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Matkowski means. The first two are completely, the last only partially re-
solved.

1.1.2. The class of Bajraktarević means. The other wide subclass of
Daróczy means is the class of Bajraktarević means, which was originally in-
troduced by the Bosnian mathematician Mahmut Bajraktarević in the paper
[2] from 1958.

A function M : In → R is called an n-variable Bajraktarević mean if
there exist a continuous, strictly increasing function f : I → R and an n-tuple
of weight functions ω : (ω1, . . . , ωn) : I → Rn

+ such that

M(x1, . . . , xn) = f−1
(
ω1(x1)f(x1) + · · ·+ ωn(xn)f(xn)

ω1(x1) + · · ·+ ωn(xn)

)
holds for all x1, . . . , xn ∈ I . The pair (f, ω) is called the generator of the Ba-
jraktarević mean and, in the above case, the function M is denoted by B(f,ω).

To see that such a mean is indeed a deviation mean, for i ∈ {1, . . . , n}, let
us define the function Ei : I × I → R by the formula

Ei(u, v) := ωi(u)(f(u)− f(v)).

Obviously, for all i ∈ {1, . . . , n}, the function Ei enjoys the properties listed
as (D1) and (D2). Using the above definition of E1, . . . , En, it is also easy to
see that D(E1,...,En) = B(f,ω) on In.

Similarly to the previous part, well-known classes of means can be ob-
tained if the generator functions are specialized. If ωi = 1 on I for all
i ∈ {1, . . . , n}, then we get back the class of quasi-arithmetic means. For-
mally, if I ⊆ [0,+∞[, p, q ∈ R are distinct numbers, furthermore f = idp−q

and ωi := idq for all i ∈ {1, . . . , n}, we get the notion of Gini means, which
are exactly the homogeneous Bajraktarević means. The precise definition is
given by

G(p,q)(x1, . . . , xn) :=


(xp1 + · · ·+ xpn
xq1 + · · ·+ xqn

) 1
p−q

if p 6= q,

exp
(xp1 ln(x1) + · · ·+ xpn ln(xn)

xp1 + · · ·+ xpn

)
if p = q,

where x1, . . . , xn ∈ I ⊆ [0,+∞[ . Putting q = 0, it can also easily seen that
Hölder means are also Bajraktarević means. If the generator f is the identity
function, then we get the notion of functionally weighted arithmetic mean,
which will be denoted by Aω := B(id,ω).

The equality, comparison, and invariance problems were also considered
by several authors.
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1.2. Tools from linear algebra

For n ∈ N and for given vectors u = (u1, . . . , un) and v = (v1, . . . , vn) in
Rn

+, define the two-diagonal matrix A(u, v) by

(5) A(u, v) :=


0 u1 . . . 0 0
v1 0 . . . 0 0
...

... . . . ...
...

0 0 . . . 0 un
0 0 . . . vn 0

 .

The next theorem is about the properties of the eigenvalues of A(u, v).

THEOREM 1.1. For all n ∈ N and for all u, v ∈ Rn
+, any eigenvalue of

A(u, v) is a real number. Furthermore, the eigenvalues of A(u, v) are smaller
than 1 if and only if w1, . . . , wn > 0, where

(6) wk := wk−1 − ukvkwk−2, (k ∈ {1, . . . , n}),

provided that w−1 := w0 := 1.

PROOF. In the sequel, for k ∈ N, denote the unit matrix of the matrix
algebra Rk×k by Ik and, for a square matrix S ∈ Rk×k, let PS : R → R stand
for the characteristic polynomial of S defined by PS := det(id ·Ik − S).

Let u = (u1, . . . , un) and v = (v1, . . . , vn) be any elements of Rn
+, let

A0(u, v) := 0, and, for k ∈ {1, . . . , n}, define

(7) Ak(u, v) :=


0 u1 . . . 0 0
v1 0 . . . 0 0
...

... . . . ...
...

0 0 . . . 0 uk
0 0 . . . vk 0

 ∈ R(k+1)×(k+1)
+ .

In other words, Ak(u, v) is the leading principal minor of order k of the matrix
A(u, v), where k ∈ {1, . . . , n}. Then, obviously, An(u, v) = A(u, v). Ob-
serve that PA0(u,v) = id and PA1(u,v) = id2−u1v1. Expanding the determinant
in the definition of the characteristic polynomial by its last row, we can easily
deduce a recursive formula. More precisely, for k ∈ {1, . . . , n− 1}, we have

(8) PAk+1(u,v) = id ·PAk(u,v) − uk+1vk+1PAk−1(u,v).

Now, by induction on k, we are going to prove that, for all k ∈ {1, . . . , n},
the characteristic polynomials of the matricesAk(u, v) andAk(

√
uv,
√
uv) are

identical, where the notation
√
uv stands for the vector (

√
u1v1, . . . ,

√
unvn).
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The statement is trivial for k = 0. If k = 1, then we have

PA1(u,v) = id2−u1v1 = id2−
√
u1v1
√
u1v1 = PA1(

√
uv,
√
uv).

Assume that we have established the identity PA(u,v) = PAj(
√
uv,
√
uv) for j ≤ k.

Using the recursive formula in (8) two times and then our inductive hypothesis,
for k ∈ {1, . . . , n− 1}, we obtain that

PAk+1(u,v) = idPAk(√uv,√uv) −
√
uk+1vk+1

√
uk+1vk+1PAk−1(

√
uv,
√
uv)

= PAk+1(
√
uv,
√
uv).

This completes the proof of PAk(u,v) = PAk(
√
uv,
√
uv) for all k ∈ {1, . . . , n}.

The matrix An(
√
uv,
√
uv) is symmetric with real entries, therefore its

characteristic polynomial has only real roots, whence it follows that the eigen-
values of An(u, v) = A(u, v) are also real. The eigenvalues of An(

√
uv,
√
uv)

are smaller than 1 if and only if the eigenvalues of the symmetric matrix
In+1 − An(

√
uv,
√
uv) are positive, which is equivalent to the positive def-

initeness of In+1 − An(
√
uv,
√
uv). In view of the Sylvester’s Criterion,

this holds if and only if all the leading principal minor determinants of
In+1 − An(

√
uv,
√
uv) are positive, that is, if

(9) PAk(u,v)(1) = PAk(
√
uv,
√
uv)(1) > 0 (k ∈ {0, . . . , n}).

By the recursive formula (8) applied for λ = 1, it results that
PAk(

√
uv,
√
uv)(1) = wk for all k ∈ {0, . . . , n}, therefore, (9) is equivalent to

the inequalities w1, . . . , wn > 0. �

In the next result we give a sufficient condition in order that the inequalities
w1, . . . , wn > 0 hold.

LEMMA 1.2. Let n ∈ N, u = (u1, . . . , un) and v = (v1, . . . , vn) be vectors
in Rn

+ and assume that

(10) v1 ≤ 1, max{u1 + v2, . . . , un−1 + vn} ≤ 1, and un < 1.

Then the system of inequalities w1, . . . , wn > 0 holds, where w1, . . . , wn are
defined as in (6) of Theorem 1.1.

PROOF. Observe that the positivity of v2, . . . , vn and (10) yield that
u1, . . . , un < 1. To show that wk is positive for all k ∈ {1, . . . , n}, we shall
prove that

(11) wk > 0 and (1− uk)wk−1 ≤ wk < wk−1

hold for all k ∈ {1, . . . , n− 1}. For k = 1, the second chain of inequalities is
equivalent to 1 − u1 ≤ 1 − u1v1 ≤ 1, which easily follows from 0 < v1 ≤ 1
and 0 < u1. Hence w1 > 0 also holds.
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Assume that we have proved (11) for some k ∈ {1, . . . , n − 1}. Then,
using the recursion (6) and using the right hand side inequality in (11), we get
that

wk+1 = wk − uk+1vk+1wk−1 < wk − uk+1vk+1wk

= wk(1− uk+1vk+1) < wk.

On the other hand, using the upper estimate for wk−1 obtained from (11), it
follows that

wk+1 = wk − uk+1vk+1wk−1

≥ wk − uk+1vk+1
wk

1− uk
= wk

1− uk − uk+1vk+1

1− uk

≥ wk
1− uk − uk+1(1− uk)

1− uk
= wk(1− uk+1) > 0,

which completes the proof of (11). �

LEMMA 1.3. For all n ∈ N and for all vectors u = (u1, . . . , un) and
v = (v1, . . . , vn) in Rn

+, there exists an eigenvector of A(u, v) with positive
components whose eigenvalue is also positive.

PROOF. We follow the argument of the standard proof of the Perron–
Frobenius Theorem. Consider the set

Sn+1 := {(x0, . . . , xn) ∈ Rn+1 | x0, . . . , xn ≥ 0 and x0 + · · ·+ xn = 1}.

Then Sn+1 is a compact convex subset of Rn+1. Let u, v ∈ Rn be fixed vectors
with positive components and let A0, . . . , An be the row vectors of the matrix
A(u, v). Observe that

(12) A(u, v)x =
(
〈A0, x〉, . . . , 〈An, x〉

)
, (x ∈ Rn+1),

furthermore the sum 〈A0, x〉+ · · ·+ 〈An, x〉 does not vanish on Sn+1. Indeed,
if for some x ∈ Sn+1 we have 〈A0, x〉 + · · · + 〈An, x〉 = 0, then, by the non-
negativity of the terms on the left hand side of this equation, it follows that
〈Ai, x〉 = 0 for all i ∈ {0, . . . , n}. Using the positivity of the parameters ui
and vi, these equalities imply x = 0, which contradicts x ∈ Sn+1.

Consider now the mapping F : Sn+1 → Rn+1 defined by

F (x) :=
A(u, v)x

〈A0, x〉+ · · ·+ 〈An, x〉
, (x ∈ Sn+1).

Then F is continuous on Sn+1 and, by (12), we have F (Sn+1) ⊆ Sn+1. Hence,
in view of the Brouwer Fixed Point Theorem, there exists a fixed point p ∈
Sn+1 of the function F . Then we have

A(u, v)p = (〈A0, p〉+ · · ·+ 〈An, p〉)F (p) = (〈A0, p〉+ · · ·+ 〈An, p〉)p,



18 CHAPTER 1. CONSTRUCTING NEW MEANS FROM GIVEN ONES

which shows that p is an eigenvector of A(u, v) with the eigenvalue λ :=
〈A0, p〉 + · · · + 〈An, p〉 > 0. Therefore, by A(u, v)p = λp, the system of
equations

(13)
u1p1 = λp0,
ui+1pi+1 + vipi−1 = λpi, (i ∈ {1, . . . , n− 1}),

vnpn−1 = λpn

hold, where p = (p0, . . . , pn). If pi = 0 for some i ∈ {0, . . . , n}, then the
non-negativity of the terms on the left hand side of the ith equation yields that
pj = 0 for j ∈ {i − 1, i + 1} ∩ {1, . . . , n − 1}. This results that p has to be
zero, which contradicts p ∈ Sn+1. �

1.3. Tools from fixed point theory

For our purposes, we recall some notions and results related to fixed point
theorems. LetX be a nonempty set. A function d : X×X → R will be called
a semimetric if

(1) it is positive definite, that is, for all x, y ∈ X , we have d(x, y) ≥ 0
and d(x, y) = 0 if and only if x = y, and

(2) it is symmetric, that is, for all x, y ∈ X , the identity d(x, y) = d(y, x)
holds.

If d is a semimetric, then the pair (X, d) is called semimetric space. If (X, dX)
and (Y, dY ) are semimetric spaces then a function f : X → Y is said to have
the Lipschitz property if there exists L ≥ 0 such that

(14) dY (f(x), f(y)) ≤ LdX(x, y), (x, y ∈ X).

The Lipschitz modulus of f is defined by

Lip(f) := sup
{dY (f(x),f(y))

dX(x,y)

∣∣x, y ∈ X and x 6= y
}
.

Obviously, f possesses the Lipschitz property if and only if Lip(f) is finite.
The function f will be called a contraction if Lip(f) < 1.

It is an immediate consequence of these definitions, that, for a subset D ⊆
X and for a contraction f : D → X with respect to the semimetric dX , the
map f can have at most one fixed point in D. Indeed, if x and y are both fixed
points of f in D, then

dX(x, y) = dX(f(x), f(y)) ≤ Lip(f) · dX(x, y),

which implies dX(x, y) ≤ 0. By property (1) of semimetrics, we get x = y.
The following lemma is useful to compute the Lipschitz modulus of dif-

ferentiable real valued functions.
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LEMMA 1.4. Let f, g : I → R be differentiable functions such that 0 /∈
g′(I). Then, for the Lipschitz modulus of the function f ◦ g−1 : g(I)→ R, we
have

Lip
(
f ◦ g−1

)
= sup

t∈I

∣∣∣∣f ′(t)g′(t)

∣∣∣∣.
PROOF. Due to the assumptions, g : I → R is continuous and strictly

monotone. Therefore g−1 : g(I) → R is well-defined. Thus, applying the
Cauchy Mean Value Theorem, we have that

Lip
(
f ◦ g−1

)
= sup

x,y∈g(I)
x 6=y

|f ◦ g−1(x)− f ◦ g−1(y)|
|x− y|

= sup
u,v∈I
u6=v

|f(u)− f(v)|
|g(u)− g(v)|

= sup
t∈I

∣∣∣∣f ′(t)g′(t)

∣∣∣∣.
�

In what follows, we recall first the following generalization of the Ty-
chonov Fixed Point Theorem established by Halpern and Bergman [9]. For
the formulation of this result, we define the notion of the inward set of a con-
vex subset K of a locally convex space X by

InwK(x) := x+ R+(K − x), (x ∈ K).

Observe that the inclusion K ⊆ InwK(x) is valid for all x ∈ K. On the
other hand, for an interior point x ∈ K, we have InwK(x) = X , therefore
y ∈ InwK(x) is always trivial, provided that x ∈ K \ ∂K, where ∂K stands
for the set of boundary points of K.

We say that a function f : K → X is weakly inward if f(x) ∈
cl ◦ InwK(x) holds for all x ∈ ∂K.

THEOREM 1.5. Let X be a locally convex Hausdorff space, K ⊆ X be a
compact convex subset and f : K → X be a continuous weakly inward map.
Then the set of the fixed points of f forms a nonempty compact subset of K.

If f(K) ⊆ K, then f(x) ∈ cl ◦ InwK(x) trivially holds for all x ∈ ∂K,
therefore, in this case, the above result reduces to the Tychonov Fixed Point
Theorem.

The fixed point theorem stated below, that we are going to use for the ex-
istence proofs in our main results, is consequence of the Halpern–Bergman
Fixed Point Theorem. It establishes the existence of the fixed point for contin-
uous maps defined over a convex polyhedron.
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THEOREM 1.6. Let c1, . . . , cm ∈ Rn, γ1, . . . , γm ∈ R and assume that the
polyhedron

(15) K :=
{
x ∈ Rn | 〈ck, x〉 ≤ γk, k ∈ {1, . . . ,m}

}
is bounded. Let further f : K → Rn be a continuous function such that

(16) 〈ck, f(x)〉 ≤ γk

for all x ∈ K and for all k ∈ {1, . . . ,m} with the property 〈ck, x〉 = γk. Then
the set of the fixed points of f is a nonempty compact subset of K.

PROOF. By our assumption, K is a compact convex set. Therefore, it is
sufficient to show that the set InwK(x) and

(17)
{
u ∈ Rn | 〈ck, u〉 ≤ γk for all k ∈ {1, . . . ,m} such that 〈ck, x〉 = γk

}
coincide with each other for all x ∈ K. Having this, by condition (16), it
follows that f(x) ∈ InwK(x) for all x ∈ K, whence the Halpern–Bergman
Fixed Point Theorem yields the existence the fixed point of f . For the brevity,
denote the set in (17) by H .

Let x ∈ K be any point. If u ∈ InwK(x), then there exists y ∈ K and
t ≥ 0 such that u = (1−t)x+ty. Then, for k ∈ {1, . . . ,m}with 〈ck, x〉 = γk,
we have

〈ck, u〉 = 〈ck, (1− t)x+ ty〉 = (1− t)〈ck, x〉+ t〈ck, y〉
= (1− t)γk + t〈ck, y〉 ≤ (1− t)γk + tγk = γk,

which proves the inclusion InwK(x) ⊆ H .
For the inclusion H ⊆ InwK(x), pick up u ∈ Rn such that 〈ck, u〉 ≤ γk

for all k ∈ {1, . . . ,m} with 〈ck, x〉 = γk. Choose further t > 0 such that
t ≥ 〈ck,u−x〉

γk−〈ck,x〉
for all k ∈ {1, . . . ,m} with 〈ck, x〉 < γk and define the point

y ∈ Rn by the formula y := 1
t
(u − x) + x. Then, distinguishing the cases

whether 〈ck, x〉 = γk or not, for every k ∈ {1, . . . ,m}, we obtain that

〈ck, u− x〉 ≤ t(γk − 〈ck, x〉).

Therefore, for all k ∈ {1, . . . ,m}, we have

〈ck, y〉 = 〈ck, 1t (u− x) + x〉 ≤ (γk − 〈ck, x〉) + 〈ck, x〉 = γk,

which proves that y ∈ K. On the other hand, by the definition of y, we have
that u = (1− t)x+ ty. Consequently, u ∈ InwK(x), which finishes the proof
the theorem. �
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1.4. Descendants of means

In this section we are going to investigate two-variable means but only on
a restricted domain. To formulate our results, let us introduce some notations.

For a given nonempty subset S ⊆ R and for n ∈ N, denote the set of
increasingly and strictly increasingly ordered n-tuples of S by Sn≤ and Sn<,
respectively, that is, we have

Sn≤ := {(t1, . . . , tn) ∈ Sn | t1 ≤ · · · ≤ tn}

and
Sn< := {(t1, . . . , tn) ∈ Sn | t1 < · · · < tn}.

We note that, if we have a two-variable mean M : I × I → R on I and we
want to state something about the restriction M |I2≤ , then we will simply say
that M : I2≤ → R is a mean on I . This means that, in our case, the values of
the original mean on the complementary set S2

> := S2 \ S2
≤ are irrelevant.

Let n ≥ 2 and (M1, . . . ,Mn) : I2≤ → Rn be a given n-tuple of two-
variable means on I . Then, we are going to deal with the existence and the
uniqueness of two-variable means N1, . . . , Nn : I2≤ → R satisfying the system
of functional equations

(18)

N1(x, y) = M1

(
x,N2(x, y)

)
,

Ni(x, y) = Mi

(
Ni−1(x, y), Ni+1(x, y)

)
, (i ∈ {2, . . . , n− 1}),

Nn(x, y) = Mn

(
Nn−1(x, y), y

)
on I . In order to make the problem more manageable, we reformulate it as
follows. Observe, that the validity of (18) states that, for any (x, y) ∈ I2≤, the
vector

(
N1(x, y), . . . , Nn(x, y)

)
∈ [x, y]n≤ is a fixed point of ϕ(x,y) : [x, y]n≤ →

Rn, where, for t = (t1, . . . , tn) ∈ [x, y]n≤, we have the definition

(19) ϕ(x,y)(t) :=
(
M1(x, t2), . . . ,Mi(ti−1, ti+1), . . . ,Mn(tn−1, y)

)
.

This means that, firstly, we have to investigate the fixed point set

(20) Φ(x,y) :=
{
ξ ∈ [x, y]n≤

∣∣ϕ(x,y)(ξ) = ξ
}
.

There are many cases, when the fixed points can be elementary calculated. For
example, let M1 := · · · = Mn := A2 and x, y ∈ R2

≤ be arbitrarily fixed. Then
the fixed point equation in question is of the form

(t1, . . . , tn) :=
(x+ t2

2
,
t1 + t3

2
, . . . ,

tn−1 + y

2

)
,
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where we assume that (t1, . . . , tn) ∈ [x, y]n≤. Then one can easily calculate
that Ψ(x,y) is the singleton {(ξ1, . . . , ξn)}, where

ξi =
(n+ 1− i)x+ iy

n+ 1
, (i ∈ {1, . . . , n}).

Due to our auxiliary results of the previous sections, we have the following
theorem concerning the behavior of the set Φ(x,y).

THEOREM 1.7. Let n ≥ 2, (M1, . . . ,Mn) : I2≤ → Rn be an n-tuple of
two-variable means on I , and (x, y) ∈ I2< be any point. Then the following
statements hold.

(1) The fixed point set Φ(x,y) is a nonempty compact subset of [x, y]n≤
provided that all the means M1, . . . ,Mn are continuous. In addition,
if all the means M1, . . . ,Mn are strict, then Φ(x,y) is contained in
]x, y[ n<.

(2) The set Φ(x,y) is a singleton provided that there exist semimetrics
d1, . . . , dn : [x, y]2 → R+ such that the system of inequalities

d1(M1(x, s),M1(x, v)) ≤ b1d2(s, v),

di(Mi(t, s),Mi(u, v)) ≤ aidi−1(t, u) + bidi+1(s, v), (i ∈ {2, . . . , n− 1}),
dn(Mn(t, y),Mn(u, y)) ≤ andn−1(t, u)

hold for all t, s, u, v ∈ [x, y] with some positive real numbers
a2, . . . , an and b1, . . . , bn−1 such that w1, . . . , wn−1 > 0, where, pro-
vided that w−1 := w0 := 1, we have the recursion

(21) wi := wi−1 − ai+1biwi−2, (i ∈ {1, . . . , n− 1}).

PROOF. Let (x, y) ∈ I2< be arbitrarily fixed. Then the set K := [x, y]n≤ is
a compact convex set, which can be characterized using n + 1 inequalities as
follows. The vector (t1, . . . , tn) belongs to K if and only if

(22) −t1 ≤ −x, t1 − t2 ≤ 0, . . . , tn−1 − tn ≤ 0, and tn ≤ y.

Therefore, K is a polyhedron of the form (15) with m = n + 1, suitably
chosen vectors c1, . . . , cn+1 ∈ Rn and scalars γ1, . . . , γn+1 ∈ R. Thus, in
order to show that the fixed point set of the continuous function f := ϕx,y is
a nonempty compact subset of K = [x, y]n≤, we need to verify that condition
(16) is satisfied.

For the sake of brevity, denote t0 := x and tn+1 := y. If, for some k ∈
{2, . . . , n}, the kth inequality holds with equality in (22), then tk−1 = tk.
Therefore, by the mean value property of the means Mk−1 and Mk, we get

sk−1 = Mk−1(tk−2, tk) ≤ tk = tk−1 ≤Mk(tk−1, tk+1) = sk,
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which proves that the vector s satisfies the kth inequality in (22).
On the other hand, by the mean value properties of M1 and Mn, we have

x ≤ M1(x, t2) = s1 and sn = Mn(tn−1, y) ≤ y, therefore, s also satisfies the
first and last inequality in (22), and thus the verification of condition (16) is
complete.

To prove the second part of the statement (1), assume that all the means
M1, . . . ,Mn are strict and let (ξ1, . . . , ξn) ∈ Φ(x,y). Then

(23) M1(x, ξ2) = ξ1, M2(ξ1, ξ3) = ξ2, . . . , Mn(ξn−1, y) = ξn.

If x = ξ1, then the strict mean property of M1 and the identity M1(x, ξ2) = ξ1
imply that ξ1 = ξ2. Now, by the strict mean property of M2 and the identity
M2(ξ1, ξ3) = ξ2, it follows that ξ2 = ξ3. Continuing this argument, we get
that ξn−1 = ξn. Finally, the strict mean property of Mn and Mn(ξn−1, y) = ξn
imply that ξn = y. This leads to the contradiction x = y. Hence, we may
assume that x < ξ1. Applying the strict mean property of M1, . . . ,Mn and
the equalities in (23), we get ξi < ξi+1 recursively for i ∈ {1, . . . , n− 1} and
finally ξn < y, which proves that (ξ1, . . . , ξn) ∈ ]x, y[ n<.

To prove (2), assume that there exist semimetrics d1, . . . , dn : [x, y]2 →
R+ such that the estimates listed in (2) of Theorem 1.7 hold and let a :=
(a2, . . . , an) and b := (b1, . . . , bn−1) such that each member of the sequence
w1, . . . , wn−1, defined by (21), is positive. According to the previous lemmas,
the matrix A(a, b) has an eigenvector p := (p1, . . . , pn) with positive compo-
nents and with eigenvalue 0 < λ < 1. This means that p and λ satisfy the
following system of linear equations:

(24)
a2p2 = λp1,
ai+1pi+1 + bi−1pi−1 = λpi (i ∈ {2, . . . , n− 1}),

bn−1pn−1 = λpn.

We show that ϕ(x,y) is a contraction with modulus λ with respect to the semi-
metric Dp : [x, y]n × [x, y]n → R+ defined by

Dp

(
(u1, . . . , un), (v1, . . . , vn)

)
:= p1d1(u1, v1) + · · ·+ pndn(un, vn)

for all (u1, . . . , un), (v1, . . . , vn) ∈ [x, y]n. To prove this, let (t1, . . . , tn) and
(s1, . . . , sn) be arbitrary elements of [x, y]n≤. For the sake of brevity, set t0 =
s0 = x and tn = sn = y. Using our estimates concerning the semimetrics and
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then the identities in (24), we obtain that

Dp

(
ϕ(x,y)(t1, . . . , tn), ϕ(x,y)(s1, . . . , sn)

)
=

n∑
i=1

cidi
(
Mi(ti−1, ti+1),Mi(si−1, si+1)

)
≤ c1b1d2(t2, s2) +

( n−1∑
i=2

ciaidi−1(ti−1, si−1) + cibi+1di(ti+1, si+1)

)
+ cnandn(tn−1, sn−1)

= λ
(
c1d1(t1, s1) + · · ·+ cndn(tn, sn)

)
= λDc((t1, . . . , tn), (s1, . . . , sn)).

This results the uniqueness of the fixed point of ϕ(x,y). �

Now we turn to the definition of the descendants. Let n ≥ 2 and let
(M1, . . . ,Mn) : I2≤ → Rn be an n-tuple of continuous two-variable means.
For i ∈ {1, . . . , n}, the mean N : I2≤ → R is said to be an ith descendant of
the n-tuple of means (M1, . . . ,Mn) if, for all (x, y) ∈ I2≤, we have

(25)
N(x, y) ∈

⋃{
ξi | (ξ1, . . . , ξn) ∈ Φ(x,y)

}
whenever x < y

and

N(x, y) = x if x = y,

where Φ(x,y) stands for the fixed point set of ϕ(x,y) : [x, y]n≤ → Rn defined by
(19). The class of all such functions will be denoted by Di(M1, . . . ,Mn).

Note that, in view of Theorem 1.7, the continuity of the meansM1, . . . ,Mn

implies that the descendant functions are well-defined. As a direct conse-
quence of the compactness of the fixed point set Φ(x,y), we obtain that the
family Di(M1, . . . ,Mn) has a minimal and a maximal member in the follow-
ing sense: there exist N−i , N

+
i ∈ Di(M1, . . . ,Mn) such that

N−i (x, y) ≤ N(x, y) ≤ N+
i (x, y)

for all x, y ∈ I and for all N ∈ Di(M1, . . . ,Mn). It is also obvious that
each element of Di(M1, . . . ,Mn) is a strict mean provided that all the means
M1, . . . ,Mn are strict.

We also note that the uniqueness of the fixed point of the map ϕ(x,y) cannot
be stated in general. For instance, let n ≥ 2, M1 := max, Mn := min, and
let Mi be the two-variable arithmetic mean for each i ∈ {2, . . . , n − 1} over
the interval R. Then, for (x, y) ∈ R2

<, the fixed point equation (t1, . . . , tn) =
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ϕ(x,y)(t1, . . . , tn) holds if and only if

(t1, . . . , tn) =
(
t2,

t1 + t3
2

, . . . ,
tn−2 + tn

2
, tn−1

)
.

One can easily compute that this equality is equivalent to t1 = · · · = tn.
Therefore we have infinitely many fixed points for all x < y, namely

Φ(x,y) = {(t1, . . . , tn) | t1 = · · · = tn ∈ [x, y]}.

1.5. Descendants of Matkowski means

In this section we are going to apply our technique to two-variable
Matkowski means, introduced in Section 1.1. More precisely, we present some
useful corollaries of Theorem 1.7, stating that Matkowski means always have
descendants.

THEOREM 1.8. Let n ≥ 2 and let f1, . . . , fn, g1, . . . , gn : I → R be
continuous, strictly increasing functions. For (x, y) ∈ I2<, define the function
ϕ(x,y) : [x, y]n≤ → Rn as in (19) using the means Mi := M(fi,gi), where
i ∈ {1, . . . , n}. Then, for (x, y) ∈ I2<, the set of fixed points Φ(x,y), defined by
(20), is nonempty and compact. Furthermore, Φ(x,y) is a singleton if

(26)
ai := Lip

[
fi ◦ (fi−1 + gi−1)

−1] < +∞ (i ∈ {2, . . . , n}),

bi := Lip
[
gi ◦ (fi+1 + gi+1)

−1] < +∞ (i ∈ {1, . . . , n− 1}),

hold and if the constants w1, . . . , wn−1 defined by (21) are positive.

PROOF. The means M(f1, g1), . . . ,M(fn, gn) are continuous, thus, for all
pair (x, y) ∈ I2<, the mapping ϕ(x,y) is also continuous. Based on the Theo-
rem 1.7, the corresponding set Φ(x,y) is a nonempty compact subset of [x, y]n≤.
Due to the strictness of Matkowski means it also follows that Φ(x,y) ⊆ ]x, y[ n<.

Now assume that (26) and w1, . . . , wn−1 > 0 hold and pick up a point
(x, y) ∈ I2< arbitrarily. To show that Φ(x,y) is a singleton, for i ∈ {1, . . . , n},
define the semimetrics di : I × I → R+ by

di(s, t) := |(fi + gi)(s)− (fi + gi)(t)|, (s, t ∈ I).

Note that in our case, for all i ∈ {1, . . . , n}, the function di is a metric. This
mean that in addition of the properties (1) and (2) of semimetrics, di also
satisfies the triangle inequality, namely, for all i ∈ {1, . . . , n}, we have

di(s, t) ≤ di(s, r) + di(r, t), (r, s, t ∈ I).
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Let t, s, u, v ∈ [x, y] be arbitrary. Then, for all i ∈ {2, . . . , n − 1}, we have
the following estimation:
di(Mi(t, s),Mi(u, v)) = |(fi + gi)(Mfi, gi(t, s))− (fi + gi)(Mfi, gi(u, v))|
= |fi(t) + gi(s)− fi(u)− gi(v)| ≤ |fi(t)− fi(u)|+ |gi(s)− gi(v)|
≤ Lip

(
fi ◦ (fi−1 + gi−1)

−1)di−1(t, u) + Lip
(
gi ◦ (fi+1 + gi+1)

−1)di+1(s, v)

= aidi−1(t, u) + bidi+1(s, v).

On the other hand, for i = 1 and i = n, we get that
d1(M1(x, s),M1(x, v)) ≤ b1d2(s, v)

and
dn(Mn(t, y),Mn(u, y)) ≤ andn−1(t, u)

are valid. Therefore, all the estimates listed in (2) of Theorem 1.7 are satisfied.
Thus, in view of the Theorem 1.7, for all (x, y) ∈ I2<, the fixed point set Φ(x,y)

is indeed a singleton. �

Due to the fact that Lipschitz modulus can be easily calculated in case of
differentiable functions, we have the following consequence of Theorem 1.8.

COROLLARY 1.9. Let n ≥ 2 and f1, . . . , fn, g1, . . . , gn : I → R be dif-
ferentiable, strictly increasing functions such that 0 /∈ (fi + gi)

′(I) for all
i ∈ {1, . . . , n}. For (x, y) ∈ I2<, define the function ϕ(x,y) : [x, y]n≤ → Rn

as in (19) using the means Mi := M(fi,gi), where i ∈ {1, . . . , n}, and, finally,
assume that

(27)
ai := sup

t∈ I

[
f ′i · (f ′i−1 + g′i−1)

−1](t) < +∞ (i ∈ {2, . . . , n}),

bi := sup
t∈ I

[
g′i · (f ′i+1 + g′i+1)

−1](t) < +∞ (i ∈ {1, . . . , n− 1}).

Then, for all (x, y) ∈ I2<, the set of fixed points Φ(x,y) defined by (20) is a
nonempty compact subset of [x, y]n≤, and, it is a singleton if the constants
w1, . . . , wn−1 defined by (21) are positive.

PROOF. In view of Theorem 1.8, we only need to verify that Φ(x,y) is a
singleton, which in turn is obvious. Using Lemma 1.4 and the conditions in
(27), one can easily see that the estimations in (26) of Theorem 1.8 hold, that
is, the constants a2, . . . , an and b1, . . . , bn−1 are real numbers. �

In view of the next theorem, the descendants of a chain of Matkowski
means are uniquely determined provided that they are weighted quasi-
arithmetic means with a common generator function h. In this case, the de-
scendants will be again weighted quasi-arithmetic means, where the new gen-
erators can be directly calculated using the original weights and h.
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THEOREM 1.10. Let n ≥ 2, s1, . . . , sn ∈ ]0, 1[ , and h : I → R be a
continuous, strictly increasing function. For (x, y) ∈ I2<, define the function
ϕ(x,y) : [x, y]n≤ → Rn as in (19) using the means Mi := M(sih,(1−si)h), where
i ∈ {1, . . . , n}. Then, for all (x, y) ∈ I2<, the fixed point set Φ(x,y) is the
singleton

{(
M(σ1h, (1−σ1)h)(x, y), . . . ,M(σnh, (1−σn)h)(x, y)

)}
, where

(28) σi :=

( n∑
j=i

j∏
k=1

sk
1− sk

)( n∑
j=0

j∏
k=1

sk
1− sk

)−1
, (i ∈ {1, . . . , n}).

PROOF. In order to apply Theorem 1.8, let fi := sih and gi := (1 − si)h
for i ∈ {1, . . . , n}. Then it immediately follows that the fixed point set Φ(x,y)

is nonempty and compact for all (x, y) ∈ I2<.
To show that Φ(x,y) is a singleton, define the constants a2, . . . , an,

b1, . . . , bn−1, and w1, . . . , wn−1 as in Theorem 1.8. We need to show that con-
ditions (26) and w1, . . . , wn−1 > 0 hold. Observe that, for i ∈ {1, . . . , n}, we
have fi + gi = h, furthermore

ai = Lip
(
fi ◦ (fi−1 + gi−1)

−1) = Lip[si · h ◦ h−1] = si

for all i ∈ {2, . . . , n} and

bi = Lip
(
gi ◦ (fi+1 + gi+1)

−1) = Lip((1− si) · h ◦ h−1) = 1− si

for all i ∈ {1, . . . , n − 1}. Thus each of the constants a2, . . . , an and
b1, . . . , bn−1 are finite, on the other hand, under the notation (u1, . . . , un−1) :=
(a2, . . . , an) and (v1, . . . , vn−1) := (b1, . . . , bn−1), they also satisfy the con-
dition (10) of Lemma 1.2. Therefore, the inequalities w1, . . . , wn−1 > 0 and
hence Φ(x,y) has to be a singleton.

Finally, we verify that, for all (x, y) ∈ I2<, the vector

(29)
(
M(σ1h, (1−σ1)h)(x, y), . . . ,M(σnh, (1−σn)h)(x, y)

)
is a fixed point of ϕ(x,y). For this purpose, we show first that σ1, . . . , σn fulfill
the following system of linear equations:

(30)

σ1 = s1 + (1− s1)σ2,
σi = siσi−1 + (1− si)σi+1 (i ∈ {2, . . . , n− 1}),
σn = snσn−1.
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We prove the above equality for i ∈ {2, . . . , n− 1}. First observe that

i∏
k=1

sk
1− sk

=
si

1− si

i−1∏
k=1

sk
1− sk

= si

(
1 +

si
1− si

) i−1∏
k=1

sk
1− sk

= si

( i−1∏
k=1

sk
1− sk

+
i∏

k=1

sk
1− sk

)
.

Adding this identity to the equality

n∑
j=i+1

j∏
k=1

sk
1− sk

= si

n∑
j=i+1

j∏
k=1

sk
1− sk

+ (1− si)
n∑

j=i+1

j∏
k=1

sk
1− sk

side by side, we get the desired identity σi = siσi−1 + (1 − si)σi+1. In the
cases i = 1 and i = n the proof of (30) is completely analogous.

For the brevity, denote ξi := M(σih,(1−σi)h)(x, y) whenever i ∈ {1, . . . , n}.
Using (30), after some calculation we easily get that

ξ1 = M(s1h, (1−s1)h)(x, ξ2),

ξi = M(sih, (1−si)h)(ξi−1, ξi+1), (i ∈ {2, . . . , n− 1}),
ξn = M(snh, (1−sn)h)(ξn−1, y),

which proves that (29) is indeed a fixed point of ϕ(x,y). �

In the next theorem the means are not necessarily weighted quasi-
arithmetic, but they are strongly related to each other by shifts. In this case the
descendants are turned to be uniquely determined and easily calculated, but
only recursively. Furthermore, the descendants are not necessarily Matkowski
mean, only compositions of them.

THEOREM 1.11. Let n ≥ 2, j ∈ {1, . . . , n} and p, q, h1, . . . , hn−1 : I →
R be continuous, strictly increasing functions, furthermore set h0 := hn := 0.
For (x, y) ∈ I2<, define the mapping ϕ(x,y) : [x, y]n≤ → Rn by (19), using the
means

Mi :=


M(p+hi−1, hi) if i ∈ {1, . . . , j − 1},

M(p+hi−1, hi+q) if i = j,

M(hi−1, hi+q) if i ∈ {j + 1, . . . , n}.

Then, for (x, y) ∈ I2<, the fixed point set Φ(x,y) defined by (20) is the singleton
{(ξ1, . . . , ξn)}, where ξj := M(p, q)(x, y) and the rest of the coordinates are
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defined by the two-way recurrence

(31) ξi :=

{
M(p, hi)(x, ξi+1) if i ∈ {1, . . . , j − 1},

M(hi−1, q)(ξi−1, y) if i ∈ {j + 1, . . . , n}.

PROOF. Let (x, y) ∈ I2< be fixed. By Theorem 1.7, the set Φ(x,y) is
nonempty. Let (ξ1, . . . , ξn) ∈ Φ(x,y) be arbitrary, furthermore denote ξ0 := x
and ξn+1 := y. Then, by the definition of Matkowski means, we have

(p+ hi−1 + hi)(ξi) = (p+ hi−1)(ξi−1) + hi(ξi+1), (i ∈ {1, . . . , j − 1}),

(p+ hi−1 + hi + q)(ξi) = (p+ hi−1)(ξi−1) + (hi + q)(ξi+1), (i = j),

(hi−1 + hi + q)(ξi) = hi−1(ξi−1) + (hi + q)(ξi+1), (i ∈ {j + 1, . . . , n}).
Adding up these equalities for i ∈ {1, . . . , n} side by side, it follows that
p(ξj) + h0(ξ1) + hn(ξn) + q(ξj) = p(ξ0) + h0(ξ0) + hn(ξn+1) + q(ξn+1),

which finally simplifies to
(p+ q)(ξj) = p(x) + q(y).

This is equivalent to the equality on the left hand side of (31). By this compu-
tation it also follows that ξj is uniquely determined.

To prove the first equality on the right hand side of (31), let assume that
1 ≤ j − 1 and let k ∈ {1, . . . , j − 1} be fixed. Adding up the previous system
of equalities but only for i ∈ {1, . . . , k}, we arrive at

p(ξk) + h0(ξ1) + hk(ξk) = p(ξ0) + h0(ξ0) + hk(ξk+1),

which reduces to (p+ hk)(ξk) = p(x) + hk(ξk+1) proving the first equality on
the right hand side of (31) for i = k.

Analogously, to verify the second equality on the right hand side of (31),
assume that j + 1 ≤ n and let k ∈ {j + 1, . . . , n} be fixed. Similarly, adding
up the equalities in our system of equations for i ∈ {k, . . . , n}, we obtain that

hk−1(ξk) + hn(ξn) + q(ξk) = hk−1(ξk−1) + hn(ξn+1) + q(ξn+1).

This yields (hk−1 + q)(ξk) = hk−1(ξk−1) + q(y), which verifies the second
equality on the right hand side of (31) for i = k.

In view of the uniqueness of ξj and the recursive system of equalities on
the right hand side of (31), we can see that, for i 6= j, the value of ξi is also
uniquely determined. �





CHAPTER 2

Deriving new convexity properties

2.1. The class of upper and lower M -convex functions

To motivate the definition of our main notion, we recall a well-known char-
acterization of standard convexity of real functions. It is easy to show that the
concept of standard convexity can be characterized in terms of second order
divided differences. More precisely, the function f is convex on I if and only
if, for all elements x < u < y from I , the corresponding second order divided
difference [x, u, y; f ] is non-negative.

The upper and lowerM -convexity will concern not necessarily real valued
but extended real valued functions. Hence, to extend the above characteriza-
tion, firstly, we have to adopt the definition of second order divided differences
for the case of extended real valued functions. To do this, consider the follow-
ing binary operations defined on the extended real line R. For given x, y ∈ R,
let their upper sum and lower sum are defined by

x +̇ y :=

{
x+ y, if max{x, y} < +∞,
+∞, if max{x, y} = +∞,

and

x+. y :=

{
x+ y, if min{x, y} > −∞,
−∞, if min{x, y} = −∞,

respectively. We note that both of the operations +̇ and +. restricted to pairs
of real numbers are the same as the standard addition of the reals. In fact, apart
from the standard cases, the only difference between +̇ and +. is that

(−∞) +̇ (+∞) = (+∞) +̇ (−∞) = +∞

and
(−∞) +. (+∞) = (+∞) +. (−∞) = −∞.

It is also easy to see, that the pairs (R, +̇ ) and (R, +. ) are commutative semi-
groups. As direct consequences of the definitions we have the following easy-
to-prove statement.

31
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PROPOSITION 1. For all x, y ∈ R, we have

(32) x+. y ≤ x +̇ y and − (x+. y) = (−x) +̇ (−y),

furthermore, we have the following equivalences.
(i) The upper sum x +̇ y is non-negative or it is non-positive if and only if

−x ≤ y or max(x, y) < +∞ and x ≤ −y,
respectively.

(ii) The lower sum x+. y is non-negative or it is non-positive if and only if

−∞ < min{x, y} and − x ≤ y or x ≤ −y,
respectively.

PROOF. The statements easily follow by the definition of lower and upper
sum. �

Let S ⊆ R be a nonempty subset and f : S → R. The upper second-order
divided difference of f at the distinct points x, y and z of S is an extended real
number defined by

dx, y, z; fe :=
f(x)

(y − x)(z − x)
+̇

f(y)

(x− y)(z − y)
+̇

f(z)

(x− z)(y − z)
.

Similarly, the lower second-order divided difference of f at the points x, y and
z of S is

bx, y, z; fc :=
f(x)

(y − x)(z − x)
+.

f(y)

(x− y)(z − y)
+.

f(z)

(x− z)(y − z)
.

Obviously, the above second-order divided differences are symmetric func-
tions of (x, y, z). Observe that if the inequalities x < y < z hold, then the
coefficients of f(x) and f(z) are positive and the coefficient to f(y) is nega-
tive.

Using the definitions and Proposition 1, one can easily prove the following
useful statement about connections between upper- and lower second-order
divided differences.

PROPOSITION 2. Let S ⊆ R and f : S → R. Then we have

bx, y, z; fc ≤ dx, y, z; fe and − bx, y, z; fc = dx, y, z;−fe
for all points x < y < z of S.

The following proposition determine further relations among these ex-
tended versions of second-order divided differences. The corresponding result
concerning the standard real valued case, among others, can be found in [13,
Lemma XV.2.2, pp. 376-377].
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PROPOSITION 3. (Extended Chain Inequality) Let S ⊆ R and f : S → R.
Then, for all n ∈ N and x0 < x1 < · · · < xn+1 in S, and for all i ∈ {1, . . . , n},
the inequalities

min
1≤ j≤n

bxj−1, xj, xj+1; fc ≤ bx0, xi, xn+1; fc

≤ dx0, xi, xn+1; fe ≤ max
1≤ j≤n

dxj−1, xj, xj+1; fe

hold.

PROOF. We only need to prove the first inequality, because the second one
is trivial, furthermore the last one is the consequence of the first and Proposi-
tion 2.

The statement is trivial for n = 1, therefore we may assume that n ≥ 2.
Let x0 < x1 < · · · < xn+1 be arbitrary elements of S and i ∈ {1, . . . , n}. If
either the left hand side of the first inequality equals−∞ or the right hand side
equals +∞, then there is nothing to prove. In the remaining case, for all j ∈
{1, . . . , n}, we have that bxj−1, xj, xj+1; fc > −∞ and bx0, xi, xn+1; fc <
+∞. The first inequality implies, for all j ∈ {1, . . . , n}, that

min{f(xj−1),−f(xj), f(xj+1)} > −∞.

In view of n ≥ 2, the set {1, . . . , n} contains at least two elements, therefore,
for all j ∈ {1, . . . , n}, we get that f(xj) ∈ R and min{f(x0), f(xn+1)} >
−∞. Thus, f(xi) ∈ R and hence the inequality bx0, xi, xn+1; fc < +∞ yields
max{f(x0), f(xn+1)} < +∞, which proves that, for all j ∈ {0, . . . , n + 1},
we have f(xj) ∈ R. We also note that, in this case, the first inequality is a
consequence of [23, Corollary 1]. �

Now we are able to define lower and upper M -convexity of extended real
valued functions. For a fixed strict meanM : I2≤ → R, we say that the function
f : I → R is lower M -convex on I if

(33) bx,M(x, y), y; fc ≥ 0,
(
(x, y) ∈ I2<

)
holds. On the other hand, the function f is called upper M -convex on I pro-
vided that

(34) dx,M(x, y), y; fe ≥ 0

holds on the same domain.
Note that, due to the property (32), if f is lower M -convex, then it is also

upper M -convex.
The lower and upper M -concavity of functions can be also interpreted,

namely we may consider (33) and (34) with the reverse inequality. It is easy to
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verify, that these definitions are equivalent to the upper and lowerM -convexity
of the function −f , respectively.

The next statement clarifies an essential difference between lower and up-
per M -convexity.

LEMMA 2.1. Let M : I2≤ → R be a strict mean and f : I → R. Then the
following statements hold.
(a) The function f is lower M -convex if and only if f(u) > −∞ for all u ∈ I

and for all (x, y) ∈ I2<, the inequalities f(M(x, y)) < +∞ and

(35) f(M(x, y)) ≤ y −M(x, y)

y − x
f(x) +

M(x, y)− x
y − x

f(y)

hold.

(b) The function f is upper M -convex if and only if, for all (x, y) ∈ I2<, the
inequality

(36) f(M(x, y)) ≤ y −M(x, y)

y − x
f(x) +̇

M(x, y)− x
y − x

f(y)

holds.

PROOF. First we prove the statement (b). Suppose that f is upper M -
convex and let (x, y) ∈ I2< be any element. For the brevity, denote the value
M(x, y) by p. The upper M -convexity of f means that we have dx, p, y; fe ≥
0. Due to (i) of Proposition 1, this inequality is equivalent to

(37)
f(p)

(p− x)(y − p)
≤ f(x)

(p− x)(y − x)
+̇

f(y)

(x− y)(p− y)
.

Using that (p − x)(y − p) is positive, we obtain that (36) is valid for (x, y),
which was arbitrarily chosen.

To prove the reverse implication of (b), suppose that (36) holds on the
domain indicated. Then (37) is also valid and, in view of (i) of Proposition 1,
this implies (36).

Now we prove the statement (a). Suppose that f is lower M -convex,
let (x, y) ∈ I2< be arbitrary, and let again p := M(x, y). Then
bx, p, y; fc ≥ 0 holds. Based on (ii) of Proposition 1, it follows that
−∞ < min{f(x),−f(p), f(y)} and that

(38)
f(p)

(p− x)(y − p)
≤ f(x)

(p− x)(y − x)
+.

f(y)

(x− y)(p− y)
.

Thus, for all u ∈ I , we get −∞ < f(u) and, by the positivity of the product
(p − x)(y − p), the inequality (38) is equivalent to the inequalities (35) and
f(p) < +∞.
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Finally, to prove the reversed implication of the statement (a), suppose
that f(M(x, y)) < +∞ and (35) hold for all pairs (x, y) ∈ I2<, furthermore
we have −∞ < f(u) for all u ∈ I . Then (38) is also valid and, in view of (ii)
in Proposition 1, this implies (35). �

2.2. The lower and upper convexity class

In the sequel, we are going to formulate Jensen type theorems concerning
this extended concept of convexity. To do this, similarly to the standard case,
we introduce the related „parameter families”, which, in our case, instead of
real numbers, will contain strict means.

For a given function f : I → R, define

Mf := {M : I2≤ → R | f is lower M -convex on I}

and

Mf := {M : I2≤ → R | f is upper M -convex on I}.

Note that, due to the strictness of the means in the definition, unlike the
standard case, the above families can be also empty. The following proposition
is about a certain algebraic closedness property ofMf andMf .

PROPOSITION 4. Let f : I → R be any function and letM∈ {Mf ,Mf}.
Then the following statements hold.

(a) If M,N1, N2 ∈M with N1 < N2 on the set I2<, then M ◦ (N1, N2) ∈M.
(b) If M,N ∈ M, then the compositions M ◦ (min, N) and M ◦ (N,max)

also belong to the familyM.

We note that the statement (b) is not a direct consequence of (a), because
the means min and max are not strict, and hence they do not belong to the
family M.

PROOF. We prove the statements for the familyMf only. The proof in the
other case is completely analogous and also based on Lemma 2.1.

Let (x, y) ∈ I2< be arbitrarily fixed, furthermore define p1 := N1(x, y)
and p2 := N2(x, y). Obviously, under our conditions, it follows that p1 < p2.
Using these notations, in view of Lemma 2.1, it is sufficient to show, that

(39) f(M(p1, p2)) ≤
y −M(p1, p2)

y − x
f(x) +̇

M(p1, p2)− x
y − x

f(y),
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holds. Applying the upper M -convexity, and then the upper N1- and N2-
convexity of f , we have the following calculation.

f(M(p1, p2)) ≤
p2 −M(p1, p2)

p2 − p1
f(p1) +̇

M(p1, p2)− p1
p2 − p1

f(p2)

=
p2 −M(p1, p2)

p2 − p1
f(N1(x, y)) +̇

M(p1, p2)− p1
p2 − p1

f(N2(x, y))

≤ p2 −M(p1, p2)

p2 − p1

(y − p1
y − x

f(x) +̇
p1 − x
y − x

f(y)
)

+̇
M(p1, p2)− p1

p2 − p1

(y − p2
y − x

f(x) +̇
p2 − x
y − x

f(y)
)

=
y −M(p1, p2)

y − x
f(x) +̇

M(p1, p2)− x
y − x

f(y).

Thus the inequality (39) is satisfied, which means that (a) is true.
A completely similar calculation shows that the statement (b) is also valid.

�

As a consequence, we get that the separately continuous subfamily ofMf

and Mf has only accumulation points with respect to the pointwise conver-
gence.

COROLLARY 2.2. Let f : I → R be any function, define

M∗
f := {M ∈Mf |M is separately continuous in both variables},

M∗
f := {M ∈Mf |M is separately continuous in both variables},

and, finally, let M∗ ∈ {M∗
f ,M

∗
f}. Then M∗ has no isolated points with

respect to the pointwise convergence, more precisely, for all M ∈ M∗, there
exist sequences of means (Ln), (Un) ⊆M∗ such thatLn < M < Un whenever
n ∈ N, furthermore Ln → M and Un → M pointwise on the set I2< as
n→∞.

PROOF. We prove the statement only for the class M∗
f . Let M ∈ M∗

f

be an arbitrarily but fixed mean. We construct only the lower sequence (Un),
because the existence of (Ln) can be proved similarly.

Let U0 = max furthermore, for n ∈ N, let Un be defined by the composi-
tion M ◦ (M,Un−1). Firstly we show that the sequence (Un) belongs toM∗

f .
To see this, we prove, by induction, that M < Un < Un−1 for all n ∈ N on I2<.



2.2. THE LOWER AND UPPER CONVEXITY CLASS 37

Let (x, y) ∈ I2< be any point. For n = 1, using that M is a strict mean, we get

U1(x, y) = M(M(x, y), U0(x, y))

= M(M(x, y), y) ∈ ]M(x, y), y[ = ]M(x, y), U0(x, y)[ .

Assume that the inequalities M < Un < Un−1 hold on I2< for some n ∈ N.
Using this, for n+ 1, we obtain that

Un+1(x, y) = M(M(x, y), Un(x, y)) ∈ ]M(x, y), Un(x, y)[ .

Hence M(x, y) < Un+1(x, y) < Un(x, y) follows for all (x, y) ∈ I2<,
which completes the proof of the induction. Then, Proposition 4 yields that
(Un) ⊆ Mf . Moreover, by its definition, Un is a strict mean and it is sep-
arately continuous in both variables for all n ∈ N, hence (Un) ⊆ M∗

f also
holds.

In the second step we show, that Un ↓ M pointwise on I2< as n→∞. Let
(x, y) ∈ I2< be arbitrarily fixed again. Obviously, the sequence (Un(x, y)) ⊆
]x, y[ has to be convergent, because it is monotone decreasing and bounded
from below byM(x, y). Denote the limit limn→∞ Un(x, y) by U∗(x, y) which,
clearly, cannot be smaller than M(x, y). Upon taking the limit n → ∞ in the
identity

Un(x, y) = M(M(x, y), Un(x, y)),

we obtain that
U∗(x, y) = M(M(x, y), U∗(x, y)).

The inequality M(x, y) < U∗(x, y) would contradict the strictness of M ,
therefore, U∗(x, y) = M(x, y) must be valid. �

The following theorem is one of our main results. Roughly speaking, it
states thatMf is closed under deriving the descendants.

THEOREM 2.3. Let f : I → R be any function, n ≥ 2, furthermore
M1, . . . ,Mn ∈ Mf be continuous means. Then Di(M1, . . . ,Mn) ⊆ Mf for
all i ∈ {1, . . . , n}.

PROOF. Let i ∈ {1, . . . , n} and N ∈ Di(M1, . . . ,Mn) be arbitrarily
fixed. We have already seen that, under our conditions, N is a strict mean.
If (x, y) ∈ I2<, then there exists k ∈ {1, . . . , n} and (ξ1, . . . , ξn) ∈ Φ(x,y) such
that N(x, y) = ξk. Furthermore, with ξ0 := x and ξn+1 := y, we have

Mj(ξj−1, ξj+1) = ξj, (j ∈ {1, . . . , n}).
Using this and, for all j ∈ {1, . . . , n}, the lower Mj-convexity of the function
f , we obtain that

0 ≤ bξj−1, ξj, ξj+1; fc, (j ∈ {1, . . . , n}).
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Now, applying the Extended Chain Inequality, we get that

0 ≤ min
1≤ j≤n

bξj−1, ξj, ξj+1; fc ≤ bx, ξk, y; fc = bx,N(x, y), y; fc.

By the definition, this means that f is lower N -convex, or equivalently, we
must have N ∈Mf . �

In view of the results about the descendants of Matkowski means obtained
in the previous chapter, Theorem 2.3 has several consequences forMf , pro-
vided that it contains Matkowski means.

COROLLARY 2.4. Let f : I → R, n ≥ 2, s1, . . . , sn ∈ ]0, 1[ , and finally
h : I → R be a continuous, strictly increasing function. Assume further that
M(sih, (1−si)h) ∈ Mf for all i ∈ {1, . . . , n}. Then, for all i ∈ {1, . . . , n},
the Matkowski mean M(σih, (1−σi)h) also belongs to the familyMf , where the
weight σi is defined as in (28) for all i ∈ {1, . . . , n}.

PROOF. For (x, y) ∈ I2<, define the mapping ϕ(x,y) : [x, y]n≤ → Rn as in
Theorem 1.10. In view of this theorem, it follows that, for all (x, y) ∈ I2<, the
fixed point set Φ(x,y) equals with the singleton {(ξ1, . . . , ξn)}, where we have
ξi = M(σih, (1−σi)h)(x, y) for all i ∈ {1, . . . , n}. Thus, for i ∈ {1, . . . , n},
the function M(σih, (1−σi)h) is the ith descendant of the n-tuple of means
(M(s1h, (1−s1)h), . . . ,M(snh, (1−sn)h)). Therefore, due to Theorem 2.3, we ob-
tain that M(σih, (1−σi)h) ∈Mf for all i ∈ {1, . . . , n}. �

COROLLARY 2.5. Let n ≥ 2, p, q, h1, . . . , hn−1 : I → R be continuous,
strictly increasing functions and f : I → R. Set further h0 := hn := 0 and
assume that there exists j ∈ {1, . . . , n} such that, for all i ∈ {1, . . . , n}, the
mean Mi defined by

(40) Mi :=


M(p+hi−1, hi) if i ∈ {1, . . . , j − 1},
M(p+hj−1, hj+q) if i = j,

M(hi−1, hi+q) if i ∈ {j + 1, . . . , n}

is contained inMf . Then N1, . . . , Nn ∈Mf , where, for all (x, y) ∈ I2≤,

Ni(x, y) =


M(p, hi)(x,Ni+1(x, y)) if i ∈ {1, . . . , j − 1},
M(p, q)(x, y) if i = j

M(hi−1, q)(Ni−1(x, y), y) if i ∈ {j + 1, . . . , n}.

PROOF. The method of the proof is same as that of Corollary 2.4. For a
given pair (x, y) ∈ I2<, define the mapping ϕ(x,y) as in (19) by the using the
means M1, . . . ,Mn defined in (40). Due to Theorem 1.11, it follows that, for
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all (x, y) ∈ I2<, the fixed point set Φ(x,y) is the singleton {(ξ1, . . . , ξn)}, where
we have

ξj := M(p, q)(x, y) and ξi :=

{
M(p, hi)(x, ξi+1) if i ∈ {1, . . . , j − 1},

M(hi−1, q)(ξi−1, y) if i ∈ {j + 1, . . . , n}.

Thus, for i ∈ {1, . . . , n}, the function Ni : I2≤ → R, Ni(x, y) := ξi is the ith

descendant of the n-tuple

(M(p+hi−1, hi), . . . ,M(p+hj−1, hj+q), . . . ,M(hi−1, hi+q)).

Hence, by Theorem 2.3, it follows that Ni ∈Mf for all i ∈ {1, . . . , n}. �

2.3. The class of asymmetrically t-convex functions

In this section we restrict our attention to a special subfamily ofMf and
Mf . First, for a given t ∈ [0, 1], denote At : I × I → R the t-weighted
arithmetic mean on I .

For a given extended real valued function f : I → R consider the setsACf
and ACf defined by

ACf := {t ∈ ]0, 1[ | f is lower At-convex on I}
and

ACf := {t ∈ ]0, 1[ | f is upper At-convex on I}.
If f is real-valued, then, clearly, these two sets are the same. Therefore, in
this case, we will simply denote them by ACf . Note that, by the definitions,
both sets can be empty. On the other hand, these sets can be easily identi-
fied with the subfamily of weighted arithmetic means inMf andMf respec-
tively. More precisely, t ∈ ACf and s ∈ ACf if and only if At|I2≤ ∈ Mf and

As|I2≤ ∈ Mf . The motivation for our investigations is the well known result
due to N. Kuhn [15], which was mentioned in the Introduction. In view of our
new notations, the theorem states that for a given function f : I → R, the
intersection

(41) Cf = ACf ∩ (1−ACf )
is either empty or it can be written in the form F ∩ ]0, 1[ for some suitable
subfield F ⊆ R. The following results are about some algebraical properties
of the sets ACf and ACf .

THEOREM 2.6. Let f : I → R be any function and AC ∈ {ACf ,ACf}.
Then the following statements hold.

(1) If t, s1, s2 ∈ AC with s1 < s2, then ts2 + (1− t)s1 ∈ AC.
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(2) If t, s ∈ AC, then ts and 1− (1− t)(1− s) also belong to AC.
(3) The set AC is dense in the open unit interval, provided that it is

nonempty.

PROOF. We verify only the statements about ACf . The proof for ACf is
analogous.

Let t, s1, s2 ∈ ACf with s1 < s2 be any parameters. Then the means
At,As1 and As2 belong toMf and, because of s1 < s2, we have As2 < As1

on I2<. Using Proposition 4 for M := At, N1 := As2 and N2 := As1 , we
obtain that At ◦ (As2 ,As1) ∈Mf . On the other hand, for (x, y) ∈ I2<, we have

At ◦ (As2 ,As1)(x, y) = At(As2(x, y),As1(x, y))

= At(s2x+ (1− s2)y, s1x+ (1− s1)y)

= (ts2 + (1− t)s1)x+ (1− (ts2 + (1− t)s1))y
= Ats2+(1−t)s1(x, y).

Consequently ts2 + (1− t)s1 ∈ ACf , which proves the statement (1).
To prove (2), observe that, under our notation, min = A1 and max = A0

on I2≤. Thus, according to the second statement of Proposition 4, the means
At ◦ (A1,As) and At ◦ (As,A0) belong to Mf . Then the same calculation
yields that 1− (1− t)(1− s) and ts belong to ACf , respectively.

To verify (3), assume that ACf is nonempty and indirectly suppose that
ACf is not dense in ]0, 1[ , that is there exist α < β in [0, 1] such that
ACf ∩ ]α, β[ is empty. We may also assume that the interval ]α, β[ is max-
imal, or equivalently, for all ε > 0, the intersection ACf ∩ ]α − ε, β + ε[ is
nonempty. Observe that, due to the second assertion of the theorem, it easily
follows that 0 < α and β < 1. Indeed, if t ∈ ACf is arbitrary, then, due to
the fact that ACf is closed under the multiplication, for all k ∈ N, the value
tk belongs to ACf . Thus any open neighborhood of zero contains an element
from ACf , which means that 0 < α. Similarly, using the closedness of ACf
under the operation (t, s) 7−→ 1 − (1 − t)(1 − s), we get that β < 1. Thus
we obtained that [α, β] ⊆ ]0, 1[ . Now, let t ∈ ACf be arbitrarily fixed and
(rn), (sn) ⊆ ACf be sequences such that rn ↗ α and sn ↘ β as n → ∞.
Then, in view of the first statement of the theorem, tsn + (1− t)rn ∈ ACf for
all n ∈ N and tsn + (1− t)rn → tβ+ (1− t)α ∈ ]α, β[ as n→∞. Therefore,
for sufficiently large n, we get that tsn + (1− t)rn ∈]α, β[, which contradicts
that ACf ∩ ]α, β[ is empty. Hence ACf must be dense in ]0, 1[ . �
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COROLLARY 2.7. Let I ⊆ R be an interval, f : I → R, n ≥ 2 and
s1, . . . , sn ∈ ACf . Then σi ∈ ACf for all i ∈ {1, . . . , n}, where

(42) σi :=

( n∑
j=i

j∏
k=1

sk
1− sk

)( n∑
j=0

j∏
k=1

sk
1− sk

)−1
.

PROOF. Apply Corollary 2.4 under h := id. �

COROLLARY 2.8. For a function f : I → R the following statements hold.
(1) If 1/2 ∈ ACf then Q∩ ]0, 1[⊆ ACf .
(2) If `/m ∈ ACf for some `,m ∈ N with ` < m and 2` 6= m, then, for

all n ≥ 2 and for all i ∈ {1, . . . , n}, the fraction

ri :=
`n+1 − `i(m− `)n+1−i

`n+1 − (m− `)n+1

belongs to ACf .

PROOF. To prove (1), assume that 1/2 ∈ ACf and let p, q ∈ N be arbi-
trarily fixed numbers such that q > 1 and p < q. For q = 2, the statement
(1) is trivial, thus we may assume that q > 2. Now set n := q − 1 and
i0 := q − p. Then n ≥ 2 and i0 ∈ {1, . . . , n}. Thus, using Corollary 2.7 for
s1 := · · · = sn := 1/2, we get that

σi0 =
n− i0 + 1

n+ 1
=
q − 1− (q − p) + 1

q − 1 + 1
=
p

q
.

This means that Q∩ ]0, 1[⊆ ACf .
To prove (2), assume that `/m ∈ ACf for some `,m ∈ N, where ` < m

and 2` 6= m. Let further n ≥ 2 be arbitrarily fixed and set s1 := · · · = sn :=
`/m. Then a simple calculation yields that σi = ri for all i ∈ {1, . . . , n}. Due
to Corollary 2.7, we get that ri ∈ ACf for all i ∈ {1, . . . , n}. �

2.4. Counterpart of Kuhn’s Theorem

Now, we turn to the main difference between the standard and asymmetri-
cal upper convexity of functions.

We recall that the t-convexity of a real valued function implies its Jensen-
convexity provided that t is different from 0 and 1. One can ask, what can we
state about such an implication if we turn to the asymmetric notion, that is, if
we require the validity of

(43) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)
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only for pairs (x, y) ∈ I × I with x < y. This problem was first formulated
by Zsolt Páles and we have only partial results. Michał Lewicki and Andrzej
Olbryś in [16, Example 3.1.] obtained the following example.

PROPOSITION 5. For a given transcendental number t ∈ [0, 1], there exists
a function d0 : R → R which, for all x, y ∈ R with x < y, fulfills (43) with a
sharp inequality, furthermore we also have

(44) d0((1− t)x+ ty) > (1− t)d0(x) + d0f(y), (x, y ∈ R, x < y).

Shortly, there exists a strictly asymmetrically t-convex real valued function
defined on R, which is strictly asymmetrically (1− t)-concave provided that t
is not an algebraic number.

To perform the proof, we need the notion of algebraic derivations. We say
that a function d : R → R is an algebraic derivation if, for all x, y ∈ R, we
have

d(x+ y) = d(x) + d(y) and d(xy) = xd(y) + d(x)y,

that is, d is additive and fulfills the Leibniz rule, respectively. It can be shown
that any algebraic derivation vanishes on the field of algebraic numbers, fur-
thermore, for all transcendental number λ ∈ R, there exists an algebraic
derivation which does not vanish at λ.

PROOF OF PROPOSITION 5. Let t ∈ [0, 1] be a fixed transcendental pa-
rameter and d0 : R → R be an algebraic derivation such that d0(t) > 0. If
x, y ∈ R are any points with x < y then the validity of the sharp version of
(43) with f = d0 is equivalent to the validity of

d0(t)(x− y) < 0,

which is obviously true. Using this, we also have

0 < −d0(t)(x− y) =
(
d0(1)− d0(t)

)
(x− y) = d0(1− t)(x− y),

which proves that (44) holds too. �

Now we show that, for certain rational numbers t, there exists an upper At-
convex extended real valued function, which is not upper A1−t-convex. Such
a function cannot be t-convex. Having this example and the above result of
Lewicki and Olbryś, it is still an open problem if there exists a real-valued
function with the same property.

To construct our function, let us define the sets Q0 and Q1 by

Q0 :=
{ 2k

2n− 1

∣∣∣ k ∈ Z, n ∈ N
}

and Q1 :=
{2k − 1

2n− 1

∣∣∣ k ∈ Z, n ∈ N
}
.
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It is easy to see, that the sets Q0 and Q1 are disjoint and that we have the
inclusions

(45)
Q0 + Q0 ⊆ Q0, Q0 + Q1 ⊆ Q1, Q1 + Q1 ⊆ Q0,

Q0Q0 ⊆ Q0, Q0Q1 ⊆ Q0, Q1Q1 ⊆ Q1.

THEOREM 2.9. Let I ⊆ R be any subinterval with a := sup I ∈ I ∩ Q1,
C : I → R be any convex function, and define f : I → R by

(46) f(x) :=

{
C(x) if x ∈ (I ∩Q0) ∪ {a},
+∞ if x ∈ I \ (Q0 ∪ {a}).

Then, for all t ∈ ]0, 1[∩Q1, the function f is upper At-convex but it is not
upper A1−t-convex.

PROOF. Let x, y ∈ I with x < y and t ∈ ]0, 1[∩Q1 be arbitrarily fixed.
Then 1 − t ∈ Q0. We need to check that (34) is satisfied with At for the
function f . This is equivalent to the validity of the inequality

(47) f(tx+ (1− t)y) ≤ tf(x) +̇ (1− t)f(y).

If max{f(x), f(y)} = +∞, then the right hand side of (47) is equal to +∞,
thus, we can suppose that the right hand side is finite, that is f(x) = C(x) and
f(y) = C(y). Now we have x ∈ Q0 and y ∈ Q0 ∪ Q1. Then, using (45), it
follows that tx + (1 − t)y ∈ Q0. Therefore, applying the convexity of C, we
get

f(tx+ (1− t)y) = C(tx+ (1− t)y)

≤ tC(x) + (1− t)C(y) = tf(x) +̇ (1− t)f(y).

This proves that f is upper At-convex for all t ∈ ]0, 1[∩Q1.
To show that f is not upper A1−t-convex, let y := a ∈ Q1 and let x ∈

I ∩Q0 be an arbitrary point. It follows from (45) that the convex combination
(1− t)x+ ty belongs to Q1 and it is also different from a. Therefore we have
f((1− t)x+ ty) = +∞ and (1− t)f(x) +̇ tf(y) = (1− t)C(x) + tC(y) ∈ R,
which means that (47) cannot be satisfied. �

COROLLARY 2.10. Keeping the above notation and conditions,ACf is not
closed under addition, consequently it cannot be written as an intersection of
]0, 1[ and a proper subfield of R.

PROOF. For arbitrarily fixed parameters s, t ∈ ]0, 1[∩Q1 ⊆ ACf with
s + t < 1, in view of (45), the sum s + t belongs to Q0. To prove that
s+ t 6∈ ACf , we construct x < y in I such that

(48) f((s+ t)x+ (1− (s+ t))y) > (s+ t)f(x) + (1− (s+ t))f(y).
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Let x ∈ I ∩Q0 be arbitrarily fixed and set y := a. Then, using again (45), the
convex combination u := (s + t)x + (1 − (s + t))y belongs to I ∩ Q1 and it
is also different from a. Consequently, f(u) must be +∞, on the other hand

(s+ t)f(x) + (1− (s+ t))f(y) = (s+ t)h(x) + (1− (s+ t))h(y) ∈ R.
This means that (48) is satisfied. �



Introduction to the Second Part

In the second part of the dissertation we are going to investigate the phe-
nomenon mentioned in II. We recall that a function f : D → R, defined on
a convex subset D of a linear space X , is called midpoint convex or Jensen
convex if

(49) f
(x+ y

2

)
≤ f(x) + f(y)

2
, (x, y ∈ D).

In view of Theorem 0.1, the validity of (49) is equivalent to the validity of

(50) f
(x1 + · · ·+ xn

n

)
≤ f(x1) + · · ·+ f(xn)

n
, (x1, . . . , xn ∈ D).

for any fixed n ∈ N. Now we would like to focus only the derivation of the
inequality (49) from (50). Obviously, it is enough to prove that having (50) for
some fixed n ∈ N with n ≥ 2, it implies the validity of

f
(x1 + · · ·+ xn−1

n− 1

)
≤ f(x1) + · · ·+ f(xn−1)

n− 1
, (x1, . . . , xn−1 ∈ D).

To prove this, let x1, . . . , xn−1 ∈ D be any points and define y as the arithmetic
mean of them, that is,

y :=
1

n− 1
(x1 + · · ·+ xn−1) = A 1

n−1
(x1, . . . , xn−1).

Then, one can easily observe that y satisfies the equality

(51) A 1
n
(x1, . . . , xn−1, y) = y

on the set conv{x1, . . . , xn−1}. Now, using the definition of y, the inequality
(50), and, finally, the fact that y solves (51), we obtain that

f
(x1 + · · ·+ xn−1

n− 1

)
= f(y) = f

(x1 + · · ·+ xn−1 + y

n

)
≤ f(x1) + · · ·+ f(xn−1) + f(y)

n

=
f(x1) + · · ·+ f(xn−1) + f

(
x1+···+xn−1

n−1

)
n
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holds. Multiplying both sides by n, subtracting f(x1+···+xn−1

n−1 ) from both sides,
and dividing the inequality so obtained by n− 1, we get that

f
(x1 + · · ·+ xn−1

n− 1

)
≤ f(x1) + · · ·+ f(xn−1)

n− 1
.

In view of this short calculation, the reducibility of the Jensen inequality
strongly depends on the fact that (51) has a unique solution, which is noth-
ing else, but the n− 1-variable arithmetic mean of the points in question.

Now let us turn to the generalized problem. The main idea is to replace
the two appearance of the arithmetic mean in the inequality (50) by arbitrary
n-variable means M : Dn → D and N : In → I , and to consider functions
f : D → I satisfying

(52) f
(
M(x1, . . . , xn)

)
≤ N

(
f(x1), . . . , f(xn)

)
, (x1, . . . , xn ∈ D).

According to the previous calculation, first we have to investigate the re-
ducibility of the means M and N . This will be interpreted using a fixed point
equation, which, in the case of the arithmetic means, goes back to the equation
(51). Finally, the type of the solution will be also important for us, namely,
that the solution remain in the same class.

Our main aim is to describe general sufficient conditions under which,
for k ∈ {1, . . . , n}, a k-variable convexity property can be deduced from the
inequality (52). This requires the construction of k-variable means which are
the reductions of M and N , respectively. The construction and computation
of the k-variable reductions will be elaborated in the class of Daróczy means
mentioned in Section 1.1. of the first chapter. Then, it will be also described
related to the class of generalized deviation means, which was introduced in
the paper [12] and which provides a broad class of means for the vector valued
setting. We also demonstrate how generalized deviation means can be derived
as solutions of convex minimum problems. Finally, we consider and establish
the reducibility property of Hölder–Minkowski type inequalities under natural
assumptions.



CHAPTER 3

Reducibility of means and convexity properties

3.1. Reducibility of mean values

To avoid the long computations and to make our results more compact, let
us introduce some notations. For a nonempty set S and for a positive integer
n ∈ N, we will identify the elements of the Cartesian product Sn with the set
of all functions mapping Nn to S, that is, with the set SNn := {x : Nn → S}.
If x ∈ Sn, then x(i) will simply denoted by xi for all i ∈ Nn.

Now we are able to introduce the main notation of Chapter 3. Let n ∈ N,
k ∈ Nn, and χ : Nk → Nn be an injective function. For x ∈ Sk and y ∈ S, the
symbol (x|χ)(y) will stand for the element of Sn defined by

(x|χ)(y)i :=

{
y if i ∈ Nn \ χ(Nk),

xj if i ∈ χ(Nk) and i = χ(j).

To understand the above notation, consider the following example. Let n ∈ N
with n ≥ 2, k := n − 1, and let χ := id |{1,...,n−1}. Then, for any vector
x = (x1, . . . , xn−1) ∈ Dn−1 and y ∈ D, we have

(x|χ)(y) = (x1, . . . , xn−1, y) ∈ Dn.

Observe that this vector came up in the argument of the arithmetic mean in the
equation (51).

To see a much simpler example, set n := 5, k := 3, and let us define the
function χ : {1, 2, 3} → {1, 2, 3, 4, 5} by

χ(1) := 2, χ(2) := 5, and χ(3) := 1.

Then, for x = (x1, x2, x3) ∈ D3 and y ∈ D, we have

(x|χ)(y) = (x3, x1, y, y, x2) ∈ D5.

In what follows, we define the notions of continuity and reduction of a
mean M : Dn → X with respect to a given injective function χ : Nk → Nn.

We say that a mean M : Dn → X is χ-continuous if, for any x ∈ Dk, the
mapping mx,M : conv(x(Nk))→ X defined as

(53) mx,M(y) := M
(
(x|χ)(y)

)
47
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is continuous on conv(x(Nk)).
The mean M : Dn → X will be called χ-reducible if there exists a mean

K : Dk → X such that, for all x ∈ Dk, the vector y = K(x) is a solution of
the equation

(54) M
(
(x|χ)(y)

)
= y.

In this case, the mean K will be called a χ-reduction of M . If for all x ∈ Dk,
the equation (54) has a unique solution y ∈ conv(x(Nk)), that is, if K is
uniquely determined, then we say that M is a uniquely χ-reducible mean,
furthermore, the mean K will be called the χ-reduction of M and will be
denoted by Mχ.

To make the notion of reducibility more clear, let us turn back our
previous example, where (x|χ)(y) was the vector (x1, . . . , xn−1, y) for all
(x1, . . . , xn−1) ∈ Dn−1 and y ∈ D. Replacing the mean M by the arithmetic
mean A 1

n
in (54), the equation (54) goes back to the form (51).

Here we also note that, in general, if an n-variable symmetric mean is re-
ducible for some injective function mapping Nk to Nn, then it is also reducible
with respect to any injective Nn-valued function defined on the set Nk.

The next theorem establishes a crucial connection among the notions of
χ-reducibility and χ-continuity.

THEOREM 3.1. The mean M : Dn → X is χ-reducible provided that it is
χ-continuous.

PROOF. Let x ∈ Dk be arbitrarily fixed and define the function mx,M :
conv(x(Nk)) → X as in (53). Obviously, the target set of mx,M is
conv(x(Nk)), and, because of the χ-continuity of the mean M , the function
mx,M is continuous on the compact convex set conv(x(Nk)). Thus, due to the
Brouwer Fixed Point Theorem, the fixed point set

Fix(mx,M) := {y ∈ conv(x(Nk)) | mx,M(y) = y}

is nonempty. Define now K(x) to be any element of Fix(mx,M). Then, for all
x ∈ Dk, the vector y = K(x) will be a solution of (54), meaning that K is a
χ-reduction of M . �

For the setting of unique χ-reducibility, we shall need the following useful
lemma.

LEMMA 3.2. Let I ⊆ R be an interval, n ∈ N, k ∈ Nn, and χ :
Nk → Nn be an injective function. Assume that the χ-continuous mean
M : In → R is uniquely χ-reducible. Then, for all x ∈ Ik and for all
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y ∈ Jx := [min(x),max(x)], we have

(55) sgn
(
mx,M(y)− y

)
= sgn(Mχ(x)− y).

PROOF. Let x ∈ Ik be arbitrarily fixed. If min(x) = max(x), then the
statement is obvious, thus we may assume that min(x) < max(x). For the
sake of brevity, define

µx,M(y) := mx,M(y)− y
for y ∈ Jx. Then, due to the definition of the χ-reduction of means, we have
µx,M(y) = 0 for y ∈ Jx if and only if y = Mχ(x).

First assume that Mχ(x) belongs to the interior of Jx. Because of
the mean-property of M , obviously, we have µx,M(max(x)) < 0 <
µx,M(min(x)). Then, because of the uniqueness of the zero of µx,M and of
the χ-continuity of M on the interval Jx, it immediately follows that µx,M
must be strictly positive on the subinterval [min(x),Mχ(x)[ , and it must be
strictly negative on the subinterval ]Mχ(x),max(x)].

On the other hand, if either Mχ(x) = min(x) or Mχ(x) = max(x), then a
similar argument shows that the function µx,M is strictly positive on the inter-
val Jx \{min(x)} or it is strictly negative on the entire interval Jx \{max(x)},
respectively, which finishes the proof. �

3.2. Reducibility of special mean values

Before we turn the most general setting, we demonstrate the reducibility of
some easy to use mean values. The following notation will be very useful. For
a nonempty set S and for u = (u1, . . . , un) ∈ Sn let uχ stand for the k-tuple
(uχ1 , . . . , uχk) ∈ Sk.

Concerning the χ-reduction of a functionally weighted arithmetic mean,
which is a very special deviation mean, we have the following result. Roughly
speaking, the functionally weighted arithmetic mean is uniquely χ-reducible,
for all injective function χ, and the χ-reduction is a functionally weighted
arithmetic mean again, where the weight functions are determined by the
members of the image of χ.

PROPOSITION 6. Let ω : D → Rn
+ be a weight function. Then we have

Aω
χ = Aωχ .

PROOF. For the mean M = Aω and for x ∈ Dk, the equation (54) can be
rewritten as

ωχ1(x1)x1 + · · ·+ ωχk(xk)xk +
(∑

i 6∈χ(Nk) ωi(y)
)
y

ωχ1(x1) + · · ·+ ωχk(xk) +
∑

i 6∈χ(Nk) ωi(y)
= y.
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It immediately follows that the unique solution y of this equation is of the form

y =
ωχ1(x1)x1 + · · ·+ ωχk(x1)xk
ωχ1(x1) + · · ·+ ωχk(xk)

= Aωχ(x),

which proves that Aω
χ(x) = Aωχ(x). �

As we will see later, similar result remains true in the class of standard de-
viation functions. Instead of proving this directly, first we are going to extend
the notion of deviation means and then formulate the theorem concerning this
class. Before that, we present a uniquely reducible mean, where the reduc-
tion is of the same form, and which does not belong to the class of standard
deviation means.

Let s, t ≥ 0 be fixed real numbers and, for n ∈ N, define

Λ(s,t)
n (x) :=

1

s+ n+ t

(
smin(x) +

∑
ξ∈x(Nn)

ξ + tmax(x)

)
, (x ∈ In).

It is easy to see that the above expression indeed defines an n-variable sym-
metric mean on I . If s = t = 0, then it gives back the n-variable arithmetic
mean, and Λ

(s,t)
n is not a deviation mean whenever s+ t > 0.

PROPOSITION 7. Let s, t ≥ 0 be fixed numbers, n ∈ N, k ∈ Nn, and let
χ : Nk → Nn be any injective function. Then Λ

(s,t)
n is uniquely χ-reducible

and its χ reduction is Λ
(s,t)
k .

PROOF. If s = t = 0, then our statement is a direct consequence of
Proposition 6, hence we assume that one of them is different from zero. Let
x ∈ Ik be any point. Our mean is χ-continuous, consequently, in view of
Theorem 3.1, it must be χ-reducible. Thus let y ∈ conv(x(Nk)) be a solution
of the equation (54). Then, for M = Λ

(s,t)
n , the equation (54) can be written in

the form
1

s+ n+ t

(
smin

(
x(Nk) ∪ {y}

)
+
∑

ξ∈x(Nk)

ξ + (n− k)y

+ tmax
(
x(Nk) ∪ {y}

))
= y.

Because of the inclusion y ∈ conv(x(Nk)), the singleton {y} can be omitted
in the argument of the minimum and the maximum. Thus we obtain that

smin(x) +
∑

ξ∈x(Nk)

ξ + (n− k)y + tmax(x) = (s+ n+ t)y,
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from where y can be expressed as

y =
1

s+ k + t

(
smin(x) +

∑
ξ∈x(Nk)

ξ + tmax(x)

)
= Λ

(s,t)
k (x).

This finishes the proof. �

3.3. Extension of Daróczy means and their reducibility

In the sequel, letX be a Hausdorff topological vector space over R. For an
arbitrary nonempty subset S ⊆ X , let S∗ denote the the space of all continuous
linear functionals defined on the linear hull of S−S. In what follows, we shall
extend the notion of deviation function and deviation mean to convex subsets
of linear spaces.

Let D ⊆ X be a nonempty convex set. We say that a mapping E : D ×
D → D∗ is a generalized deviation function if it satisfies the following two
properties:
(GE1) E(u, u) = 0 for all u ∈ D, and

(GE2) for all fixed u ∈ D, the function v 7→ −E(u, v) is continuous and
strictly monotone on D, that is

(E(u, v)− E(u,w))(v − w) < 0, (u, v, w ∈ D with v 6= w).

The class of generalized deviation functions defined on D will be denoted by
E(D). Observe that the properties (1) and (2) imply that, for a generalized
deviation E ∈ E(D), we always have

(56) E(u, v)(u− v) > 0, (u, v ∈ D, u 6= v).

Now, using a finite collection of generalized deviations, we can define
means on the convex set D. In contrast to the definition of deviation means
(that are defined on real intervals), the notion of generalized deviation mean
will be defined by a system of inequalities.

Let E = (E1, . . . , En) ∈ E(D)n. For x ∈ Dn, we say that the vector
y ∈ conv(x(Nn)) is the generalized E-deviation mean of x if

(57) (E1(x1, y) + · · ·+ En(xn, y))(xi − y) ≤ 0, (i ∈ Nn).

If y ∈ conv(x(Nn)) exists and unique, then it will be denoted by DE(x).
The next theorem states that the notion of generalized E-deviation mean

is well-defined.

THEOREM 3.3. Let n ∈ N and E ∈ E(D)n. Then, for all x ∈ Dn, there
uniquely exists y ∈ conv(x(Nn)) such that the inequality (57) holds.
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PROOF. Let x ∈ Dn be an arbitrarily fixed vector and, for the brevity,
denote the compact convex set conv(x(Nn)) by Cx, finally, let us define the
function EE,x : D → D∗ by (4). Then, by the defining properties of gen-
eralized deviations, the function −EE,x is continuous and strictly monotone.
Observe, that the real valued mapping φ : Cx × Cx → R, given by

φ(u, v) := EE,x(u)(v − u),

is continuous in its first variable, and, in view of the linearity of EE,x(u)(·) for
any fixed u ∈ Cx, it is affine, that is, it is convex and concave simultaneously in
its second variable. Thus, due to the Ky Fan Variational Inequality Theorem,
there exists y ∈ Cx, such that

sup
v∈Cx

EE,x(y)(v − y) = sup
v∈Cx

φ(y, v) ≤ sup
w∈Cx

φ(w,w)

= sup
w∈Cx

EE,x(w)(w − w) = 0.

Thus, for every v ∈ Cx, in particular, for every v ∈ {x1, . . . , xn}, we have

EE,x(y)(v − y) ≤ 0.

This proves the existence of y ∈ conv(x(Nn)) satisfying (57).
To prove the uniqueness, assume, indirectly, that there exist y 6= z in

conv(x(Nn)) satisfying (57). Then, for all i ∈ Nn, we have

(58) EE,x(y)(xi − y) ≤ 0 and EE,x(z)(xi − z) ≤ 0.

The vectors y and z belong to the convex hull of x(Nn), therefore there exist
convex combination coefficients λ1, . . . , λn ≥ 0 with λ1 + · · · + λn = 1 and
µ1, . . . , µn ≥ 0 with µ1 + · · ·+ µn = 1 such that

y = λ1x1 + · · ·+ λnxn and z = µ1x1 + · · ·+ µnxn.

Multiplying the first and the second inequalities in (58) by µi and λi, respec-
tively, and then adding up the inequalities so obtained, we get

EE,x(y)(z − y) ≤ 0 and EE,x(z)(y − z) ≤ 0.

The sum of these two inequalities can be written as

(59)
(
EE,x(y)− EE,x(z)

)
(y − z) ≥ 0.

On the other hand, using the strict monotonicity of (−EE,x), we obtain that

(EE,x(y)− EE,x(z))(y − z) < 0,

which contradicts (59). This proves that the vector y ∈ conv(x(Nn)), satisfy-
ing the inequality (57), has to be uniquely determined. �
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It is obvious that if X is the real line and D ⊆ R is an interval, then D∗ ≡
R, furthermore the notion of generalized deviation functions and generalized
deviation means reduces to that of deviation functions and deviation means,
respectively.

To see the statement about the means, let n ∈ N, E ∈ E(D)n, and x ∈ Dn

be arbitrary, and assume that min(x) < max(x). We need to show that the
value y ∈ D is the solution of the equation (3) in D if and only if it is the so-
lution of the system of inequalities (57) in conv(x(Nn)) = [min(x),max(x)].

If the value y ∈ D is the solution of (3), or, equivalently, it is the E-
deviation mean of x, then, the inequalities EE,x(min(x)) ≥ 0 ≥ EE,x(max(x))
show that y ∈ [min(x),max(x)] and it trivially satisfies the inequalities of
(57), that is, the vector y is the generalized E-deviation mean of x.

Conversely, assume that y ∈ [min(x),max(x)] is the generalized E-
deviation mean of x, which means, it is the solution of the system (57). Then,
in particular, we have

(60) EE,x(y) · (min(x)− y) ≤ 0 and EE,x(y) · (max(x)− y) ≤ 0.

If y were one of the endpoints of the interval [min(x),max(x)], say y =
min(x), then y < max(x), therefore the second inequality yields that
EE,x(y) ≤ 0. On the other hand, y ≤ xi for all indices i ∈ Nn, and, for at least
one index j ∈ Nn, we have that y < xj . Thus, for all i ∈ Nn, the inequalities
Ei(xi, y) ≥ 0 and Ej(xj, y) > 0 hold. This implies that EE,x(y) > 0. The
contradiction so obtained shows that y must be greater than min(x). Similarly,
y must be lesser than max(x). Therefore, the two inequalities in (60) result
that EE,x(y) is nonnegative and also non-positive. Consequently, we must have
EE,x(y) = 0, that is, y is the E-deviation mean of x.

Now we formulate the main theorem of Chapter 3.

THEOREM 3.4. Let n ∈ N, k ∈ Nn, and let E ∈ E(D)n. Then the
generalized E-deviation mean DE : Dn → D is reducible with respect to
any injective function χ : Nk → Nn. Furthermore, the χ-reduction of DE is
uniquely determined, namely we have

DE
χ (x) = DEχ(x), (x ∈ Dk).

PROOF. Let x ∈ Dk be arbitrarily fixed and denote the value DEχ(x) by
y0. The property (1) of generalized deviations provides that

Ei
(
(x|χ)(y)i, y

)
=

{
0 if i ∈ Nn \ χ(Nk),

Ei(xj, y) if i ∈ χ(Nk) and i = χ(j).
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Therefore,

EE,(x|χ)(y)(y) = E1

(
(x|χ)(y)1, y

)
+ · · ·+ En

(
(x|χ)(y)n, y

)
= Eχ1(x1, y) + · · ·+ Eχk(xk, y) = EEχ,x(y).

In view of the definition of χ-reducibility, we need to show that y = y0 is the
unique solution of the equation DE

(
(x|χ)(y)

)
= y in conv(x(Nk)), that is,

y = y0 is the unique solution of the system of inequalities

EE,(x|χ)(y)(y)
(
(x|χ)(y)i − y

)
= EEχ,x(y)

(
(x|χ)(y)i − y

)
≤ 0, (i ∈ Nn).

The inequalities automatically hold when i ∈ Nn \ χ(Nk), because in these
cases we always have (x|χ)(y)i = y, therefore the above system is equivalent
to

(61) EEχ,x(y)(xi − y) ≤ 0, (i ∈ Nk).

In view of Theorem 3.3, the system of inequalities in (61) is uniquely solv-
able in conv(x(Nk)) and its solution y equals y0 = DEχ(x), which was to be
proved. �

3.4. Characterization of standard Daróczy means

In the theorem below, we construct the large class of generalized deviations
in terms families of relatively Gâteaux differentiable strictly convex functions.
As a consequence of such a representation, generalized deviation means can
be viewed as the unique minimizers of certain strictly convex functions.

Given an arbitrary set S ⊆ X , a point u ∈ S is called a relative algebraic
interior point of S if, for all v ∈ S, the set {t ∈ R | tv + (1 − t)u ∈ S} is a
right neighborhood of 0 in R. The set S is said to be relatively algebraically
open if every point of S is its relative algebraic interior point.

A function f : S → R is called relatively Gâteaux differentiable at a
relatively algebraically interior point u of S if there exists a continuous linear
functional f ′(u) ∈ S∗ such that, for all v ∈ S,

(62) lim
t→0+

f(u+ t(v − u))− f(u)

t
= f ′(u)(v − u).

The notion of Gâteaux differentiability with respect to a subspace of X (in our
case, with respect to the linear span of S − S), was considered in the paper
[33].

We need the following auxiliary result, which is the adaptation of some
well-known theorems about convex functions to our setting.

THEOREM 3.5. Let D ⊆ X be a convex set and f : D → R be a relatively
Gâteaux differentiable function on D. Then the following statements hold.
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(1) D is relatively algebraically open and, for every u ∈ D, the relative
Gâteaux derivative f ′(u) is uniquely determined.

(2) The function f is convex if and only if

(63) f(v) ≥ f(u) + f ′(u)(v − u), (u, v ∈ D),

and f is strictly convex if and only if this inequality is strict whenever
u 6= v.

(3) The function f is convex if and only if its Gâteaux derivative f ′ is mono-
tone, that is,

(64) (f ′(u)− f ′(v))(u− v) ≥ 0, (u, v ∈ D),

and f is strictly convex if and only if this inequality is strict whenever
u 6= v.

(4) If S ⊆ D is a nonempty convex set and f attains its minimum at u ∈ S on
the set S, then

(65) f ′(u)(v − u) ≥ 0, (v ∈ S),

Conversely, if f is convex and (65) holds for some u ∈ S, then f attains
its minimum at u on the set S.

PROOF. Let u be arbitrarily fixed in D. Then, because of the convexity
of D, for all v ∈ D, we have [0, 1] ⊆ {t ∈ R | tv + (1 − t)u ∈ S}, which
shows that u is a relative algebraic interior point of D. Assume that f ′(u)
is not uniquely determined, that is, there exists ϕ, ψ ∈ D∗ such that, for all
v ∈ D,

lim
t→0+

f(u+ t(v − u))− f(u)

t
= ϕ(v − u) = ψ(v − u).

Then, (ϕ − ψ)(v − u) = 0 for all v ∈ D. Now, let h ∈ D − D be arbitrary.
Then there exist v, w ∈ D such that h = v − w, hence

(ϕ− ψ)(h) = (ϕ− ψ)(v − u)− (ϕ− ψ)(w − u) = 0.

Therefore, ϕ− ψ vanishes on the linear span of D −D, showing that ϕ = ψ.
To prove (2), assume that f is convex. Then, for all u, v ∈ D, the map

t 7→ 1
t
(f(u+ t(v − u))− f(u)) is nondecreasing, hence

f(v)− f(u) =
f(u+ 1(v − u))− f(u)

1

≥ lim
t→0

f(u+ t(v − u))− f(u)

t
= f ′(u)(v − u),
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which gives (63). If f is strictly convex and u 6= v, then t 7→ 1
t
(f(u +

t(v−u))−f(u)) is strictly increasing, which results that (63) holds with strict
inequality.

For the converse, assume (63), and let u, v ∈ D and t ∈ [0, 1] be arbitrary.
Then, based on (63), we get that

(66)

f(u) ≥ f(tu+ (1− t)v) + f ′(tu+ (1− t)v)(u− (tu+ (1− t)v))

= f(tu+ (1− t)v) + (1− t)f ′(tu+ (1− t)v)(u− v),

f(v) ≥ f(tu+ (1− t)v) + f ′(tu+ (1− t)v)(v − (tu+ (1− t)v))

= f(tu+ (1− t)v) + tf ′(tu+ (1− t)v)(v − u).

Multiplying the first inequality by t, the second one by (1− t), and adding up
the inequalities so obtained side by side, we get

tf(u) + (1− t)f(v) ≥ f(tu+ (1− t)v),

which proves the convexity of f . If (63) holds with strict inequality for u 6= v
and x 6= y, then the inequalities in (66) are strict for t 6∈ {0, 1}, hence we
obtain the strict convexity of f .

To prove the second assertion, assume again that f is convex. Then (63)
holds, thus, applying this inequality twice, we obtain that

f(v) ≥ f(u) + f ′(u)(v − u) and f(u) ≥ f(v) + f ′(v)(u− v)

for all u, v ∈ D. Adding up these inequalities side by side, it results that (64)
is valid. If f is strictly convex and u 6= v, then (63) is strict, which yields that
(64) is also strict.

Conversely, assume (64) and, for u, v ∈ D, define the function fu,v :
[0, 1]→ R by

fu,v(t) := f(tu+ (1− t)v).

Observe that fu,v is differentiable on [0, 1], furthermore the derivative f ′u,v :=
d
dt
fu,v is nondecreasing. Indeed, a short calculation shows that

f ′u,v(t) = lim
τ→t

fu,v(τ)− fu,v(t)
τ − t

= f ′(tu+ (1− t)v)(u− v).

Now let t, s ∈ [0, 1] such that t 6= s. Then, due to (64), we have

0 ≤ (t− s)(f ′(tu+ (1− t)v)− f ′(su+ (1− s)v))(u− v)

= (t− s)(f ′u,v(t)− f ′u,v(s)),

which implies that f ′u,v is nondecreasing. We obtained that fu,v is convex for
any fixed u, v ∈ D.
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Finally, let u, v ∈ D and t ∈ [0, 1] be arbitrarily fixed. Then we have the
calculation

f(tu+ (1− t)v) = fu,v(t) = fu,v(t · 1 + (1− t) · 0)

≤ tfu,v(1) + (1− t)fu,v(0) = tf(u) + (1− t)f(v),

consequently f is convex.
For the third statement, let S ⊆ D be a nonempty convex set and assume

that f attains its minimum on S at the point u ∈ S. Then, for all t ∈ [0, 1] and
v ∈ S, we have that f(u+ t(v − u)) ≥ f(u). Hence, in view of formula (62),
we get that f ′(u)(v − u) ≥ 0 for all v ∈ S.

Now assume that f is convex and, for some u ∈ S, (65) holds. Then,
applying (63) for u, v ∈ S, we get

f(v) ≥ f(u) + f ′(u)(v − u) ≥ f(u).

This proves that f attains its minimum on S at the point u ∈ S. �

To formulate the next theorem, let F(D) denote the class of real functions
F : D ×D → R which possess the following property.

(F) For any fixed u ∈ D, the function Fu := F (u, ·) is relatively Gâteaux
differentiable and strictly convex onD, furthermore the derivative F ′u
vanishes at u.

THEOREM 3.6. Assume that D ⊆ X is a convex set and let F ∈ F(D).
Then the function EF : D ×D → D∗, defined by

(67) EF (u, v) = −F ′u(v),

is a generalized deviation. Furthermore, if n ∈ N, F ∈ F(D)n and EF =
(EF1 , . . . , EFn), then, for x ∈ Dn, the equality y = DEF (x) holds if and only
if y is the unique minimizer over conv(x(Nn)) of the function FF,x : D → R
defined by

(68) FF,x(v) := F1(x1, v) + · · ·+ Fn(xn, v).

Conversely, if X is the real line and D is an open subinterval, then, for all
deviations E ∈ E(D), there exists a function F ∈ F(D) such that, for all
u ∈ D,

(69) F ′u(v) = −E(u, v), (v ∈ D)

is satisfied.

PROOF. First let F ∈ F(D) and define the function EF : D × D → D∗

as in (67). We are going to show that EF is a generalized deviation. It only
suffices to verify the strict monotonicity of −EF in its second variable. To
do this, let u, v, w ∈ D such that v 6= w. According to the property (F) of
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F , the function Fu is strictly convex on its domain, or equivalently, based on
Theorem 3.5, we have that

0 < (F ′u(v)− F ′u(w))(v − w) = −(EF (u, v)− EF (u,w))(v − w).

Consequently, the function −EF (u, ·) is strictly monotone on D.
Now let n ∈ N, F ∈ F(D)n, EF = (EF1 , . . . , EFn) and let x ∈ Dn

be arbitrarily fixed. The function FF,x : D → R, defined in (68), is con-
tinuous on the convex, compact set conv(x(Nn)), thus there exists a point
y ∈ conv(x(Nn)), which minimizes FF,x on the set conv(x(Nn)). Moreover,
because of the strict convexity of FF,x, the minimizer y has to be unique. Thus,
based on the last statement of Theorem 3.5, for all v ∈ conv(x(Nn)), we have

0 ≤ F′F,x(y)(v − y) = −(EF1(x1, y) + · · ·+ EFn(xn, y))(v − y).

In particular, this inequality holds also for all v ∈ {x1, . . . , xn}. Because of
the uniqueness of the generalized EF -deviation mean of x (cf. Theorem 3.3),
we must have y = DEF (x).

Conversely, if

(EF1(x1, y) + · · ·+ EFn(xn, y))(v − y) ≤ 0

for all v ∈ {x1, . . . , xn}, then this inequality is also valid for all v ∈
conv(x(Nn)). Hence, for all v ∈ conv(x(Nn)),

F′F,x(y)(v − y) ≥ 0.

In view of the reversed implication in the last statement of Theorem 3.5, this
implies that y is the minimizer of the function FF,x over the set conv(x(Nn)).

Let finally X be the real line and D ⊆ R be a subinterval, furthermore let
E ∈ E(D) be a deviation and define the function F : D × D → R by the
formula

(70) F (u, v) := −
v∫

u

E(u, t) dt, (u, v ∈ D).

For all u ∈ D, the function t 7→ E(u, t) is continuous on D, thus, due to the
Fundamental Theorem of Calculus, Fu is continuously differentiable on D,
and (69) holds. The strict decreasingness of E in its second variable implies
that F ′u is a strictly monotone and hence Fu is strictly convex. Obviously we
also have that F ′u(u) = −E(u, u) = 0 for all u ∈ D. �

The following result offers the construction of families of strictly convex
functions in terms of two single variable functions. We recall that the unit ball
of a normed space (X, ‖ · ‖) is called strictly convex if ‖x‖ = ‖y‖ = 1 and
x 6= y implies that ‖tx+ (1− t)y‖ < 1 for all t ∈]0, 1[. Observe that the strict
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convexity of the unit ball does not imply that the norm is a strictly convex
function, moreover, by the positive homogeneity, any norm cannot be strictly
convex.

PROPOSITION 8. Let (X, ‖ · ‖) be a normed space, assume that the unit
ball is strictly convex and the norm is Gâteaux differentiable on X \ {0}.
Let further D ⊆ X be a convex set and ω : D → R+. Then the function
F : D ×D → R, defined by

(71) F (u, v) := ω(u)‖v − u‖2, (u, v ∈ D),

satisfies property (F).

PROOF. Let u ∈ D be fixed. To show that Fu := F (u, ·) is strictly convex,
let v, w ∈ D with v 6= w and t ∈ ]0, 1[ . Now, we distinguish two cases.

First assume that the vectors v−u and w−u are not parallel, that is, there
is no t ∈ [0, 1] such that t(v− u) = (1− t)(w− u). Then non of them is zero,
furthermore x := v−u

‖v−u‖ and y := w−u
‖w−u‖ are distinct unit vectors. Therefore,

by the strict convexity of the unit ball, we have that ‖sx + (1 − s)y‖ < 1 for
all s ∈ ]0, 1[ . Now, by also using the convexity of the square function, we get

Fu(tv + (1− t)w) = ω(u)‖tv + (1− t)w − u‖2

= ω(u)‖t(v − u) + (1− t)(w − u)‖2

= ω(u)
(
t‖v − u‖+ (1− t)‖w − u‖

)2·∥∥∥∥ t‖v − u‖
t‖v − u‖+ (1− t)‖w − u‖

x+
(1− t)‖w − u‖

t‖v − u‖+ (1− t)‖w − u‖
y

∥∥∥∥2
< ω(u)

(
t‖v − u‖+ (1− t)‖w − u‖

)2
≤ ω(u)

(
t‖v − u‖2 + (1− t)‖w − u‖2

)
= tFu(v) + (1− t)Fu(w).

Secondly, assume that v− u and w− u are parallel vectors. Then, the relation
v 6= w implies that ‖v − u‖ 6= ‖w − u‖. Thus, by the subadditivity and the
positive homogeneity of the norm, and by the strict convexity of the square
function, we get that

Fu(tv + (1− t)w) = ω(u)‖t(v − u) + (1− t)(w − u)‖2

≤ ω(u)
(
t‖v − u‖+ (1− t)‖w − u‖

)2
< ω(u)

(
t‖v − u‖2 + (1− t)‖w − u‖2

)
= tFu(v) + (1− t)Fu(w).
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To check the Gâteaux differentiability, denote p(x) := ‖x‖ and let v ∈ D\{u}
and h ∈ X . Then

F ′u(v)(h) = lim
t→0+

Fu(v + th)− Fu(v)

t

= lim
t→0+

ω(u)‖v + th− u‖2 − ω(u)‖v − u‖2

t

= ω(u) lim
t→0+

(
‖v + th− u‖+ ‖v − u‖

)p(v − u+ th)− p(v − u)

t
= 2ω(u)‖v − u‖p′(v − u)(h).

Therefore, for u 6= v, we get F ′u(v) = 2ω(u)‖v − u‖p′(v − u).
On the other hand, for v = u, we have

F ′u(u)(h) = lim
t→0+

Fu(u+ th)− Fu(u)

t

= lim
t→0+

ω(u)‖th‖2 − ω(u)‖0‖2

t

= ω(u) lim
t→0+

t2‖h‖2

t
= 0,

which proves that F ′u(u) is identically zero. This completes the proof of prop-
erty (F). �

Let (X, 〈·, ·〉) be an inner product space over R, D ⊆ X be a nonempty
convex set, and ω : D → R+. Then, by the previous result, the function
F : D ×D → R, defined by (71), belongs to F(D) and, for all u, v ∈ D, we
have

(72)

EF (u, v)(h) = −F ′u(v)(h)

= −2ω(u)‖v − u‖p′(v − u)(h)

= 2ω(u)〈u− v, h〉

for all h ∈ X . Now we can explicitly compute the generalized deviation
mean generated by such generalized deviations. Let n ∈ N, ω1, . . . , ωn :
D → R+ and F1, . . . , Fn : D × D → R be functions, defined as in (71)
using the weight functions ω1, . . . , ωn, respectively, furthermore let EF :=
(EF1 , . . . , EFn). Then

DEF (x) =
ω1(x1)x1 + · · ·+ ωn(xn)xn
ω1(x1) + · · ·+ ωn(xn)

= Aω(x), (x ∈ Dn).
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Indeed, for x ∈ Dn and h ∈ X , with the notation y := Aω(x) ∈ conv(x(Nn)),
we have
(EF1(x1, y) + · · ·+ EFn(xn, y))(h)

= 2(ω1(x1)〈x1 − y, h〉+ · · ·+ ωn(xn)〈xn − y, h〉)

= 2〈ω1(x1)x1 + · · ·+ ωn(xn)xn − (ω1(x1) + · · ·+ ωn(xn))y, h〉 = 0.

In particular, this equality holds also for h ∈ {x1, . . . , xn} − y, thus we must
have y = DEF (x).

On the other hand, by Theorem 3.6, the vector y = Aω(x) is the unique
minimizer of the function

FF,x(v) : = F1(x1, v) + · · ·+ Fn(xn, v)

= ω1(x1)‖x1 − v‖2 + · · ·+ ωn(xn)‖xn − v‖2,
that is, y is the weighted least square approximant of the elements
x1, . . . , xn ∈ D.

3.5. Reducible inequalities involving means

In this section we consider convexity properties, comparison and Hölder–
Minkowski type inequalities and establish their reducibility. Let D ⊆ X be
a nonempty convex set, n ∈ N and let M : Dn → X and N : Rn → R be
means. We say that a function f : D → R is convex with respect to the pair of
means (M,N) on D or, shortly, that f is (M,N)-convex on D if

(73) (f ◦M)(x) ≤ N(f ◦ x), (x ∈ Dn),

that is, if we have

f
(
M(x1, . . . , xn)

)
≤ N

(
f(x1), . . . , f(xn)

)
, (x1, . . . , xn ∈ D).

THEOREM 3.7. Let D ⊆ X be a nonempty convex set, I ⊆ R be an
interval, n ∈ N, k ∈ Nn, and let χ : Nk → Nn be an injective function. Let
further M : Dn → X and N : In → R be means such that M is χ-reducible
and N is χ-continuous and uniquely χ-reducible. If a function f : D → I is
(M,N)-convex, then it is also (K,Nχ)-convex for all χ-reduction K : Dk →
X of the mean M .

PROOF. Let f : D → I be an (M,N)-convex function, K : Dn → X be
any χ-reduction of M and let x ∈ Dk be arbitrarily fixed. Denote y := K(x).
Then, because of the definition of y, we have M

(
(x|χ)(y)

)
= y. Using this,

the (M,N)-convexity of f , and the notation (53), we obtain that

f(y) = (f ◦M)
(
(x|χ)(y)

)
≤ N

(
f
(
(x|χ)(y)

))
= mf◦x,N(f(y)),
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which is equivalent to the inequality

0 ≤ mf◦x,N(f(y))− f(y).

Due to the χ-continuity and to the unique χ-reducibility of N , using
Lemma 3.2, it immediately follows that f(y) ≤ Nχ(f ◦ x) holds, that is

(f ◦K)(x) ≤ Nχ(f ◦ x).

Consequently, f is (K,Nχ)-convex on its domain. �

The subsequent corollaries immediately follow from the theorem above,
from Proposition 6 and from Theorem 3.4.

COROLLARY 3.8. Let D ⊆ X be a nonempty convex set, I ⊆ R be an
interval and n ∈ N. Let further ω : D → Rn

+ and E : I × I → Rn such
that Ei is a deviation for all i ∈ Nn. If a function f : D → I satisfies the
n-variable inequality

f
(
Aω(x1, . . . , xn)

)
≤ DE

(
f(x1), . . . , f(xn)

)
, (x1, . . . , xn ∈ D),

then, for all k ∈ Nn and for all injective function χ : Nk → Nn, it also satisfies
the k-variable inequality

f
(
Aωχ(x1, . . . , xk)

)
≤ DEχ

(
f(x1), . . . , f(xk)

)
, (x1, . . . , xk ∈ D).

COROLLARY 3.9. Let D ⊆ X be a nonempty convex set, I ⊆ R be an
interval and n ∈ N. Let further G : D × D → (D∗)n and E : I × I → Rn

such that Gi is a generalized deviation and Ei is a deviation for all i ∈ Nn. If
a function f : D → I satisfies the n-variable inequality

f
(
DG(x1, . . . , xn)

)
≤ DE

(
f(x1), . . . , f(xn)

)
, (x1, . . . , xn ∈ D),

then, for all k ∈ Nn and for all injective function χ : Nk → Nn, it also satisfies
the k-variable inequality

f
(
DGχ(x1, . . . , xk)

)
≤ DEχ

(
f(x1), . . . , f(xk)

)
, (x1, . . . , xk ∈ D).

REMARK. Obviously, if, for all i ∈ Nn, we have ωi = 1 and Ei(u, v) :=
u− v for all u, v ∈ I in Corollary 3.8, or if X is an inner product space, and,
for all i ∈ Nn, we have Gi(x, y)(·) := 〈x − y, ·〉 and Ei(u, v) := u − v for
all x, y ∈ D and for all u, v ∈ I , respectively, in Corollary 3.9, then, in both
cases, we get back the reducibility of the Jensen inequality.

In particular, by applying the previous corollary to the function f(x) =
x, we immediately obtain the following consequence for the comparison of
deviation means.
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COROLLARY 3.10. Let I ⊆ R be an interval and n ∈ N. Let further
G,E : I × I → Rn such that Gi and Ei are deviations for all i ∈ Nn. If the
n-variable inequality

DG(x1, . . . , xn) ≤ DE(x1, . . . , xn), (x1, . . . , xn ∈ D)

holds, then, for all k ∈ Nn and for all injective function χ : Nk → Nn, we also
have the k-variable inequality

DGχ(x1, . . . , xk) ≤ DEχ(x1, . . . , xk), (x1, . . . , xk ∈ D).

The following result establishes the reducibility of an abstract Hölder–
Minkowski type inequality.

THEOREM 3.11. Let X1, . . . , X` be real Hausdorff topological linear
spaces, let D1 ⊆ X1, . . . , D` ⊆ X` be nonempty convex sets and I ⊆ R
be an interval. Let n ∈ N, k ∈ Nn, and let χ : Nk → Nn be an injective
function. Let N1 : Dn

1 → X1, . . . , N` : Dn
` → X` be χ-reducible means and

let M : In → R be a χ-continuous, uniquely χ-reducible mean. If a function
f : D1 × · · · ×D` → I satisfies the n · `-variable inequality

(74) M
(
f(x1, . . . , x`)

)
≤ f

(
N1(x

1), . . . , N`(x
`)
)

for all x1 ∈ Dn
1 , . . . , x

` ∈ Dn
` , then, for any χ-reductions K1 : Dk

1 →
X1, . . . , K` : Dk

` → X` of N1, . . . , N`, respectively, it also fulfills the k · `-
variable inequality

(75) Mχ

(
f(x1, . . . , x`)

)
≤ f

(
K1(x

1), . . . , K`(x
`)
)

for all x1 ∈ Dk
1 , . . . , x

` ∈ Dk
` , where, for m ∈ N and x1 ∈ Dm

1 , . . . , x
` ∈ Dm

` ,
we denote

f(x1, . . . , x`) := (f(x11, . . . , x
`
1), . . . , f(x1m, . . . , x

`
m)).

PROOF. Let x1 ∈ Dk
1 , . . . , x

` ∈ Dk
` be arbitrarily fixed, K1 : Dk

1 →
X1, . . . , K` : Dk

` → X` be any χ-reduction of N1, . . . , N`, respectively, de-
note u1 := K1(x

1), . . . , u` := K`(x
`), finally let u := (u1, . . . , u`). Using

inequality (74), we get

M
(
(f(x1, . . . , x`)|χ)(f(u))

)
≤ f

(
N1((x

1|χ)(u1)), . . . , N`((x
`|χ)(u`))

)
= f

(
K1(x

1), . . . , K`(x
`)
)

= f(u),

that is, the inequality

mf(x1,...,x`),M(f(u))− f(u) = M
(
(f(x1, . . . , x`)|χ)(f(u))

)
− f(u) ≤ 0
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holds. The mean M is χ-continuous and uniquely χ-reducible, thus, using
Lemma 3.2 for the vector x := f(x1, . . . , x`) and for y := f(u), we obtain
that

Mχ

(
f(x1, . . . , x`)

)
≤ f(u) = f

(
K1(x

1), . . . , K`(x
`)
)
,

which finishes the proof. �

To derive various consequences of Theorem 3.11, one can specialize the
means M and N1, . . . , N` by letting them equal to weighted arithmetic mean
or to a generalized deviation mean. Then the two choices f(x1, . . . , x`) :=
x1 + · · · + x` and f(x1, . . . , x`) := x1 · · ·x` result inequalities of Minkowski
and of Hölder type, respectively.



Summary

In the sequel, I am going to sum up the main areas which are touched
by my dissertation and, in parallel, I also describe the most important related
results. The motivation of our investigations was served by the following es-
sential result from the theory of standard convexity of real valued functions,
which is originally due to Johan Jensen.

THEOREM. (Jensen, 1906) Let X be a linear space and D ⊆ X be a
nonempty convex subset. Then the following statements are pairwise equiva-
lent.

(1) The function f : D → R is Jensen convex.
(2) For any given positive integer n ∈ N, the function f : D → R fulfills

the n-variable Jensen Inequality, that is, for all x1, . . . , xn ∈ D, we
have

f
(x1 + · · ·+ xn

n

)
≤ f(x1) + · · ·+ f(xn)

n
.

(3) The function f : D → R is rationally convex on D, that is, for all
r ∈ [0, 1] ∩Q and for all x, y ∈ D, we have

f(rx+ (1− r)y) ≤ rf(x) + (1− r)f(y).

Among others, this result has two crucial message for us. According to
this, my dissertation can be divided in two main parts.
• First Part. Here we were concentrating on the connection between the
statements (1) and (3). In view of this, having the inequality of the standard
convexity with the weight 1

2
, that is, having the Jensen inequality for some

real valued function, we can conclude its rational convexity. This immedi-
ately yields some crucial properties of the convexity parameter set of a Jensen
convex function. Namely, it follows that is must be at least a countable (cardi-
nality property) and dense (topological property) subset of [0, 1], furthermore
it contains the intersection of the field of rational numbers and [0, 1] (alge-
braic property). The full characterization of the convexity parameter set is due
to Norbert Kuhn.

65
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THEOREM. (Kuhn, 1984) For any function f : I → R, the convexity
parameter set Cf is either {0, 1} or it can be written as F ∩ [0, 1], where F is
the subfield of R generated by Cf .

In the first part of the dissertation, related to a generalized notion of con-
vexity of extended real valued functions, we are going to formulate Kuhn type
theorems. Now we turn to the detailed explanation of the different sections.

In Capter 1., we explain the notion of mean values and the most important
types of classes of means what we will need for our purposes. Then we for-
mulate the main tools from linear algebra and fixed point theory what will be
used in the further steps. Finally we state our main results about deriving new
means from given ones and apply them for the class of Matkowski means.

The main notion of this chapter is the descendant of a mean. Theorem 1.7
provides that this notion is well-defined assuming, among others, that the orig-
inal means are continuous.

The following theorem states that the descendants of a chain of weighted
quasi-arithmetic means with the same generator function always exists, they
are uniquely determined, and are also weighted quasi-arithmetic means. As
one can see, the generator function is the same and the weights of the descen-
dants can be directly calculated using the original weights.

THEOREM. Let n ≥ 2, s1, . . . , sn ∈ ]0, 1[ , and h : I → R be a con-
tinuous, strictly increasing function. For (x, y) ∈ I2<, define the function
ϕ(x,y) : [x, y]n≤ → Rn as in (19) using the means Mi := M(sih,(1−si)h), where
i ∈ {1, . . . , n}. Then, for all (x, y) ∈ I2<, the fixed point set Φ(x,y) is the
singleton

{(
M(σ1h, (1−σ1)h)(x, y), . . . ,M(σnh, (1−σn)h)(x, y)

)}
, where

σi :=

( n∑
j=i

j∏
k=1

sk
1− sk

)( n∑
j=0

j∏
k=1

sk
1− sk

)−1
, (i ∈ {1, . . . , n}).

In general, having proper Matkowski means (that is, not necessarily
weighted quasi-arithmetic means), the calculation of the descendants might be
difficult. However, assuming some relations between the generator functions
the task can be done using a two way recursion.

THEOREM. Let n ≥ 2, j ∈ {1, . . . , n} and p, q, h1, . . . , hn−1 : I → R be
continuous, strictly increasing functions, furthermore set h0 := hn := 0. For
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(x, y) ∈ I2<, define the mapping ϕ(x,y) : [x, y]n≤ → Rn by (19), using the means

Mi :=


M(p+hi−1, hi) if i ∈ {1, . . . , j − 1},

M(p+hi−1, hi+q) if i = j,

M(hi−1, hi+q) if i ∈ {j + 1, . . . , n}.

Then, for (x, y) ∈ I2<, the fixed point set Φ(x,y) defined by (20) is the singleton
{(ξ1, . . . , ξn)}, where ξj := M(p, q)(x, y) and the rest of the coordinates are
defined by the two-way recurrence

ξi :=

{
M(p, hi)(x, ξi+1) if i ∈ {1, . . . , j − 1},

M(hi−1, q)(ξi−1, y) if i ∈ {j + 1, . . . , n}.

In Chapter 2., we introduce and also characterize the concept of lower
and upper M -convex functions, we apply our previous results, and investigate
the algebraic and topological properties of their generalized convexity classes.
Then, taking the special subclass of asymmetrically t-convex functions, we
formulate also the counterpart of Kuhn’s Theorem.

It follows from Kuhn’s theorem that the standard convexity set is closed
under taking convex combinations weighted with its elements. The following
proposition generalizes this statement.

PROPOSITION. Let f : I → R be any function and letM ∈ {Mf ,Mf}.
Then the following statements hold.
(a) If M,N1, N2 ∈M with N1 < N2 on the set I2<, then M ◦ (N1, N2) ∈M.
(b) If M,N ∈ M, then the compositions M ◦ (min, N) and M ◦ (N,max)

also belong to the familyM.

Similarly to the standard case, a topological property can be derived from
the above proposition.

COROLLARY. Let f : I → R be any function, define

M∗
f := {M ∈Mf |M is separately continuous in both variables},

M∗
f := {M ∈Mf |M is separately continuous in both variables},

and, finally, let M∗ ∈ {M∗
f ,M

∗
f}. Then M∗ has no isolated points with

respect to the pointwise convergence, more precisely, for all M ∈ M∗, there
exist sequences of means (Ln), (Un) ⊆M∗ such thatLn < M < Un whenever
n ∈ N, furthermore Ln → M and Un → M pointwise on the set I2< as
n→∞.
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Using the results earned in the previous sections, it can be proved that the
lower convexity class is always closed under taking the descendants. This is
not true in the case of upper convexity.

THEOREM. Let f : I → R be any function, n ≥ 2, furthermore
M1, . . . ,Mn ∈ Mf be continuous means. Then Di(M1, . . . ,Mn) ⊆ Mf

for all i ∈ {1, . . . , n}.

Assuming that the lower convexity class contains certain type of
Matkowski means, we get the following consequences.

COROLLARY. Let f : I → R, n ≥ 2, s1, . . . , sn ∈ ]0, 1[ , and finally
h : I → R be a continuous, strictly increasing function. Assume further that
M(sih, (1−si)h) ∈ Mf for all i ∈ {1, . . . , n}. Then, for all i ∈ {1, . . . , n},
the Matkowski mean M(σih, (1−σi)h) also belongs to the familyMf , where the
weight σi is defined as in (28) for all i ∈ {1, . . . , n}.

COROLLARY. Let n ≥ 2, p, q, h1, . . . , hn−1 : I → R be continuous,
strictly increasing functions and f : I → R. Set further h0 := hn := 0
and assume that there exists j ∈ {1, . . . , n} such that, for all i ∈ {1, . . . , n},
the mean Mi defined by

Mi :=


M(p+hi−1, hi) if i ∈ {1, . . . , j − 1},
M(p+hj−1, hj+q) if i = j,

M(hi−1, hi+q) if i ∈ {j + 1, . . . , n}

is contained inMf . Then N1, . . . , Nn ∈Mf , where, for all (x, y) ∈ I2≤,

Ni(x, y) =


M(p, hi)(x,Ni+1(x, y)) if i ∈ {1, . . . , j − 1},
M(p, q)(x, y) if i = j

M(hi−1, q)(Ni−1(x, y), y) if i ∈ {j + 1, . . . , n}.

Turning to the notion of asymmetrical convexity, the related lower and up-
per convexity classes can be identified with suitable subsets of the open unit
interval. In this case the statements about the algebraic and topological struc-
ture became more transparent. We obtain the special convexity property of the
parameter set. It turns to be closed under the multiplication of its elements and
we also get its density in ]0, 1[ .

THEOREM. Let f : I → R be any function and AC ∈ {ACf ,ACf}. Then
the following statements hold.

(1) If t, s1, s2 ∈ AC with s1 < s2, then ts2 + (1− t)s1 ∈ AC.
(2) If t, s ∈ AC, then ts and 1− (1− t)(1− s) also belong to AC.
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(3) The set AC is dense in the open unit interval, provided that it is
nonempty.

Applying our general results obtained for Matkowski means, we earn the
following corollaries.

COROLLARY. Let I ⊆ R be an interval, f : I → R, n ≥ 2 and
s1, . . . , sn ∈ ACf . Then σi ∈ ACf for all i ∈ {1, . . . , n}, where

σi :=

( n∑
j=i

j∏
k=1

sk
1− sk

)( n∑
j=0

j∏
k=1

sk
1− sk

)−1
.

COROLLARY. For a function f : I → R the following statements hold.

(1) If 1/2 ∈ ACf then Q∩ ]0, 1[⊆ ACf .
(2) If `/m ∈ ACf for some `,m ∈ N with ` < m and 2` 6= m, then, for

all n ≥ 2 and for all i ∈ {1, . . . , n}, the fraction

ri :=
`n+1 − `i(m− `)n+1−i

`n+1 − (m− `)n+1

belongs to ACf .

Finally, we construct a proper upper asymmetrically convex extended real
valued function whose parameter set contains rational (and hence algebraic)
numbers, is dense in [0, 1] but it fails to be an intersection of a field and the
open unit interval. An other example having similar behavior was given by
Lewicki and Olbryś concerning transcendental parameters and the real valued
case. The existence of a real valued function with the same property under
algebraic parameters forms still an open problem.

THEOREM. Let I ⊆ R be a subinterval with a := sup I ∈ I ∩ Q1, C :
I → R be any convex function, and define f : I → R by

f(x) :=

{
C(x) if x ∈ (I ∩Q0) ∪ {a},
+∞ if x ∈ I \ (Q0 ∪ {a}).

Then, for all t ∈ ]0, 1[∩Q1, the function f is upper At-convex but it is not
upper A1−t-convex.

COROLLARY. Keeping the above notation and conditions, ACf is not
closed under addition, consequently it cannot be written as an intersection
of ]0, 1[ and a proper subfield of R.
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• Second Part. The second part of the dissertation generalizes and in-
vestigates the statement about the equivalence of (1) and (2). The original
assertion provides that, having the Jensen inequality of n variables with fixed
positive integer n ≥ 2 for a real function, its Jensen convexity can be deduced.
Obviously, the statement is interesting only when n > 2. In view of our ter-
minology, this means that the n variable Jensen inequality is reducible. The
calculation in the proof of the theorem shows that this depends strongly on the
reducibility of the mean in background, namely of the arithmetic mean.

In Chapter 3., we formulate precisely the notion of reducibility of general
mean values. The main theorem of this part, which gives a sufficient condition
for being reducible, is the following.

THEOREM. The mean M : Dn → X is χ-reducible provided that it is
χ-continuous.

After this, generalizing widely the well-known means, we introduce the
notion of generalized deviation means on topological vector spaces of Haus-
dorff type. These means naturally turned out to be reducible. Moreover, the
reductions belong to the same class and the generators can be easily given
using the original ones.

THEOREM. Let n ∈ N, k ∈ Nn, and let E ∈ E(D)n. Then the generalized
E-deviation mean DE : Dn → D is reducible with respect to any injective
function χ : Nk → Nn. Furthermore, the χ-reduction of DE is uniquely
determined, namely we have

DE
χ (x) = DEχ(x), (x ∈ Dk).

In the Section 3.4. of Chapter 3., we also characterize the generalized devi-
ation means using relatively Gâteaux-differentiable strictly convex functions.

THEOREM. Assume that D ⊆ X is a convex set and let F ∈ F(D). Then
the function EF : D ×D → D∗, defined by

EF (u, v) = −F ′u(v),

is a generalized deviation. Furthermore, if n ∈ N, F ∈ F(D)n and EF =
(EF1 , . . . , EFn), then, for x ∈ Dn, the equality y = DEF (x) holds if and only
if y is the unique minimizer over conv(x(Nn)) of the function FF,x : D → R
defined by

FF,x(v) := F1(x1, v) + · · ·+ Fn(xn, v).

Conversely, if X is the real line and D is an open subinterval, then, for all
deviations E ∈ E(D), there exists a function F ∈ F(D) such that, for all
u ∈ D,

F ′u(v) = −E(u, v), (v ∈ D)
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is satisfied.

In the very last section we are dealing with the reducibility of the notion
of (M,N)-convexity of real functions, which is a self-evident generalization
of the Jensen convexity; one can obtain it by replacing the arithmetic mean on
the left hand side and on the right hand side by the general mean values M
and N , respectively. As in the standard case, its reducibility depends strongly
on the reducibility property of the mean values what are involved, namely of
M and N .

THEOREM. Let D ⊆ X be a nonempty convex set, I ⊆ R be an interval,
n ∈ N, k ∈ Nn, and let χ : Nk → Nn be an injective function. Let further
M : Dn → X and N : In → R be means such that M is χ-reducible and N
is χ-continuous and uniquely χ-reducible. If a function f : D → I is (M,N)-
convex, then it is also (K,Nχ)-convex for all χ-reduction K : Dk → X of the
mean M .

Applying this result, we immediately get the following consequences,
which concern special mean values instead of general ones.

COROLLARY. Let D ⊆ X be a nonempty convex set, I ⊆ R be an interval
and n ∈ N. Let further ω : D → Rn

+ and E : I × I → Rn such that Ei is
a deviation for all i ∈ Nn. If a function f : D → I satisfies the n-variable
inequality

f
(
Aω(x1, . . . , xn)

)
≤ DE

(
f(x1), . . . , f(xn)

)
, (x1, . . . , xn ∈ D),

then, for all k ∈ Nn and for all injective function χ : Nk → Nn, it also satisfies
the k-variable inequality

f
(
Aωχ(x1, . . . , xk)

)
≤ DEχ

(
f(x1), . . . , f(xk)

)
, (x1, . . . , xk ∈ D).

COROLLARY. Let D ⊆ X be a nonempty convex set, I ⊆ R be an interval
and n ∈ N. Let further G : D ×D → (D∗)n and E : I × I → Rn such that
Gi is a generalized deviation and Ei is a deviation for all i ∈ Nn. If a function
f : D → I satisfies the n-variable inequality

f
(
DG(x1, . . . , xn)

)
≤ DE

(
f(x1), . . . , f(xn)

)
, (x1, . . . , xn ∈ D),

then, for all k ∈ Nn and for all injective function χ : Nk → Nn, it also satisfies
the k-variable inequality

f
(
DGχ(x1, . . . , xk)

)
≤ DEχ

(
f(x1), . . . , f(xk)

)
, (x1, . . . , xk ∈ D).

COROLLARY. Let I ⊆ R be an interval and n ∈ N. Let further G,E :
I×I → Rn such thatGi andEi are deviations for all i ∈ Nn. If the n-variable
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inequality

DG(x1, . . . , xn) ≤ DE(x1, . . . , xn), (x1, . . . , xn ∈ D)

holds, then, for all k ∈ Nn and for all injective function χ : Nk → Nn, we also
have the k-variable inequality

DGχ(x1, . . . , xk) ≤ DEχ(x1, . . . , xk), (x1, . . . , xk ∈ D).

Finally we also establish the reducibility property of an abstract version of
a Hölder-Minkowski type inequality.

THEOREM. Let X1, . . . , X` be real Hausdorff topological linear spaces,
letD1 ⊆ X1, . . . , D` ⊆ X` be nonempty convex sets and I ⊆ R be an interval.
Let n ∈ N, k ∈ Nn, and let χ : Nk → Nn be an injective function. Let N1 :
Dn

1 → X1, . . . , N` : Dn
` → X` be χ-reducible means and letM : In → R be a

χ-continuous, uniquely χ-reducible mean. If a function f : D1×· · ·×D` → I
satisfies the n · `-variable inequality

M
(
f(x1, . . . , x`)

)
≤ f

(
N1(x

1), . . . , N`(x
`)
)
, (x1 ∈ Dn

1 , . . . , x
` ∈ Dn

` ),

then, for any χ-reductions K1 : Dk
1 → X1, . . . , K` : Dk

` → X` of N1, . . . , N`,
respectively, it also fulfills the k · `-variable inequality

Mχ

(
f(x1, . . . , x`)

)
≤ f

(
K1(x

1), . . . , K`(x
`)
)
, (x1 ∈ Dk

1 , . . . , x
` ∈ Dk

` ),

where, for m ∈ N and x1 ∈ Dm
1 , . . . , x

` ∈ Dm
` , we denote

f(x1, . . . , x`) := (f(x11, . . . , x
`
1), . . . , f(x1m, . . . , x

`
m)).



Összefoglaló (Summary in Hungarian)

Az alábbiakban néhány oldalon összefoglalom azokat a témaköröket, ame-
lyekkel a disszertációm foglalkozik és, ezzel párhuzamosan, felsorom a kapc-
solódó fontosabb eredményeket. A vizsgálatainkat Johan Jensen következő,
a valós függvények konvexitási elméletében alapvetőnek számító eredménye
motiválta.

TÉTEL. (Jensen, 1906) Legyen X valós vektortér és D ⊆ X nemüres,
konvex részhalmaz. Ekkor az alábbi állítások páronként ekvivalensek.

(1) Az f : D → R függvény Jensen-konvex.
(2) Bármely rögzített n ∈ N esetén, az f : D → R függvény eleget tesz az

n-változós Jensen egyenlőtlenségnek, vagyis, bármely x1, . . . , xn ∈
D esetén, fennáll az

f
(x1 + · · ·+ xn

n

)
≤ f(x1) + · · ·+ f(xn)

n

egyenlőtlenség.
(3) Az f : D → R függvény racionálisan konvex az értelmezési tar-

tományán, vagyis, bármely r ∈ [0, 1] ∩ Q súly és x, y ∈ D pontok
esetén

f(rx+ (1− r)y) ≤ rf(x) + (1− r)f(y).

A fenti tételnek, többek között, két fontos üzenete van. Ennek
megfelelően, témáját tekintve, a disszertáció is két nagyobb részre bontható.
• Első rész. Ebben a részben az (1) és (3) állítások közötti kapcsolatot emel-
ném ki. Ennek értelmében, ha egy valós értékű függvény 1

2
súllyal stan-

dard értelemben konvex, tehát Jensen konvex, akkor racionálisan is konvex.
Ebből az állításból rögtön következik a Jensen konvex függvények konvexitási
paraméterhalmazának több lényeges tulajdonsága. Nevezetesen, a konvexitási
paraméterhalmaz egy legalább megszámlálható (számossági tulajdonság) sűrű
(topologikus tulajdonság) részhalmaza a [0, 1] intervallumnak, továbbá tartal-
mazza a racionális számok testének [0, 1] intervalumba eső szeletét (algebrai
tulajdonság). A paraméterhalmaz jellemzése Norbert Kuhn nevéhez fűződik.
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TÉTEL. (Kuhn, 1984) Adott f : I → R függvényre, a Cf konvexitási
paraméterhalmaz vagy a triviális {0, 1} halmaz vagy felírható F ∩ [0, 1] alak-
ban, ahol F a legszűkebb Cf -et tartalmazó részteste R-nek.

A disszertáció első részében Kuhn eredményéhez hasonló tételeket fogal-
mazunk meg egy, bővített valós értékű függvényekre bevezetett, általánosított
konvexitási fogalom mellett. Most rátérünk az egyes alfejezetek részletesebb
ismertetésére.

Az első alfejezetben definiáljuk a középérték fogalmát és a fontosabb közé-
posztályokat, amelyekre a későbbiekben szükségünk lesz. Ezután megem-
lítünk héhány nélkülözhetetlen eszközt a lineáris algebrából és a fixpon-
telméletből. Végül megfogalmazzuk a közepek származtatására vonatkozó
főbb eredményeinket és alkalmazzuk őket a Matkowski közepek osztályára.

Az alfejezet központi fogalma egy közép leszármazottjainak osztálya. Az
1.7 Tétel biztosítja, hogy jóldefiniált fogalomról van szó, amennyiben, ne-
hány további feltétel mellett, feltesszük, hogy az eredeti közepek folytonosak
voltak.

A következő tétel kimondja, hogy súlyozott kváziaritmetikai közepek es-
etén a származtatott közepek mindig léteznek, súlyozott kváziaritmetikaiak
maradnak az eredeti generátorfüggvénnyel, és hogy az új súlyok a régiek segít-
ségével egyértelműen számolhatóak.

TÉTEL. Legyen n ≥ 2, s1, . . . , sn ∈ ]0, 1[ és h : I → R folytonos, szig-
orúan növő függvény. Adott (x, y) ∈ I2< esetén, legyen ϕ(x,y) : [x, y]n≤ → Rn

a (19) képlet alapján definiált függvény, ahol Mi := M(sih,(1−si)h), ha i ∈
{1, . . . , n}. Ekkor, bármely (x, y) ∈ I2< esetén, a Φ(x,y) fixpontok halmaza
megegyezik az

{(
M(σ1h, (1−σ1)h)(x, y), . . . ,M(σnh, (1−σn)h)(x, y)

)}
egyelemű

halmazzal, ahol

σi :=

( n∑
j=i

j∏
k=1

sk
1− sk

)( n∑
j=0

j∏
k=1

sk
1− sk

)−1
, (i ∈ {1, . . . , n}).

Általános esetben, ha a közepeink nem feltétlenül súlyozott kváziar-
itmetikaiak, a leszármazottak számolása nehézkessé, sőt, esetenként akár
lehetetlenné is válhat. Kiderül azonban, hogy ha a generátorfüggvények
két előre megadott függvény speciális eltoltjai, akkor a leszármazottak egy
kétirányú rekurzió segítségével könnyen leírhatók.

TÉTEL. Legyen n ≥ 2, j ∈ {1, . . . , n} és p, q, h1, . . . , hn−1 : I → R adott
folytonos, szigorúan növő függvények, továbbá legyen h0 := hn := 0. Adott
(x, y) ∈ I2< pár esetén, legyen ϕ(x,y) : [x, y]n≤ → Rn az (19) szerint definiált
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függvény, úgy, hogy

Mi :=


M(p+hi−1, hi), ha i ∈ {1, . . . , j − 1},

M(p+hi−1, hi+q), ha i = j,

M(hi−1, hi+q), ha i ∈ {j + 1, . . . , n}.
Ekkor, bármely (x, y) ∈ I2< esetén, a Φ(x,y) fixpontok halmaza megegyezik a
{(ξ1, . . . , ξn)} egyelemű halmazzal, ahol ξj := M(p, q)(x, y), továbbá

ξi :=

{
M(p, hi)(x, ξi+1), ha i ∈ {1, . . . , j − 1},

M(hi−1, q)(ξi−1, y), ha i ∈ {j + 1, . . . , n}.

A második fejezetben definiáljuk és jellemezzük bővített valós értékű
függvények alsó- és felső konvexitását egy adott M középre vonatkozóan.
Bevezetjük a kapcsolódó konvexitási osztályokat és megvizsgáljuk algebrai
és topologikus tulajdonságaikat. Végül, áttérve az aszimmetrikus konvexitás
speciális esetére, megfogalmazzuk és bizonyítjuk Kuhn tételének ellenpárját
is.

Kuhn tételéből következik, hogy a standard konvexitási paraméterhalmaz
zárt a saját elemeivel súlyozott konvex kombinációk képzésére nézve. A
következő állítás ezt az eredményt általánosítja.

ÁLLÍTÁS. Legyen f : I → R adott függvény ésM ∈ {Mf ,Mf}. Ekkor
az alábbi állítások igazak.
(a) Ha M,N1, N2 ∈ M és N1 < N2 az I2< halmazon, akkor M ◦ (N1, N2) ∈
M.

(b) Ha M,N ∈ M, akkor az M ◦ (min, N) és M ◦ (N,max) kompozíciók
ismét azM osztályhoz tartoznak.

A standard esethez hasonlóan, topologikus tulajdonság származtatható a
fenti eredményből.

KÖVETKEZMÉNY. Legyen f : I → R esetén
M∗

f := {M ∈Mf |M szeparáltan folytonos},

M∗
f := {M ∈Mf |M szeparáltan folytonos},

ésM∗ ∈ {M∗
f ,M

∗
f}. Ekkor azM∗ osztálynak, a pontonkénti konvergenciára

nézve, nem létezik izolált pontja. Pontosabban fogalmazva, bármely M ∈M∗

közép esetén, léteznek közepeknek olyan (Ln), (Un) ⊆ M∗ sorozatai, hogy
Ln < M < Un, valahányszor n ∈ N, továbbá Ln → M és Un → M
pontonként az I2< halmazon, ha n→∞.
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Az előzőekben elért eredményeket felhasználva, bizonyítható az alsó kon-
vexitási osztály leszármazottakra való zártsága. Felső konvexitás esetén ez az
állítás nem marad érvényben.

TÉTEL. Legyen f : I → R adott függvény, n ≥ 2, továbbá legyenek
M1, . . . ,Mn ∈ Mf folytonos közepek. Ekkor Di(M1, . . . ,Mn) ⊆ Mf min-
den i ∈ {1, . . . , n} esetén.

Feltéve, hogy az alsó konvexitási halmaz speciális Matkowski közepeket
is tartalmaz, az alábbi következmények vezethetők le.

KÖVETKEZMÉNY. Legyen f : I → R, n ≥ 2, s1, . . . , sn ∈ ]0, 1[ és,
végül, legyen h : I → R folytonos, szigorúan növő függvény. Tegyük fel,
hogy M(sih, (1−si)h) ∈ Mf minden i ∈ {1, . . . , n} esetén. Ekkor, minden
i ∈ {1, . . . , n} indexre, a M(σih, (1−σi)h) Matkowski közép tagja azMf osztály-
nak, ahol a σi súly (28) módon számolható értelmezve minden i ∈ {1, . . . , n}
esetén.

KÖVETKEZMÉNY. Legyen n ≥ 2, p, q, h1, . . . , hn−1 : I → R folytonos,
szigorúan növő függvények és f : I → R. Legyen továbbá h0 := hn :=
0 és tegyük fel, hogy létezik olyan j ∈ {1, . . . , n} index, hogy, minden i ∈
{1, . . . , n} esetén az

Mi :=


M(p+hi−1, hi), ha i ∈ {1, . . . , j − 1},
M(p+hj−1, hj+q), ha i = j,

M(hi−1, hi+q), ha i ∈ {j + 1, . . . , n}
közép az Mf osztályhoz tartozik. Ekkor N1, . . . , Nn ∈ Mf , ahol, bármely
(x, y) ∈ I2≤ pontra,

Ni(x, y) =


M(p, hi)(x,Ni+1(x, y)), ha i ∈ {1, . . . , j − 1},
M(p, q)(x, y), ha i = j

M(hi−1, q)(Ni−1(x, y), y), ha i ∈ {j + 1, . . . , n}.

Áttérve az aszimmetrikus konvexitás fogalmára a felső és alsó konvexitási
osztályok beazonosíthatóak a [0, 1] intervallum valamilyen alkalmas részhal-
mazával. Ekkor az algebrai és topologikus tulajdonságokról szóló tételek még
kifejezőbbek lesznek. Megkapjuk a paraméterhalmaz speciális konvexitását, a
szorzásra való zártságát és a sűrűségi tulajdonságot is.

TÉTEL. Legyen f : I → R és AC ∈ {ACf ,ACf}.
(1) Bármely t, s1, s2 ∈ AC esetén ts2 + (1 − t)s1 ∈ AC feltéve, hogy

s1 < s2.
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(2) Bármely t, s ∈ AC esetén, ts és 1 − (1 − t)(1 − s) eleme az AC
halmaznak.

(3) Az AC paraméterhalmaz sűrű ]0, 1[ -ben feltéve, hogy nem üres.

Alkalmazva a Matkowski közepekre nyert általános eredményeket, az
alábbi következmények vezethetők le.

KÖVETKEZMÉNY. Legyen I ⊆ R nemüres intervallum, f : I → R, n ≥ 2
és s1, . . . , sn ∈ ACf . Ekkor σi ∈ ACf bármely i ∈ {1, . . . , n} esetén, ahol

σi :=

( n∑
j=i

j∏
k=1

sk
1− sk

)( n∑
j=0

j∏
k=1

sk
1− sk

)−1
.

KÖVETKEZMÉNY. Adott f : I → R függvényre az alábbi állítások igazak.
(1) Ha 1/2 ∈ ACf , akkor Q∩ ]0, 1[⊆ ACf .
(2) Ha `/m ∈ ACf valamilyen `,m ∈ N pozitív egészek mellett úgy,

hogy ` < m és 2` 6= m, akkor, bármely n ≥ 2 esetén és bármely
i ∈ {1, . . . , n} indexre, az

ri :=
`n+1 − `i(m− `)n+1−i

`n+1 − (m− `)n+1

hányados az ACf halmazhoz tartozik.

Végül konstruálunk egy felülről aszimmetrikusan konvex, bővített valós
értékű függvényt amelynél a kapcsolódó paraméterhalmaz tartalmaz racionális
(és így algebrai) számokat, sűrű a ]0, 1[ intervallumban, de nem igaz rá a Kuhn
tétel állítása, nevezetesen, nem írható fel a ]0, 1[ intervallum és valamilyen
alkalmas résztest metszeteként. Egy hasonlóan viselkedő valós értékű füg-
gvényre sikerült példát adnia Lewicki és Olbryś lengyel matematikusoknak,
ahol csak azt tudjuk, hogy a paraméterhalmaz tartalmaz transzcendens el-
emet. Olyan valós értékű függvény létezése, amely aszimmetrikusan t-konvex
valamilyen algebrai t paraméterrel, de nem aszimmetrikusan (1 − t)-konvex,
máig nyitott probléma.

TÉTEL. Legyen I ⊆ R olyan intervallum, amelyre a := sup I ∈ I ∩ Q1,
legyen C : I → R konvex függvény és f : I → R olyan, hogy

f(x) :=

{
C(x), ha x ∈ (I ∩Q0) ∪ {a},
+∞, ha x ∈ I \ (Q0 ∪ {a}).

Ekkor, bármely t ∈ ]0, 1[∩Q1 esetén, az f függvény felülről At-konvex, de
nem felülről A1−t-konvex.



78 Összefoglaló (Summary in Hungarian)

KÖVETKEZMÉNY. A fenti jelöléseket és feltételeket megtartva, ACf nem
zárt az összeadására, következésképpen nem írható fel a ]0, 1[ intervallum és
R valamilyen résztestének metszeteként.

•Második rész. Ebben a részben az (1) és (2) állítások ekvivalenciájáról
szóló állítást általánosítjuk. Az eredeti állításból következik, hogy ha egy valós
értékű függvény eleget tesz az n-változós Jensen egyenlőtlenségnek, valami-
lyen rögzített n mellett, akkor teljesíti a kétváltozós Jensen egyenlőtlenséget
is. Nyilván, az állítás akkor érdekes, ha n > 2. A disszertációban ezt az n-
változós Jensen egyenlőtlenség redukálhatóságának nevezzük. Az eredeti tétel
bizonyításából kiderül, hogy ez a tulajdonság szorosan összefügg a háttérben
lévő közép redukálhatóságával, ami esetünkben a számtani közép.

A harmadik fejezetben precízen definiáljuk adott közép redukálhatóságát.
Az alábbi tétel egy elegendő feltételt fogalmaz meg.

TÉTEL. Az M : Dn → X közép χ-redukálható, ha χ-folytonos.

Ezt követően, messzemenően általánosítva a jól ismert középosztályokat,
bevezetjük az általánosított eltérésközép fogalmát Hausdorff-féle topologikus
vektortereken. Kiderül, hogy ezek a közepek természetes módon rendelkeznek
a redukálhatósági tulajdonsággal, továbbá a redukált közepek generátorfüg-
gvényei könnyen megadhatók az eredeti generátorok segítségével.

TÉTEL. Legyen n ∈ N, k ∈ Nn, és E ∈ E(D)n. Ekkor a DE : Dn → D
általánosított E-eltérésközép bármely injekítv χ : Nk → Nn függvényre nézve
redukálható. Továbbá a DE közép χ-redukáltja egyértelműen meghatározott,
nevezetesen

DE
χ (x) = DEχ(x), (x ∈ Dk).

A 3.4. fejezetben, speciális Gâteaux-differenciálható konvex függvények
segítségével, egy jellemzését adjuk az általánosított eltérésközepeknek.

TÉTEL. Legyen D ⊆ X konvex halmaz és F ∈ F(D). Ekkor az

EF (u, v) = −F ′u(v)

módon értelmezett EF : D × D → D∗ függvény egy általánosított eltérés.
Továbbá, ha n ∈ N, F ∈ F(D)n és EF = (EF1 , . . . , EFn), akkor, bármely
x ∈ Dn esetén, az y = DEF (x) egyenlőség pontosan akkor teljesül, ha y
egyértelmű minimumhelye az

FF,x(v) := F1(x1, v) + · · ·+ Fn(xn, v)

módon értelmezett FF,x : D → R függvénynek a conv(x(Nn)) halmaz felett.
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Megfordítva, ha X = R és D egy nyílt intervallum, akkor, bármely E ∈
E(D) eltérés esetén, létezik F ∈ F(D) függvény, hogy, bármely u ∈ D pontra,

F ′u(v) = −E(u, v), (v ∈ D)

teljesül.

A legutolsó fejezet valós függvények (M,N)-konvexitásának redukál-
hatóságával foglalkozik. Ez közvetlen általánosítása a standard Jensen egyen-
lőtlenségnek; megkapjuk, ha a bal, illetve a jobb oldalon lévő számtani
közepet az M , illetve az N általános közepekkel helyettesítjük. of real func-
tions, which is a self-evident generalization of the Jensen convexity. As in the
standard case, its reducibility depends strongly on the reducibility property of
the mean values what are involved, namely of M and N .

TÉTEL. Legyen D ⊆ X egy nemüres konvex halmaz, I ⊆ R egy inter-
vallum, n ∈ N, k ∈ Nn és legyen χ : Nk → Nn injektív. Legyenek továbbá
M : Dn → X és N : In → R közepek úgy, hogy M χ-redukálható, N
pedig χ-folytonos és egyértelműen χ-redukálható. Ha az f : D → I függvény
(M,N)-konvex, akkor (K,Nχ)-konvex is az M közép minden K : Dk → X
χ-redukáltjával.

A fenti tételt alkalmazva speciális redukálható közepekkel, az alábbi ál-
lítások bizonyíthatók.

KÖVETKEZMÉNY. Legyen D ⊆ X nemüres konvex halmaz, I ⊆ R inter-
vallum és n ∈ N. Legyen továbbá ω : D → Rn

+ és E : I × I → Rn úgy,
hogy Ei egy eltérés minden i ∈ Nn index esetén. Ha az f : D → I függvény
kielégíti az n-változós

f
(
Aω(x1, . . . , xn)

)
≤ DE

(
f(x1), . . . , f(xn)

)
, (x1, . . . , xn ∈ D),

egyenlőtlenséget, akkor, bármely k ∈ Nn és bármely χ : Nk → Nn injektív
függvény esetén, kielégíti a k-változós

f
(
Aωχ(x1, . . . , xk)

)
≤ DEχ

(
f(x1), . . . , f(xk)

)
, (x1, . . . , xk ∈ D).

egyenlőtlenséget is.

KÖVETKEZMÉNY. Legyen D ⊆ X egy nemüres konvex halmaz, I ⊆ R
intervallum és n ∈ N. Legyen továbbáG : D×D → (D∗)n ésE : I×I → Rn

olyan, hogy Gi egy általánosított eltérés és Ei egy eltérés minden i ∈ Nn

esetén. Ha az f : D → I függvény kielégíti az n-változós

f
(
DG(x1, . . . , xn)

)
≤ DE

(
f(x1), . . . , f(xn)

)
, (x1, . . . , xn ∈ D),
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egyenlőtlenséget, akkor, minden k ∈ Nn és minden χ : Nk → Nn injektív
függvény esetén, kielégíti a k-változós

f
(
DGχ(x1, . . . , xk)

)
≤ DEχ

(
f(x1), . . . , f(xk)

)
, (x1, . . . , xk ∈ D).

egyenlőtlenséget is.

A következő állítás szerint, ha két eltérésközép összehasonlítható, akkor a
redukáltjaik is összehasonlíthatók.

KÖVETKEZMÉNY. Legyen I ⊆ R intervallum és n ∈ N. Legyen továbbá
G,E : I × I → Rn olyan, hogy Gi és Ei eltérés minden i ∈ Nn esetén. Ha

DG(x1, . . . , xn) ≤ DE(x1, . . . , xn), (x1, . . . , xn ∈ D),

akkor, bármely k ∈ Nn és bármely χ : Nk → Nn injektív függvény esetén,

DGχ(x1, . . . , xk) ≤ DEχ(x1, . . . , xk), (x1, . . . , xk ∈ D).

is teljesül.

Végül, a fenti állítások bizonyításában szereplő technikák segítségével,
Hölder-Minkowski-típusú egyenlőtlenségek redukálhatósági tétele is bi-
zonyítható.

TÉTEL. Legyenek X1, . . . , X` Hausdorff-féle topologikus vektorterek,
D1 ⊆ X1, . . . , D` ⊆ X` nemüres konvex halmazok és I ⊆ R interval-
lum. Legyen n ∈ N, k ∈ Nn és χ : Nk → Nn egy ijektív függvény.
Legyenek végül N1 : Dn

1 → X1, . . . , N` : Dn
` → X` χ-redukálható közepek,

M : In → R pedig χ-folytonos és egyértelműen χ-redukálható. Ha az
f : D1 × · · · ×D` → I függvény kielégíti n · `-változós

M
(
f(x1, . . . , x`)

)
≤ f

(
N1(x

1), . . . , N`(x
`)
)
, (x1 ∈ Dn

1 , . . . , x
` ∈ Dn

` ),

egyenlőtlenséget, akkor az N1, . . . , N` közepek bármely K1 : Dk
1 →

X1, . . . , K` : Dk
` → X` χ-redukáltja esetén, kielégíti a k · `-változós

Mχ

(
f(x1, . . . , x`)

)
≤ f

(
K1(x

1), . . . , K`(x
`)
)
, (x1 ∈ Dk

1 , . . . , x
` ∈ Dk

` ),

egyenlőtlenséget is, ahol, adott m ∈ N és x1 ∈ Dm
1 , . . . , x

` ∈ Dm
` elemekre,

f(x1, . . . , x`) :=
(
f(x11, . . . , x

`
1), . . . , f(x1m, . . . , x

`
m)
)
.
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